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2 Carsten Hartmann: Singularly perturbed differential equations

Foreword

These notes are based on a series of lectures given at Freie Universität Berlin in spring 2008. They give a high-
level overview of certain singular perturbation problems that appear in the modelling of real-world problems by
differential equations. In doing so the notes focus on two prevalent classes of singularly perturbed differential
equations: deterministic systems that have an invariant manifold, and coupled slow/fast systems, both stochastic
and deterministic, which can be treated within the framework of averaging techniques. Parts of the notes are
based on the textbook Multiscale Methods: Averaging and Homogenization by Greg Pavliotis and Andrew Stuart,
a book which I highly recommend.

1 Introduction

Systems involving several time scales often assume the prototypical form

ẋε = f(xε, yε, ε)

ẏε =
1

ε
g(xε, yε, ε) , xε(0) = x0, y

ε(0) = y0

(1.1)

where (x, y) ∈ Rn × Rm and 0 < ε � 1 is a small parameter and we use the “overdot” to denote derivatives
with respect to the free variable, i.e., ż(t) = dz/dt. If f(·, ·, ε) and g(·, ·, ε) are globally Lipschitz and uniformly
bounded in ε, then ẏε(t) will be of order 1/ε faster than ẋε(t). Accordingly, we call x the slow variables and y
the fast variables of the system.

1.1 Motivation

Slow/fast systems naturally appear in the modelling of real-world processes. Typical examples involve:

Climate systems Many large-scale phenomena such as El Niño arise from the coupling between the tropical
ocean and the atmosphere where the rapid weather changes in the atmosphere act as a stochastic force on the
slowly evolving ocean.

Celestial mechanics The timescale of the earth’s orbital motion around the sun is much shorter than its period
of rotation. Hence the tidal evolution of the earth-moon system depends on the slowly varying gravitational
potential of the sun (see Figure 1).

Enzyme kinetics Enzyme-catalysed reactions with single-substrate mechanisms due to Michaelis and Menten
are systematically written as

S + E
k1

GGGGGGBFGGGGGG

k−1

SE
k2

GGGAS + P

where it is assumed that the back reaction S + P → ES is negligible. If the concentration of the substrate S is
high, the enzyme E is entirely saturated and only exists in its complex form ES. This entails that, after a short
relaxation time depending upon the initial conditions, the concentrations of both the enzyme and the complex
quickly converge to a steady-state.

Many-particle dynamics In systems that consist of different types of atoms which are coupled by interatomic
forces, the lighter particles typically oscillate quickly around an average path that follows the slow motion of the
heavy particles. As any numerical scheme has to resolve the fastest scale in the system, the singular perturbation
in the system of equations (1.1) renders the numerical integration unstable as ε goes to zero. Therefore we may
wish to replace it by the “simpler” equation

ẋ = f̄(x) , x(0) = x0 , (1.2)

which approximates the dynamics of the slow degrees of freedom when ε is small.

This is a preliminary version. Do not circulate.
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Fig. 1 Sun-earth-moon system

1.2 Elimination of fast variables

The specific form of the reduced system (1.2) depends

1. on the qualitative properties of the vector field g(x, ·, ε),

2. on the way the limit xε → x is taken, and

3. on the type of approximation used.

Regarding the latter, the limiting equation clearly depends, for example, on the norm that measures the
deviations ‖xε − x‖, or on the time interval in which the approximation shall hold. Issues of weak and strong
convergence as well as approximations on compact or exponentially long time intervals will be discussed later on.
Regarding the first two topics, we will briefly mention two basic perturbation techniques that are employed in
analysing slow/fast systems such as (1.1).

Invariant manifolds A suggestive way of writing (1.1) is as follows:

ẋε = f(xε, yε, ε)

εẏε = g(xε, yε, ε) , xε(0) = x0, y
ε(0) = y0 .

Clearly, for arbitrary initial conditions (x0, y0) the right hand side of the second equation will be of order 1, so
letting ε approach zero does not make sense at the moment. However, we may choose (x0, y0) such that the
fast equation becomes stationary, i.e. g(x0, y0, 0) = 0. Moreover, if ε is sufficiently small, it seems reasonable to
replace (1.1) with the differential algebraic equation

ẋ = f(x, y, 0)

0 = g(x, y, 0) , x(0) = x0, y(0) = y0 .
(1.3)

By construction, the dynamics remain on the invariant manifold

S = {(x, y) ∈ Rn ×Rm| g(x, y, 0) = 0} ⊂ Rn ×Rm .

In simple cases we can solve the algebraic equation g(x, y, 0) = 0 for the dependent variable x, provided that the
Jacobian (∂g/∂y) is regular on S. This yields an equation x = h(y) that we can plug into the first equation, by
which we find

ẋ = f(x, h(x), 0) , x(0) = x0 .

In other words, if the slow/fast system (1.1) admits an invariant manifold, we may approximate the slow equation
by the reduced system (1.2) where f̄(x) = f(x, h(x), 0). The condition on the initial values may be relaxed if the
fast subsystem is strictly hyperbolic, i.e., the invariant manifold is “attractive” such that all trajectories that are
launched in the vicinity of the invariant manifold are quickly absorbed by it. Assertions regarding the behaviour
of solutions for finite ε and convergence as ε→ 0 are made by the geometric singular perturbation theory that is
due to Tikhonov [18], Gradštein [6] and Fenichel [5].

This is a preliminary version. Do not circulate.



4 Carsten Hartmann: Singularly perturbed differential equations

Averaging and homogenisation in time Yet another way to derive a reduced system of the form (1.2)
consists in averaging over the fast variables. To this end we rescale the free variable according to t 7→ t/ε and
introduce the microscopic time

τ = t/ε ⇒ d

dt
=

1

ε

d

dτ
.

By chain rule, (1.1) turns out to be equivalent to the system

żε = εf(zε, ξε, ε)

ξ̇ε = g(zε, ξε, ε) , zε(0) = x0, ξ
ε(0) = y0

where (z(τ), ξ(τ)) = (x(ετ), y(ετ)). We keep the “overdot” notation to denote the derivative with respect to the
free variable. Let us consider the solution on the time interval [0, T ]; by continuity of the solution we conclude
that the slow limit solution for ε→ 0 is constant on the interval [0, T ], i.e.,

lim
ε→0

zε(τ) = x0 ∀τ ∈ [0, T ]

whereas ξ(t) = ϕtx0
(y0) is the solution of the associated equation

ξ̇ = g(x0, ξ, 0)) , ξ(0) = y0 , (1.4)

on [0, T ]. This changes if we speed up time and consider the behaviour of the solution on an infinite time
interval [0, T/ε]: Switching back to the original variables t = ετ and xε(t) = zε(t/ε) (while keeping in mind that
τ ∈ [0, T/ε] is equivalent to t ∈ [0, T ]), we arrive at the classical averaging formulation

ẋε = f(xε, ϕt/εx (y0), ε) , xε(0) = x0 . (1.5)

Note that the fast variable yε has been replaced by the solution of the associated problem (1.4) which depends
parametrically on the current value xε(t) = x of the slow variable.

The representation (1.5) explains the idea of the fast dynamics acting as random perturbations to the slow

dynamics, since yε ≈ ϕ
t/ε
x (y0) has now become a “fast forcing function”. Seeking a closure of the last equation

amounts to taking the limit ε→ 0. The limiting equation reads

ẋ = f̄(x) , x(0) = x0 ,

with

f̄(x) = lim
T→∞

1

T

∫ T

0

f(x, ϕtx(y0), 0) dt ,

provided that the integral exists.1 Note that f̄ may still depend on the initial value y0. If, however, the associated
system admits an ergodic probability measure µx, i.e.,

lim
T→∞

1

T

∫ T

0

h(ϕtx(y0)) dt =

∫
h(y) dµx(y)

for almost all initial values y0 and any integrable function h ∈ L1(Rm), then f̄ is independent of y0 and can be
computed by simply taking the ensemble average

f̄(x) =

∫
f(x, y, 0) dµx(y) .

The latter is often more convenient than computing time averages. Statements so as to guarantee that the
original slow/fast system can be replaced by the forced equation (1.5) and averaged over the fast perturbations
are known by the name of averaging principles and go back to the works of Bogolyubov / Mitropol’skii [2] and
Khas’minskii [8] from the sixties.

A remark is in order. Averaging principles make assertions about approximation properties of averaged
differential equations on compact time intervals. Yet it may happen that the right hand side of (1.5) averages to
zero under the fast dynamics, in case of which the dynamics become trivial on the interval [0, T ] and the relevant
dynamics happen on a time interval of order 1/ε or even exp(−1/ε). Convergence results in this respect are due
to Khas’minskii and are often quoted as homogenisation results or diffusive limits.

1 If the fast forcing function is periodic with period T <∞, the integral will be computed over a single period.

This is a preliminary version. Do not circulate.
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1.3 Perturbation techniques

The analyses of singularly perturbed differential equations such as (1.1) often boil down to linear operator
equations of the type (see, e.g., [12] for a treatment of stochastic systems)

∂φε(u, t) = Lεφε(u, t) , φε(u, 0) = ψ(u) . (1.6)

Here Lε is a differential operator that is defined on some Banach space subject to suitable boundary conditions
and u ∈ Rn+m is a shorthand for (x, y). If we confine our attention to the aforementioned class of problems
(averaging or geometric singular perturbation) the operator typically takes the form

Lε = L0 +
1

ε
L1

where L0 and L1 “generate” the slow and fast dynamics, respectively. (The properties of Li depend on the
actual problem and will be discussed later on in the text.) Notice that L0 and L1 may still depend on ε, but the
dominant singularity is as sketched. We seek a perturbative expansion of the solution of (1.6) that has the form

φε = φ0 + εφ1 + ε2φ2 + . . . .

Hence (1.6) can be recast as

1

ε
L1φ0 + (L1φ1 + L0φ0 − ∂φ0) = O(ε) ,

and equating powers of ε yields a hierarchy of equations the first two of which are

L1φ0 = 0

L1φ1 = ∂φ0 − L0φ0 .

The first equation implies that the lowest-order perturbation approximation of (1.6) lies in the nullspace of L1,
which typically entails a condition of the form φ0 = φ0(x). Averaging or geometric singular perturbation theory
now consists in finding an appropriate closure of the second equation subject to φ0 ∈ kerL1. This results in an
effective equation for φ ≈ φ0, namely,

∂φ(x, t) = L̄φ(x, t) .

Once the effective linear operator L̄ has been computed from L0 and L1, the result can be reinterpreted in terms
of the corresponding differential equation to give

ẋ = f̄(x) , x(0) = x0 .

2 Linear systems

Consider the linear system of ordinary differential equations

u̇ε = Lεuε , uε(0) = v (2.1)

where u ∈ Rn+m, and Lε is a real-valued singularly perturbed (n+m)× (n+m) matrix that reads

Lε = L0 +
1

ε
L1 .

2.1 First-order perturbation expansion

Our presentation of the linear problem follows essentially the textbook [14]. For the sake of the following
argument, let us assume that the nullspace of L1 is one-dimensional, i.e., kerL1 = span{φ}, and so is kerL∗1 =
span{ψ}. Let us further assume that 〈φ, ψ〉 6= 0. We seek a perturbative expansion of uε that is of the form

uε = u0 + εu1 + ε2u2 + . . . .

This is a preliminary version. Do not circulate.



6 Carsten Hartmann: Singularly perturbed differential equations

Plugging the ansatz into (2.1) yields

1

ε
L1u0 + (L1u1 + L0u0 − u̇0) + ε (L1u2 + L0u1 − u̇1) = O(ε2) .

By equating equal powers of ε we find

L1u0 = 0 (2.2)

L1u1 = u̇0 − L0u0 (2.3)

L1u2 = u̇1 − L0u1 (2.4)

and so on and so forth. The first equation implies that u0 ∈ kerL1. As we are aiming at the lowest-order
approximation uε ≈ u0, the time evolution of u0 is due to the second equation. By the assumption above, the
nullspace of L1 is one-dimensional, hence the approximation will have the form u0(t) = α(t)φ. As will become
clear later on it is convenient to multiply the second equation by ψ ∈ kerL∗1 from the left,

〈ψ,L1u1〉 = 〈ψ, u̇0〉 − 〈ψ,L0u0〉 .

Since 〈ψ,L1u1〉 = 〈L∗1ψ, u1〉 and L∗1ψ = 0 the latter is equivalent to

α̇ = L̄α , L̄ =
〈ψ,L0φ〉
〈ψ, φ〉

(2.5)

where we have taken advantage of the identity u0 = αφ. Notice that the “averaged” coefficient L̄ is independent
of how φ, ψ are normalised. As yet we have not specified the initial conditions for α; in order to keep the
discussion lucid and simple we suppose that the initial conditions in (2.1) are consistent with the lowest-order
approximation, that is, we suppose that v ∈ kerL1. In this case we have

α0 = ±|v|
|φ|

where the sign is determined by the orientation of v with respect to φ (i.e., whether the two vectors are parallel
or antiparallel). To lowest order, we have the approximation uε ≈ u0 with

u0 = ±|v| exp(L̄t) φ
|φ|

which is independent of the normalisation of φ. As our problem is linear it can be readily seen that

sup
0≤t≤T

‖uε − u0‖ = Cε

for all T <∞ with C depending exponentially on T .

2.2 The Fredholm alternative

Before we come to the next-order perturbation result, let us briefly revisit the essential steps that have led to
an effective equation for u0. To this end recall that the closure of equation (2.3) that determined the time
dependence of u0 was obtained by a projection onto the nullspace of L∗1 (i.e., left multiplication with ψ ∈ kerL∗1
where L∗1 = LT1 ). Generally speaking, this closure consisted in solving an equation of the form L1u1 = f .
Its solvability conditions are provided by the following important theorem of which we state only the finite-
dimensional version.

Theorem 2.1 (Fredholm alternative) Let L ∈ Rn×n. Then

1. either the equation Lu = f has a unique solution for all f ∈ Rn, or

2. the homogeneous equation Lu = 0 has at least one nontrivial solution and

1 ≤ dim(kerL1) = dim(kerL∗1) <∞ .

In this case the inhomogeneous equation Lu = f has a solution if and only if

〈v, f〉 = 0 ∀v ∈ kerL∗ .
This is a preliminary version. Do not circulate.
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P r o o f. The first statement is trivial, so we give only a justification of the second. Suppose that kerL 6= ∅.
To see that solvability of Lu = f implies 〈v, f〉 = 0 for all v ∈ kerL∗ consider u ∈ Rn that solves Lu = f for
f 6= 0. Since

〈v,Lu〉 = 〈L∗v, u〉 ∀u, v ∈ Rn

and 〈L∗v, u〉 = 0 for all v ∈ kerL∗ it follows that f ∈ (kerL∗)⊥ is a necessary condition for Lu = f to have
a solution. Conversely, suppose that 〈v, f〉 = 0 for all v ∈ kerL∗. To show that the equation Lu = f has a
non-trivial solution for f 6= 0 we multiply the equation by L∗ from the left which yields

L∗Lu = b , b = L∗f .

As f ∈ (kerL)⊥ entails that b ∈ R(L∗), b 6= 0 with R(L∗) denoting the range of L∗, we conclude that L∗L : Rn →
R(L∗) is surjective. Hence Lu = f has a solution and the assertion follows.

Remark 2.2 The Fredholm alternative carries over to the infinite-dimensional case when L is a compact
perturbation of the identity, i.e., L = Id−K for K being compact. (A linear operator K is called compact when
the closure of K(B) is compact for all bounded subsets B of the domain of K.) For details see, e.g., [15, 19].

2.3 Second-order perturbation expansion

We shall study the case that the first-order expansion yields the trivial result

u̇0 = 0 , t ∈ [0, T ] .

That is, we have 〈ψ,L0φ〉 = 0 which implies L̄ = 0 in equation (2.5). In this case nontrivial dynamics will occur
only on essentially longer time intervals of length O(1/ε) or even O(exp(−1/ε)) which amounts to higher-order
corrections in the perturbation expansion. In order to understand this phenomenon, we speed up time by scaling
the free variable t according to t 7→ εt, εt = τ (diffusive scaling). Using that

d

dt
= ε

d

dτ
,

our original problem (2.1) now reads

duε

dτ
= Lεuε , uε(0) = v (2.6)

where uε = uε(τ), and Lε is the n× n matrix

Lε =
1

ε
L0 +

1

ε2
L1 .

Suppose again that kerL1 = span{φ} and kerL∗1 = span{ψ} are one-dimensional with 〈φ, ψ〉 6= 0. Additionally,
we assume that the so-called centering condition

〈ψ,L0ξ〉 = 0 ∀ξ ∈ Rn (2.7)

holds true for ψ ∈ L∗1; in particular the centering condition implies L̄ = 0 in (2.5). We seek a perturbative
expansion for (2.6) that is of the form

uε = u0 + εu1 + ε2u2 + . . . .

Equating powers of ε yields again a hierarchy of equations the first three of which are

L1u0 = 0 (2.8)

L1u1 = −L0u0 (2.9)

L1u2 = u̇0 − L0u1 . (2.10)

As before, the first equation entails that u0 ∈ kerL which yields lowest-order approximation uε(τ) ≈ β(τ)φ,
τ ∈ [0, T ] we are aiming at. (In terms of the original time t this becomes an approximation on [0, T/ε].)

This is a preliminary version. Do not circulate.



8 Carsten Hartmann: Singularly perturbed differential equations

Since 〈ψ,L0u0〉 = 0 by the centering condition, the Fredholm alternative applies and we can solve equation
(2.9). Let η ∈ Rn be the solution

L1η = −L0φ . (2.11)

The last equation is called the cell problem where the word cell typically refers to the scale of the fast variables.
By the Fredholm alternative, solvability of (2.10) requires that 〈ψ, u̇0 − L0u1〉 = 0. Together with (2.11) this
results in an effective equation for β,

β̇ = −L̄β , β0 = ±|v|
|φ|

(2.12)

with the coefficient

L̄ = −〈ψ,L0η〉
〈ψ, φ〉

. (2.13)

A slightly sloppy but instructive way to write L̄ is

L̄ = −
〈
ψ,L0L−1

1 L0φ
〉

〈ψ, φ〉

as can be found by formally solving (2.9) upon noting that the right hand side of the equation has no component
in the kernel of L∗1 (centering condition). Rescaling back to the original time t = τ/ε the correction to the
constant O(1) solution uε ≈ u0 is

uε − u0 ≈ ±|v| exp(ε̄Lt) φ
|φ|

which now yields an approximation on the interval [0, T/ε]. When ε is small, the refined approximation entails
the original one as uε − u0 ≈ 0 for times of order 1.

In addition to computing the effective coefficient L̄, the second-order perturbation result that is often termed
homogenised equation requires to solve a cell problem. Although the solution of the cell problem (2.11) is not
unique the effective equation (2.12)–(2.13) is the same for all solutions of (2.11). This can be seen as follows:
since L1 has a nontrivial nullspace, the solution of

L1η = f , f = −L0u0 ∈ (kerL∗1)⊥ ,

is unique up to additive multiples of vectors ζ ∈ kerL1. Equation (2.13) thus becomes

L̄ = −〈ψ,L0(η + ζ)〉
〈ψ, φ〉

.

However the centering condition (2.7) implies 〈ψ,L0ζ〉 = 0, and therefore L̄ is unambiguously defined.

Remark 2.3 If the initial conditions lie in the nullspace of L1 the described perturbation expansions will
break down in the neighbourhood of t = 0. In this case it is necessary to separately account for the relaxation
of the solution to the nullspace in which the approximation is sought. Under suitable dissipativity assumptions
regarding L1 the relaxation will typically occur in some initial layer t ∈ [0, ε] or t ∈ [0,

√
ε]. We will come back

to this point at a later stage in the text.

2.4 An example

We shall conclude the discussion of linear systems with a little example from classical mechanics. For this purpose
we consider oscillating particles in Rd = Rn ×Rm that are governed by the second-order differential equations

ẍε = −(L11x
ε + L12y

ε) , xε(0) = x0, ẋ
ε(0) = v0

ε2ÿε = −(LT12x
ε + L22y

ε) , yε(0) = y0, ẏ
ε(0) = w0 .

(2.14)

Equations (2.14) describe the oscillation of heavy particles of unit mass that are coupled to light particles of mass
ε. The equations are Hamiltonian with the energy

H(x, y, v, w) =
1

2

(
|v|2 + |w|2

)
+

1

2

(
xTL11x+ 2xTL12y + yTL22y

)
This is a preliminary version. Do not circulate.
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with L22 = LT22 > 0 (positive definite) and the symplectic form

ω = dx ∧ dv +
1

ε
dy ∧ dw .

The equations of motion (2.14) equivalently read

ẋε = vε , xε(0) = x0

v̇ε = −(L11x
ε + L12y

ε) , vε(0) = v0

εẏε = wε , yε(0) = y0

εẇε = −(LT12x
ε + L22y

ε) , wε(0) =
1

ε
w0

(2.15)

which is of the form (2.1) with u = (x, v, y, w) and

L0 =


0 1 0 0
−L11 0 −L12 0

0 0 0 0
0 0 0 0

 , L1 =


0 0 0 0
0 0 0 0
0 0 0 1
−LT12 0 −L22 0

 .

We want to argue along the lines of Section 2. To this end, we have to adapt the considerations therein to the case
dim(kerL1) = dim(kerL∗1) = 2. Specifically, we seek an effective solution of (2.15) that is of the form uε ≈ u0

and evolves in the nullspace of L1, viz.,

u0 =

2∑
i=1

αiφi , L1φ1 = L1φ2 = 0 .

Imposing the nullspace requirement on the initial conditions yields y0 = −L−1
22 L

T
12x0 and w0 = 0 for the fast

dynamics. Hence the effective equation turns out to be

ẋ = v , x(0) = x0

v̇ = −L̄x v(0) = v0

(2.16)

where L̄ = L11 − L12L
−1
22 L

T
12 is the Schur complement of L. Notice that the restriction of the initial conditions

(y0, w0) entails stationarity of the fast subsystem in equation (2.15), i.e., ẏε = 0 and ẇε = 0. In other words,

M(x) = {(y, w)
∣∣y = −L−1

22 L
T
12x, , w = 0

}
⊂ R2m

are invariant sets of the dynamical system (2.15). Consequently the dynamics satisfying the effective equation
(2.16) are exact in the sense that xε(t) = x(t) holds independently of ε provided that (y0, w0) ∈M(x).

3 The generator

We shall study the ordinary differential equation

ż = f(z) , z(0) = z0 (3.1)

for z ∈ Z ⊆ Rn. The actual choice of state space (phase space) Z will depend on the problem; typically Z = Rn,
or we will choose Z = Tn to be the n-dimensional flat torus (periodic boundary conditions). If the vector field
f : Z → TZ is globally Lipschitz, equation (3.1) has a unique solution

ϕt : Z → Z , z(t) = ϕt(z0) .

Now consider the linear operator L : C1(Z)→ C1(Z) defined by

Lu = f(z) · ∇u(z) . (3.2)

This is a preliminary version. Do not circulate.



10 Carsten Hartmann: Singularly perturbed differential equations

For any continuously differentiable function u ∈ C1(Z,R) (observable) the operator L “generates” the time
evolution of u under the flow ϕt. To see this, compute

d

dt
u(ϕt(z)) = ∇u(ϕt(z)) · d

dt
ϕt(z)

= ∇u(ϕt(z)) · f(ϕt(z))

= Lu(ϕt(z)) .

Formally, we can view the evolution equation

du

dt
= Lu

as an ordinary differential equation on a function space (here: C1(Z,R)). Defining the usual scalar product in
the Hilbert space L2(Z),

〈u, v〉L2 =

∫
Z
u(z)v(z) dz ,

we can introduce the formal adjoint of L by means of 〈Lu, v〉L2 = 〈u,L∗v〉L2 , that is,∫
Z

(f · ∇u) v dz = −
∫
Z
∇ · (vf)u dz

where we impose either periodic boundary conditions for Z = Tn or growth conditions at infinity in case of
Z = Rn such that no boundary terms appear. Hence

L∗v = −f(z) · ∇v(z)− v(z) divf(z) . (3.3)

3.1 The backward equation

Consider the Cauchy problem (initial value problem)

∂tu(z, t) = Lu(z, t) , (z, t) ∈ Z×]0,∞[

u(z, 0) = φ(z) , z ∈ Z
(3.4)

the formal solution of which is given by

u(z, t) = (exp(tL)φ) (z) .

The last identity can be readily verified by differentiation with respect to time. The operator Tt = exp(tL) is
referred to as the semigroup generated by L, or, simply, the semigroup of L. It is easy to see that Tt satisfies
T0 = Id and Tt+s = Tt ◦ Ts; an inverse does not necessarily exist, hence Tt does not form a group in general.

An obvious question concerns the relation between the semigroup Tt and the solutions of (3.1). This issue is
addressed by the following theorem:

Theorem 3.1 (see, e.g., Pavliotis & Stuart, 2008) Let ϕt : Z → Z be the one-parameter group of solutions to
(3.1), and suppose that the partial differential equation (3.4) has a (strong) solution (i.e., the initial data φ are
sufficiently smooth). Then

u(z, t) = φ(ϕt(z))

is the solution of (3.4) for all t > 0 and z ∈ Z.

P r o o f. First of all notice that ϕ0 = Id. Hence the function u(z, 0) = φ(ϕ0(z)) = φ(z) satisfies the initial
condition in (3.4). As for t > 0, recall that ϕ−t is the inverse of ϕt. Therefore u(ϕ−t(z), t) = φ(z) by which we
conclude that

d

dt
u(ϕ−t(z), t) = 0 .
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Using chain rule, the last equation entails

∂

∂t
u(ϕ−t(z), t) +∇u(ϕ−t(z), t) · d

dt
ϕ−t(z) = 0 .

Since ϕ−t is the solution of (3.1) with reversed time,

d

dt
ϕ−t(z) = −f(ϕ−t(z)),

the above equation is equal to

∂

∂t
u(ϕ−t(z), t)−∇u(ϕ−t(z), t) · f(ϕ−t(z)) = 0 .

Upon replacing ϕ−t(z) by z this is equivalent to (3.4), and so the assertion follows.

Theorem 3.1 states that the solution of the partial differential equation (3.4) is obtained by following the initial
condition φ along the solution curves of the ordinary differential equation (3.1). This can be rephrased by saying
that u(z, t) = φ(ϕt(z)) yields the solution of the transport equation (3.4) using the method of characteristics.

Infinitesimal generator So far we have defined the generator L acting on functions that are differentiable.
Setting

Tt : L
∞(Z)→ L∞(Z) , (Ttφ) (z) = φ(ϕt(z))

we may nonetheless extend the semigroup Tt = exp(tL) to functions φ that are bounded on Z. In this case, we
can define the infinitesimal generator of Tt by

Lφ = lim
h→0

Thφ− φ
h

(3.5)

provided that the limit exists in L∞(Z). The set of functions for which (3.5) exists is called the domain of
definition of L and is denoted by D(L). Notice that on C1 ⊂ L∞ (i.e., assuming differentiability) the definition
of the generator coincides with (3.2).

3.2 The forward equation (Liouville equation)

Let us study how the situation changes, when we place a probability measure on Z. That is, rather than solving
the initial value problem (3.1) we look at the solutions of

ż = f(z) , z(0) ∼ ρ0

where ρ0 is any given probability distribution for z0 ∈ Z. The randomness in the initial conditions z0 implies
that the solutions z(t) = ϕt(z0) are now random variables for each t ≥ 0. The law of z = z(t, ω) where ω ∈ Ω
denotes the possible outcomes of z that are drawn from a sample space Ω is governed by the forward equation

∂tρ(z, t) = L∗ρ(z, t) , (z, t) ∈ Z×]0,∞[

ρ(z, 0) = ρ0(z) , z ∈ Z
(3.6)

which is the adjoint to the backward equation (3.4) and is often termed the Liouville equation. On the Hilbert
space L2(Z), the operator L∗ is given by (3.3), supposing that ρ is differentiable. It has the formal solution

ρ(z, t) = (exp(tL∗)ρ0) (z)

where T ∗t = exp(tL∗) is the adjoint of the semigroup Tt. To see that exp(tL∗) indeed is the same as exp(tL)∗,
we first of all notice that TtL = LTt, for

LTtφ = lim
h→0

Th(Ttφ)− Ttφ
h

= Tt lim
h→0

Thφ− φ
h

= TtLφ
This is a preliminary version. Do not circulate.



12 Carsten Hartmann: Singularly perturbed differential equations

where we have used the semigroup property Th ◦ Tt = Tt+h = Tt ◦ Th in the second equality. The fact that the
semigroup commutes with its generator can be used to show that ∂tTtφ = LTtφ = TtLφ. Now consider a function
g that lies in the domain of L∗. Clearly, the function t 7→ 〈g, Ttφ〉 is differentiable, and thus

∂t 〈g, Ttφ〉 = 〈T ∗t g,Lφ〉
= 〈L∗T ∗t g, φ〉

by which it follows that T ∗t = exp(tL∗) is the solution operator to (3.6).

Typically, T ∗t : L1(Z)→ L1(Z) which is the formal adjoint of Tt : L
∞(Z)→ L∞(Z) in L2(Z). As we will see

below the adjoint semigroup T ∗t has the interpretation of transporting densities on phase space, so it makes sense
to let T ∗t act on functions that are integrable (i.e., normalisable). In accordance with the previous considerations,
we can define the infinitesimal generator of the adjoint semigroup by

Lg = lim
h→0

T ∗hg − g
h

provided the limit exists in L1(Z). Note that on C1 which is a dense subset of L1 (i.e., we can approximate any
integrable function by a finite number of continuous ones) the definition of L∗ coincides with (3.3). Now we can
state the next theorem.

Theorem 3.2 (Propagation of densities) Let ϕt : Z → Z the solution of (3.1) with random initial conditions
z(0) = z0 that are distributed according to some probability distribution ρ0. Then z(t) = ϕt(z0) is a random
variable with law ρt(z) = ρ(z, t).

P r o o f. If basically suffices to show that ϕt preserves expectation values. For a function φ : Z → R, define
the expectation with respect to ρ0 by

Eρ0φ(z) =

∫
Z
φ(z)ρ0(z) dz .

Now consider (Ttφ)(z) = φ(ϕt(z)), and note that for φ ∈ L2(Z) we can write

Eρ0φ = 〈φ, ρ0〉L2 .

Hence

Eρ0φ(ϕt(z)) =

∫
Z

(Ttφ) (z)ρ0(z) dz

=

∫
Z
φ(z) (T ∗t ρ0) (z) dz

=

∫
Z
φ(z)ρ(z, t) dz

= Eρtφ(z) .

This implies that, for any measurable set A ⊂ Z,

P(z ∈ A) = EρtχA(z)

with χA being the characteristic function of A by which the assertion is proved.

Remark 3.3 The identity Eρ0φ(z) = Eρtφ(z) is the classical analogue of the famous dichotomy of Schrödinger
and Heisenberg picture in quantum mechanics. It states that we can represent the time evolution of expectation
values by either letting the observables evolve while keeping the initial densities fixed or letting the densities
evolve while keeping the observables fixed. Both viewpoints are in fact equivalent.
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3.3 Invariant measures

An important notion is that of an invariant measure: recall that a set A ⊂ Z is called invariant if ϕt(A) ⊆ A.
Accordingly, a probability measure µ is called invariant if

µ(ϕt(A)) = µ(A) .

Let us suppose that µ is absolutely continuous with respect to Lebesgue measure on Z, i.e., we may write
dµ = ρdz. In this case invariance means

∂t

∫
A

ρ(z, t) dz = 0 ⇔ L∗ρ = 0 .

Therefore invariant densities are stationary solutions ρ = ρ∞ of the forward equation (3.6). A particular instance
of a stationary solution in case of divergence-free vector fields f is the constant function ρ∞ = 1. If divf = 0,
the adjoint generator satisfies L∗ = −L, hence L∗1 = 0 and Lebesgue measure dµ = dz is preserved.2

For the sake of illustration we shall discuss a couple of examples.

Example 3.4 (Hamiltonian system) Let Z = R2d be even-dimensional. A prominent example of a divergence-
free vector field is the Hamiltonian system

ż = J∇H(z) , z(0) = z0

where H : Z → R is called the system’s Hamiltonian (total energy), and J = −JT ∈ R2n×2n is a constant
skew-symmetric matrix. On the space of continuously differentiable functions the infinitesimal generator reads

L = J∇H(z) · ∇ .

As following from the skew-symmetry of J , Hamiltonian vector-fields are divergence-free, i.e., ∇ · J∇H = 0,
and so the adjoint generator is simply given by L∗ = −L. Moreover it can be readily checked that any smooth
function of the Hamiltonian is a stationary solution of the Hamiltonian,

L∗g(H) = −J∇H · ∇H g′(H) = 0 ,

for Jv · v = −v · Jv = 0 holds true for all v ∈ R2d.

Example 3.5 (Harmonic oscillator) Consider the harmonic oscillator in 1D

mq̈ = −ωq , q(0) = q, v(0) = v

which is Hamiltonian with

H(q, p) =
1

2m
p2 +

ω

2
q2 , p = mq̇

and

J =

(
0 1
−1 0

)
.

Thus the equation above can be recast in

q̇ =
∂H

∂p
, q(0) = q

ṗ = −∂H
∂q

, p(0) = mv .

Since Hamiltonian vector fields are divergence-free, the Lebesgue measure dλ = dqdp is preserved, but there are
infinitely many other invariant measures as we conclude from the considerations in the last example.

Furthermore the system admits a one-parameter family of invariant sets that are ellipses and which are
parametrised by the Hamiltonian. To see this, note that the energy H is an integral of motion, i.e.,

d

dt
H(q(t), p(t)) = − ∂H

∂q

∂H

∂p

∣∣∣∣
t

+
∂H

∂p

∂H

∂q

∣∣∣∣
t

= 0 .

2 However, for Z = Rn the constant density ρ∞ = 1 is clearly not normalisable, i.e., ρ∞ /∈ L1(Z).
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14 Carsten Hartmann: Singularly perturbed differential equations

Equivalently, we have LH = 0. Hence for all E > 0 the solution curves of the one-dimensional harmonic oscillator
are the level sets H = E which given by

H−1(E) =

{
(q, p) ∈ R2 :

ωq2

2
+

p2

2m
= E

}
.

Example 3.6 (Stable linear system) Let A ∈ Rn×n be such that all its eigenvalues have strictly negative real
part. In this case the linear system

ż = Az , z(0) = z0

has a unique asymptotically stable fixed point z = 0. The corresponding unique invariant measure µ is the point
measure located at zero, i.e., µ(z) = δ(z) where δ denotes the Dirac measure. The measure µ is normalisable
since, by definition, ∫

Z
δ(z)dz = 1 ,

but it is singular with respect to Lebesgue measure. In particular there is no density function ρ∞ ∈ L1(Z) that
would satisfy L∗ρ∞ = 0.

4 Invariant manifolds: geometric singular perturbation theory

Consider the following system of singularly perturbed ordinary differential equation

ẋ = f(x, y) , x(0) = x0

εẏ = g(x, y) , y(0) = y0
(4.1)

for (x, y) ∈ Rn ×Rm and 0 < ε � 1. Here and in the following we omit the parameter ε, i.e., we write x = xε,
y = yε and so on; the meaning should be always clear from the context and we indicate otherwise when not. We
let ϕtξ : Rm → Rm, y(t) = ϕtξ(y0) denote the solution of the associated system

ẏ = g(ξ, y) , y(0) = y0 (4.2)

and recall that the first (i.e., slow) equation in (4.1) can be approximately viewed as an equation of the form

ẋ = f(x, ϕt/εx (y0)) , x(0) = x0 .

Let us suppose that

lim
t→∞

ϕtξ(y0) = m(ξ)

exists independently of the initial value y(0) = y0 and uniformly in x = ξ, i.e., the rate of convergence is
independent of the slow variable. In particular,

lim
ε→0

ϕt/εx (y0) = m(x)

for fixed t, and, by the above argument, we may replace (4.1) by the equation

ẋ = f(x,m(x)) , x(0) = x0

whenever ε is sufficiently small. We shall give an example.

Example 4.1 Consider the linear system

ẋ = A11x+A12y , x(0) = x0

εẏ = A21x+A22y , y(0) = y0 .

We suppose that σ(A22) ⊂ C−, i.e., all eigenvalues of A22 lie in the open left complex half-plane. As we shall see
this is equivalent to the statement that the fast subsystem is asymptotically stable. The associated system

ẏ = A22(y +A−1
22 A21ξ) , y(0) = y0
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is easily solvable using variation of constants, viz.,

ϕtξ(y0) = exp(tA22)(y +A−1
22 A21ξ)−A−1

22 A21ξ .

Note that A22 is invertible by the stability assumption above. Furthermore

ϕtξ(y0)→ −A−1
22 A21ξ as t→∞ .

The vector field for a planar linear system with A11 = A22 = −1 and A12 = A21 = −1/2 is shown in Figure 2
below. The leftmost plot shows various solutions for ε whereas the right figure depicts solutions (blue curves) for
ε = 0.05. It turns out that the solutions quickly converge to the nullcline ẏ = 0 (fast dynamics) before converging
to the asymptotically stable fixed point (x, y) = (0, 0) along the nullcline (slow dynamics). Note that the nullcline
corresponds to the invariant subspace that is defined by the equation A21x+A22y = 0. If A22 < 0, the subspace
is attractive (i.e., asymptotically stable).

Fig. 2 Planar linear system A11 = A22 = −1, A12 = A21 = −1/2 for ε = 1 (left panel) and ε = 0.05 (right panel). The
orange line shows the nullcline ẏ = 0.

4.1 Effective equations of motion

Let ϕt : Rn+m → Rn+m be the solution (flow map) of (4.1). A set M ⊆ Rn+m is called invariant under the flow
map ϕt, or, for short, an invariant manifold if ϕt(M) ⊆M . Setting ε = 0 in (4.1) assuming that the right hand
sides of the equations remain bounded, our slow/fast system degenerates to the differential-algebraic equation

ẋ = f(x, y) , x(0) = x0

0 = g(x, y) , y(0) = y0 .
(4.3)

Equation (4.3) is called differential-algebraic for the evolution of the variables. The variables y ∈ Rm are
undetermined but linked to the evolution of the dependent variables x ∈ Rn by the algebraic equation g(x, y) = 0
(slaving principle). As a consequence the set

M =
{

(x, y) ∈ Rn+m : g(x, y) = 0
}
⊂ Rn+m

is invariant under the flow of (4.1). If moreover det(∂g/∂y|M ) 6= 0, we can invert the equation g(x, y) = 0 in
a small neighbourhood of M and solve for the undetermined variables. Calling y = m(x) the local solution of
g(x, y) = 0 such that M can be represented as the graph (x,m(x)), we can replace (4.3) by the effective equation

˙̄x = f(x̄,m(x̄)) , x(0) = x0 (4.4)

where consistency requires that the initial conditions in (4.1) are chosen such that y(0) = m(x(0)).
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4.2 Perturbation expansion

We shall give a formal derivation of the effective equation (4.4) using a perturbative approach. To this end we
follow Fenichel (1979) and suppose that, for ε > 0 being sufficiently small, the dynamics of (4.1) admit a family
of invariant manifolds

Mε =
{

(x, y) ∈ Rn+m : y = mε(x)
}
⊂ Rn+m

that can be represented as the graphs y = mε(x) over x. Accordingly, we may refine (4.4) as follows

˙̄x = f(x̄,mε(x̄)) , x(0) = x . (4.5)

Taking the time derivative, we see that the ”slaved” variables y satisfy the differential equation

ẏ = ∇mε(x) · ẋ .

Inserting the governing vector fields g, f for the leftmost and the rightmost term gives rise to a nonlinear partial
differential equation for mε : Rn → Rm, namely,

∇mε(x)f(x,m(x)) =
1

ε
g(x,m(x)) . (4.6)

We seek a perturbative solution to (4.6) that is of the form

mε(x) = m0(x) + εm1(x) + ε2m2(x) + . . . .

By substitution and Taylor expansion about ε = 0 we find

(∇m0 + ε∇m1 + . . .)

(
f(x,m0) + ε

(
∂f

∂y

∣∣∣∣
M

)
m1 + . . .

)
=

1

ε

(
g(x,m0) + ε

(
∂g

∂y

∣∣∣∣
M

)
m1 + . . .

)
where we omitted the arguments in mi = mi(x). Equating powers of ε yields a hierarchy of equations the first
three of which read

0 = g(x,m0) (4.7)

∇m0 f(x,m0) =

(
∂g

∂y

∣∣∣∣
M

)
m1 (4.8)

1

2
mT

2

(
∂2g

∂y2

∣∣∣∣
M

)
m2 = ∇m1 f(x,m0) +∇m0

(
∂f

∂y

∣∣∣∣
M

)
m1 . (4.9)

To lowest order we recover the guessed effective equation (4.4) which does not come as a surprise. Note, however,
that, the condition on the initial condition is now entailed by the lowest order term, i.e., the validity of the

perturbation expansion relies on the property ϕ
t/ε
x (y) → m(x) with m = m0. As we will see later on this

behaviour is related to certain contractivity properties of the fast flow or the invariant manifold, respectively.
Proceeding in the hierarchy we find the first-order correction

m1 =

(
∂g

∂y

∣∣∣∣
M

)−1

∇m0 f(x,m0) .

Setting mε ≈ m0 + εm1 in (4.5) and doing a Taylor expansion around ε = 0, equation (4.4) can be refined
according to

˙̄x = f0(x̄) + εf1(x̄) , x̄(0) = x0 (4.10)

with

f0(x) = f(x,m0(x) , f1(x) =

(
∂f

∂y

∣∣∣∣
M

)(
∂g

∂y

∣∣∣∣
M

)−1

∇m0(x) .
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Equation (4.10) is the result of a formal perturbation expansion of (4.1) in the neighbourhood of the invariant
manifold M = {g(x, y) = 0}. Nonetheless the formal expansion should not be taken as an assertion regarding
convergence to (4.4) in the limit of ε going to zero. Bounding the first-order term f1 presupposes bounds on
the vector fields f, g thereby imposing certain regularity conditions (e.g., global Lipschitz continuity). Moreover
invertibility of the Jacobian (∂g/∂y|M ) and well-posedness of m0 requires that its eigenvalues are bounded away
from zero. In fact, the typical scenarios in which invariant manifolds occur are systems for which the spectrum
of (∂g/∂y|M ) lies entirely in the open left complex half-plane, i.e., the systems are hyperbolic (contractive) in
the fast variables.

Remark 4.2 A final remark is in order. Consider the generator

Lε = L0 +
1

ε
L1

of (4.1). The backward equation of the associated system (4.2) reads

∂u(y, t) = L1u(y, t) , u(y, 0) = φ(y) .

Given the flow y(t) = ϕtξ(y) of the associated system the solution to the backward equation assumes the form

u(y, t) = φ(ϕtξ(y)) .

By the assumption ϕtξ → m(ξ) it therefore follows that

u(y, t)→ φ(m(ξ)) as t→∞

uniformly on Rm 3 y. Denoting φ∞ = φ(m(ξ)), the convergence property u→ φ∞ amounts to a sort of ergodicity
property or law of large numbers, for

lim
T→∞

1

T

∫ T

0

φ(ϕtξ(y)) dt→ Eξφ

for almost all initial conditions y(0) = y and with the conditional expectation

Eξφ =

∫
φ(y)δ(y −m(ξ)) dy

where the Dirac measure δ(y −m(ξ)) is invariant under the flow ϕtξ.

4.3 Invariant manifolds: convergence issues

Consider the following system of a singularly perturbed ordinary differential equation

ẋ = f(x, y) , x(0) = x0

εẏ = g(x, y) , y(0) = y0
(4.11)

for (x, y) ∈ Rn ×Rm and 0 < ε� 1. We shall prove that in the limit ε→ 0 the slow component x(t) converges
uniformly to X(t) that is governed by the effective equation

Ẋ = f(X,m(X)) , X(0) = x0

where y = m(x) is the graph representation of the limiting invariant manifold

M =
{

(x, y) ∈ Rn+m : g(x, y) = 0
}
⊂ Rn+m

that the fast dynamics approach as ε→ 0.
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Exponential convergence to the invariant manifold We suppose that, for all ξ ∈ Rn, the solution ϕtξ :

Rm → Rm, y(t) = ϕtξ(y0) of the associated (fast) system

ẏ = g(ξ, y) , y(0) = y0 (4.12)

has a unique exponentially attracting fixed point, i.e.,

lim
t→∞

ϕtξ(y0) = m(ξ)

uniformly in x and independently of the initial condition ϕ0
ξ(y0) = y0. For this purpose, we suppose g(ξ,m(ξ)) = 0

with g meeting the following contractivity condition: for ξ ∈ Rn, y, y′ ∈ Rm and α > 0, we have

〈g(ξ, y)− g(ξ, y′), y − y′〉 ≤ −α |y − y′|2 . (4.13)

Lemma 4.3 The contraction condition implies that∣∣ϕtξ(y)−m(ξ)
∣∣ < exp(−αt) |y −m(ξ)| .

P r o o f. By construction, ϕtξ(y) solves the initial value problem

d

dt
ϕtξ(y) = g(ξ, ϕtξ(y)) , ϕ0

ξ(y) = y

and

0 =
d

dt
m(ξ) = g(ξ,m(ξ)) .

Hence

1

2

d

dt

∣∣ϕtξ(y)−m(ξ)
∣∣2 =

〈
g(ξ, ϕtξ(y))− g(ξ,m(ξ)), ϕtξ(y)−m(ξ)

〉
≤ −α

∣∣ϕtξ(y)−m(ξ)
∣∣2 .

The last equation is a differential inequality of the form

dη

dt
≤ −2αη , η =

∣∣ϕtξ(y)−m(ξ)
∣∣2 ,

and Gronwall’s Lemma yields

η ≤ exp(−2αt)η(0) .

Taking the square root on either side of the last equation gives the assertion.

Effective motion The last statement is concerned with the convergence of the fast dynamics to the invariant
manifold when the slow variable is fixed, i.e., for x(t) ≡ ξ. We shall now relax this assumption and allow for
slow variations of x on time intervals of order 1. For the sake of simplicity we implement the following standing
assumptions: we suppose that there exists a uniform (Lipschitz) constant L > 0 such that

|f(x, y)| ≤ L∀(x, y) ∈ Rn+m

|∇xf(x, y)| , |∇yf(x, y)| ≤ L ∀(x, y) ∈ Rn+m

|∇m(x)| ≤ L ∀x ∈ Rn .

(4.14)

Latter property is related to the smoothness of the invariant manifold M and essentially follows from the con-
traction condition (4.13) on the vector field g(·, y).

Theorem 4.4 Let X denote the solution of the lowest-order perturbation equation

Ẋ = f̄(X) , X(0) = x0

with f̄(x) = f(x,m(x)). Then we can find a constant C > 0 such that the solution of the singularly perturbed
problem (4.11) satisfies

|x−X|2 ≤ C exp(Lt)
(
ε |y0 −m(x0)|+ ε2

)
uniformly for all t ∈ [0, T ], T <∞.
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P r o o f. We let (x, y) denote the solution of (4.11), and we define the deviations of the fast variable from the
invariant manifold as

y = m(x) + η .

Clearly η → 0 as ε→ 0. In first part of the proof we shall estimate the rate at which η goes to zero. Since

η̇ = ẏ −∇m(X)Ẋ ,

the augmented set of variables (X, η, y) is governed by the joint system of equations

Ẋ = f̄(X)

η̇ =
1

ε
g(X,m(X) + η)−∇m(X)f̄(X)

ẏ =
1

ε
g(X,m(X) + η)

that is fully equivalent to (4.11). Note that the second equation is the same as

η̇ =
1

ε
(g(X,m(X) + η)− g(X,m(X)))−∇m(X)f̄(X)

as following from the identity g(X,m(X)) = 0. Equation (4.13) now entails that

〈g(X,m(X) + η)− g(X,m(X)), η〉 ≤ −α |η|2 .

Taking advantage of the Lipschitz continuity (4.14) and the Cauchy-Schwarz inequality,

〈∇m(X)f(X,m(X)), η〉 ≤ L2 |η| ,

we obtain

1

2

d

dt
|η|2 = 〈η, η̇〉

=
1

ε
〈g(X,m(X) + η)− g(X,m(X)), η〉 −

〈
∇m(X)f̄(X), η

〉
≤ −α

ε
|η|2 + L2 |η| .

Completing the square yields

1

2

(
δL2 − |η|

δ

)
> 0 ⇒ 1

2

(
δ2L4 +

|η|2

δ2

)
> L2 |η|

for any δ ∈ R. By setting δ =
√
ε/α, we therefore find

1

2

d

dt
|η|2 ≤ −α

ε
|η|2 +

1

2

(
δ2L4 +

|η|2

δ2

)
≤ − α

2ε
|η|2 +

ε

2α
L4 .

The last equation is again a differential inequality for the squared deviations |η|2 and we may employ Gronwall’s
Lemma to obtain the following bound

|η(t)|2 ≤ exp
(
− α

2ε
t
)(
|η(0)|2 +

εL4

2α

∫ t

0

exp
( α

2ε
s
)
ds

)
or, equivalently,

|η(t)|2 ≤ exp
(
− α

2ε
t
)
|η(0)|2 +

ε2L4

α2

(
1− exp

(
− α

2ε
t
))

. (4.15)
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This implies η(t)→ 0 as

lim
ε→0
|η(t)|2 = 0

for all t ∈ [0, T ] with T <∞ fixed which completes the first part of the proof. In order to show that this implies
convergence x→ X, we note that

ẋ = f(X,m(X) + η)

by definition of η. Hence, using the Cauchy-Schwarz and Lipschitz continuity of f ,

1

2

d

dt
|x−X|2 = 〈x−X, f(X,m(X) + η)− f(X,m(X))〉

≤ |x−X| |f(X,m(X) + η)− f(X,m(X))|
≤ L |x−X| |η| .

By completing the square we obtain the inhomogeneous differential inequality

d

dt
|x−X|2 ≤ L2 |x−X|2 + |η|2

with |η|2 as given by (4.15) above. For x(0) = X(0), Gronwall’s Lemma yields

|x−X|2 ≤
∫ t

0

exp(L(t− s)) |η(s)|2 ds .

The assertion follows upon inserting the upper bound for |η|2 in the last inequality and integrating.

Remark 4.5 The error bound for |x−X|2 consists of two parts the first of which depends on the deviation
of the initial condition y(0) = y0 from the invariant manifold. That is, the first term is due to the initial
exponential relaxation of the fast dynamics to the invariant manifold whereas the second term describes the
actual approximation error that arises from replacing f(x, y) by f(x,m(x)). Notice further that for ε > 0 fixed,
the approximation error grows exponentially with t, i.e., the for t = O(− ln ε) the quadratic approximation error
becomes essentially of order 1.

4.4 A problem from enzyme kinetics

As an illustrative example we consider an enzyme-catalysed reactions with single-substrate mechanisms that is
due to Michaelis and Menten. The reaction involves a substrate S that is irreversibly converted into a product
P by means of an enzyme E; the back reaction is negligible. The reaction can be systematically written as

S + E
k1

GGGGGGBFGGGGGG

k−1

SE
k2

GGGAS + P .

The law of mass action states that the rate of concentration change of a specific substrate is proportional to
the concentrations of the substrates that are involved in the reaction. Calling C1, C2, C3, C4 the respective
concentrations of S,E, SE and P , the law of mass action yields the nonlinear system of equations

Ċ1 = −k1C1C2 + k−1C3 , C1(0) = c1

Ċ2 = −k1C1C2 + (k−1 + k2)C3 , C2(0) = c2

Ċ3 = k1C1C2 − (k−1 + k2)C3 , C3(0) = 0

Ċ4 = −k2C3 , C4(0) = 0

(4.16)

where the initial conditions are assumed to the non-negative. It is easy to see that

d

dt
(C2 + C3) =

d

dt
(C1 + C3 + C4) = 0 .
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Consequently the system admits the two constants of motion

c2 = C2 + C3 and c1 = C1 + C3 + C4

which upon substitution allows to simplify (4.16) to the following system of equations

Ċ1 = −k1C1c2 + (k1C1 + k−1)C3 , C1(0) = c1

Ċ3 = k1C1c2 − (k1C1 + k−1 + k2)C3 , C3(0) = 0 .
(4.17)

The chemical picture now is as follows: if the concentration C1 of the substrate S is high, the enzyme E is
entirely saturated and exists only in its complex form ES with concentration C3 which entails that, after a short
relaxation time, the concentration of both the enzyme and the complex quickly converge to a steady-state. In
the chemical literature the typical reasoning proceeds by assuming dC2/dt ≈ 0. As C2 + C3 = const this entails
dC3/dt ≈ 0, and the steady-state approach consists in solving the second equation in (4.17) for the remaining
time-dependent unknown C1.

To make this intuitive argument mathematically precise, it is necessary to make equation (4.17) dimensionless.
Otherwise it is not possible to distinguish between different time scales as the “smallness” of either dC1/dt or
dC3/dt depends on the physical dimensions in the equations. (Note that the equation is still nonlinear; hence
changing the physical dimension from, say, litres to millilitres affects each term in a different way.) We therefore
introduce the dimensionless quantities

τ = k1c2t , x =
C1

c1
, y =

C3

c2

Fig. 3 Michaelis-Menten system for ε = 1 (left panel) and ε = 10−4 (right panel) and the respective solutions of the
initial value problem (blue lines). The orange lines show the nullcline ẏ = 0.

Using the shorthands

λ =
k2

k1c1
, µ =

k−1 + k2

k1c1
,

equation (4.17) turns out to be equivalent to the dimensionless equation

dx

dτ
= −x+ (x+ µ− λ)y , x(0) = 1

ε
dy

dτ
= x− (x+ µ)y , y(0) = 0 .

(4.18)

The small parameter ε = c2/c1 that is typically of the order ε ∼ 10−6. Letting ε go to zero, (4.18) reduces to the
the differential-algebraic equation

dX

dτ
= −X + (X + µ− λ)Y , X(0) = 1

0 = X − (X + µ)Y .
(4.19)
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Solving the second equation for Y = m(X) immediately reveals

m(X) =
X

X + µ
. (4.20)

However we have picked the initial condition Y (0) = 0 in (4.18) which does satisfy Y (0) = m(X(0)). That is, the
initial conditions do not lie on the invariant manifold Y = m(X), and we expect the solution for ε > 0 to exhibit
some initial layer behaviour due to the relaxation to equilibrium. Replacing Y by m(X) in equation (4.19) finally
yields the reduced system for ε = 0,

dX

dτ
= −λ X

X + µ
, X(0) = 1 . (4.21)

Figure 3 below shows phase portraits of (4.18) for two different values of ε. It turns out that the for ε = 1 the
solution reaches the invariant manifold just before it eventually collapses to the unique fixed point (x, y) = (0, 0).
For ε = 10−4, however, the initial value problem converges almost instantaneously to the invariant manifold
Y = m(X) and then evolves to its rest point along the nullcline (i.e., its invariant manifold).

5 Averaging: eliminating fast degrees of freedom

As a example let us consider a particles of mass m on the real line that is moving in a harmonic well (see Figure
4 below). The total energy of the particle is given by the Hamiltonian H = T + V that is the sum of kinetic and
potential energy, i.e.,

H : R×R→ R , H =
1

2m
p2 +

k

2
(r − r0)

2

where k > 0 is the spring constant (Hooke’s law). It is convenient to introduce the new variable q = r − r0.
Letting v denote the particle’s velocity, Hamilton’s equations boil down to the system of equations

q̇ =
1

m
p , q(0) = q0

ṗ = −kq , p(0) = mv0 .
(5.1)

Inconsistent limit equations For any nonzero initial condition the solution will describe oscillations of the
particle around q = 0 and v = 0, and we may ask what happens if we let the mass go to zero. Obviously the
system (5.1) is equivalent to

mq̈ = −kq , q(0) = q0, q̇(0) = v0 . (5.2)

Say, we choose initial values q0 6= 0 and v0 = 0. For all m > 0, the solutions of the last equation are linear
combinations of sine and cosine functions, hence uniformly bounded at all times. Consequently q(t) → 0 as
m→ 0 uniformly for all t ∈]0,∞[. Note, however, that we have assumed that q0 6= 0, i.e., the limit dynamics are
inconsistent with the initial condition. Indeed given our choice of initial conditions, the solution for ε =

√
m > 0

and ω =
√
k > 0 is given by

q(t) = q0 sin

(
ωt

ε

)
,

so neither q nor q̇ converge as ε goes to zero; instead, the solutions wildly oscillate around zero. Notice that
p = ε2q̇ → 0 uniformly on [0,∞[, including convergence of the initial value. Together with the limit equation
q = 0 above this suggests that the particle is completely at rest, i.e., has zero energy H = 0. Still, we know that
Hamiltonian flows preserve energy, i.e.,

d

dt
H(q(t), p(t)) = 0

for all values of ε =
√
m as can be readily checked upon using chain rule and inserting (5.1); see Example 3.4

for details. For nonzero initial condition q0 6= 0, we have H 6= 0 which yields a contradiction. So, what is wrong
with the above reasoning?
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Fig. 4 Particle oscillating in a parabolic potential V .

5.1 Action-angle variables

We shall find appropriate coordinates by which we can represent (5.1) or (5.2) as a slow/fast system. Clearly,
the total energy H is conserved by the flow which makes it (or functions thereof) a good candidate for a slow
variable. We introduce

I = H(q, p)/ω , ϕ = arctan

(
p

εq

)
. (5.3)

as new variables where I > 0 and ϕ ∈ S1 is periodic. The new variables (I, ϕ) can be considered a form of
specifically scaled polar coordinates and are known by the name of action-angle variables. In terms of (I, ϕ) the
equations of motion (5.1) assume a particularly simple form, namely,

İ = 0 , I(0) =
1

2ω
q2
0

ϕ̇ = −ω
ε
, ϕ(0) = 0

(5.4)

where we have used that v0 = 0 and remind the reader that ω =
√
k. Up to time rescaling t 7→ εt, the system

(5.4) is Hamiltonian with the energy

H : R+ × S1 → R , H = Iω .

It is an instance of an integrable system with the trivial solution

I ≡ 1

2ω
q2 , ϕ(t) = −ωt

ε
mod 2π .

Hence the fast variable turns out to be the periodic fast angle which, coming back to our original problem (5.1),
amounts to fast oscillations around the equilibrium position q = 0. Since the solution of (5.2) can be recast in

q(t) = q0 cosϕ(t) ,

and as the angle moves around the circle S1 at constant angular velocity ω/ε, taking the limit ε → 0 results in
averaging over the fast angle. That is, we have

lim
ε→0

q(t) =
q0

2π

∫ 2π

0

cosϕdϕ

which vanishes identically for t > 0 and arbitrary initial conditions q(0) = q0. The last formula describes
the application of the averaging principle for highly-oscillatory systems and agrees with the intuitive idea that
infinitely fast oscillations around an equilibrium point effectively result in a quasi-stationary state with nonzero
energy.
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5.2 Averaging of highly-oscillatory systems

Typically, highly-oscillatory systems assume the more general form

İ = f(I, ϕ) , I(0) = I0

ϕ̇ = −ω(I)

ε
+ g(I, ϕ) , ϕ(0) = ϕ0

(5.5)

for (I, ϕ) ∈ Rn
+ × Tn, Tn = S1 × . . . × S1 and 0 < ε � 1 where f, g are smooth 2π-periodic functions. Upon

rescaling of time, equation (5.5) is Hamiltonian with

H : Rn
+ ×Tn → R , H = 〈I, ω(I)〉+ εH1(I, ϕ)

where we suppose that f = ∂H1/∂ϕ and g = −∂H1/∂I. Equation (5.5) describes a rapidly oscillating multi-
frequency system: on times of order 1 (note that we have rescaled time), the action variables are effectively
constants of motion whereas on times of order 1/ε the action variables slowly drift with superimposed oscillations
(see Figure 5). We assume that the unperturbed oscillation frequencies ωi(I) are all strictly larger than zero and
moreover meet the following diophantine condition

|〈ω(I),k〉| ≥ δ ∀k ∈ Zn \ 0 . (5.6)

The reason for this technical assumption will become clear in a moment. Roughly speaking the diophantine
condition reflects the requirement that the frequencies are rationally independent which excludes periodic or
quasi-periodic orbits. In other words, the unperturbed fast dynamics will cover the whole torus rather than a
low-dimensional subset of measure zero as it would the case for periodic motion.

Fig. 5 Slowly evolving action with rapid oscillation

In order to derive an effective equation for the singularly perturbed system (5.5) we follow the general strategy
and consider the corresponding backward Liouville equation. Letting XH = (∂H/∂ϕ,−∂H/∂I) denote the
Hamiltonian vector field above, the infinitesimal generator Lε = ε−1XH · ∇ can be split according to

Lε = L0 +
1

ε
L1

with

L0 = f(I, ϕ) · ∂
∂I

+ g(I, ϕ) · ∂
∂ϕ

, L1 = −ω(I) · ∂
∂ϕ

.

Thus, we seek a perturbative solution to the linear operator equation

∂tu
ε(I, ϕ, t) = Lεuε(I, ϕ, t) , uε(I, ϕ, 0) = φ(I, ϕ) (5.7)
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that is of the form

uε = u0 + εu1 + ε2u2 + . . . .

Inserting the ansatz into (5.7) and equating equal powers of ε yields a hierarchy of equations the first three of
which read

L1u0 = 0 (5.8)

L1u1 = ∂tu0 − L0u0 (5.9)

L1u2 = ∂tu1 − L0u1 . (5.10)

Stepping through the equations, the first one implies that u0 ∈ kerL1 subject to the requirement that u0 =
u0(I, ϕ) is 2π-periodic in each of its angular arguments ϕi ∈ S1. Since L1 is a differential operator acting in ϕ
only, functions that are constant in ϕ are obviously in the nullspace of L1. As we will argue below, the diophantine
condition (5.6) guarantees that no other periodic functions solve the stationary equation L1u = 0.

The time evolution of u0 is due to the second equation, and we are aiming at the lowest-order approximation
uε ≈ u0. By the Fredholm alternative, equation (5.9) has a solution if and only if the right hand side is orthogonal
to the kernel of L∗1. As L∗1 = −L1 is the formal adjoint with respect to the L2(Tn) scalar product

〈u, v〉L2 =

∫
Tn

uv dϕ ,

the stationary densities, i.e., the nontrivial solutions of L∗1ρ = 0 are constant on the torus. Hence ρ∞ = 1(ϕ) is
the unique stationary probability density of the fast dynamics.3 Specifically, the normalized Lebesgue measure
on the torus,

dµ(ϕ) = (2π)
−1
dϕ ,

is the unique invariant measure of the oscillatory fast dynamics. If we integrate the right hand side of equation
(5.9) with respect to dµ = ρ∞dϕ, the solvability condition (Fredholm alternative with ρ∞ ∈ kerL∗1 and L2 scalar
product) implies that ∫

Tn
(∂tu0 − L0u0) dµ(ϕ) = 0 .

Since u0 does not depend upon ϕ, it follows that

L0u0 = f(I, ϕ) · ∂u0

∂I
,

and so the solvability condition reduces to the backward equation

∂tu0(I, t) = L̄u0(I, t) , u0(I, 0) = φ0(I) (5.11)

with the averaged Liouvillian

L̄ =
1

(2π)n

∫
Tn

f(I, ϕ) dϕ · ∂
∂I

. (5.12)

The derivation is complete upon noting that (5.11)–(5.12) is equivalent to the ordinary differential equation

İ = f̄(I) , I(0) = I (5.13)

with the averaged drift

f̄(I) =
1

(2π)n

∫
Tn

f(I, ϕ) dϕ . (5.14)

3 The notation 1(·) is used for functions that are constant in the respective argument.
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5.3 Diophantine condition and the law of large numbers

labelsec:lln
It remains to show that the diophantine condition (5.6) entails uniqueness of the solution of the stationary

problem L∗1ρ = 0. We suppose that L∗1 is given by

L∗1 = ω(I) · ∂
∂I

and we consider L∗1 to act on a suitable subset of L1(Tn), i.e., we consider functions that are 2π-periodic in each
of its arguments and that are integrable over the torus. Since the space of continuously differentiable functions
C1(Tn) is a dense subspace of L1(Tn) we can approximate any such function (i.e., any periodic density) by a
finite set of continuously differentiable functions, which therefore allows us to write the forward generator as we
did (see also the remark below). As we confine ourselves to periodic functions ρ it is convenient to expand ρ into
a Fourier series, i.e.,

ρ(ϕ) =
∑
k∈Zn

ak exp(−i 〈k, ϕ〉) .

The functions ek = exp(−i 〈k, ϕ〉) form an orthonormal basis of L2(Tn) which is a dense subspace of L1(Tn).
Using the expression for L∗1 above any solution to the eigenvalue problem L∗1ψ = λψ is obviously of the form

ψk = ek , λk = −i 〈k, ϕ〉 .

Hence the diophantine condition

|〈ω(I),k〉| ≥ δ ∀k ∈ Zn \ 0

trivially implies that the eigenvalue λ0 = 0 (i.e., k = 0) is simple and is separated from the rest of the L2

spectrum by a gap δ. This does not imply anything for the spectrum in L1, though, but as the ek are linearly
independent we cannot find any other periodic function ρ ∈ L1 that solves L∗1ρ = 0. But the corresponding
eigenfunction for k = 0 is the constant function ψ0 = 1(ϕ), which proves that

kerL∗1 = span{1(ϕ)}

is one-dimensional.

Remark 5.1 Recall that we have introduced the forward generator L∗1 as the formal adjoint of L1 that is
typically assumed to act on functions u ∈ L∞(Tn). But, of course, boundedness does not entail differentiability,
and so the usual integration by parts argument does not apply. Nonetheless we can unambiguously define the
adjoint generator employing the definition of the infinitesimal generator, viz.,

L1φ = lim
h→0

Thφ− φ
h

, φ ∈ L∞(Tn)

where Th denotes the strongly continuous semigroup associated with the solution of

ϕ̇ = −ω(I) , ϕ(0) = ϕ0 . (5.15)

For details we refer to Section 3. Letting 〈·, ·〉1,∞ denote the pairing between the dual spaces L1 and L∞ and
exploiting the strong continuity, we find

〈L1u, v〉1,∞ = lim
h→0

〈Thu− u, v〉1,∞
h

= lim
h→0

〈u, T ∗hv − v〉1,∞
h

= 〈u,L∗1v〉1,∞

for any two functions u ∈ L1(Tn) and v ∈ L∞(Tn).
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Law of large numbers Before we conclude, we shall briefly explain in which sense the diophantine condition
implies ergodicity. In the formal derivation above, the condition of the dimensionality of the nullspaces of L1

and L∗1 appeared as a solvability (closure) condition that eventually led to the effective equation (5.11)–(5.12).
However, the fact that the eigenvalue zero is simple even implies that we can replace the time average of the slow
dynamics over the fast oscillations ϕ by the respective spatial average over the torus (compare the discussion at
the beginning of the last section). This can be seen as follows: define

Ef =
1

(2π)n

∫
Tn

f(ϕ) dϕ

for f ∈ L1(Tn) and consider the linear operator equation

L1Φ = f −Ef .

By the Fredholm alternative and since dim kerL1 = 1 the equation has a solution that is unique up to constants.
If ϕ(t) denotes the solution of the associated equation (5.15), Φ(t) = Φ(ϕ(t)) solves the differential equation

Φ̇ = L1Φ ,

by which it follows that

Φ(t)− Φ(0) =

∫ t

0

L1Φ(s) ds

=

∫ t

0

f(ϕ(s)) ds−
∫ t

0

Ef ds .

Hence

1

T
(Φ(t)− Φ(0)) =

1

T

∫ T

0

f(ϕ(t)) dt−Ef .

But as Φ ∈ L∞ and ϕ ∈ Tn for all t ∈ R+ the left hand side vanishes as T goes to infinity and we obtain the
law of large numbers

lim
T→∞

∫ T

0

f(ϕ(t)) dt = Ef .

5.4 Averaging of highly-oscillatory systems, cont’d

A standard problem in classical mechanics consists in confining a particle to a submanifold of its configuration
space; see, e.g., the seminal work by Rubin and Ungar [17], the article by van Kampen [7], or the standard
textbook of Arnold [1] to mention just a few. We shall give an example: consider a smooth curve Γ ⊂ R2 in the
plane. Say, we impose a strong force acting perpendicular to the curve that forces a particle to stay close to it
(see Figure 6 below). In the limit of infinitely strong forcing, the particle will remain on the curve.

To make this precise, we introduce a curve parameter coordinates x ∈ R and a normal coordinate y ∈ R
measuring the distance to Γ, and we consider the singularly perturbed Hamiltonian

H : R2 ×R2 → R , H(x, y, u, v) =
1

2

(
u2 + v2

)
+ V (x, y/ε)

with the potential

V (x, y) = U(x) +
1

2
ω(x)2y2 .

The corresponding equations of motion read

ẋ = u , x(0) = x0

u̇ = −U ′(x)− 1

ε2
ω′(x)ω(x)y2 , u(0) = u0

ẏ = v , y(0) = y0

v̇ = − 1

ε2
ω(x)2y , v(0) = v0 .

(5.16)
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By skew-symmetry, Hamilton’s equation (5.16) preserve the energy Eε = H(x, y, u, v), but the form of the
singularity implies that Eε →∞ as ε→ 0. In order to prevent this blow-up of the total energy, it is convenient
to scale the initial conditions in such a way that the initial energy remains finite for all ε. Noting that E1 =
H(x, εy, u, v) is independent of ε, we replace (5.16) by the scaled initial value problem

ẋ = u , x(0) = x0

u̇ = −U ′(x)− 1

ε2
ω′(x)ω(x)y2 , u(0) = u0

ẏ = v , y(0) = εy0

v̇ = − 1

ε2
ω(x)2y , v(0) = v0 .

(5.17)

We suppose that the potential U is bounded from below by a positive constant and that ω(x) ≥ c > 0 for all
x ∈ R. This, together with the conservation of the total energy H = E1 implies that y → 0 as ε→ 0 which can
be seen by

y2 =
2ε2

ω(x)2

(
H − 1

2

(
u2 + v2

)
− U(x)

)
=

2ε2

ω(x)2

(
E1 −

1

2

(
u2 + v2

)
− U(x)

)
≤ 2E1ε

2

c
.

Hence y = O(ε) for the solutions of (5.17). The same, however, is not true for the velocities (compare the example
at the beginning of Section 5). Equation (5.17) is not very transparent regarding the assignment of fast and slow
scales; in particular, the scaling argument above suggests that the term that is formally O(1/ε2) in the equation
for u is actually of order 1; it is therefore convenient to introduce the scaled variable ξ = y/ε. In terms of the
new variables (x, ξ, u, v), equation (5.17) takes the form

ẋ = u , x(0) = x0

u̇ = −U ′(x)− ω′(x)ω(x()ξ2 , u(0) = u0

ξ̇ =
1

ε
v , ξ(0) = y0

v̇ = −1

ε
ω(x)2ξ , v(0) = v0 .

(5.18)

Fig. 6 Particle oscillating in a parabolic potential.

Note that the initial condition for the normal component scales according to ξ0 = y0/ε, such that ξ0 = O(1)
is independent of ε. The thus scaled equations now clearly reveal the two dominant time scales; rather than

This is a preliminary version. Do not circulate.



Lecture notes SS 2008 29

converging to the limiting set Γ × R as ε goes to zero, the fast dynamics now rapidly oscillate around it. For
frozen slow variables, the associated system is given by the harmonic oscillator

ξ̇ = v , ξ(0) = y0

v̇ = −ω(x)2ξ , v(0) = v0

(5.19)

or, equivalently,

ξ̈ = −ω(x)2ξ , ξ(0) = y, ξ̇(0) = v . (5.20)

As we know from the previous paragraph, the last equation describes harmonic oscillations with frequency ω(x)
and the (normal) energy

H⊥x =
1

2
v2 +

1

2
ω(x)2ξ2 .

Given initial conditions (x, y, u, v) of the full system (5.18), the instantaneous normal energy can be expressed in
terms of the slow variables as

H⊥x = E1 −
1

2
u2 − U(x)

where E1 = H(x0, εy0, u0, x0) denotes the total energy of the system. Again, the result from the previous lecture
suggests that we can approximate the slow dynamics by simply replacing the fast components in (5.18) by their
time averages. Other than before, however, we want to avoid the explicit transformation to action-angle variables
and, instead, average directly over the fast variable ξ. We need the following lemma that is known by the name
of Virial Theorem in statistical mechanics.

Lemma 5.2 Let ψtx : R2 → R2 be the solution (flow map) of the associated equation (5.19) with π : (ξ, v) 7→ ξ
being the projection onto the first component. Then

lim
T→∞

1

2

∫ T

0

ω(x)2
(
(π ◦ ψtx)(y0, v0)

)2
dt =

1

2
E⊥x ,

i.e., the average potential energy of the fast oscillator equals half the instantaneous normal energy E⊥x = H⊥x . By
symmetry, the same is true for the kinetic energy.

P r o o f. Using the shorthand ξx(t) = (π ◦ ψtx)(y0, v0), we have

ξx(t) = λ sin(ω(x)t) + µ cos(ω(x)t)

with constants λ, µ depending on x and the initial conditions ξx(0) = y0 and ξ̇x(0) = v0. Notice that

H⊥x =
1

2
(ξ̇x)2 +

1

2
ω(x)2(ξx)2

=
1

2
ω(x)2

(
λ2 + µ2

)
is constant in time. Using the trigonometric identity

(ξx(t))2 = λ2 sin(ω(x)t)2 + λµ sin(ω(x)t) cos(ω(x)t) + µ2 cos(ω(x)t)

=
1

2

(
λ2 + µ2

)
+ λµ sin(2ω(x)t) +

1

2

(
λ2 − µ2

)
cos(2ω(x)t) ,

it follows that

lim
T→∞

1

2

∫ T

0

ω(x)2 (ξx(t))
2
dt =

1

4
ω(x)2

(
λ2 + µ2

)
=

1

2
H⊥x .
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In fact the last statement covers only a special case of the Virial Theorem that allows for much more general
assertions; see, e.g., the textbook of Bornemann [3]. Replacing the fast term ξ2 in the second equation of (5.18)
by the respective average expression, we obtain the limit dynamics on Γ×R,

ẋ = u , x(0) = x0

u̇ = −U ′(x)− ω′(x)

ω(x)
E⊥x , u(0) = u0 .

(5.21)

Employing the arguments from the previous section, the last equation ought to yield the lowest-order approxi-
mation of the original oscillatory equation (5.17) for sufficiently small ε.

Remark 5.3 If the limiting set Γ×R is given as the level set ϕ−1(0) of some smooth function ϕ : R2 → R,
confinement to Γ is achieved by replacing V (x, y/ε) in (5.16) by

Vε(x, y) = U(x) +
1

2ε2
(ϕ(x, y))2 .

Since the normal variable y points in the direction normal to Γ, Taylor expansion of ϕ around y = 0 yields

(ϕ(x, y))2 = |∇ϕ(x, 0)|2 y2 +O(y4) .

Noting that y = O(ε) it is easy to see that only the quadratic term remains in the limit ε → 0, so that we end
up with the limit equation (5.21) for ω(x) = |∇ϕ(x, 0)|.

Fig. 7 Potential with a dynamical barrier. Left panel: normal frequency. Right panel: potential energy.

5.5 Adiabatic invariance

We shall now highlight the relation between the confinement approach and the oscillatory action-angle equations.
To this end recall that we have defined the action of an unperturbed harmonic oscillator with frequency ω and
energy H as the ratio I = H/ω. For a single unperturbed oscillator, the action is trivially a “slow” variable,
for the energy H is an integral of motion, i.e., dH/dt = 0. But if the system is perturbed by a slowly-varying
parameter, e.g. an additional slow variable, it may happen that H is no longer a slow variable whereas I still is.
This is expressed in the following lemma that is an instance of the famous Adiabatensatz (adiabatic theorem) for
quantum mechanical systems that has been stated first as a hypothesis by Ehrenfest in 1916 [4].

Lemma 5.4 (Adiabatic invariance of the action) The quantity

I =
E⊥x
ω(x)

is a constant of motion under the dynamics (5.21).
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P r o o f. Recall that the instantaneous energy of the normal oscillations is given by

E⊥x = E1 −
1

2
u2 − U(x)

with E1 = H(x, εy, u, v) being a constant. A straightforward calculation shows that

d

dt

(
E⊥x
ω(x)

)
=

d

dt

(
E1 − 1

2u
2 − U(x)

ω(x)

)
=

E1 − 1
2u

2 − U(x))ẋ

ω(x)2

− (u̇u+ U ′(x)ẋ)ω(x)

ω(x)2
.

Substituting the expression for the normal energy E⊥x , the momentum u = ẋ and u̇ by the respective expressions
from the equations of motion (5.21), it follows immediately that the enumerator is zero, for

(u̇u+ U ′(x)ẋ)ω(xω(x)2 = E⊥x ω
′(x)ẋ .

Hence

d

dt

(
E⊥x
ω(x)

)
= 0

which proves that I = E⊥x /ω(x) is a constant of motion.

The adiabatic invariance of the ratio E⊥x /ω(x) allows us to further simplify the averaged equation (5.21).
Calling

I0 =
1

ω(x)

(
1

2
v2 +

1

2
ω(x)2y2

)
the initial action I0 = I(x(0), ξ(0), v(0)), the limit equation (5.21) can be recast as

ẋ = u , x(0) = x0

u̇ = −U ′(x)− I0ω′(x) , u(0) = u0 .
(5.22)

It can be readily seen that the last equation is Hamiltonian with the effective energy

H̄ =
1

2
u2 + U(x) + I0 ω(x) .

Example 5.5 (Potential with a dynamical barrier) We wrap up the section with a simple example. To this
end, consider the Hamiltonian

H : R2 ×R2 → R , H(x, y, u, v) =
1

2

(
u2 + v2

)
+ V (x, y/ε)

with the perturbed double-well potential

V (x, y) =
1

2
(x2 − 1)2 +

1

2
ω(x)2y2

where the normal frequency be given by the formula

ω(x) = 1 + Ce−α(x−xb)2 ,

with C,α positive constants. The frequency has a sharp peak at x = xb that induces a large force pointing
towards the constraint set y = 0. This has the effect that a particle which approaches x0 with a large oscillation
(i.e., normal) energy will bounce off the dynamical barrier that arises from the frequency peak, although the
potential is almost flat in this direction. The normal frequency together with the resulting potential are shown
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Fig. 8 Limiting dynamics of the system with dynamical barrier. Left panel: convergence of the slow configuration
variable. Right panel: averaged potential.

in Figure 7 for C = 10, α = 200 and xb = 0.8. In order to demonstrate the effect of the dynamical (or entropic)
barrier we fix initial values (x0, y0, u0, v0) = (0.8, 0,−0.5, 1.0) and compute the resulting effective potential

V̄ (x) =
1

2
(x2 − 1)2 + I0 ω(x)

which is shown in the left panel of Figure 8. Apparently the dynamical barrier in the full potential shows up as
an additional potential barrier in the effective potential. Nevertheless it is not a potential barrier in the usual
sense: it becomes harder to cross as the initial normal energy E⊥x = I0 ω(x) with I0 = I(x0, y0, v0) increases.

Fig. 9 Action variable I = E⊥x /ω and the normal energy E⊥x for ε > 0.

The left panel of Figure 8 depicts the convergence of the slow position variable x = xε in the limit of strong
confinement to the real axis. Notice that although the confinement limit eventually leads to restriction of the
system to the x-axis, the effective potential exhibits an additional barrier that vanishes only when I0 = 0, i.e.,
when the initial positions lie exactly on the real axis and the initial momenta are tangential to the real axis.
In other words, the confinement is intrinsically defined by the dynamics on the constraint set if the system is
initialised with zero normal energy (or if the normal frequency ω is constant).

We conclude by comparing the action variable I = E⊥x /ω(x) with the instantaneous normal energy E⊥x for
ε > 0. It turns out that E⊥x is rapidly oscillating for all values of ε, although it depends only on the slowly varying
variables x and u and the associated system preserves the normal energy E⊥x = H⊥x . In turn, the action variable
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is almost constant except for jumps that occur whenever the system crosses the dynamical barrier at x = xb; see
Figure 9. As ε goes to zero, the jumps vanish.

6 Random perturbations

We shall now come to the case of differential equations that are subject to noise. More precisely, we consider the
scenario of (fast) random perturbations to the dynamics. A brief introduction to stochastic differential equations
and Brownian motion will be given in the appendix.

6.1 Kolmogorov and Fokker-Planck equations

Recall from Section 3 that to any ODE we could associate two partial differential equations, forward and the
backward equations, that were defined in terms of the infinitesimal generator of the dynamics. As we will now
explain, stochastic differential equations (SDE) allow for an analogous construction. Consider the SDE

dz = b(z)dt+ σ(z)dWt , z(0) = x (6.1)

for z ∈ Z ⊆ Rn, b : Z → Rn locally Lipschitz and σ : Z → Rn×n invertible. As before, Z = Rn if the vector
field satisfies certain growth conditions (e.g., see [16]), or Z = Tn being the n-dimensional flat torus otherwise
(periodic boundary conditions).

Clearly Z = (z(t))t∈R+
is a Markov process and comes with a (smooth) transition kernel ρx(z, t, s). The kernel

specifies the transition probabilities of the process and is defined by

P [z(t+ s) ∈ A | z(s) = x] =

∫
A

ρx(z, t) dz

where we have already taken advantage of the fact that the coefficients in (6.1) are time-homogeneous which
implies that ρx is independent of s. An evolution equation for ρx can be obtained in the following way: For any
smooth function f : Z → R, Itô’s formula implies (see the appendix)

f(z(t))− f(x) =

∫ t

0

∇f(z(s)) · dz(s) +
1

2

∫ t

0

a(z(s)) :∇2f(z(s)) ds

with the shorthand a(z) = σ(z)σ(z)T . Taking expectations over all realization of Z = (z(t))t∈R+
starting at

z(0) = x on both sides of the equation yields

Exf(z(t))− f(x) = Ex

∫ t

0

∇f(z(s)) · dz(s) +
1

2
Ex

∫ t

0

a(z(s)) :∇2f(z(s)) ds

which, by using the first Itô isometry and the definition of the transition kernel ρx, can be recast as∫
Z
f(z)ρx(dz, t) =

∫ t

0

∫
Z
∇f(z) · b(z) ρx(dz, s)ds+

1

2

∫ t

0

∫
Z
a(z) :∇2f(z) ρx(dz, s)ds .

Finally integrating by parts and pulling off the integral over Z (since f is arbitrary), it follows by differentiation
with respect to t that the transition density ρ(z, t) := ρx(z, t) solves the Fokker-Planck or forward Kolmogorov
equation

∂tρ(z, t) =
1

2
∇2 : (a(z)ρ(z, t))−∇ · (b(z)ρ(z, t)) , lim

t→0+
ρ(z, t) = δ(z − x) (6.2)

where we have used the notation

∇2 : (aρ) =
∑
i,j

∂2

∂zi∂zj
(aijρ) .

Given an initial value z(0) = x the forward equation describes the dynamics of (6.1) in terms of z and t.
Conversely, we may ask what is the respective evolution equation for x and t. By the Markov property we have

P [z(t+ s) ∈ A | {z(τ), 0 ≤ τ ≤ s}] = P [z(t+ s) ∈ A | z(s)]
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which entails the Chapman-Kolmogorov equation

ρx(z, s+ t) =

∫
Z
ρy(t, z)ρx(y, s) dy .

The latter implies

ρx(z, t+ ∆t)− ρx(z, t) =

∫
Z
ρy(t, z)ρx(y,∆t) dy − ρx(z, t)

=

∫
Z
ρy(t, z) (ρx(y,∆t)− δ(x− y)) dy .

If we divide the last equation by ∆t and let ∆t→ 0, we obtain

∂ρx(z, t) =

∫
Z
ρy(t, z)

(
1

2
∇2 : (a(y)δ(x− y))−∇ · (b(y)δ(x− y))

)
dy .

Integration by parts yields the backward Kolmogorov equation for u(x, t) := ρx(·, t), namely,

∂tu(x, t) =
1

2
a(x) :∇2u(x, t) + b(x) · ∇u(x, t) , u(x, 0) = φ(x) . (6.3)

6.2 Forward-backward dichotomy

The two equations (6.2) and (6.3) are dual to each other in the sense that forward and backward Liouville
equations were dual. To make this statement a bit more precise, we introduce the infinitesimal generator of the
diffusion process Z as the elliptic second-order operator

L =
1

2
a(z) :∇2 + b(z) · ∇ (6.4)

Its meaning is completely analogous to the semigroup definition (3.5) of the Liouvillian in Section 3, but for
the sake of simplicity we confine our attention to functions that twice continuously differentiable in the spatial
argument, i.e., we assume D(L) ⊆ C2,1(Z, [0,∞)) to be the domain of definition of L. Then the formal definition
(3.5) coincides with (6.4).

Now using the definition of L we may write backward Kolmogorov equation as the Cauchy problem

∂tu(z, t) = Lu(z, t) , (z, t) ∈ Z×]0,∞[

u(z, 0) = φ(z) , z ∈ Z
(6.5)

the formal solution of which is given by

u(z, t) = (exp(tL)φ) (z) .

As before, the last identity can be readily verified by differentiation with respect to time where the operator
Tt = exp(tL) denotes the semigroup of L. The operator

L∗v =
1

2
∇2 : (a(z)v(z)) +∇ · (b(z)v(z)) (6.6)

i that is assumed to act on a suitable subspace of C2,1(Z, [0,∞)) ∩ L1(Z) is the formal of L that is defined by
the inner product 〈Lu, v〉L2 = 〈u,L∗v〉L2 . Hence we may recast the (forward) Fokker-Planck equation as

∂tρ(z, t) = L∗ρ(z, t) , (z, t) ∈ Z×]0,∞[

ρ(z, 0) = ρ0(z) , z ∈ Z ,
(6.7)

having the formal solution
ρ(z, t) = (exp(tL∗)ρ0) (z) .

Again, T ∗t = exp(tL∗) with Tt = exp(tL) denoting the semigroup of L (cf. Section 3.2).
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Particle-interpretation of Kolmogorov and Fokker-Planck equations Recall that in the ODE case we
could interpret the trajectories of the differential equation as the characteristics of the corresponding backward
Liouville equation. Roughly speaking, we could express the solution to the backward PDE in terms of the
trajectories as u(z, t) = φ(z(t)). Here the situation is slightly different because the trajectories (realizations) of
(6.1) are noisy, in other words, Z is a random process, whereas u(z, t) is deterministic.

Nonetheless we may express the solution to the backward equation in a similar fashion: Define u(z, t) =
Ezφ(z(t)) where Ez denotes the expectation over all realizations of Z = (z(t))t∈R+

starting at z(0) = z. Then u
solves the backward equation (6.5) as can be readily verified by noting that u can be expressed by

u(z, t) =

∫
Z
φ(y)ρz(y, t) dy

with ρz(·, t) denoting the transition kernel of the process Z. The assertion then follows by writing out the
Chapman-Kolmogorov equation for u(z, t+ ∆t)−u(z, t) and repeating the derivation of the backward equation.4

For the forward equation we may prove the following Lemma.

Lemma 6.1 Let z(t) be the solution of the SDE

dz = b(z)dt+ σ(z)dWt , z(0) ∼ ρ0

with initial conditions z(0) that are drawn from the probability distribution ρ0. Then the solution ρ(z, t) of the
forward equation (6.7) with initial condition ρ(z, 0) = ρ0(z) is the law of Z at time t > 0.

P r o o f. We have to show that we may express any expectation of a smooth function f with respect to the
time-dependent probability distribution ρ by an average over the realizations of Z (cf. Theorem 3.2). To this
end consider the backward equation

∂tu(z, t) = Lu(z, t) , (z, t) ∈ Z×]0,∞[

u(z, 0) = f(z) , z ∈ Z

Given that f ∈ L1 is sufficiently differentiable, it suffices to show that∫
Z
f(z)ρ(z, t) dz =

∫
Z

Ezf(z(t))ρ0(z) dz .

But as u(z, t) = Ezf(z(t)) solves the backward equation for z(0) = z we have∫
Z

Ezf(z(t))ρ0(z) dz =

∫
Z

(exp(tL)f)(z)ρ0(z) dz

=

∫
Z
f(z)(exp(tL∗ρ0)(z)

=

∫
Z
f(z)ρ(z, t) dz .

It follows that, for any measurable set A ⊂ Z,

P[z(t) ∈ A] =

∫
Z
χA(z)ρ(z, t) dz

by which the assertion is proved.

Invariant measures By the last lemma, the stationary solutions of the the Fokker-Planck equation (6.2) are
the stationary probability distributions of the stochastic process governed by (6.1). The following case is of
particular importance: in (6.1), suppose that σ(z) =

√
2ς is constant with ς > 0 denoting the “temperature” of

the system. Further assume that the vector field b has gradient form, i.e., b = −∇V with V : Z → R being a
smooth potential that is bounded below and has the property V (z)→∞ as |z| → ∞. Then the SDE

dz = −∇V (z)dt+
√

2ςdW

4 Alternatively, one might write down Itô’s formula for f(z). The expectation then solves the backward equation.
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has the unique stationary probability distribution

µ(dz) = I−1 exp(−ς−1V (z))dz , I =

∫
Z

exp(−ς−1V (z)) dz .

that is known as the Boltzmann distribution in the literature. To see that µ is indeed stationary, note that that
the formal L2 adjoint to the infinitesimal generator L reads

L∗ = ∆ +∇V (z) · ∇+ ∆V (z)

with the rightmost term acting as a multiplication operator. Defining the stationary Boltzmann density by
µ(dz) = ρ∞(z)dz or ρ∞ ∝ exp(−ς−1V ), it is easy to check that L∗ρ∞ = 0 which proves that µ is an invariant
measure of (6.1).

Proving that µ is in fact the invariant measure is more involved and requires the application of the maximum
principle for elliptic second-order PDEs given that V grows at least quadratically in z as |z| → ∞. We refer to
[14] for a discussion and conclude the subsection by some examples.

Example 6.2 (Heat equation) Let Z = W, W (0) = 0 be standard Brownian motion in Z = Rn. The
corresponding infinitesimal generator is now simply half the Laplacian,

L =
1

2
∆ .

As the Laplacian is essentially self-adjoint (i.e., symmetric), we have L = L∗, and the solution to the Fokker-
Planck equation (6.2) with sharp initial condition ρ(z, 0) = δ(z) is given by the Gaussian heat kernel

ρ(z, t) =
1

(2πt)n/2
exp

(
− 1

2t
|z|2
)
.

Conversely ρ(z, t)dz determines the probability to find a Brownian particle in an infinitesimal volume element
dz around z. Note, however, that the stationary solution to the Fokker-Planck equation, the constant function
ρ∞ = 1, cannot be a probability density since it is not normalizable. Moreover ρ(z, t) → 0 as t → ∞, hence
n-dimensional Brownian motion does not admit an ergodic probability distribution.

Example 6.3 (Multidimensional Ornstein-Uhlenbeck process) Consider the gradient system

dz = −∇V (z;m)dt+
√

2ςdW

on Z = Rn with the quadratic potential

V (z;m) =
1

2
(z −m)TA(z −m)

and A = AT ∈ Rn×n positive definite. The unique stationary distribution is the Gaussian distribution

µ(dz) =

√
detA

(2π)n/2
exp

(
− 1

2ς
(z −m)TA(z −m)

)
dz .

Example 6.4 (Double-well potential) For V being the double-well potential

V (z) = (z2 − 1)2 ,

the Boltzmann distribution exp(−ς−1V ) for various ς is depicted in Figure 10.

6.3 Averaging of random perturbations

We will now consider the problem of fast random perturbations to an ODE where the fast dynamics are given
by an SDE. More precisely, we consider the coupled system of equations

ẋ = f(x, y, ε) , x(0) = x0

dy =
1

ε
g(x, y, ε)dt+

1√
ε
σ(x, y)dW , y(0) = y0

(6.8)
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Fig. 10 Stationary distributions µ ∝ exp(−ς−1V ) for the double-well potential.

that is the natural generalisation of the slow-fast system (1.1) to the case of stochastic perturbations. As before
(x, y) ∈ Rn×Rm and 0 < ε� 1 is a small parameter. If f(·, ·, ε) and g(·, ·, ε) are globally Lipschitz and uniformly
bounded in ε, then y will be of order 1/ε faster than x. To see that W is in fact living on a fast time scale τ = t/ε

it is helpful to recall that dW ∼
√
dt and note that αW (t/α2) has the same law as W (t); hence ε−1/2W (ετ) is a

standard Wiener process living on the microscopic (fast) time scale.
To average (6.8) over the fast perturbation we proceed essentially as in the deterministic case: Since the slow

dynamics hardly move on the time scale of the fast variables, the fast dynamics decouple from the slow ones
whenever ε is sufficiently small. Hence we may replace the coupled system (6.8) by the equation

ẋ = f(x, yx, ε) , x(0) = x0 (6.9)

where yx(t) is the solution of the associated SDE

dyξ = g(ξ, yξ, 0)dt+ σ(ξ, yξ)dW , yξ(0) = y0 (6.10)

for frozen slow variable x = ξ. Provided that the process Yx = (yx(t))t∈R+ has the unique (ergodic) stationary
probability distribution µx(dy) = ρ(y;x)dy, we may replace (6.9) by the averaged equation

ẋ = f̄(x) , x(0) = x0 (6.11)

with the averaged vector field

f̄(x) =

∫
Rm

f(x, y, 0)µx(dy) . (6.12)

Perturbation expansion To systematically derive the averaged equations (6.11)–(6.12) we follow the general
strategy and proceed as in Section 5.2. For simplicity, we assume that both f and g are independent of ε. The
generator Lε associated with the slow-fast system (6.8) then reads

Lε = L0 +
1

ε
L1

with

L0 = f(x, y) · ∂
∂x

, L1 =
1

2
a(x, y) :

∂

∂y
⊗ ∂

∂y
+ g(x, y) · ∂

∂y
(here: a = σσT ) .

Just as in the deterministic case, we seek a perturbative solution to the backward equation

∂tu
ε(x, y, t) = Lεuε(x, y, t) , uε(x, y, 0) = φ(x, y) ,

given the ansatz

uε = u0 + εu1 + ε2u2 + . . . .

This is a preliminary version. Do not circulate.



38 Carsten Hartmann: Singularly perturbed differential equations

Substituting the series and equating equal powers of ε yields a hierarchy of equations the first three of which are

L1u0 = 0 (6.13)

L1u1 = ∂tu0 − L0u0 (6.14)

L1u2 = ∂tu1 − L0u1 . (6.15)

The first equation, equation (6.13), says that u0 ∈ kerL1. By the strong maximum principle this implies that
u0 = u0(x, t) is constant in y and is the unique eigenfunction to the eigenvalue zero (using ergodicity). The time
evolution of u0 is then due to the second equation, and we are aiming at the lowest-order approximation uε ≈ u0.
By the Fredholm alternative, equation (5.9) has a solution if and only if the right hand side is orthogonal to the
kernel of L∗1. To define the adjoint of the generator of the fast dynamics, L1, it is helpful to note that we may
treat x as a parameter. Accordingly we define L∗1 with respect to the L2 scalar product for fixed x, i.e.,

〈u, v〉x,L2 =

∫
Zx
uv dy

where we exploit the fact that Z = Zy ×Zx ⊆ Rn×Rm has a trivial structure with Zx denoting the fibre of the
fast variables over the base space x ∈ Zy. Then the stationary densities ρ that are the nontrivial solutions of the
elliptic equation L1ρ are of the form ρ(y;x), provided they exist and assuming that we equip L1 with suitable
boundary conditions (e.g., periodic).

Now, setting µx(dy) = ρ∞(y;x)dy the Fredholm alternative for (6.14) requires that∫
Zx

(∂tu0 − L0u0)µx(dy) = 0 .

But since u0 the solvability condition reduces to the averaged backward equation

∂tu0(x, t) = L̄u0(x, t) , u0(x, 0) = φ0(x)

with the averaged Liouville operator

L̄ =

∫
Zx
f(x, y)µx(dy) · ∂

∂x

= f̄(x) · ∂
∂x

.

(6.16)

The derivation is complete upon noting that (6.16) is the generator of the averaged SDE (6.11)–(6.12).

Remark 6.5 Consistency of the averaged equation with the full dynamics for all t ∈ [0, T ] requires that
the initial condition uε(x, y, 0) = φ(x, y) is independent of y, i.e., φ(x, y) = φ0(x)1(y). If, however, the initial
condition is not independent of the fast variable, the perturbation ansatz uε = u0 + εu1 + . . . must be replaced
by a suitable 2-scale expansion of uε = uε(x, y, t, τ) that involves the microscopic time scale τ = t/ε on which
the initial relaxation of the fast dynamics to the (ergodic) stationary distribution ρ(y;x) takes place, similarly
to the initial relaxation to an attractive invariant manifold as described in Section 4.3.

Convergence result For the approximation of the randomly perturbed slow dynamics by the deterministic
averaged equation we have the following strong convergence result (for details on stochastic convergence see the
appendix).

Theorem 6.6 Let x(t) = ϕt(x0) denote the solution of the averaged equation

ẋ = f̄(x) , x(0) = x0

with

f̄(x) =

∫
Rm

f(x, y)µx(dy)

and µx being the invariant measure of the fast stochastic dynamics (6.10) for fixed x. The slow component xε of
the solution of the coupled system (6.8) converges to the averaged solution in the mean square as ε→ 0, viz.,

E

[
sup
t∈[0,T ]

|xε(t)− x(t)|

]
≤ C
√
ε

for a constant C > 0 independent of ε that grows exponentially in T .
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P r o o f. We follow the convergence proof given in [14] with some slight modifications. Suppose that both f
and g are locally Lipschitz and consider the Poisson equation

L1φ(x, y) = f(x, y)− f̄(x)

φ(·, y)→ 0 as |y| → ∞ .

By construction of f̄ being the average of f with respect to µx the Fredholm alternative asserts that our Poisson
equation has a solution. (Note that dµx(y) = ρ(y;x)dy where ρ(y;x) is the normalized solution of L∗1ρ = 0.)
By requiring that φ decays at infinity the solution is also unique and all its derivatives are bounded (assuming
smoothness of the coefficients and Lipschitz continuity); alternatively we may equip L1 with periodic boundary
conditions and ask for a solution φ that is periodic in its second argument. Itô’s formula then yields

dφε = Lεφ(xε, yε)dt+
1√
ε

(
∂

∂y
φ(xε, yε)

)
· σ(xε, yε)dW .

Using that L1φ = f − f̄ , equation (6.8) can be recast as

dxε = f̄(xε) + L1φ(xε, yε)

= f̄(xε) + εdφ(xε, yε) + εL0φ(xε, yε) +
√
ε

(
∂

∂y
φ(xε, yε)

)
· σ(xε, yε)dW .

By smoothness of φ, the two O(ε) terms are uniformly bounded, i.e.,

Sε(t)− Sε(0) = φ(xε, yε)− φ(x0, y0) +

∫ t

0

(L0φ) (xε(s), yε(s)) ds

satisfies

sup
0≤t≤T

|Sε(t)− Sε(0)| ≤ C1 . (6.17)

with probability one and for all ε > 0. By the second Itô isometry, the remaining martingale term

M ε(t) =

∫ t

0

(
∂

∂y
φ(xε(s), yε(s))

)
· σ(xε(s), yε(s))dW (s)

has bounded quadratic variation, i.e., for all ε > 0 and t <∞. In other words,

E|M ε
t |2 =

∫ t

0

E

[∣∣∣∣σ(xε(s), yε(s))

(
∂

∂y
φ(xε(s), yε(s))

)∣∣∣∣2
]
ds

is finite which implies that

E|M ε
t | ≤ C2 . (6.18)

For the deviations ξε = xε − x we therefore obtain

ξε(t) = −
∫ t

0

(
f̄(xε(s))− f̄(x(s))

)
ds+ ε(Sε(t)− Sε(0)) +

√
εM ε(t)

≤ L
∫ t

0

|ξε(s)|ds+ C3

√
ε

with C3 = C1 +C2 and on any compact time interval [0, T ], employing the Lipschitz continuity of f̄ with Lipschitz
constant L <∞ and (6.17)–(6.18). Taking expectations on either side of the last equation we find

E

[
sup

0≤t≤T
|ξε(t)|

]
≤ C4

(
√
ε+ L

∫ T

0

E|ξε(s)|ds

)

≤ C5

(
√
ε+

∫ T

0

E

[
sup

0≤t≤T
|ξε(s)|

]
ds

)
It finally follows from the integral version of Gronwall’s Lemma that

E

[
sup

0≤t≤T
|ξε(t)|

]
≤
√
ε exp(C6T )

which proves Theorem 6.6.
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6.3.1 Averaging of highly-oscillatory systems revisited

We shall come back to the confinement problem that we have discussed in Section 5, thereby slightly extending
the previous stochastic averaging scenario to the fully stochastic case. Consider the singularly perturbed SDE

dz = −∇V ε(z)dt+
√

2ςdW , z(0) = z0 (6.19)

with z = (x, ξ) ∈ R×Rm and the confining potential

V ε(x, ξ) = U(x) +
1

2ε
ξTA(x)ξ , A(·) ∈ Rm×m s.p.d. (6.20)

Splitting the state variables accordingly the equations of motion are

dx = −
(
U ′(x) +

1

2ε
ξTA′(x)ξ

)
dt+

√
2ςdWx , x(0) = x0

dξ =
1

ε
A(x)ξdt+

√
2ςdWξ , ξ(0) = 0

Like in the Hamiltonian case the dynamics become confined to the set {ξ = 0} as ε → 0 where the convergence
ξ → 0 will now be stochastic, i.e., we expect that first and second moments converge with E|ξ|2 = O(ε).5 To see
this it is convenient to introduce the scaled variables y = ξ/

√
ε in terms of which our SDE reads

dx = −
(
U ′(x) +

1

2
yTA′(x)y

)
dt+

√
2ςdWx , x(0) = x0

dy =
1

ε
A(x)ydt+

√
2ς

ε
dWy , y(0) = 0

(6.21)

where we have relabeled the noise increments dWξ = dWy. Equation (6.21) is again a slow-fast system where the
only difference to (6.8) is that also the slow dynamics is governed by an SDE. Therefore the averaging principle
applies and we may replace the fast component in the slow equation by the stationary solution of the associated
SDE

dyx = A(x)yxdt+
√

2ςdWy , y(0) = 0

that is an centred Ornstein-Uhlenbeck process with covariance (for details see the appendix)

E[YxY
T
x ] = 2ς

∫ t

0

exp(−2A(x)s) ds

→ ςA(x)−1 as t→∞ .

Let µx be the invariant measure of Yx = (yx(t))t∈R+ that has the Gaussian density

ρ(y;x) =

√
detA(x)

(2π)m/2
exp

(
− 1

2ς
yTA(x)y

)
, µx(dy) = ρ(y;x)dy .

Averaging y in the quadratic form above amounts to evaluating an integral of the form∫
Rm

yTBy µx(dy) = ς B :A−1 ,

which for the slow equation, using the Jacobi’s formula (detA)′ = detAA′ :A−1, yields

dx = − ∂

∂x

(
U(x) +

ς

2
ln detA(x)

)
dt+

√
2ςdWx , x(0) = x0 .

The effective potential

F (x) =
ς

2
ln detA(x)

5 The change of the small parameter from ε2 to ε in the confining potential is merely a matter of notational convenience; cf.
Section 5.
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is called the Fixman potential and essentially captured the influence of the random motion orthogonal to the
confinement set {y = 0} on the dynamics on the set. Note that the appearance of the Fixman potential is
different from the situation considered in Section 5 where the correction potential was the sum of the initial
normal energies Iiωi(x) with ωi =

√
λi ∈ spec(A) and Ii being identically zero if the dynamics is initially on the

confinement set. The fact that the Fixman potential appears independently of the initial conditions is owed to,
(i), the ergodicity of the Ornstein-Uhlenbeck process and, (ii), to the white noise that kicks the system off the
confinement set with probability one (the first is actually a consequence of the latter).

Example 6.7 (Dynamical barrier) As an example we consider the system from Section 5, i.e., we assume
V : R2 → R to be the dynamical barrier potential

V (x, y) =
1

2
(x2 − 1) +

1

2
ω(x)2y2 , ω(x) = 1 + Ce−α(x−xb)2 .

The Fixman potential then reads
F (x) = ς ln detω(x) .

Both original potential and Fixman potential are depicted in Figure 11 below. As before in the Hamiltonian we
observe that the additional (entropic) barrier that pops up becomes more pronounced as temperature is increased,
where the barrier height is only a function of temperature and of the normal frequency ω(x) that couples slow
and fast motion. Pathwise convergenceto the limiting solution as ε → 0 for a single realization of the Brownian
motion (i.e., convergence in probability) is shown in Figure 12.
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Fig. 11 Potential with an entropic barrier (left panel) and the corresponding Fixman potential for various ς (right panel).

Free energy If in (6.21) the gradient field −∇V = (−∂V/∂x,−∂V/∂y) comes from an arbitrary potential
V (smooth, polynomially growing and bounded below), the joint stationary distribution is still the Boltzmann
distribution and the invariant measure of the fast dynamics is given by the conditional Boltzmann distribution

µx(dy) = Z−1
x exp(−ς−1V (x, y))dy , Zx =

∫
Rm

exp(−ς−1V (x, y)) dy .

In this case, also the averaged force ∂V/∂x is a gradient field, as can be readily checked upon noting that∫
Rn

∂V

∂x
µx(dy) =

∂

∂x
ς lnZx

with the so-called partition function (normalization constant) Zx as given above. Hence F (x) = −ς lnZx is the
potential of mean force that is also known as the thermodynamical free energy.

Remark 6.8 For the Ornstein-Uhlenbeck process we have shown in the previous section that it converges
almost surely (i.e., with probability one) to a stationary Gaussian process whose covariance is given by the inverse
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Fig. 12 Convergence of a typical realization of (6.21) with the 2-dimensional dynamical barrier potential to the limiting
dynamics that is governed by the Fixman potential.

of the symmetric positive definite (s.p.d.) stiffness matrix. For more general SDEs of non-degenerate diffusion
type (i.e., the noise matrix σ has full rank) it is possible to prove a law of large numbers (LLN), similarly to the
LLN discussed in Section 5.3 where essentially the strong maximum principle that implies that the generator’s
kernel is only one-dimensional takes over the role of the diophantine condition (5.6).

6.4 Diffusive limits

It may happen that f̄ = 0 in which case the averaged dynamics become trivial on the on the time interval of
interest, typically [0, T ]. In this case the interesting dynamics happens on the infinite time interval [0,∞) and
it is desirable to study the effective dynamics there. Suppose one is interested in the effective dynamics of the
following coupled system of equations

ẋ = f(x, y) , x(0) = x0

dy =
1

ε
g(x, y)dt+

1√
ε
σ(x, y)dW , y(0) = y0

on the time interval [0, T ]. For simplicity, we assume that all the coefficients are independent of ε — this is not
a major restriction, however. Further suppose that the effective drift is zero if averaged against the invariant
measure of the fast dynamics, i.e., ∫

Zx
f(x, y)µx(dy) = 0 .

Now we may ask what happens if we derive the next perturbation order for the effective motion (i.e., the first-
order correction to ẋ = 0). It turns out that going to the next perturbation order is equivalent to speeding up
time according to t→ t/ε which yields the system

ẋ =
1

ε
f(x, y) , x(0) = x0

dy =
1

ε2
g(x, y)dt+

1

ε
σ(x, y)dW , y(0) = y0

(6.22)

Unlike in the averaging case it is now less obvious how the effective equation for x look like. By comparing the
different powers of ε, however, we may expect that the slow motion will now couple to the Brownian motion that
is of the same order of magnitude. Therefore the limiting dynamics on the time interval [0, T/ε], if it exists, will
probably be diffusive (hence the name diffusive limit).

Derivation of the limit equations To systematically derive effective equations for the slow variable in (6.22)
as ε→ 0 we proceed as before and consider the backward equation

∂tu
ε(x, y, t) = Lεuε(x, y, t) , uε(x, y, 0) = φ(x) ,
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where, in accordance with the previous considerations, we assume from the outset that the initial datum φ is
independent of the fast variables. The generator is now of the form

Lε =
1

ε
L0 +

1

ε2
L1

with

L0 = f(x, y) · ∂
∂x

, L1 =
1

2
a(x, y) :

∂

∂y
⊗ ∂

∂y
+ g(x, y) · ∂

∂y

as before. Using the ansatz

uε = u0 + εu1 + ε2u2 + . . .

in the backward equation and substituting the series, equating equal powers of ε yields

L1u0 = 0 (6.23)

L1u1 = −L0u0 (6.24)

L1u2 = ∂tu0 − L0u1 (6.25)

and so on and so forth. As before, the first equation tells us that u0 = u0(x, t). But the time evolution of u0 is
now due to the third equation where the closure is provided by the second one (by solving the equation for u1).

Closure scheme We define the cell problem as the following system of elliptic equations

L1φ(x, y) = −f(x, y) (6.26)

with x as a parameter and, say, periodic boundary conditions, i.e., Zx ∼= Tm. The solution, that is understood
component-wise, is unique only up to a constants in y (i.e., functions in kerL1); we may fix it by requiring that∫

Zx
φ(x, y)ρ∞(y;x) dy (6.27)

for all x ∈ Zy ⊆ Rn and with ρ∞ as the unique solution of L∗1ρ∞ = 0. As before we assume that Yx = (yx(t))t∈R+

is ergodic, hence the nullspace of its generator L1 is one-dimensional. Note that f̄ = 0 (centering condition), so
by the Fredholm alternative (6.26) has a solution. Equating powers of ε, equation (6.25) implies that

L1u1 = −f(x, y) · ∂u0

∂x

where u0 = u0(x, t). Since L1 contains only derivatives with respect to y, we can split off the rightmost term
from which we conclude that u1 must be of the form

u1(x, y, t) = φ(x, y) · ∇u0(x, t) + ψ(x, t)

where ψ ∈ kerL1 so we can ignore it in what follows and set it to zero. If we substitute the ansatz for u1 we see
that φ must solve the cell problem (6.26). Inserting the ansatz into (6.25), the solvability condition entails

∂tu0 =

∫
Zx
L0 (φ · ∇u0) µx(dy) .

Again µx(dy) = ρ∞(y;x)dy with ρ∞ being the unique eigenfunction of L∗1 for the eigenvalue λ = 0. Given φ, the
integrand on the right-hand side of the effective equation reads

L0 (φ · ∇u0) = f ⊗ φ :∇2u0 +

(
∂φ

∂x
f

)
· ∇u0 .

Hence the effective equation for u0 is of the form

∂tu0 =
1

2
A(x) :∇2u0 + F (x) · ∇u0 (6.28)
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with the homogenised coefficients for the drift

F (x) =

∫
Zx

(
∂

∂x
φ(x, y)

)
f(x, y) ρ∞(y;x) dy . (6.29)

and for the (symmetrised) covariance

A(x) =

∫
Zx

(f(x, y)⊗ φ(x, y) + φ(x, y)⊗ f(x, y)) ρ∞(y;x) dy . (6.30)

Defining a noise coefficient Σ: Rn ⊇ Zy → Rn×n by A(x) = Σ(x)Σ(x)T , the effective SDE is given by

dx = F (x)dt+ Σ(x)dW , x(0) = x0 (6.31)

which is, clearly, not unique as the Cholesky decomposition of the covariance matrix A is not. Nonetheless for
any choice of Σ satisfying A(x) = Σ(x)Σ(x)T all the solutions to the SDE (6.31) are equivalent in that their laws
coincide. It remains to show that (6.28)–(6.31) define a non-degenerate diffusion process.

Lemma 6.9 The matrix field A : Rn ⊇ Zy → Rn×n is positive definite.

P r o o f. Set v(x, y) = ξ · φ(x, y) with φ being the solution of the cell problem. Then v solves

L1v(x, y) = −f(x, y) · ξ

and therefore, using (6.30),

〈A(x)ξ, ξ〉 =

∫
Zx

((f(x, y) · ξ)v(x, y) + v(x, y)(f(x, y) · ξ)) ρ∞(y;x) dy

= −2

∫
Zx

(v(x, y)L1v(x, y)) ρ∞(y;x) dy .

But the spectrum of L1 is entirely on the negative real half-axis with a simple eigenvalue zero. By (6.27), the
components of φ are orthogonal to the kernel of L∗1, hence entirely in the range of L1. Since ξ 6= 0 is a constant
vector, the same is true for v. Hence we can exclude v to lie in the kernel of L1 which implies that

〈A(x)ξ, ξ〉 > 0∀ ξ 6= 0

and so gives the assertion.

Integral representation of the cell problem The cell problem (2.11) may be formally rewritten as

φ(x, y) = −L−1
1 f(x, y)

where the inverse of the elliptic operator L1 on the right-hand side is well-defined as f ∈ (kerL∗1)⊥. An explicit
integral representation of L−1

1 can be defined as follows: Let g(x, ·) be orthogonal to the kernel of L∗1. Then

G(x, y) = −
∫ ∞

0

exp(tL1)g(x, y) dt

is an integral representation of L−1
1 g, for

L1G = −
∫ ∞

0

L1 exp(tL1)g dt

= −
∫ ∞

0

d

dt
exp(tL1)g dt

= (1− lim
t→∞

exp(tL1))g ,

and L1 is negative-definite for all functions g ∈ (kerL∗1)
⊥

. Hence exp(tL1)→ 0 and

φ(x, y) =

∫ ∞
0

exp(tL1)f(x, y) dt .

This is a preliminary version. Do not circulate.



Lecture notes SS 2008 45

The above integral representation is convenient from a numerical point of view. To see why, bear in mind
that L1 is the infinitesimal generator of the fast dynamics for fixed x with the semigroup exp(tL1) being the
corresponding time evolution operator Ey[·]; cf. the discussion in Section 6.2. Substituting the expression for φ
in (6.4) and (6.30) and exploiting the semigroup property of exp(tL1), the coefficients become

F (x) =

∫
Zx

(∫ ∞
0

Ey

[
∂

∂x
f(x, yx(t))

]
dt

)
f(x, y)µx(dy)

and

A(x) =

∫
Zx

(
f(x, y)⊗

(∫ ∞
0

Eyf(x, yx(t)) dt

)
+

(∫ ∞
0

Eyf(x, yx(t)) dt

)
⊗ f(x, y)

)
µx(dy)

= lim
T→∞

∫ T

0

∫ T

0

cov (f(x, yx(t)), f(x, yx(s))) dtds .

Here yx(t) denotes the fast process at time t starting at yx(0) = y, and Ey[·] labels the average over all realizations
up to time t conditional on the initial value y.

6.4.1 Overdamped limit of the Langevin equation

A classical problem is the high-friction or overdamped limit of the second order Langevin equation [10]. The
second-order Langevin equation describes the motion of an inertial particle of mass m in a (smooth) potential V
that is subject to friction and noise. A common and convenient writing is

mq̈ + γq̇ +∇V (q) = ξ , (6.32)

where q ∈ Q ⊆ Rn, and ξ ∈ Rn denotes a Gaussian white noise process with covariance matrix

Eξ(t)ξ(t)T = 2γ .

We shall assume throughout that γ = γT is invertible (i.e., positive definite). For our purposes it is convenient
to define new variables x = q and y = q̇ and recast the Langevin equation as

ẋ = y

mdy = − (∇V (x) + γy) dt+ σdW
(6.33)

with σ ∈ Rn×n invertible and defined by the fluctuation-dissipation relation 2γ = σσT . The latter implies that
the Boltzmann distribution

ρ ∝ exp
(
−m

2
|y|2 − V (x)

)
is an, in fact the invariant distribution of the Langevin equation (6.33). (Invariance of ρ under the Langevin
dynamics can be easily verified by plugging the expression into the corresponding Fokker-Planck equation.6)
Suppose we want to study γ → ∞ in the sense that all matrix entries uniformly go to infinity; if we want
to preserve the Boltzmann distribution this requires that σ goes to infinity, so that the fluctuation-dissipation
relation is preserved. More precisely, we consider the scaled Langevin equation

ẋ = y

mdy = −
(
∇V (x) +

1

ε
γy

)
dt+

1√
ε
σdW

(6.34)

which is a slow-fast system with x ∈ Zy ∼= Q being the slow variable and y ∈ Zx being fast. It is easy to see that
the fast process is governed by the associated SDE

mdy = −γydt+ σdW (6.35)

that is an Ornstein-Uhlenbeck (OU) process on Zx ∼= Rn with asymptotic mean zero and covariance m−1Id as
t→∞. But since EY = 0 asymptotically, the averaged equation for x turns out to be

ẋ = 0 .

which tells us that the homogenisation principle applies (due to the centering condition). We have:

6 Proving uniqueness is a bit more involved and requires to show that the infinitesimal generator is hypo-elliptic and the Langevin
dynamics is completely controllable which implies that all trajectories fill the whole phase space; for we details we refer to [9].
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Theorem 6.10 (Nelson, 1967) Let ∇V be globally Lipschitz and let (Xε, Y ε) = (xε(t), yε(t))t∈R+ be the
solution of the time-rescaled Langevin equation

ẋ =
1

ε
y , x(0) = x0

mdy = −
(

1

ε
∇V (x) +

1

ε2
γy

)
dt+

1

ε
σdW , y(0) = y0 .

Further let X = (x(t))t∈R+ be the solution of the Smoluchowski equation

γdx = −∇V (x)dt+ σdW , x(0) = x0 . (6.36)

Then, for all (x0, y0) and for all δ > 0,

lim
ε→0

P

[
sup
t∈[0,T ]

|xε(t)− x(t)| > δ

]
= 0

on all compact time intervals [0, T ].

We refrain from repeating the proof of Nelson that is very much tied to the specific form of the Langevin
equation. A more general proof that uses similar techniques as we used to prove the averaging principle can be
found in [13]; cf. also the original work [8] and the weak convergence result in [14].

Derivation of the overdamped equation We may still give some intuition about the high-friction limit by
doing a formal derivation (without proving convergence though). To compute the Smoluchowski equation from
the overdamped Langevin equation, it would be sufficient to solve the cell problem 6.26 for the fast OU process
which is tedious, however (see the remark below). Instead we give an alternative derivation that goes as follows:
Firstly note that upon rescaling time according to t 7→ t/ε, the Langevin equation (6.34) becomes

ẋ =
1

ε
y

mdy = −
(

1

ε
∇V (x) +

1

ε2
γy

)
dt+

1

ε
σdW .

The corresponding infinitesimal generator then admits a splitting of the form

Lε = −1

ε
L0 +

1

ε2
L1

where

L0 = y · ∂
∂x
−m−1∇V (x) · ∂

∂y
, L1 =

1

2m
σσT :

∂

∂y
⊗ ∂

∂y
−m−1γy · ∂

∂y

In a slight abuse of notation, let us write the homogenised backward equation as

∂tu0 =

∫
Rn

L0L−1
1 L0u0 µx(dy)

where the stationary distribution µx of the fast OU-process is independent of x and has the density

ρ∞(y) =
(m

2π

)n/2
exp

(
−m

2
|y|2
)
.

In order to compute the effective generator explicitly, we observe that

L0u = y · ∇u

for functions u = u(x, t). Hence, upon noting that

L1

(
γ−1y

)
= −m−1y ,
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we find
L−1

1 L0u = −mγ−1y · ∇u
for the action of L−1

1 on L0u ∈ (kerL∗1)⊥. Therefore

L0L−1
1 L0u = m

(
γ−1y ⊗ y

)
:∇2u− γ−1∇V · ∇u

and integrating against µx yields(∫
Rn

L0L−1
1 L0µx(dy)

)
u = γ−1 :∇2u− γ−1∇V · ∇u .

Thus the homogenised backward equation reads

∂tu(x, t) = γ−1 :∇2(x, t)− γ−1∇V (x) · ∇u(x, t) .

Using that 2γ = σσT it follows that the backward equation is equivalent to the SDE

γdx = −∇V (x)dt+ σdW

which is the desired Smoluchowki equation.
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Fig. 13 Behaviour of the Langevin dynamics as the friction coefficient γ goes to infinity. Eventually the large damping
lets the dynamics freeze, so that it converges to the initial value q0 = 0 (left panel). The right panel illustrates that the
first-order correction to q(t) ≈ q0 is indeed given by the overdamped equation (note the scale on the q-axis).

Remark 6.11 We may briefly explain how the cell problem may be solved in 1D. For a function φ ∈ (kerL∗1)⊥

the cell problem, equation (6.26), reads

d2φ

dy2
− y dφ

dy
+
m

γ
y = 0 .

Using separation of variables, the solution of the homogeneous problem is found to be

φ0(y) = C2 + C1

√
π

2
erfi

[
y√
2

]
,

where C1, C2 are integration constants, and erfi[z] is the complex error function that is defined by

erfi[z] = −i erf[iz] with erf[z] =
2√
π

∫ z

0

exp(−ξ2) dξ .

It can be readily seen that the full solution is now given by

φ(y) = C2 + C1

√
π

2
erfi

[
y√
2

]
+
m

γ
y . (6.37)

where the integration constant C1 is arbitrary, and C2 = 0 is determined by the requirement φ ∈ (kerL∗1)⊥, i.e.,
must φ vanish if integrated with respect to µx(dy) = ρ∞(y)dy.
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Example 6.12 (Averaging vs. homogenisation) We consider Langevin dynamics in a double-well potential,

q̈ + γq̇ + 2q(q2 − 1) =
√

2γ η , q(0) = q0, q̇(0) = v0

with q ∈ R and η being Gaussian white noise with E[η(t)η(s)] = δ(t− s). For simplicity we have set m = 1. We
shall now probe the dynamics as γ →∞ and compare it to the solution of the overdamped equation

γdq = −2q(q2 − 1) +
√

2γ η , q(0) = q0

where we distinguish two cases: the original equation and the time-rescaled problem on the diffusive time scale
τ = γt. For the unscaled problem the left panel of Figure 13 illustrates how an increasing friction coefficient γ
damps the dynamics until it eventually freezes completely, i.e.,

lim
γ→∞

qγ(t) = q0 ∀t ∈ [0, T ] .

Also observe that the trajectory gets rougher and rougher as γ is increased which illustrates the onset of the
diffusive behaviour. As the right panel shows, the Smoluchowski equation provides indeed the correct limit
dynamics, but the right-hand side has the prefactor γ−1 that damps drift and noise as γ grows large (note the
different scales on the q-axes of left and right panel of the figure).

As γ →∞ the non-trivial dynamics such as convergence to the Boltzmann distribution exp(−V ) happens on
the time diverging interval [0, T/γ) as can be seen in Figure 14 for γ = 50: the Smoluchoski equation reproduces
the Langevin dynamics very well, but the time interval on which the non-trivial dynamics happens is now dilated
by a factor γ (compare the time interval in Figure 13).
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Fig. 14 Long-term behaviour of the Langevin and Smoluchowski dynamics for a large friction coefficient γ = 50.
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Appendices

A Gronwall Lemma

An important result that is prevalently used in the convergence proofs is Gronwall’s Lemma. It is an inequality
version of the variation of constants formula and typically appears if the right hand side in a differential equation
that one is interested is locally Lipschitz with Lipschitz constant L. We state two variants of the lemma.

Lemma A.1 (Differential version) Let z(t) = ϕt(z0), ϕt : Z → Z satisfy the differential inequality

ż ≤ Lz + u , z(0) = z0 (A.1)

with L ∈ R and u being a sufficiently smooth time-dependent function, e.g., u ∈ L1([0, T ],Z). Then

z(t) ≤ eLt
(
z0 +

∫ t

0

e−Lsu(s) ds

)
∀t ∈ [0, T ] . (A.2)

P r o o f. We use variation of constants: multiplying (A.1) by exp(−Lt) we obtain

ż(t)e−Lt ≤ (Lz(t) + u(t)) e−Lt .

Hence, by chain rule,
d

dt

(
z(t)e−Lt

)
≤ exp(−Lt)u(t) .

Integrating from 0 to t and multiplying both sides by exp(Lt) gives the desired result.

Corollary A.2 (Integral version) Now, let ζ(t) satisfy the integral inequality

ζ(t) ≤ L
∫ t

0

ζ(s) ds+M . (A.3)

for some positive constants L,M . Then
ζ(t) ≤MeLt . (A.4)

P r o o f. Set

z(t) =

∫ t

0

ζ(s) ds .

Then, by definition, z(t) defines the differential inequality

ż ≤ Lz +M , z(0) = 0 ,

so that Lemma A.1 implies

z(t) ≤ M

L

(
eLt − 1

)
.

Now replacing the integral in (A.3) by the upper bound for z(t) proves the assertion.

B Diffusion processes

Before we introduce the basic concepts of diffusion processes, we shall give some intuition as to what is the major
difference between deterministic and stochastic initial value problems; for details regarding stochastic differential
equations we refer to the textbook [11]. Firstly, let us consider the solution to a typical initial value problem

ẋ = b(x) , x(0) = x0

which solution may look like the blue curve depicted in Figure 15. On the other hand we may compute solutions
of a the generic stochastic differential equation

ż = b(z) + ξ , z(0) = x0

where ξ = ξ(t, ω) is a stochastic process, i.e., for every t > 0 fixed, the ξ(t, ω) is a random variable with values in
Z which distribution is determined by the unknown sample space Ω 3 ω and the probability measure P defined
on it. Since the perturbation is random, every realization of z(t) = z(t, ω) will be different (whereas we have just
one trajectory x(t) for x0 being fixed). Two typical realizations of z(t) are shown in Figure 15 (dashed curves).
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Fig. 15 Typical realizations of a randomly perturbed stochastic differential equation together with its fully deterministic
counterpart.

Brownian motion To begin with, we recap some basic definitions from probability. The classic definition of a
stochastic process goes as follows: a stochastic process with index set I ⊂ R on a state space Z that is equipped
with a Borel σ-algebra Z is a family Z = (z(t))t∈I where the z(t) are defined on a common probability space
P = (Ω,B,P) and assume values in Z. The expectation of Z : I × P is defined by

EZ =

∫
Ω

z(t, ω) dP(ω) .

Accordingly we define its probability distribution function (law) as

ρ(z, t)dz = P

[
ω ∈ Ω: z(t, ω) ∈

n∏
i=1

[zi, zi + dzi)

]
.

We are now ready to introduce the concept of Brownian motion where, without loss of generality, we confine
our attention to the one-dimensional case. Let us begin with a formal definition and then construct a suitable
stochastic process that meets all the required properties.

Definition B.1 (Standard Brownian motion, a.k.a. Wiener process) A one-dimensional Brownian motion is
a stochastic process W : P → R with the following properties:

1. W (0) = 0.

2. W (t) is continuous.

3. The increments ∆W (tk) = W (tk) − W (tk−1) are independent random variables for all 1 ≤ k ≤ n with
0 ≤ t0 ≤ t1 . . . tn. Moreover ∆W (t) = W (t) −W (s), t > s is normally distributed with zero mean and
variance t− s.

It follows directly from the definition that W is a centred Gaussian process with variance t; its law is

ρ(x, t) =
1√
2πt

exp

(
−x

2

2t

)
.

We will introduce Brownian motion as the limiting process of a suitably scaled random walk on Z. To this
end consider the time-discrete stochastic process

Z : P → R , z(t) = ∆z

t/∆t∑
i=1

ηi (B.1)
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with t/∆t ∈ N and ηi ∈ {−1, 1} with equal probabiliy P[ηi = ±1] = 1/2. Note that

Eηi = 0

and
varηi = 1 .

We will show that Z ⇀ W as ∆z,∆t→ 0 in the sense that their probability distributions are the same (therefore
the new symbol “⇀”). As W is Gaussian its distribution is completely determined by its mean and its variance,
so we need to consider only the first two moments. It suffices that for z(0) = 0,

1. EZ → 0,

2. EZ2 → t

as ∆z,∆t → 0. The first property follows independently of ∆z; using the definition of Z, equation (B.1), with
n = t/∆t and the linearity of the expectation we readily see that

EZ = ∆z

n∑
i=1

Eηi

which is zero by the fact that Eηi = 0 for all 1 ≤ i ≤ n. For the second moment we find

EZ2 = (∆z)2E

(
n∑
i=1

ηi

)2

= n(∆z)2Eη2
i

= n(∆z)2

where in the second equality we use the independence of the ηi, i.e., E[ηiηj ] = δij . Now setting ∆z =
√

∆t
keeping in mind that n = t/∆t we conclude that

lim
∆t→0

EZ2 → t , t ∈ R+

as desired. Continuity of Z follows from ∆z = (∆t)2 → 0.7

Remark B.2 In pretty much the same way as above one can construct generalised variants of W such as

B(t) = µt+ σW (t) .

which is obtained by simply rescaling ∆z and replacing the symmetric random walk by a biased one.

White noise Intimately related to Brownian motion and diffusion processes in general is a process called
Gaussian white noise or, in brief, white noise. We call the process ξ : P → R white noise if

1. Eξ(t) = 0,

2. E[ξ(t)ξ(s)] = δ(t− s)

where the second property implies that ξ ∼ N (0, 1) for all t > 0. White noise can be considered the generalised
derivative of Brownian motion (where we leave it open what we understand by “generalised”). To get a rough
idea what we mean by that, note that

W (t+ ∆t) = W (t) +
√

∆t ξ(t+ ∆t) . (B.2)

with ξ(t+∆t) ∼ N(0, 1). Knowing the law of W and using the indepence of its increments, we can easily compute
the autocorrelation of ξ, namely, E[ξ(t+ ∆t)ξ(t)] = δ(∆t). The assertion then follows in the limit ∆t→ 0.

7 The above result is essentially a consequence of the central limit theorem that asserts that the sum of n independent and
identically distributed (i.i.d.) random variables divided by

√
n converges in distribution to a N (0, 1) random variable.
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The generator Before we introduce Itô stochastic differential equations, we shall briefly anticipate the concept
of the infinitesimal generator of a diffusion process. To this end, consider the (infinitesimal) difference equation

dZ = ξ , z(0) = 0

that is essentially (B.2) rephrased. Its solution is given by the Wiener process Z = W . The probability distribu-
tion function P[z(t) ∈ [z, z + dz)] has the Gaussian density

ρ(z, t) =
1√
2πt

exp

(
−z

2

2t

)
and solves the one-dimensional Fokker-Planck equation (heat equation)

∂ρ

∂t
=

1

2

∂2ρ

∂z2
, lim

t→0+
ρ(z, t) = δ(z) .

This statement can be rephrased saying that L = 1/2 ∂2/∂z2 is the generator of the semigroup exp(tL) that
describes the time-evolution of functions f = f(z) under the stochastic process Z.

Stochastic differential equations Equation (B.1) is a time-discrete version of Brownian motion in terms of
a recurrence relation. A natural generalization of this recurrence is

z(t+ ∆t) = z(t) + b(z(t))∆t+ σ(z(t))η(t+ ∆t)
√

∆t , z(0) = z0 (B.3)

where η(·) ∈ {−1, 1} and both b : Z → R and σ : Z → R \ {0} are sufficiently smooth. Without the rightmost
term, equation (B.3) would simply be the forward Euler discretisation of the ODE

ż = b(z) , z(0) = z0 .

The continuous version of the stochastic recurrence as ∆t→ 0 is the Itô stochastic differential equation (SDE)

dz = b(z)dt+ σ(z)dW , z(0) = z0 (B.4)

where, for our purposes, the Brownian increments dW may be interpreted in the sense of (B.2).

Itô’s formula and Itô isometries The SDE (B.4) has some remarkable properties that distinguish it from or-
dinary differential equation. One such property is Itô’s formula that can be considered a stochastic generalisation
of the standard chain rule.8

Lemma B.3 (Itô’s formula) Let z(t) be a solution of (B.4). Then g : Z → R solves the equation

dg(z) = g′(z)dz +
1

2
g′′(z)a(z)dt , a(z) = σ(z)2 . (B.5)

P r o o f. We use again the recurrence (B.3); the generalization to the multidimensional case is straightforward.
To prove (B.5) we do a Taylor expansion of g(z) up to terms of order ∆t. Upon introducing the shorthands
∆g(z(t+ ∆t)) = g(z(t+ ∆t))− g(z(t)) and ∆z(t+ ∆t) = z(t+ ∆t)− z(t) we find

∆g(z(t+ ∆t)) = g(z(t+ ∆t))− g(z(t))

= g′(z(t))∆z(t+ ∆t) +
1

2
g′′(z(t))(∆z(t+ ∆t))2 +O(|∆z(t+ ∆t)|3)

= g′(z(t))∆z(t+ ∆t) +
1

2
g′′(z(t))a(z(t))∆t+O(|∆t|3/2)

where the last equality follows from inserting (B.3) and η2 = 1. Letting ∆t→ 0 yields the result.

Note that standard chain rule (i.e., omitting the noise term) would imply that g solves the equation ġ(z(t)) =
g′(z(t))ż(t). The fact that an additional term, the quadratic variation, appears can be understood by observing
that the Brownian increments dW are formally of order dt and chain rule is an expansion up to dt while omitting
all higher order terms.

8 In the following we shall not distinguish between the Itô equation (B.4) and its discrete analogue (B.3), the so-called Euler-
Maruyama discretization. We refer to either of them as SDE.
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Lemma B.4 (Itô isometries) Consider the SDE

dz = f(W, t)dW , z(0) = 0

that has the solution

z(t) =

∫ t

0

f(W (s), s)dW (s) .

Then:

• first Itô isometry

E

∫ t

0

f(W (s), s)dW (s) = 0

• second Itô isometry

E

(∫ t

0

f(W (s), s)dW (s)

)2

= E

∫ t

0

(f(W (s), s))
2
ds .

P r o o f. Using the discrete scheme (B.3) and introducing the shorthands Zn = z(tn), Wn = W (tn), ηn = η(tn)
and tn+1 = tn + ∆t, we see that

EZn+1 = E

n∑
i=1

f(Wi, ti)ηi+1

√
∆t

=

n∑
i=1

Ef(Wi, ti)Eηi+1

√
∆t

= 0

which is the first isometry where the second above equality is entailed by the independence of the Brownian
increments in the second equality (i.e., E[Wiηi+1] = EWiEηi+1).

The second isometry can be proved in the same way, namely,

EZ2
n+1 = E

n∑
i,j=1

f(Wi, ti)ηi+1f(Wj , tj)ηj+1∆t

=

n∑
i=1

Ef(Wi, ti)∆t

where we have (again) taken advantage of the property E[ηiηj ] = δij .

Ornstein-Uhlenbeck process An important class of stochastic processes are Gaussian processes that are
governed by linear SDEs. One such case is the Ornstein-Uhlenbeck (OU) process that, in 1D, assumes the form

dz = −αzdt+ σdW , z(0) = x (B.6)

with α > 0. Its solution reads

z(t) = x− α
∫ t

0

z(s) ds+ σ

∫ t

0

dW (s) .

Using Itô’s formula we can recast the solution as something more familiar, viz.,

d
(
eαtz

)
= αeαtz + eαtdz

= eαtσdW .

Rearranging the terms, we recover the well-known variation-of-parameters formula

z(t) = e−αtx− σ
∫ t

0

e−α(t−s)dW (s) , (B.7)

again, with a straightforward generalisation to the multidimensional case.
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Properties of the OU process We can demonstrate the usage of the two Itô isometries by computing mean
and variance of the OU process Z = (z(t))t∈R+ . As a direct consequence of the first Itô isometry the martingale
term (i.e., the one involving dW ) has mean zero. Therefore

EZ = e−αtx .

By employing the second Itô isometry, it follows that

E(Z −EZ)2 = σ2E

(∫ t

0

e−2α(t−s)dW (s)

)2

= E

∫ t

0

e−2α(t−s)ds

=
σ2

2α

(
1− e−2αt

)
.

Since Z is Gaussian its law is completely determined by the first two moments. Its stationary distribution is
found by letting t→∞, i.e.,

EZ → 0 and varZ → σ2

2α

as t→∞. In other words, Z ⇀ N (0, σ2/(2α)) in distribution, independently of the initial conditions.

C Stochastic convergence

Let P be a probability measure on (Ω,B), i.e., P(Ω) = 1 and let zε be a sequence on (Z,Z ) For our purposes
it is sufficient to distinguish to types of (strong) convergence of zε to z (provided that the limit exists):

1. Convergence in mean:

E|zε − z| =
∫

Ω

|zε(ω)− z(ω)| dP(ω)

→ 0 .

2. Convergence in probability: For all δ > 0,

P[|zε − z| > δ] =

∫
|zε−z|>δ

dP(ω)

→ 0 .

Markov inequality Convergence in L1 implies uniform integrability. This can be restated by saying that
convergence in mean implies convergence in probability. The latter can be easily seen by noting that∫

Ω

|zε(ω)− z(ω)| dP(ω) ≥
∫

Ω

|zε(ω)− z(ω)|χ|zε(ω)−z(ω)|>δ(ω) dP(ω)

≥ δ
∫

Ω

χ|zε(ω)−z(ω)|>δ(ω) dP(ω)

= δ

∫
|zε−z|>δ

dP(ω) .

(C.1)

where χB denotes the characteristic function of the set B ∈ B and we have used that 0 ≤ P(B) ≤ 1.
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