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Abstract. We present a formal procedure for structure-preserving model reduction of linear
second-order and Hamiltonian control problems that appear in a variety of physical contexts, e.g.,
vibromechanical systems or electrical circuit design. Typical balanced truncation methods that
project onto the subspace of the largest Hankel singular values fail to preserve the problem’s physical
structure and may suffer from lack of stability. In this paper we adopt the framework of generalized
Hamiltonian systems that covers the class of relevant problems and that allows for a generalization of
balanced truncation to second-order problems. It turns out that the Hamiltonian structure, stability
and passivity are preserved if the truncation is done by imposing a holonomic constraint on the
system rather than standard Galerkin projection.
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1. Introduction. Model reduction is a major issue for control, optimization and
simulation of large-scale systems. In particular for linear time-invariant systems, bal-
anced truncation is a well-established tool for deriving reduced (i.e., low-dimensional)
models that have an input-output behaviour similar to the original model [1, 2]; see
also [3] and the referenced therein. The general idea of balanced truncation is to re-
strict the system onto the subspace of easily controllable and observable states which
can be determined by the computing the Hankel singular values associated with the
system. Moreover the method is known to preserve certain properties of the orig-
inal system such as stability or passivity and gives an error bound that is easily
computable. One drawback of balanced truncation is that there is no straightforward
generalization to second-order systems; see, e.g., [4] or the recent articles [5, 6, 7, 8] for
a discussion of various possible strategies. Second-order equations occur in modelling
and control of many physical systems, e.g., electrical circuits, structural mechanics
or vibro-acoustic models; see, e.g., [9, 10], and the main objective of extending bal-
ancing methods to such systems is to derive reduced models that remain physically
interpretable, i.e., that inherit the interaction structure of the original model. Ordi-
nary balanced truncation proceeds by recasting the equations in first-order form, and
we shall argue that an obvious (and in some sense natural) first-order formulation of
a second-order control system that is amenable to balancing takes into account the
system’s Hamiltonian structure. This leads to a formulation of the control problem
as a generalized Hamiltonian system [11]. Nonetheless balanced truncation, if applied
to Hamiltonian system, though preserving stability or passivity and giving nicely
computable error bounds, fails to preserve the underlying Hamiltonian structure.

∗To whom correspondence should be addressed: Freie Universität Berlin, Institut für Mathematik,
Arnimallee 6, 14195 Berlin, Germany (chartman@math.fu-berlin.de)

†Freie Universität Berlin, Institut für Mathematik, Arnimallee 3, 14195 Berlin, Germany
(vulcanov@math.fu-berlin.de)

‡Freie Universität Berlin, Institut für Mathematik, Arnimallee 6, 14195 Berlin, Germany
(schuette@math.fu-berlin.de)

1



Main result. Given a quadratic Hamiltonian H : R2n → R, we consider linear
state space systems that are of the general form

ẋ(t) = (J −D)∇H(x(t)) +Bu(t) , x(0) = x

y(t) = C∇H(x(t))

where J ∈ R2n×2n is the invertible skew-symmetric structure matrix, D ∈ R2n×2n is
the symmetric positive semidefinite friction matrix, B ∈ R2n×m and C ∈ Rl×2n are
the coefficients for control u ∈ Rm and output y ∈ Rl. It turns out that balanced
truncation can be extended to the aforementioned class of Hamiltonian system while
preserving the Hamiltonian structure and properties such as stability or passivity.
More precisely, letting S ⊂ R2n denote the d-dimensional subspace of the most con-
trollable and observable states, we prove, using a perturbation argument, that we can
replace the full system by the dimension-reduced system

ξ̇(t) = (J̃11 − D̃11)∇H̄(ξ(t)) + B̃1u(t) , ξ(0) = ξ

y(t) = C̃1∇H̄(ξ(t))

that yields a “good” approximation of the output variable y. The idea of our approach
is to consider the limit of vanishing small Hankel singular values (associated with the
negligible subspace R2n \ S) which naturally leads to confinement of the dynamics
to S. Accordingly the reduced coefficients J̃11, D̃11, B̃1, C̃1 are simply the former
structure, friction, control and output matrices restricted to the subspace S, and H̄

is an effective Hamiltonian that can be computed from the Schur complement of the
matrix block Ẽ11 that is the projection of E = ∇2

H onto S (see Sec. 3.1).
We show that the reduced system is a again stable and passive state space sys-

tem if the original system was and that the associated transfer function satisfies the
usual balanced truncation error bound (see Sec. 5). It is important to note that our
perturbation analysis is carried out not for the transfer function (i.e. in the frequency
domain), but rather for the corresponding equations of motion (i.e., in the time do-
main). In other words, we derive approximations of the original dynamical system
for any given initial condition whereas, e.g., standard balanced truncation yield only
approximation for zero initial condition x(0) = 0. To the best of our knowledge a
systematic multiscale analysis of the equations of motion in the limit of vanishing
Hankel singular values is new; see, e.g., [12, 13, 14] for approaches in which low-rank
perturbative approximations of the transfer function are sought.

Related strategies. We compare our confinement approach to two alternative,
structure-preserving methods (Sec. 3.2 and the preceding paragraph) that have been
proposed in [15] and the first of which uses a perturbation-like argument. Although
both methods preserve stability and passivity it turns turns out that they do a bad
job in terms of the balanced truncation error bound. In either case (including con-
finement) going back to the original second-order form is not possible in general as
the reduced Hamiltonian is not a separable sum of potential and kinetic energy; a
special situation in which the second-order structure may be preserved occurs when
the balancing transformation decays into purely position and momentum (velocity)
parts, and, in fact, alternative approaches such as [4, 6, 7] proceed by treating position
and momentum (velocity) parts separately, but they also fail to preserve stability of
the second-order system as has been pointed out in the recent work [7].

Preserving the Hamiltonian structure plus stability and passivity, however, has
value in its own right as Hamiltonian models are prevalently used in e.g., multibody
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dynamics [11] or circuit design [16]. Especially for the circuit systems, passivity-
preserving reduction strategies based on (split) congruence transformations have been
proposed in [17, 18] and, more recently, in [8]. Though no provable error bounds
are available, numerical evidence suggests that all these methods give reasonable
approximations of the corresponding transfer functions.

Outline of the article. In Section 2 we introduce the conceptual framework of
generalized Hamiltonian systems and balancing. Section 3 deals with the problem of
restricting the equations of motion to the most controllable and observable subspace
by (holonomic) constraints; for this purpose we employ a singular perturbation ar-
gument and prove that the dynamics are confined to the essential subspace as the
negligible Hankel singular values go to zero (Sec. 3.1); conditions under which the
original second-order structure is preserved are discussed at the end of the section.
Stability of the reduced systems is a subtle issue and we have devoted a separate
section to it (Sec. 4). Last but not least, we prove in Section 5 that the transfer
function associated with the original system converges in H

∞ to the transfer function
of the constrained system in the limit of vanishing small Hankel singular values, and
we briefly discuss error bounds. The article concludes with two numerical examples
in Section 6.

2. Set-up: generalized Hamiltonian systems. Given a smooth Hamiltonian

H : R2n
⊇ X → R , H(x) =

1

2
x
T
Ex

with E = E
T � 0 (“�” means positive definite) we consider systems of the form

ẋ(t) = (J −D)∇H(x(t)) +Bu(t)

y(t) = C∇H(x(t))
(2.1)

where J ∈ R2n×2n is an invertible skew-symmetric matrix, D ∈ R2n×2n is symmetric
positive semidefinite, B ∈ R2n×m and C ∈ Rl×2n (all constant). We suppose that
both the control function u(·) ∈ Rm and the observable y(·) ∈ Rl are in L

2(R). For
C = B

T systems of type (2.1) are called port-Hamiltonian (see [11]).

Second-order systems. As can be readily checked, the second-order system

Mq̈(t) +Rq̇(t) +Kq(t) = B2u(t)

y(t) = C1q(t) + C2q̇(t)
(2.2)

with M,R,K ∈ Rn×n being symmetric positive definite, B2 ∈ Rn×m and C1, C2 ∈

Rl×n is an instance of (2.1) where x = (q,Mv) with (q, v) denoting coordinates on
the tangent space TRn ∼= Rn ×Rn. The total energy is given by the Hamiltonian

H(q, p) =
1

2
p
T
M

−1
p+

1

2
q
T
Kq , p = Mv . (2.3)

Furthermore

J =

�
0 1n×n

−1n×n 0

�
, D =

�
0 0
0 R

�
(2.4)

in (2.1) and control and observable matrices in (2.1) and (2.2) are related by

B =

�
0
B2

�
, C =

�
C1K

−1
C2

�
. (2.5)
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In equation (2.4) and in the following we shall use the notation 1n×n above to denote
the unit matrix of size n× n. Given a solution of (2.2), the energy balance

d

dt
H(q(t),Mq̇(t)) = −2γ(q̇(t)) + q̇(t)TB1u(t)

holds where

γ(v) =
1

2
v
T
Rv > 0 .

denotes the Rayleigh dissipation function. As the total energy H ≥ 0 is bounded from
below, it follows that (2.2) with outputs y = B

T
2 q̇, i.e., C = B

T is a passive state
space system with storage function H; see [19] for details.

2.1. Balancing transformations. We briefly review the idea of balancing that
is due to [21]; see also the textbooks [20, 2] and the references therein. As we have
pointed out, we shall treat the case of the second-order system (2.2) by considering
the equivalent Hamiltonian system (2.1).

For M,R,K in (2.2) being symmetric and positive definite matrices, the first-
order system (2.1) is stable, i.e., all eigenvalues of the constant matrix

A = (J −D)∇2
H(x) , ∇

2
H(x) =

�
K 0
0 M

−1

�

are lying in the open left complex half-plane (see Sec. 4). The controllability function

Lc(x) = min
u∈L2

� 0

−∞
|u(t)|2 dt , x(−∞) = 0, x(0) = x

then measures the minimum energy that is needed to steer the system from x(−∞) = 0
to x(0) = x. In turn, the observability function

Lo(x) =

� ∞

0
|y(t)|2 dt , x(0) = x, u ≡ 0

measures the control-free energy of the output as the system evolves from x(0) = x

to x(∞) = 0 (asymptotic stability). It is easy to see that

Lc(x) = x
T
W

−1
c x , Lo(x) = x

T
Wox

where the controllability Gramian Wc and the observability Wo are the unique sym-
metric solutions of the Lyapunov equations

AWc +WcA
T = −BB

T
, A

T
Wo +WoA = −Q

T
Q

with the shorthand Q = C∇2
H. Moore [21] has shown that, if Wc,Wo � 0 (posi-

tive definiteness = complete controllability/observability), there exists a coordinate
transformation x �→ Tx such that the two Gramians become equal and diagonal,1

T
−1

WcT
−T = T

T
WoT = diag(σ1, . . . , σ2n)

where the Hankel singular values (HSV) σ1 ≥ σ2 ≥ . . . ≥ σ2n > 0 are independent of
the choice of coordinates. We shall assume throughout the paper that our system is

1
T is a so-called a contragredient transformation; see [22] for details.
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completely controllable and observable.2 A convenient way to express the balancing
transformation is due to Moore [21]: Noting that Σ2 contains the positive eigenvalues
of the product WcWo we decompose the two Gramians according to

Wc = XX
T
, Wo = Y Y

T

and do a singular value decomposition (SVD) of the matrix Y
T
X, i.e.,

Y
T
X = UΣV T =

�
U1 U2

�� Σ1 0
0 Σ2

��
V

T
1

V
T
2

�
. (2.6)

The partitioning Σ1 = diag(σ1, . . . , σd) and Σ2 = diag(σd+1, . . . , σ2n) indicates which
singular values are important and which are negligible. The remaining matrices satisfy
U

T
1 U1 = V

T
1 V1 = 1d×d and U

T
2 U2 = V

T
2 V2 = 1r×r with r = 2n − d. In terms of the

SVD the balancing transformation T and its inverse S = T
−1 take the form

T = XV Σ−1/2
, S = Σ−1/2

U
T
Y

T
. (2.7)

It can be readily seen that the balancing transformation leaves the structure of the
equations of motion (2.1) unchanged and preserves both stability and passivity. In
the balanced variables z = Sx our Hamiltonian system reads

ż(t) = (J̃ − D̃)∇H̃(z(t)) + B̃u(t)

y(t) = C̃∇H̃(z(t))
(2.8)

with the balanced Hamiltonian H̃(z) = H(Tz), i.e.,

H̃(ξ) =
1

2
z
T
Ẽz , Ẽ = T

T
ET (2.9)

where E = ∇2
H(x). The transformed coefficients are given by

J̃ = SJS
T
, R̃ = SRS

T
, B̃ = SB , C̃ = CS

T
. (2.10)

3. Balanced truncation of Hamiltonian systems. Balancing amounts to
changing coordinates such that those states that are least influenced by the input
also have least influence on the output. Accordingly balanced truncation consists in
first balancing the system, and then truncating the least observable and controllable
states, which have little effect on the input-output behaviour.

3.1. Strong confinement limit. There are several ways that lead to a trun-
cated (i.e., dimension-reduced) system; standard approaches such as Galerkin (Petrov-
Galerkin) projection or naive singular perturbation methods, however, fail to preserve
the systems inherent Hamiltonian structure. In mechanics, a natural way to restrict a
system to a subspace is by means of constraints [23], and, from a physical viewpoint,
it makes sense to study the limit of vanishing small Hankel singular values, i.e., to
gradually eliminate the least observable and controllable states thereby forcing the
system to the limiting controllable and observable subspace.

To make the appearance of the least controllable and observable states in the
equations of motion explicit, we scale the HSV uniformly according to

(σ1, . . . , σd, σd+1, . . . , σ2n) �→ (σ1, . . . , σd, �σd+1, . . . , �σ2n) ,

2If the system is not minimal, i.e., completely controllable and observable, a minimal realization
has to be computed in advance by Kalman decomposition [1].
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i.e., in (2.6)–(2.7) we replace Σ2 by �Σ2 and partition the thus obtained balancing
matrices accordingly,

S(�) =

�
S11 S12

�
−1/2

S21 �
−1/2

S22

�
, T (�) =

�
T11 �

−1/2
T12

T21 �
−1/2

T22

�
.

Splitting the state variables z = (z1, z2) in the same fashion and omitting the free
variable in what follows the balanced equations of motion (2.8) take the form

ż
�
1 = (J̃11 − D̃11)

∂H̃
�

∂z1
+

1
√
�
(J̃12 − D̃12)

∂H̃
�

∂z2
+ B̃1u

ż
�
2 =

1
√
�
(J̃21 − D̃21)

∂H̃
�

∂z1
+

1

�
(J̃22 − D̃22)

∂H̃
�

∂z2
+

1
√
�
B̃2u

y
� = C̃1

∂H̃
�

∂z1
+

1
√
�
C̃2

∂H̃
�

∂z2

(3.1)

with the scaled Hamiltonian

H̃
�(z) =

1

2
z
T
Ẽ

�
z , Ẽ

� =

�
Ẽ11 �

−1/2
Ẽ12

�
−1/2

Ẽ21 �
−1

Ẽ22

�
.

Note that the small parameter � appears singularly in the Hamiltonian H̃
�. If we

require the total energy to remain bounded, we conclude that z2 goes to zero as � → 0
(otherwise the energy would blow up). Hence boundedness of the energy implies
that z2 = O(

√
�) as � → 0. It is now helpful to note that H̃

�(z1,
√
�z2) is uniformly

bounded in �, in fact, is independent of �. This suggests to introduce new variables
(ζ1, ζ2) = (z1, �−1/2

z2) in terms of which (3.1) becomes

ζ̇
�
1 = (J̃11 − D̃11)

∂H̃

∂ζ1
+

1

�
(J̃12 − D̃12)

∂H̃

∂ζ2
+ B̃1u

ζ̇
�
2 =

1

�
(J̃21 − D̃21)

∂H̃

∂ζ1
+

1

�2
(J̃22 − D̃22)

∂H̃

∂ζ2
+

1

�
B̃2u

y
� = C̃1

∂H̃

∂ζ1
+

1

�
C̃2

∂H̃

∂ζ2

(3.2)

where H̃(ζ) = H̃
�(ζ1,

√
�ζ2) is again independent of �.

Limiting equation. Equation (3.2) is an instance of a slow/fast system, and
we seek an effective equation for the slow variable z1 = ζ1. Let us start with some
preliminary considerations: given a solution of (3.2), the following energy balance

dH̃

dt
=−

�
∂H̃

∂ζ1

�T

D̃11
∂H̃

∂ζ1
−

2

�

�
∂H̃

∂ζ1

�T

D̃12
∂H̃

∂ζ2
−

1

�2

�
∂H̃

∂ζ2

�T

D̃22
∂H̃

∂ζ2

+

�
∂H̃

∂ζ1

�T

B̃1u+
1

�

�
∂H̃

∂ζ2

�T

B̃2u

holds. Assuming that H̃ remains bounded as � goes to zero and that the fast dynamics
is uniformly hyperbolic for all ζ1, we conclude that (see [24, 25])

∂H̃

∂ζ2
→ 0 as � → 0 .
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Latter implies that the dynamics admit a stable invariant manifold given by

ζ2 = −Ẽ
−1
22 Ẽ21ζ1 .

Inserting the last identity into (3.2), we obtain a closed equation for z1 = ζ1, viz.,

ż1 = (J̃11 − D̃11)(Ẽ11 − Ẽ12Ẽ
−1
22 Ẽ21)z1 + B̃1u

y = C̃1(Ẽ11 − Ẽ12Ẽ
−1
22 Ẽ21)z1 .

(3.3)

Equation (3.3) is Hamiltonian with

H̄(z1) =
1

2
z
T
1 Ēz1 , Ē = Ẽ11 − Ẽ12Ẽ

−1
22 Ẽ21 (3.4)

Notice that J̃11 = −J̃
T
11 and D̃11 = D̃

T
11 � 0 are simply the original structure and

friction matrices restricted to the subspace of the most controllable and observable
states. That is, in the limit of vanishing small HSV the dynamics are confined to
the controllable and observable subspace. Note that the confined system is passive
if the original system was, i.e., if C = B

T in (2.1). Moreover E = E
T � 0 implies

Ē = Ē
T � 0 for the Schur complement. We now give a systematic derivation of (3.3);

as for the stability issue, we refer to Section 4.

Derivation. The idea of the derivation is to make the transition of (3.2) to the
limiting solution (3.3) more lucid by relating solvability conditions of the respective
perturbative expansion to the coefficients in the state space system. We suppose that
u ∈ L

2([0,∞[,Rm) and aim at a perturbative expansion of the solutions to (3.2). To
this end we observe that the infinitesimal generator L� that generates the semigroup
of solutions, i.e., the flow of (3.2) can be split acccording to

L
� = L0 +

1

�
L1 +

1

�2
L2

with

L0 =
�
Z11 + B̃1u

�T ∂

∂ζ1

L1 = Z
T
12

∂

∂ζ1
+
�
Z21 + B̃2u

�T ∂

∂ζ2

L2 = Z
T
22

∂

∂ζ2

and the shorthand

Zij = (J̃ij − D̃ij)
∂H̃

∂ζj
.

Consider the following Cauchy problem3

∂tv
�(ζ, t) = L

�
v
�(ζ, t) , v

�(ζ, 0) = f(ζ) (3.5)

3We assume that L� is equipped with appropriate boundary conditions. More precisely, we
consider (3.5) on all R2n and require that H̃(ζ) grows “sufficiently” fast as |ζ| → ∞; assuming H̃ to
be strictly convex is certainly sufficient, but we have to exclude ∇2

H̃ being only semidefinite.
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which is the backward Liouville equation associated with the Hamiltonian system
(3.2). The backward equation is fully equivalent to (3.2) by the method of char-
acteristics, i.e., given the solutions ζ

�(t) = F
�
t (ζ), F

�
0 = Id of (3.2) with the initial

conditions ζ�(0) = ζ, the solution to (3.5) is given by v
�(ζ, t) = f(F �

t (ζ)). We seek a
perturbative expansion for the Liouville equation that is of the form

v
� = v0 + �v1 + �

2
v2 + . . . .

Plugging the ansatz in the backward equation (3.5) and equating equal powers of �
yields a hierarchy of equations the first three of which are

L2v0 = 0 (3.6)

L2v1 = −L1v0 (3.7)

L2v2 = −L0v0 − L1v1 + ∂tv0 . (3.8)

We proceed step by step: since L2 is a differential operator in ζ2 only and the nullspace
of J̃22 − D̃22 is empty, the only functions that solve (3.6) are constant in ζ2, i.e.,
v0 = v0(ζ1, t). By the Fredholm alternative [26], equation (3.7) has a solution if and
only if the right hand side is orthogonal to the kernel of the L

2-adjoint L∗
2 where

orthogonality is meant in the L
2 sense. Since the fast subsystem

ζ̇2(t) = (J̃22 − D̃22)(Ẽ21η + Ẽ22ζ2(t)) , ζ2(0) = ζ2 , (3.9)

corresponding to L2, is asymptotically stable (see Sec. 4, Cor. 4.5) for each ζ1 = η

fixed, the dynamics converge exponentially fast to the invariant subspace given by

S =
�
ζ2 ∈ R2n−d

�� Ẽ22ζ2 = −Ẽ21η

�
.

Solvability of (3.7) therefore requires that the right hand side is zero when we integrate
it against any function that is in the nullspace of L∗

2, i.e., an invariant measure of the
fast dynamics. By stability the invariant measure is unique and is given by

dρη(ζ2) = det Ẽ22 δ(Ẽ21η + Ẽ22ζ2) dζ2

with δ(·) being the Dirac mass. As v0 is independent of ζ2 it follows that
�

R2n−d

L1v0 dρη = 0 ,

i.e., the solvability condition L1v0 ⊥ kerL∗
2 is met. To solve equation (3.7) we first of

all observe that v1 must be of the form (see [27])

v1(ζ1, ζ2, t) = φ(ζ1, ζ2)
T
∇v0(ζ1, t) + ψ(ζ1, t)

where ψ ∈ kerL2 plays no role in what follows, so we set it to zero. Equation (3.7)
can now be recast as an equation for φ : X → Rd, the so-called cell problem

L2φ = −Z
T
12 . (3.10)

In (3.5), the initial condition is independent of �, therefore v1(ζ, 0) = 0 which leaves the
only possible choices v0 = c or φ = 0. If we exclude the trivial stationary solution v0

being constant, consistency of (3.10) requires that Z12 = 0, i.e., the initial conditions
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are restricted to the invariant subspace S. To conclude, the Fredholm alternative for
equation (3.8) entails the solvability condition

�

R2n−d

(∂tv0 − L0v0 − L1φ∇v0) dρη = 0

which, for φ = 0, can be recast as

∂tv0(ζ1, t) =
�
Z̄ + B̃1u

�T
∇v0(ζ1, t) (3.11)

with the abbreviation

Z̄ = (J̃11 − D̃11)(Ẽ11 − Ẽ12Ẽ
−1
22 Ẽ21)ζ1 .

Upon reinterpetation as a control system, (3.11) equals (3.3).

A note on initial conditions. The derivation of the effective equation (3.11)
relies on specific assumptions regarding the initial conditions in (3.5), namely, being
independent of �. Exploiting the equivalence of Liouville equation and Hamiltonian
system, this implies that the initial conditions ζ

�(0) = ζ in the equations of motion
(3.2) are independent of �. But this means that ζ must be restricted to the invariant
subspace S since, otherwise, the initial output y(t = 0) diverges as � → 0 which might
produce unphysical behaviour of the system.4 If we nevertheless drop the assumption
on the initial conditions, the solution of the cell problem (3.10) turns out to be

φ(ζ1, ζ2) = −(J̃12 − D̃12)(J̃22 − D̃22)
−1

ζ2

where invertibility of (J̃22 − D̃22) is due to Corollary 4.5 below, and we have omitted
integration constants C(ζ1). The Fredholm alternative for (3.8) then yields

∂tv0 =
�
W̄ + B̄u

�T
∇v0 ,

with

W̄ =
�
J̃11 − D̃11 − (J̃12 − D̃12)(J̃22 − D̃22)

−1(J̃21 − D̃21)
�
∇H̄

B̄ = B̃1 − (J̃12 − D̃12)(J̃22 − D̃22)
−1

B̃2 .

That is, for φ �= 0 the corresponding control system reads

ż1 = (J̄ − D̄)∇H̄(z1) + B̄u

y = C̄∇H̄(z1) + F̄ u
(3.12)

where

J̄ =
1

2
(L̄− L̄

T ) and D̄ = −
1

2
(L̄+ L̄

T ) (3.13)

are antisymmetric and symmetric parts of the Schur complement of L = J̃ − D̃ and

C̄ = C̃1 − C̃2(J̃22 − D̃22)
−1(J̃21 − D̃21)

F̄ = −C̃2(J̃22 − D̃22)
−1

B̃2

(3.14)

4Alternatively, we can scale ζ = ζ
� suitably such that ζ

� → (ζ1,−Ẽ
−1
22 Ẽ21ζ1) as � → 0.

9



are the effective observability coefficients with an additional feed-through term. The
extra terms in the effective equation are secular terms that occur if

∂H̃

∂ζ2
= O(�)

in (3.2) such that the singular term in the slow equation becomes essentially O(1).
Equation (3.12) is what appears to be the result of a “naive” singular perturbation
method that simply recasts the balanced equations (3.1) upon setting ζ̇2 = 0. Equa-
tions (3.12)–(3.14) have been put forward in [15] based on an energy argument.

3.2. Hard constraints. We shall briefly mention yet another method so as to
impose the controllability/observability constraint on the balanced system (2.8) that
can be found in [15]. In (2.6), set Σ2 = 0 which renders the equation rank-deficient,

Y
T
X =

�
U1 U2

�� Σ1 0
0 0

��
V

T
1

V
T
2

�
= U1Σ1V

T
1

with U
T
1 U1 = V

T
1 V1 = 1d×d. We define T1 ∈ R2n×d and S1 ∈ Rd×2n by

T1 = XV1Σ
−1/2
1 , S1 = Σ−1/2

1 U
T
1 Y

T

where the reduced balancing transformation satisfies S1WcS
T
1 = Σ1 = T

T
1 WcT1 with

S1T1 = 1d×d, and we introduce local coordinates z1 = S1x on the essential subspace
that is defined as the orthogonal complement of the nullspace of Y T

X. The canonical
way to constrain a mechanical system is by restricting the Hamiltonian and the cor-
responding structure matrix (i.e., the symplectic form). Restricting the Hamiltonian
(2.3) according to x = T1z1 we thus obtain the restricted system

ż1(t) = (J̃11 − D̃11)∇H̃1(z1(t)) + B̃1u(t)

y(t) = C̃1∇H̃1(z1(t))
(3.15)

where J̃11 = S1JS
T
1 , D̃11 = S1DS

T
1 , B̃1 = S1B, C̃1 = CS

T
1 as in (3.3), and

H̃1(z1) = H̃(z1, 0) , H̃1(z1) =
1

2
z
T
1 Ẽ11z1 (3.16)

denotes the restricted Hamiltonian. Note that the thus constrained system shares all
properties of (3.3) in terms of structure preservation and passivity.

Remark 3.1. As we will see later on in Section 6 neither (3.12) above nor (3.15)
yield controllable approximations of the original dynamics in terms of the associated
transfer functions. We mention them just for the sake of completeness.

3.3. On the second-order form of the reduced system. Although the
method presented preserves the systems underlying Hamiltonian structure, the same
is not necessarily true for the second-order form of the original problem. To see this,
we shall write the reduced system as a canonical Hamiltonian system. For this pur-
pose we suppose that J̃11 ∈ Rd×d is invertible with d = 2k even, and we note that we
can find an invertible transformation Q ∈ Rd×d such that [28]

QJ̃11Q
T = Ĵ , Ĵ =

�
0 1d×d

−1d×d 0

�
.
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Defining new variables ξ = Qz1, the reduced system, say, (3.3) turns into

ξ̇(t) = (Ĵ − D̂)∇Ĥ(ξ(t)) + B̂u(t)

y(t) = Ĉ∇Ĥ(ξ(t))

with coefficient matrices D̂ = QD̃11Q
T
, B̂ = QB̃1, Ĉ = C̃1Q

T and the transformed
Hamiltonian Ĥ(ξ) = H̄(Q−1

ξ). Yet, the fact that we can transform the Hamiltonian
part to its canonical form does not entail that Ĥ splits into purely quadratic kinetic
and potential energy terms; moreover also friction and input coefficients do not neces-
sarily have the appropriate form (2.4)–(2.5). Therefore the second-order form of the
original problem cannot be recovered in general.

One instance in which the second-order structure is actually preserved is when the
balancing transformation decays into pure position and momentum parts if we restrict
it to the most controllable and observable subspace. This particular case is certainly
rather restrictive, however the numerical examples discussed in Section 6 seem to be
of this form as the dominant Hankel singular values appear in pairs corresponding to
positions and their conjugate momenta.

The idea of balancing positions and momenta separately is exploited in [4, 6, 7],
but it may fail to preserve stability as has been demonstrated in [7].

4. Stability issues. It is well-known that balanced truncation for linear systems
preserves asymptotic stability of the original system, and we may ask whether the
reduced systems (3.3) and (3.15) preserve stability, too.

We first of all show that the original system is stable: Suppose J and E are real
and non-singular 2n × 2n matrices where J = −J

T is skew-symmetric and E = E
T

is symmetric. Given a real, positive semi-definite matrix D ∈ R2n×2n, we consider a
perturbed eigenvalue problem of the form

(J − µD)Ev = λv . (4.1)

Theorem 4.1 (Maddocks & Overton 1995). Suppose that

u
∗
EDEu > 0 ∀ eigenvectors u of JE with pure imaginary eigenvalues.

Then, for all µ > 0 and counting algebraic multiplicity, the number of eigenvalues λ of
(J −µD)E in the open right half-plane C+ equals the number of negative eigenvalues
of E. Furthermore no eigenvalue of (J − µD)E is pure imaginary for µ > 0.

For the proof using an homotopy argument, we refer to [29]. We have
Lemma 4.2. The system (2.1) with the Hamiltonian (2.3) and the matrices (2.4)

is asymptotically stable, i.e., all eigenvalues of (J−D)E lie in the open left half-plane.
Proof. The matrix E is positive definite and symmetric, that is, all its eigenvalues

are positive. Then, according to Theorem 4.1, it suffices to prove that u∗
EDEu > 0

on the invariant subspace of JE that corresponds to pure imaginary eigenvalues.
We prove this by contradiction: Assume the contrary, i.e., there is an eigenvector
u = (u1, u2) of JE with associated imaginary eigenvalue and u

∗
EDEu = 0. Since

u
∗
EDEu = u

∗
2M

−1
RM

−1
u2 ,

we conclude that u2 = 0. But then

JEu =

�
0

−Ku1

�
.

Hence u1 = 0, which contradicts that u is an eigenvector.
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4.1. Stability preservation. The reasoning in the proof of Lemma 4.2 heavily
relies on the specific form of the unbalanced friction matrix D, and we cannot use the
same trick to prove stability of the dimension-reduced systems (3.3) and (3.15).

In fact we immediately recognize that (asymptotic) stability cannot be preserved,
as, e.g., a block diagonal balancing transformation with k = n and S12 = 0 ∈ Rn×n

would lead to the reduced system ż1 = B̃1u. Thus the dimension-reduced system is
only neutrally stable in general. If, however, J11 is non-singular, asymptotic stability
is indeed preserved. We shall discuss the two scenarios separately; the case of a
singular structure matrix is treated later on in the text.

Nonsingular structure matrix. We suppose that J̃11 = S1JS
T
1 is invertible

which implies that the dimension k of the reduced system is even. Let Q = Q
T � 0

denote the Hessian of the reduced Hamiltonian, i.e., either Q = Ẽ11 the restricted
Hessian or Q = Ē the Schur complement. The following can be proved:

Lemma 4.3. Let J̃11 ∈ Rd×d be invertible and D̃11 be given as below (3.15).
For any d × d matrix Q = Q

T � 0 the matrix P = (J̃11 − D̃11)Q is stable, i.e., all
eigenvalues of P lie in the open left half-plane.

Proof. Since Q is symmetric, positive definite, we may write

Q
1/2(J̃11Q)Q−1/2 = Q

1/2
J̃11Q

1/2
,

i.e., J̃11Q is similar to a skew-symmetric matrix and so its spectrum lies entirely on the
imaginary axis. Moreover J̃11 is non-singular, so we can exclude 0 to be an eigenvalue.
Let v be an eigenvector of J̃11Q with pure imaginary eigenvalue. The vector

w = Qv

solves the eigenvalue problem

Q
1/2

J̃11Q
1/2

w = λw , λ �= 0 .

Upon multiplying the last equation with w
∗ from the left, we obtain

w
∗
Q

1/2
J̃11Q

1/2
w = λ�w�

2
.

Since the right hand side of this equation is non-zero by construction, we have

w
∗
Q

1/2
J̃11Q

1/2
w �= 0. (4.2)

Theorem 4.1 guarantees that P = (J̃11 − D̃11)Q is stable if v∗QD̃11Qv > 0 where v

is an arbitrary eigenvector of J̃11Q. We assume that v
∗
QD̃11Qv = 0 and aim for a

contradiction. The corresponding condition for w reads

w
∗
Q

1/2
D̃11Q

1/2
w = 0 .

Since D̃11 = S12RS
T
12 with R = R

T � 0 we conclude that Q1/2
w lies in the nullspace

of ST
12. But J̃11 = S11S

T
12 − S12S

T
11, and therefore the left hand side of (4.2) is zero

which yields the contradiction.
Corollar 4.4. The reduced Hamiltonian systems (3.3) and (3.15) are stable

whenever J̃11 is non-singular.
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Singular structure matrix. The requirement that the restricted structure ma-
trix is invertible is rather restrictive. For instance, k may be odd in case of which
J̃11 ∈ Rk×k has at least one eigenvalue zero. As we have argued it may even happen
that J̃11 − D̃11 vanishes identically, although S1 has maximum rank. To treat the
general case general we assume that the d× d matrix

J̃11 − D̃11 = S1(J −D)ST
1

has reduced rank d − s. That is, the autonomous system (i.e., for u = 0) admits
certain conserved quantities Ci : Rd → R, i = 1, . . . , s (Casimirs) that satisfy

∇Ci(z1)
T (J̃11 − D̃11) = 0 , i = 1, . . . , s .

Clearly, the Ci are of the form Ci(z1) = b
T
i z1. Accordingly the dynamics are unstable

(i.e., not asymptotically stable) in the directions orthogonal to the level sets of the
Ci(z1). The system is still completely controllable though, and it is easy to see that
we can transform the equations of motion to assume the following form [16]

ξ̇ = (Ĵ(C)− D̂(C))
∂Ĥ

∂ξ
+ B̂1(C)u

Ċ = B̂2(C)u

where ξ = (ξ1, . . . , ξd−s) are local coordinates on the hyperplane C(z1) = C, and
Ĵ − D̂ is the restriction of J̃11 − D̃11 to the hyperplane. Since Ĵ is invertible and
D̂ � 0, the restricted system remains stable along the ξ-direction.

4.2. Invariant manifold. Recalling the singular perturbation argument from
Section 3.1, it remains to prove that the subspace of uncontrollable/unobservable
states to which the dynamics collapses as the small HSV go to zero is indeed a stable
invariant manifold. In other words, we have to show that the eigenvalues of the matrix
(J̃22−D̃22)Ẽ22) have strictly negative real part. We suppose the original system (2.1)
is minimal such that all the HSV in (2.6) are strictly positive. In accordance with
(2.7) we define T2 ∈ R2n×(2n−d) and S2 ∈ R(2n−d)×2n by

T2 = XV2Σ
−1/2
2 , S2 = Σ−1/2

2 U
T
2 Y

T
,

which are the balancing transformation on the fast (i.e., least controllable/observable)
subspace. By positivity of E = ∇2

H(x) the matrix Ẽ22 = T
T
2 ET2 is symmetric

positive definite. Employing the notation S2 = (S21, S22) while assuming that S22 �= 0
structure and friction matrix on the fast subspace take the form

D̃22 = S22RS
T
22 , J̃22 = S21S

T
22 − S22S

T
21 .

The following is a straight consequence of Lemma 4.3.
Corollar 4.5. Let J̃22 be non-singular and D̃22 � 0. Then the fast subsystem

(3.9) admits a unique stable invariant manifold S.
Proof. Obviously S is an invariant manifold of (3.9). To show that it is unique

and asymptotically stable it suffices to show that both J̃22 − D̃22 and (J̃22 − D̃22)Ẽ22

are stable and have no have no eigenvalues on the imaginary axis. Adapting the proof
of Lemma 4.3 with Q = 1 or Q = Ẽ22, respectively, yields the result.

The last statement guarantees that (3.2) is hyperbolic in the sense that, as � goes
to zero, the fast dynamics contracts exponentially to its stationary point conditional
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on the fixed value of the slow variable. By invertibility of J̃22− R̃22, the family of the
stationary points is uniquely determined by S.

Remark 4.6. In the stability proofs above we have taken advantage of the fact
that the friction matrix R ∈ Rn×n is symmetric and positive definite. This is certainly
more than what Theorem 4.1 demands since stability only requires that the friction
acts on the eigenspaces of the pure imaginary eigenvalues of J̃11Q or J̃22Q. For future
research it would be desirable to generalize the proofs to the case of R = R

T being low-
rank. Yet another extension which, however, is not at all covered by Theorem 4.1
would involve dissipation coming from gyroscopic forces in which case the friction
matrix would be skew-symmetric thereby leading to Hamiltonian eigenvalue problems.

All other results regarding the singular perturbation argument easily carry over to
these scenarios provided the system is stable.

5. Minimal realization. Before we conclude with some numerical examples we
demonstrate that the dimension-reduced system (3.3) provides a minimal realization
of the original system when the weakly controllable/observable modes become com-
pletely uncontrollable/unobservable. This is not completely obvious as the coefficients
of the Hamiltonian system are different from those of a standard balanced and trun-
cated system (see Sec. 6) that is known to amount to the minimal realization if the
respective Hankel singular values are exactly zero. What we prove here is that, in the
limit of vanishing small Hankel singular values, the transfer function of the original
Hamiltonian system (2.1) converges to the reduced transfer function associated with
(3.3). The transfer function associated with (2.1) reads

G(s) = CE (s− (J −D)E)−1
B , E = ∇

2
H . (5.1)

It can be regarded as the solution to (2.1) in the Laplace domain with zero initial con-
ditions considered as a input/output mapping G : L2([0,∞[,Rm) → L

2([0,∞[,Rl);
see [1] for details. Provided that (J −D)E is stable, the transfer function is analytic
in the open right half-plane, and the H

∞ norm of G is defined as the supremum of
the largest singular value of the transfer function on the imaginary axis [2],

�G�∞ = sup
ω∈R

{σmax (G(iω))} .

Convergence. We now prove convergence of (2.1) to the reduced system (3.3) in
the H∞ norm in terms of the corresponding transfer functions. The transfer function
of the singularly perturbed system (3.2) given by

G
�(s) = C̃

�
Ẽ(s− (J̃�

− D̃
�)Ẽ)−1

B̃
� (5.2)

where the scaled coefficient matrices read

J̃
�
− D̃

� =

�
J̃11 − D̃11 �

−1(J̃12 − D̃12)
�
−1(J̃21 − D̃21) �

−2(J̃22 − D̃22)

�
,

and

B̃
� =

�
B̃1

�
−1

B̃2

�
, C̃

� =
�
C̃1 �

−1
C̃2

�
.

Note that Ẽ = ∇2
H̃ does not depend on �. Moreover, G�=1 coincides with the transfer

function G of the original system (2.1). We have
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Theorem 5.1. Let G� be the scaled transfer function (5.2), and denote by Ḡ the
reduced transfer function of the limit system (3.3), i.e.,

Ḡ(s) = C̃1Ē(s− (J̃11 − D̃11)Ē)−1
B̃1 (5.3)

with Ē = Ẽ11 − Ẽ12Ẽ
−1
22 Ẽ21 being the Schur complement of Ẽ. Then

�G
�
− Ḡ�∞ → 0 as � → 0 .

Proof. We show that G
� = Ḡ + O(�) by Taylor expanding G

� around � = 0;
the calculation is tedious but straightforward. First of all recall that the inverse of a
partitioned matrix X ∈ R2n×2n can be written as

�
X11 X12

X21 X22

�−1

=

�
Y

−1 −X
−1
11 X12Z

−1

−X
−1
22 X21Z

−1
Z

−1

�

with the shorthands Y = X11 −X12X
−1
22 X21 and Z = X22 −X21X

−1
11 X12. Hence

�
s− Ã

�
11 Ã

�
12

Ã
�
21 s− Ã

�
22

�−1

=:

�
W

�
11 W

�
12

W
�
21 W

�
22

�

with Ã
� = (J̃� − D̃

�)Ẽ. This yields

G
�(s) = (C̃1Ẽ11 +

1

�
C̃2Ẽ21)W

�
11B̃1

� �� �
(i)

+(C̃1Ẽ12 +
1

�
C̃2Ẽ22)W

�
21B̃1

� �� �
(ii)

+
1

�
(C̃1Ẽ11 +

1

�
C̃2Ẽ21)W

�
12B̃2

� �� �
(iii)

+
1

�
(C̃1Ẽ12 +

1

�
C̃2Ẽ22)W

�
22B̃2

� �� �
(iv)

(5.4)

where, e.g., W �
11 is given by

W
�
11 =

�
s− (J̃11 − D̃11)Ẽ11 −

1

�
(J̃12 − D̃12)Ẽ21

−

�
(J̃11 − D̃11)Ẽ12 +

1

�
(J̃12 − D̃12)Ẽ22

�

×

�
s−

1

�
(J̃21 − D̃21)Ẽ12 −

1

�2
(J̃22 − D̃22)Ẽ22

�−1

×

�
1

�
(J̃21 − D̃21)Ẽ11 +

1

�2
(J̃22 − D̃22)Ẽ21

��−1

The result follows upon Taylor expansion around � = 0; we give only a short
sketch for the derivation: the first term in (5.4) yields up to terms of order �

(i) ≈ C̃1Ẽ11

�
s− (J̃11 − D̃11)(Ẽ11 − Ẽ12Ẽ

−1
22 Ẽ21)

�−1
B̃1 .

Expanding the second term, we find up to order �:

(ii) ≈ −C̃1Ẽ12Ẽ
−1
22 Ẽ21

�
s− (J̃11 − D̃11)(Ẽ11 − Ẽ12Ẽ

−1
22 Ẽ21)

�−1
B̃1 .
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All remaining terms in (i)− (ii) and the expansion of (iii)− (iv) are formally of order
�. Thus the transfer function of the full system can be recast as

G
�(s) = C̃1Ē(s− (J̃11 − Ẽ11)Ē)−1

B̃1 + �ρ
�

where ρ
� is uniformly bounded in �, since all matrices involved remain non-singular.

Hence we can bound ρ
� by its largest singular value (that is bounded in �). Using the

triangle inequality we therefore conclude that �G� − Ḡ�∞ → 0 as � → 0.

Error bounds. The above result shows that the H∞ error of the reduced system
is of order �. In fact it follows from standard perturbation analysis [12] for the transfer
functions that the reduced system (3.3) with zero initial condition satisfies

�G
�
− Ḡ�∞ < 2�(σd+1 + . . .+ σ2n) (5.5)

which is the usual upper balanced truncation bound that is due to Glover [22] and that
holds for both standard balanced truncation and singular perturbation approaches.
Following [12], latter entails also the strong confinement method of Section 3.1. How-
ever, the bound does not hold for the system including secular terms, (3.12), or the
“naively” constrained system (3.15) as the numerical results below demonstrate.

In principle it is even possible to proceed in the expansion so as to obtain a sharper
bound on the error in terms of the remainder ρ

� for � = 1. Computing these terms,
however, is tedious and the resulting expressions involve a lot of matrix operations
(especially inverting large matrices) that are also difficult to compute numerically.

Remark 5.2. By construction of the reduced system as the strong confinement
limit of the original one in the time domain, the reduced system (3.3) gives an ap-
proximation of the flow of (2.1) for all initial conditions that lie on (or sufficiently
close to) the system’s invariant subspace; in particular, zero is an admissible initial
condition. On the other hand the tacit assumption, when it comes to the transfer
function (using Laplace or Fourier transforms), is that the initial condition is always
zero. Consequently, convergence on the level of the equations of motion for nonzero
initial conditions implies convergence of the transfer function, Theorem 5.1, but the
converse is not true. Yet we believe that Theorem 5.1 deserves special attention and
is a result in its its own right as its proof reveals that the error of the reduced system
is of the order of the largest small Hankel singular value.

6. Numerical illustration. For second-order systems of the form

Mq̈(t) +Rq̇(t) +Kq(t) = B2u(t)

y(t) = C1q(t) + C2q̇(t)

with M,R,K ∈ Rn×n being all symmetric positive definite, B2 ∈ Rn×m and Ci ∈

Rl×n, we compare four different model reduction methods: standard balanced trun-
cation, reduction by strong confinement (Sec. 3.1), the method of [15] containing the
secular terms (end of Sec. 3.1) and “hard” constraints (Sec. 3.2). For this purpose
we recast the second-order system as the equivalent Hamiltonian system

ẋ(t) = (J −D)∇H(x(t)) +Bu(t)

y(t) = C∇H(x(t)) ,

with x = (q,Mq̇) and the Hamiltonian function

H =
1

2
x
T
2 M

−1
x2 +

1

2
x
T
1 Kx1 .
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Fig. 6.1. Hankel singular values (left panel) and spectral norms of 8-th order approximations
(right panel) of the 48-dimensional building model. The dashed line shows the error bound.

Choosing J = −J
T to be the canonical structure matrix

J =

�
0 1n×n

−1n×n 0

�
∈ R2n×2n

the definition of the remaining coefficients follows accordingly. For benchmarking we
choose two model systems from structural mechanics: the international space station
(ISS) model and the building model that are both taken from [30]. The comparison
is made by computing the spectral norm of δḠd = G − Ḡd in the frequency domain
where Ḡd : L2([0,∞[,Rm) → L

2([0,∞[,Rl) stands for the d-th order transfer function
associated with one of the reduction schemes. For instance, for standard balanced
truncation the reduced transfer function reads

Ḡd(s) = F̃1(s− Ã11)
−1

B̃1

where F̃1 ∈ Rl×d consists of the first d columns of F = C∇2
H after balancing,

Ã11 ∈ Rd×d denotes the upper left d × d block of A = (J −D)∇2
H after balancing

and B̃1 ∈ Rd×k is simply the balanced and truncated input matrix B; the transfer
function of the full system is given by (5.1).

We start by our comparison by computing the Hankel singular values and spectral
norms for the building model (m = l = 1 and n = 24). Figure 6.1 shows the error of
8-th order approximations using standard balanced truncation (Galerkin or Petrov-
Galerkin projection) and the confined system (3.3). As expected, both methods meet
the usual upper H∞ bound (5.5). The reduced model involving the secular terms and
the constrained system yield similar results for low-order approximations (slightly
worse though), but it turns out that the error exceeds the upper bound as the order
of the reduced model is increased (see Fig. 6.2); compare also the numerical studies
in the recent article [7]. As for the secular system a possible explanation for this
behaviour are inconsistent initial conditions, for the definition of the transfer function
relies on zero initial conditions; cf. the discussion of the cell problem at the end of
Section 3.1. The same effect is observed for the 270-dimensional ISS model (m =
l = 3 and n = 135): increasing the number of modes in the approximant renders
the spectral norm of the error to exceed the balanced truncation bound as Figure
6.4 indicates. The corresponding Hankel singular values together with the Galerkin-
projected and the confined approximants for d = 18 are depicted in Figure 6.3. It is
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Fig. 6.2. Building model: comparison of balanced truncation / confinement (left panel) and
secular system / constraint (right panel) for an approximant of order d = 18.

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

mode number

H
SV

10 1 100 101 102 103
10 7

10 6

10 5

10 4

10 3

10 2

10 1

frequency

ab
so

lu
te

 e
rr

or

 

 
Galerkin projection
Confinement
Error Bound

Fig. 6.3. First 50 HSV (left panel) and spectral norms of 18-th order approximations (right
panel) of the 270-dimensional ISS model. The dashed line shows the balanced truncation bound.

interesting to note that the confined system yields a slightly better approximation in
the low-frequency regime than does standard balanced truncation; see also Figures
6.1 and 6.2 in which the effect is even more pronounced. This behaviour can be easily
explained by referring to the (time-domain) perturbation approach of Section 3.1 that
was about approximating the slowest motion of a slow/fast system by eliminating the
fast vibrational modes.
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