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We study balanced model reduction of partially-observed stochastic differential equations of
Langevin type. Upon balancing, the Langevin equation turns into a singularly perturbed
system of equations with slow and fast degrees of freedom. We prove that in the limit of
vanishing small Hankel singular values (i.e., for infinite scale separation between fast and
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model reduction of deterministic control systems having an underlying Hamiltonian structure.
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1. Introduction

We present a method for the model reduction of partially-observed linear stochas-
tic differential equations of second-order Langevin type. Linear Langevin equations
appear in a variety of physical contexts, e.g., molecular dynamics [1–3] or material
science [4, 5]. Our approach is based on the method of balanced truncation that
is a widely used model reduction technique for deterministic linear control sys-
tems [6, 7]. Other than common spatial decomposition methods such as the Proper
Orthogonal Decomposition or the Principal Component Analysis that aim at pro-
jecting the dynamics onto certain “high-energy” modes, balanced model reduction
consists in finding a coordinate (i.e., balancing) transformation such that modes
which are least sensitive to the input variable (controllability) also give the least
output (observability) and therefore can be neglected [8, 9].
In terms of the stochastic Langevin equation balancing means that we seek a rep-

resentation in which variables that are most sensitive to the random excitations by
the noise are also strongly coupled to the observed process and vice versa; the domi-
nant variables will then carry most of the statistical weight. However the truncation
step is a bit more involved than in the deterministic case, for weak excitability (con-
trollability) of modes does not imply “smallness”, the reason being that the noise
process that drives the dynamics is unbounded. As a consequence even degrees of
freedom that are only weakly excitable will almost surely become infinitely large,
and therefore cannot simply be discarded. Instead, as we will argue, the weakly
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excitable and observable modes must be replaced by their quasi-stationary prob-
ability distribution, which then yields a dimension-reduced closed-form system of
equations for the dominant variables. The thus reduced system is again of Langevin
form and inherits many properties of the original Langevin equations.
The article is organized as follows: In Section 2, we give a tutorial introduction to

the stochastic Langevin model. Section 3 explains the idea of balancing stochastic
differential equations. Our main result, the averaging principle for the Langevin
equation, is derived and proved in Section 4. Section 5 concludes with two numerical
examples. The Appendix contains a brief derivation of the Langevin equation from
a heat bath model and some technical results that are used in the article.

2. Stochastic Langevin equation

A prevalent model for the dynamics of n, say, one-dimensional particles in a heat
bath under a linear force is the second-order Langevin equation [3]

MQ̈(t) + γQ̇(t) +KQ(t) = ξ(t) . (2.1)

It describes the motion of a conservative particle that is subject to dissipation
and fluctuations originating from the bath. Here Q = (Q1, . . . , Qn) ∈ Rn is the
vector of particle configurations, M = diag(m1, . . . ,mn) is the positive definite
mass matrix with mi being the mass of the i-th particle, and γ,K ∈ Rn×n denote
the symmetric positive definite friction and stiffness matrices. The driving force ξ

on the right hand side of the equation is an n-dimensional uncorrelated stochastic
process (white noise) with the covariance matrix

E[ξ(t)ξ(t)T ] ∝ γ

where, here and in the following, we use the symbol E[·] to denote the expectation
of a (measurable) stochastic process over all its possible realizations. The last
equation is the celebrated Einstein-Smoluchowski or fluctuation-dissipation (FD)
relation [2, 10, 11]; roughly speaking, it says that the excitations coming from the
heat bath are balanced by the viscous friction, i.e., the energy dissipation into
the bath which implies the existence of a stationary probability distribution (see
Sec. 2.1 below). For general modelling purposes, of course, both friction and noise
contributions may be considered independent.
The Langevin equation (2.1) often appears as the Markovian approximation of

the so-called generalized Langevin equation [12]

MQ̈(t) +

� t

0
γ̂(t− s)Q̇(s) ds+KQ(t) = ζ(t) (2.2)

which includes memory effects that may be caused by slowly-decaying correlations
between the heat bath and the particles. In this case, ζ is a “coloured” noise process
with an autocovariance that is, again, determined by the FD relation,

E[ζ(t)ζ(s)T ] ∝ γ̂(t− s) .

If the friction or memory kernel γ̂ decays quickly, a good approximation is

γ̂(t) = γδ(t)
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which then, by the FD relation, implies (2.1); see also the appendix for a simple
derivation of a simplified version of (2.1) from deterministic Newtonian dynamics.

Partially-observed Langevin equation In this article we will consider the linear
Langevin equation (2.1) in a slightly more general form (still in its Markovian
variant though). In particular we will allow the covariance matrix of the noise to
be independent of the friction coefficient. To this end it is convenient to recast the
second-order Langevin as a first order system: given a quadratic Hamiltonian

H : R2n
⊇ X → R , H(x) =

1

2
x · Ex (2.3)

with a matrix E = E
T � 0 (“�” means positive definite) and the notation x · y =

x
T
y, we consider a stochastic Itô differential equation of the form

dXt = (J −D)∇H(Xt) dt+
√
�BdWt , X0 = x , (2.4)

where Wt denotes standard Brownian motion in Rm (Wiener process), J ∈ R2n×2n

is the invertible skew-symmetric structure matrix, D ∈ R2n×2n is the symmetric
positive semidefinite friction matrix, and B ∈ R2n×m is the noise matrix. The
gradient ∇ = (∂/∂x1, . . . , ∂/∂x2n)T is understood as a column vector. Finally,
� > 0 is a scalar parameter that controls the noise intensity (temperature).
We also call (2.4) a Langevin equation, and it can be readily seen that, for m = n

and a suitable choice of the matrices E,D,B, equation (2.4) reduces to (2.1). In
deterministic control theory, equations of the form (2.4) are also known by name
of port-controlled Hamiltonian systems with dissipation.
As is common in linear systems theory, we assume that not all states x ∈ X

are relevant or accessible in any practical situation, so we augment our Langevin
equation (2.4) by a linear output equation

Yt = C∇H(Xt) (2.5)

with C ∈ Rl×2n being the output matrix. (Note that Yt = CEXt.)

Moments of the Langevin process The Langevin process is Gaussian (as well
as the observed process), i.e., it is completely determined by its mean and its
covariance. Using Itô’s formula and the shorthand A = (J −D)E, the solution of
the Langevin equation (2.4) can be expressed by the stochastic integral

Xt = exp(At)x+
√
�

� t

0
exp(A(t− s))B dWs

By the properties of the Itô integral [14, Theorem 3.2.1], the martingale term in
the last equation, i.e., the stochastic integral has mean zero, so we find1

E[Xt] = exp(At)x . (2.6)

1Throughout the article we will use the symbol E[·] to denote the expectation of a stochastic process over
all its possible realizations.
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The covariance cov(X) = E[(X −E[X])(X −E[X])T ] is given by

cov(Xt) = �E

�� t

0
exp(A(t− s))B dWs

� t

0
dW

T
s B

T exp(AT (t− s))

�

= �

� t

0
exp(A(t− s))BB

T exp(AT (t− s)) ds

= �

� t

0
exp(As)BB

T exp(AT
s) ds

(2.7)

where we have used the (second) Itô isometry in the second line to replace the
stochastic integral by a time integral ([14, Lemma 3.1.5]). If the matrix A is asymp-
totically stable in the sense of Lyapunov, i.e., all its eigenvalues have strictly neg-
ative real part (in brief: A is stable), then

E[Xt] → 0 and cov(Xt) → �

� ∞

0
exp(As)BB

T exp(AT
s) ds

as t → ∞. Hence, using the linearity of Yt and integrating by parts in the last
equation, it follows that E[Yt] → 0 and cov(Yt) → CEQEC

T as t → ∞ with Q

being the unique symmetric positive semidefinite solution of the Lyapunov equation

AQ+QA
T = −�BB

T
.

2.1. Fokker-Planck picture

For our purposes it will be convenient to have an alternative, yet equivalent repre-
sentation of the Langevin equation (2.4). To this end we introduce the infinitesimal
generator of the process that is given by the second-order differential operator

L =
�

2
tr
�
BB

T
∇

2
�
+ (J −D)∇H ·∇ (2.8)

where we use the notation ∇2
f to denote the Hessian matrix of a function f .

Throughout this article we will also use the convenient notation

BB
T : ∇2 = tr

�
BB

T
∇

2
�

to denote the inner product between matrices (here: BB
T and ∇2). We will also

need the so-called Fokker-Planck or Kolmogorov forward operator

L
∗ =

�

2
BB

T : ∇2
− (J −D)∇H ·∇+D : ∇2

H (2.9)

that is the formal adjoint of L with respect to the scalar product

(u, v) =

�

X
u(x)v(x) dx

between functions u and v; in other words, (Lu, v) = (u, L∗
v). Now, if Xt is the

solution of (2.4) with sharp initial condition X0 = x, then the distribution

ρ(z, t)dz = P[Xt ∈ [z, z + dz)|X0 = x]
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of Xt will be governed by the Fokker-Planck equation [14]

∂tρ(z, t) = L
∗
ρ(z, t) , lim

t→0
ρ(z, t) = δ(z − x) . (2.10)

Exploiting the fact that Xt is a Gaussian process, and knowing its mean (2.6) and
its covariance (2.7), we conclude that the solution to (2.10) reads

ρ(z, t) = N

�
exp(At)x, �

� t

0
exp(As)BB

T exp(AT
s) ds

�

where N (m,Σ) denotes a normal distribution with mean m and covariance Σ.

Boltzmann-Gibbs distribution A typical problem in statistical mechanics consists
in computing expectation values of certain observables with respect to the station-
ary solutions of the Fokker-Planck equation, i.e., solutions satisfying L

∗
ρ = 0.

One such instance is the Boltzmann-Gibbs distribution ρ∞ ∝ exp(−H/�) that is a
stationary solution of (2.10) if and only if the fluctuation-dissipation relation

2D = BB
T (2.11)

holds. Indeed,

L
∗
ρ∞ =

�
1

2
BB

T :

�
∇H ⊗∇H

�
−∇

2
H

�
−

∇H ·D∇H

�
+D : ∇2

H

�
ρ∞

=

�
∇H ·BB

T∇H

2�
−

1

2
BB

T : ∇2
H −

∇H ·D∇H

�
+D : ∇2

H

�
ρ∞

which, by positivity of ρ∞ ∝ exp(−H/�), entails ∂tρ∞ = 0 if and only if 2D = BB
T .

A much stronger requirement for the probability distribution ρ∞ is ergodicity,
which means that it is the only stationary solution of (2.10) that is approached for
any initial distribution ρ0 = ρ(·, 0) as time goes to infinity. In this case Birkhoff’s
ergodic theorem implies that time averages coincide with ensemble averages, i.e.,

lim
T→∞

1

T

� T

0
f(Xt)dt =

�

X
fdµ

for almost all initial values X0 = x where f : X → R is any integrable function for
which the rightmost integral exists and we have defined

dµ(x) = ρ∞(x) dx ,

�

X
ρ∞(x) dx = 1 .

For our linear Langevin system (2.3)–(2.4) to be ergodic, it is sufficient that [15]

rank
�
B|AB|A

2
B| . . . |A

2n−1
B
�
= 2n ,

i.e., the system must be completely controllable (provided that A is stable).
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3. Balanced model reduction

Balanced model reduction for linear control systems goes back to [7] and is based on
notions of controllability and observability. Roughly speaking, the idea is to reduce
the system to those states only that share “good” controllability and observability
properties. Given a stable linear system

ẋ(t) = Ax(t) +Bu(t) , x(0) = x

y(t) = Cx(t)
(3.1)

where, say, x ∈ X ⊆ Rd, u ∈ Rm and y ∈ Rl, we have:

Definition 3.1: Following [16], controllability and observability functions asso-
ciated with the system (3.1) are defined as

Lc(x) = inf
u∈L2(−∞,0]

�� 0

−∞
|u(t)|2 dt : x =

� 0

−∞
exp(A(t− s))Bu(s) ds

�
(3.2)

and

Lo(x) =

�� ∞

0
|y(t)|2 dt : y(t) = C exp(At)x

�
(3.3)

The value of the controllability function Lc is the minimum control effort needed
to steer the system from the zero state at t = −∞ to a prescribed state x ∈ X
at t = 0; note that Lc may be infinite if a state is uncontrollable. Conversely the
observability function measures the output energy generated by a particular initial
state x ∈ X. The following standard result goes back to [6, 7].

Theorem 3.2 For a stable system, controllability and observability functions are
given by

Lc(x) = x ·W
−1
c x , Lo(x) = x ·Wox

with the controllability Gramian Wc and the observability Gramian Wo being the
unique and symmetric solutions of the Lyapunov equations

AWc +WcA
T = −BB

T
, A

T
Wo +WoA = −C

T
C .

If the system is completely controllable and observable, i.e., Wc,Wo � 0, then there
exists a coordinate (or balancing) transformation x �→ Tx such that

T
−1

WcT
−T = T

T
WoT = diag(σ1, . . . ,σd) .

The σ1 ≥ σ2 ≥ . . . ≥ σd > 0 are called Hankel singular values (HSV) and are
independent of the choice of coordinates.

In the balanced representation (A,B,C) �→ (T−1
AT, T

−1
B,CT ), states x ∈ X

that are easily controllable have also good observability properties and vice versa.
Accordingly balanced truncation consists in first balancing the system (3.1), and
then projecting out the least observable and controllable states which have little
effect on the input-output behaviour of the system [9].
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3.1. Balancing of the Langevin equation

Before we discuss balanced truncation for the Langevin system (2.4)–(2.5) we have
to make precise in which sense states are controllable or observable. In

dXt = (J −D)∇H(Xt) dt+
√
�BdWt , X0 = x

Yt = C∇H(Xt)
(3.4)

the driving process is incremental Brownian motion (i.e., white noise) rather than
a smooth control variable. Clearly, Brownian motion is not differentiable, so we
have to adapt the definition of the controllability function (3.2) suitably. To this
end we replace the Brownian motion Wt by a polygonal approximation: let ∆N =
{0 = t0, t1, t2 . . . , tN = T} be a partition of the interval [0, T ], and set

Ŵt = Wtk +
t− tk

tk+1 − tk

�
Wtk+1 −Wtk

�
, t ∈ [tk, tk+1] .

We may now replace the Brownian increment dWt in (3.4) by its approximants
dŴt to obtain an auxiliary, Langevin-type system of the form

ẋ(t) = (J −D)∇H(x(t)) +
√
�Bu(t) , x(0) = x

y(t) = C∇H(x(t))
(3.5)

where u = dŴ/dt denotes the piecewise constant time derivative of the polygonal
approximant. One can show that the solutions of (3.5) converge almost surely to
the solutions of the original Langevin equation as N → ∞, i.e., as the mesh size of
the partition ∆N goes to zero [17]; for more details the interested reader is referred
to the appendix (cf. also [18]).

Rate function The above considerations suggest that the reachability properties
of the Langevin equation (3.4) may well be studied in terms of the associated con-
trol system (3.5). Roughly speaking we say that a state x ∈ X is less sensitive
to the stochastic white noise than another state x

� ∈ X if its controllability func-
tion is larger, i.e., if Lc(x) > Lc(x�). More precisely, we exploit the fact that the
step functions are dense in the space of square integrable functions and state the
following definition.

Definition 3.3: The rate function is defined as (see, e.g., [19])

Lr(x) = inf
u∈L2[0,T ]

�� T

0
|u(t)|2 dt : x = φ0(t;u)

�
(3.6)

where φx(·;u) : [0, T ] → X with

φx(t;u) = exp(At)x+
√
�

� t

0
exp(A(t− s))Bu(s) ds

denotes the solution of the deterministic system (3.5).

We declare that Lr(x) = ∞ when no admissible control u ∈ L
2[0, T ] exists. As
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is proved in Appendix C the rate function assumes the familiar form, namely,

Lr(x) = x ·K
−1
T x ,

with

KT = �

� T

0
exp(As)BB

T exp(AT
s) ds .

being the covariance matrix of the process Xt at time t = T . The name rate

function for Lr is owed to its use in Large Deviations Theory [20]; for our purposes
it suffices to say that the rate function measures the minimum noise that is needed
for the process to reach x ∈ X after time t = T , when it was started at x = 0 at
time t = 0.

Balanced representation We make the following standing assumptions for (3.4):

(1) The matrix A = (J −D)∇2
H is stable, i.e., all eigenvalues of A are lying

in the open left-half complex plane.
(2) The system is completely controllable and observable, i.e., both the con-

trollability matrix (B AB A
2
B . . . A

2n−1
B) and the observability matrix

(C CA CA
2
. . . CA

2n−1)T have maximum rank 2n.

Now let Wc, Wo be the unique symmetric solutions of the Lyapunov equations

AWc +WcA
T = −�BB

T
, A

T
Wo +WoA = −EC

T
CE . (3.7)

Setting � = 0 in (3.4) it readily follows that Wo is the observability Gramian of our
Langevin system. Since the matrix A is stable as we always assume, we moreover
observe (upon integrating by parts) that the rate Gramian KT of Lemma C.1
converges to the Wc as T → ∞. By ergodicity the asymptotic rate Gramian (or
controllability Gramian) Wc = K∞ is unique and symmetric positive definite. Also
the observability Gramian Wo is positive definite if we assume that the Langevin
equation is completely observable in which case a balancing transformation T is
available that makes both Wc and Wo equal and diagonal, i.e.,

T
−1

WcT
−T = T

T
WoT = diag(σ1, . . . ,σ2n) .

Now let S = T
−1 denote the inverse transformation. Using Itô’s formula we easily

see that in the balanced variables z = Sx the Langevin system (3.4) reads1

dZt = (J̃ − D̃)∇H̃(Zt)dt+
√
�B̃dWt

Yt = C̃∇H̃(Zt)
(3.8)

with the balanced Hamiltonian H̃(z) = H(Tz), i.e.,

H̃(z) =
1

2
z · Ẽz , Ẽ = T

T
ET , (3.9)

1In case of a linear transformation Itô’s formula boils down to standard chain rule.
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and the transformed coefficients

J̃ = SJS
T
, D̃ = SDS

T
, B̃ = SB , C̃ = CS

T
. (3.10)

Hence the balancing transformation leaves the structure of the Langevin equa-
tion invariant. Since moreover Ã = (J̃ − D̃)Ẽ = T

−1
AT stability and complete

controllability/observability are trivially preserved.

4. Balanced averaging of the Langevin equation

By linearity the observed process

Yt = C∇H(Xt) , Xt = exp(At)x+
√
�

� t

0
exp(A(t− s))B dWs

is a Gaussian process and is invariant under coordinate transformations x �→ Tx,
i.e., the original system (3.4) and the balanced system (3.8) generate identical
observation sequences. In the balanced representation those states that are least
sensitive to the driving white noise also generate the least output which is why
we expect that truncating these states will have no major effect on the observed
process. Accordingly the aim of this section is to derive a Langevin equation

dQt = (Ĵ − D̂)∇Ĥ(Qt)dt+
√
�B̂dWt

Ŷt = Ĉ∇Ĥ(Qt)

on the state space Q ⊆ Rd
, q ∈ Q that has much smaller dimension than X ⊆ R2n

while Ŷt ≈ Yt in a suitable stochastic sense (precise statements will be given in
Theorem 4.1 below).

4.1. Small parameters

We shall now explain, starting from a balanced representation, how to systemati-
cally derive a reduced Langevin equation. Let Wc,Wo be the two symmetric and
positive definite Gramians defined by (3.7). Since we assume that the Langevin
equation is completely controllable (ergodic) and observable, we can employ a
Cholesky factorization of the two Gramians Wc,Wo � 0,

Wc = XX
T
, Wo = Y Y

T
,

and do a singular value decomposition (SVD) of the full-rank matrix Y
T
X, i.e.,

Y
T
X = UΣV T =

�
U1 U2

��Σ1 0
0 Σ2

��
V

T
1

V
T
2

�
. (4.1)

The partitioning Σ1 = diag(σ1, . . . ,σd) and Σ2 = diag(σd+1, . . . ,σ2n) indicates
which singular values are important and which are negligible. The remaining ma-
trices satisfy U

T
1 U1 = V

T
1 V1 = 1d×d and U

T
2 U2 = V

T
2 V2 = 1r×r with r = 2n− d. In

terms of the SVD, the balancing transformation T and its inverse S = T
−1 read

T = XV Σ−1/2
, S = Σ−1/2

U
T
Y

T (4.2)
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as can be readily verified. In the balanced coordinates z = Sx, the states that are
least influenced by the input also have the least influence on the output as readily
follows from Theorem 3.2.
Now suppose that σd+1 � σd. As the Hankel singular values (HSV) are coordi-

nate invariant, the σd+1, . . . ,σ2n > 0 may serve a dimensionless small parameters.
Moreover equation (4.2) relates the balancing transform explicitly with the HSV
which tells us where the small parameters enter the balanced equations. The idea is
to study the limit of vanishing small singular values. As has been shown [21] for de-
terministic systems of the form (3.5) this gradually eliminates the least observable
and controllable states, thereby confining the system to the dominant subspace of
the largest HSV.
To understand the idea of the confinement limit Σ2 → 0, we suppose that d is

even and scale the HSV uniformly according to

(σ1, . . . ,σd,σd+1, . . . ,σ2n) �→ (σ1, . . . ,σd,λσd+1, . . . ,λσ2n) ,

i.e., in (4.1)–(4.2) we replace Σ2 by λΣ2 and study the limit λ → 0. By (4.2) the
thus scaled balancing matrices are readily shown to be

S(λ) =

�
S11 S12

λ
−1/2

S21 λ
−1/2

S22

�
, T (λ) =

�
T11 λ

−1/2
T12

T21 λ
−1/2

T22

�
.

As we know from the previous section, balancing x �→ S(λ)x implies that the
coefficients in the Langevin equation (3.4) transform according to

J −D �→ S(λ)(J −D)S(λ)T , B �→ S(λ)B , C �→ CS(λ)T ,

by which (3.8) turns into a system of the form

dZ
λ
t = (J̃λ

− D̃
λ)∇H̃

λ(Zλ
t )dt+

√
�B̃

λ
dWt

Y
λ
t = C̃

λ
∇H̃

λ(Zλ
t ) .

Here H̃
λ(z) = H(T (λ)z) is the balanced Hamiltonian

H̃
λ(z) =

1

2
z · Ẽ

λ
z , Ẽ

λ =

�
Ẽ11 λ

−1/2
Ẽ12

λ
−1/2

Ẽ21 λ
−1

Ẽ22

�
,

and the remaining coefficients are given by

J̃
λ
− D̃

λ =

�
J̃11 − D̃11 λ

−1/2(J̃12 − D̃12)
λ
−1/2(J̃21 − D̃21) λ

−1(J̃22 − D̃22)

�

and

B̃
λ =

�
B̃1

λ
−1/2

B̃2

�
, C̃

λ =
�
C̃1 λ

−1/2
C̃2

�
.

with J̃ , D̃, B̃, C̃ denoting the unscaled coefficients as in (3.10), i.e., for λ = 1.
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Upon setting z = S(λ)x and introducing the shorthands

a
λ
ij(z1, z2) = (J̃ij − D̃ij)

∂H̃
λ

∂zj

�����
z1,z2

, c
λ
ij(z1, z2) = C̃i

∂H̃
λ

∂zj

�����
z1,z2

the original Langevin equation (3.4) is therefore equivalent to the singularly per-
turbed system of equations

dZ
λ
1,t = a

λ
11(Z

λ
1,t, Z

λ
2,t)dt+

1
√
λ
a
λ
12(Z

λ
1,t, Z

λ
2,t)dt+

√
�B̃1dWt

dZ
λ
2,t =

1
√
λ
a
λ
21(Z

λ
1,t, Z

λ
2,t)dt+

1

λ
a
λ
22(Z

λ
1,t, Z

λ
2,t)dt+

�
�

λ
B̃2dWt

Y
λ
t = c

λ
11(Z

λ
1,t, Z

λ
2,t) +

1
√
λ
c
λ
22(Z

λ
1,t, Z

λ
2,t) .

(4.3)

which will be our objects of interest.

Some preliminary considerations On any compact time interval [0, T ] and for
λ > 0 finite, the process Zλ

t has bounded first and second moments, so we conclude
that cov(Zλ

2,t) = O(λ) as λ → 0. This suggests to introduce new state variables

(q, p) = (z1,λ
−1/2

z2) .

In terms of the scaled variables q, p our Langevin system (4.3) reads

dQ
λ
t = a11(Q

λ
t , P

λ
t )dt+

1

λ
a12(Q

λ
t , P

λ
t )dt+

√
�B̃1dWt

dP
λ
t =

1

λ
a21(Q

λ
t , P

λ
t )dt+

1

λ2
a22(Q

λ
t , P

λ
t )dt+

√
�

λ
B̃2dWt

Y
λ
t = c11(Q

λ
t , P

λ
t ) +

1

λ
c22(Q

λ
t , P

λ
t )

(4.4)

with

aij(q, p) = (J̃ij − D̃ij)
∂H̃

∂zj

�����
q,p

, cij(q, p) = C̃i
∂H̃

∂zj

�����
q,p

now being independent of λ. In the scaled variables (q, p) the Langevin equation
(4.4) is more transparent than in terms of (z1, z2), for the coefficients aij and cij

become independent of λ, so we readily see that (4.4) is an instance of a system
with slow and fast degrees of freedom where q is slow and p is fast.

4.2. The averaging principle

Given (4.4), we seek an effective equation for the slow variables in the limit λ → 0.
Before we state our main result we shall try to built some intuition regarding this
limit. First of all note that “dPt/dt” is of the order 1/λ2, whereas Qt has a slow
drift of order 1, hence Pt appears as a fast random forcing to the slow process Qt—
in other words, the time scale separation between Qt and Pt is of the order 1/λ2.
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To make this precise we introduce a stretched time τ = t/λ
2, so that, ignoring the

auxiliary equation for the observable for the moment, (4.4) becomes1

dQ
λ
τ = λ

2
a11(Q

λ
τ , P

λ
τ )dτ + λa12(Q

λ
τ , P

λ
τ )dτ +

√
�λB̃1dWτ

dP
λ
τ = λa21(Q

λ
τ , P

λ
τ )dτ + a22(Q

λ
τ , P

λ
τ )dτ +

√
�B̃2dWτ .

Now letting λ → 0, the last system of equations reduces to the associated system

dQ
λ
τ = 0

dP
λ
τ = a22(Q

λ
τ , P

λ
τ )dτ +

√
�B̃2dWτ

Hence, roughly speaking, equation (4.4) is of the form (in the limit λ → 0)

dQ
λ
t = a11(Q

λ
t , P

q
t/λ2)dt+

1

λ
a12(Q

λ
t , P

q
t/λ2)dt+

√
�B̃1dWt

Y
λ
t = c11(Q

λ
t , P

q
t/λ2) +

1

λ
c22(Q

λ
t , P

q
t/λ2)

(4.5)

with the abbreviation q = Q
λ
t and P

q
t as the solution of the associated (fast) system

dP
q
t = a22(q, P

q
t )dt+

√
�B̃2dWt .

Strictly speaking, we are dealing with a system exhibiting three time scales, namely,
1, 1/λ and 1/λ2. But as we will see in Section 4.3 below, the intermediate time
scale 1/λ does not play a role, for the singular term proportional to 1/λ in (4.4)
vanishes as λ → 0. The associated system for fixed Q

λ
τ = q can be recast as

dP
q
t = (J̃22 − D̃22)Ẽ22(P

q
t + Ẽ

−1
22 Ẽ21q)dt+

√
�B̃2dWt (4.6)

which implies that P q
t is a Gaussian process with asymptotic mean

lim
t→∞

E[P q
t ] = −Ẽ

−1
22 Ẽ21q (4.7)

and covariance

lim
t→∞

cov(P q
t ) = �

� ∞

0
exp(Ã22s)B̃2B̃

T
2 exp(ÃT

22s) ds (4.8)

where, for the latter, we assume that Ã22 = (J̃22 − D̃22)Ẽ22 is stable; cf. [21].
The idea of the averaging principle is to interpret the phase space of the fast

dynamics as a fibre over the phase space of the slow ones. Then, rather than
treating the fast motion explicitly, only its average influence on the slow dynamics
is considered. But since the fast variables relax almost instantaneously to their
stationary distribution (4.7)–(4.8), we might well replace them by their average
values. In other words, if P q

t is ergodic, taking the limit λ → 0 in the auxiliary
system (4.5) essentially amounts to replacing P

q
t by its asymptotic mean. Since

a12(q,−Ẽ
−1
22 Ẽ21q) = 0 , c22(q,−Ẽ

−1
22 Ẽ21q) = 0

1Formally, dWt ∼
√
dt, hence Wt behaves like Wt �→ λWt/λ2 under scaling t �→ t/λ2.
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the singular terms in (4.5) vanish and we end up with the averaged equation

dQt = (J̃11 − D̃11)(Ẽ11 − Ẽ12Ẽ
−1
22 Ẽ21)Qtdt+

√
�B̃1dWt

Yt = C̃1(Ẽ11 − Ẽ12Ẽ
−1
22 Ẽ21)Qt .

As can be readily seen, the latter is of Langevin type with an effective Hamiltonian

H̄(q) =
1

2
q · Ē1q , Ē1 = Ẽ11 − Ẽ12Ẽ

−1
22 Ẽ21 .

Notice that J̃11 = −J̃
T
11 and D̃11 = D̃

T
11 � 0 are simply the original structure and

friction matrices restricted to the subspace of the most controllable and observable
states. That is, in the limit of vanishing small HSV the dynamics collapse (in
distribution) to the controllable and observable subspace. Moreover E = E

T � 0
implies Ē1 = Ē

T
1 � 0 for the Schur complement. As for the stability of the limiting

system and the comparison with the deterministic system we refer to [21]. Now
comes our main result that is proved in Section 4.3 below:

Theorem 4.1 Let Y λ
t be the observed solution of the Langevin equation (4.4) with

(non-explosive) initial conditions independent of λ. Then, as λ goes to zero, Y λ
t

converges in expectation to Yt, i.e.,

lim
λ→0

E

�
sup

t∈[0,T ]

���Y λ
t − Yt

���

�
= 0 ∀T > 0 .

where Yt is a Markov process that is governed by the reduced Langevin equation

dQt = (J̃11 − D̃11)∇H̄(Qt)dt+
√
�B̃1dWt

Yt = C̃1∇H̄(Qt)
(4.9)

with the effective Hamiltonian

H̄(q) =
1

2
q · Ē1q , Ē1 = Ẽ11 − Ẽ12Ẽ

−1
22 Ẽ21 . (4.10)

The next statement is a straight consequence.

Corollary 4.1 In (3.4), let friction and noise coefficients satisfy the fluctuation-
dissipation relation 2D = BB

T . Then also 2D̃11 = B̃1B̃
T
1 , and the reduced system

admits an invariant measure that is given by the marginal Boltzmann measure

dµ̄(q) =
1

Z̄
exp(−βH̄(q)) dq , Z̄ =

�

Rd

exp(−βH̄(q)) dq .

Moreover H̄ can be expressed as the thermodynamic free energy

H̄(q) = −� lnPµ(q) , Pµ(q) =

�

X
δ(z1 − q)dµ

which is independent of �.

Proof : The fluctuation-dissipation relation is a straight consequence of the defi-
nition of the balanced coefficients (3.10). The marginal property follows from the
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complete controllability of the original system and completing the square in

H̄(q) = −� ln

�

X
δ(z1 − q)dµ(z1, z2)

= −� ln
1

Z

�

R2n−d

exp(−H̃(q, z2)/�)
√
detT dz2

=
1

2
q · (Ẽ11 − Ẽ12Ẽ

−1
22 Ẽ21)q + const.

with T in the second equation denoting the balancing transformation (4.2). �

4.3. Proof of the averaging principle

The proof relies on a systematic perturbation expansion of the Kolmogorov back-
ward equation associated with (4.4) and follows essentially the lines of [30, 31]; see
also [33] for an introduction to the general methodology.

Derivation of the limit equation We start with the formal justification of the
asymptotic result (4.9) by doing a perturbative expansion of the Langevin equation
in powers of the small parameter λ. To this end we observe that the infinitesimal
generator (2.8) associated with the Langevin equation (4.4) splits according to

L
λ = L0 +

1

λ
L1 +

1

λ2
L2

with

L0 =
�

2
B̃1B̃

T
1 :

∂
2

∂q2
+ a11(q, p) ·

∂

∂q

L1 = �B̃1B̃
T
2 :

∂

∂p

∂

∂q
+ a12(q, p) ·

∂

∂q
+ a21(q, p) ·

∂

∂p

L2 =
�

2
B̃2B̃

T
2 :

∂
2

∂p2
+ a22(q, p) ·

∂

∂p

and the shorthands

∂

∂q
=

�
∂

∂q1
, . . . ,

∂

∂qd

�T

,
∂

∂p
=

�
∂

∂p1
, . . . ,

∂

∂p2n−d

�T

.

Suppose L
λ is equipped with appropriate boundary conditions, and consider the

following Cauchy problem (Kolmogorov backward equation)

∂tv
λ(q, p, t) = L

λ
v
λ(q, p, t) , v

λ(q, p, 0) = f(q) (4.11)

that is the adjoint of the Fokker-Planck equation (2.10) and that is fully equivalent
to the Langevin equation (4.4). For v

λ we seek a perturbative expansion of the
form

v
λ = v0 + λv1 + λ

2
v2 + . . . .
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Plugging the ansatz in the backward equation (4.11) and equating equal powers of
λ yields a hierarchy of equations the first three of which are

L2v0 = 0 (4.12)

L2v1 = −L1v0 (4.13)

L2v2 = −L0v0 − L1v1 + ∂tv0 . (4.14)

We proceed step by step: First of all, note that L2 is a differential operator in p

only and that, by stability of (J −D)E in the Langevin equation, the null space
of J̃22 − D̃22 is empty (see [21]). By the assumption of complete controllability of
(4.4), it follows that also the operator L2 which is the infinitesimal generator of
the fast process P

q
t satisfies a controllability condition. Following [30], the latter

implies that the fast dynamics relax exponentially fast to their unique invariant
probability distribution

η(·; q) = N

�
−Ẽ

−1
22 Ẽ21q, �

� ∞

0
exp(Ã22s)B̃2B̃

T
2 exp(ÃT

22s) ds

�
.

Hence, up to a normalization factor, the equation L
∗
2ρ = 0 has the unique solution

ρ = η and therefore the only functions that solve (4.12) are independent of p and
hence are of the form v0 = v0(q, t).
Regarding the second equation, (4.13), the Fredholm alternative states [32] that

ranL2 = (kerL∗
2)

⊥

where orthogonality is meant with respect to the L
2 scalar product. As a conse-

quence of the Fredholm alternative, (4.13) has a solution if and only if the right
hand side is orthogonal to the null space of L∗

2. But this is to say that the right
hand side of (4.13) is zero when we integrate it against dνq(p) = η(p; q)dp. As v0

is independent of p we immediately see that

�

R2n−d

L1v0 dνq = 0 ,

i.e., the solvability condition L1v0 ⊥ kerL∗
2 is met. To solve equation (4.13) for the

unknown v1 we follow [33] and observe that v1 must be of the form

v1(q, p, t) = φ(q, p)T∇v0(q, t) + ψ(q, t)

where ψ ∈ kerL2 plays no role in what follows so we set it to zero. Equation (4.13)
can now be recast as an equation for φ : X → Rd, the so-called cell problem

L2φ = −a
T
12 . (4.15)

In (4.11), the initial condition is independent of λ, therefore v1(q, p, 0) = 0 which
leaves the only possible choices v0 = c or φ = 0. If we exclude the trivial station-
ary solution v0 being constant, consistency of (4.15) requires that a12 = 0, i.e.,
the initial conditions for p are drawn from the equilibrium distribution νq of the
fast process; see also the remark below. To conclude, the Fredholm alternative for
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equation (4.14) entails the solvability condition

�

R2n−d

(∂tv0 − L0v0 − L1φ∇v0) dνq = 0

which, for φ = 0, can be recast as an equation for q, namely,

∂tv0(q, t) =

�
1

2
B̃1B̃

T
1 : ∇2 + ā(q) ·∇

�
v0(q, t) . (4.16)

Here we have introduced the abbreviation ā(q) = Āq with

Ā = (J̃11 − D̃11)(Ẽ11 − Ẽ12Ẽ
−1
22 Ẽ21) .

As can be readily checked, (4.9) is the stochastic Langevin equation associated
with (4.16) which concludes the first part of the proof. �

Convergence issues Since Y
λ
t in the Langevin equation (4.4) is linear in both

Q
λ
t and P

λ
t where the fast process P

λ
t relaxes exponentially fast to its stationary

distribution as λ → 0, it suffices to confine our attention to convergence of the slow
process Qλ

t . To this end consider the Poisson equation

L2φ(q, p) = a11(q, p) +
1

λ
a12(q, p)− ā(q)

φ(·, p) → 0 as |p| → ∞ .

By construction the right hand side of the Poisson equation averages to zero if we
integrate it against the equilibrium distribution dνq of the fast dynamics. Since
moreover the fast dynamics are ergodic, the coefficients of L2 satisfy the usual
controllability condition, and it has been shown in [31] that the equation is well-
posed and has a smooth solution. Itô’s formula then yields

dφ
λ
t = L

λ
φ(Qλ

t , P
λ
t )dt+

√
�
∂φ

∂q
(Qλ

t , P
λ
t )dB

q
t +

√
�

λ

∂φ

∂p
(Qλ

t , P
λ
t )dB

p
t .

where we have introduced the shorthands dB
q
t = B̃1dWt and dB

p
t = B̃2dWt. Em-

ploying the Poisson equation, the first line of equation (4.4) can be recast as

dQ
λ
t =

�
L2φ(Q

λ
t , P

λ
t ) + ā(Qλ

t )
�
dt+

√
� dB

q
t

which, together with L
λ = L0+λ

−1
L1+λ

−2
L2 and the equation for φλ

t turns into

dQ
λ
t =

�
ā(Qλ

t )− (λ2
L0 + λL1)φ(Q

λ
t , P

λ
t )

�
dt+ λ

2
dφ

λ
t

+
√
�

�
1− λ

2∂φ

∂q
(Qλ

t , P
λ
t )

�
dB

q
t −

√
�λ

∂φ

∂p
(Qλ

t , P
λ
t )dB

p
t

= ā(Qλ
t )dt+

√
� dB

q
t + λ

�
dS

λ
t +

√
�dM

λ
t

�
.
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Here we have introduced the abbreviations

dS
λ
t = − (L1 + λL0)φ(Q

λ
t , P

λ
t )dt+ λ dφ

λ
t

and

dM
λ
t = −λ

∂φ

∂q
(Qλ

t , P
λ
t )dB

q
t −

∂φ

∂p
(Qλ

t , P
λ
t )dB

p
t .

Since φ is smooth and the solution (Qλ
t , P

λ
t ) of equation (4.4) exists on any finite

time interval and for all λ > 0, the process ξλt = S
λ
t − S

λ
0 given by

S
λ
t − S

λ
0 =

� t

0
dS

λ
τ

satisfies, with probability one and for all λ > 0,

sup
0≤t≤T

|ξ
λ
t | ≤ C1 . (4.17)

By the second Itô isometry [14, Lemma 3.1.5], the Martingale term

M
λ
t = −λ

� t

0

∂φ

∂q
(Qλ

τ , P
λ
τ )dB

q
τ −

� t

0

∂φ

∂p
(Qλ

τ , P
λ
τ )dB

p
τ

has bounded quadratic variation, i.e., for all λ > 0 and t < ∞,

E[|Mλ
t |

2] =

� t

0
E

�
λ

����
∂φ

∂q

����
s

dB
q
s

����
2

+ 2

�
∂φ

∂q

����
s

dB
q
s

�
·

�
∂φ

∂p

����
s

dB
p
s

�
+

����
∂φ

∂p

����
s

dB
p
s

����
2
�
ds

is finite which implies that

E[|Mλ
t |] ≤ C2 . (4.18)

Setting ζ
λ
t = Q

λ
t −Qt with Qt denoting the limit process (4.9), we obtain

ζ
λ
t =

� t

0
ā(Qλ

s −Qτ )ds+ λS
λ
t + λM

�
t .

Using the linearity of ā and (4.17)–(4.18) the last equation yields

|ζ
λ
t | ≤ C3

� t

0
|ζ

λ
s |ds+ λC4

with constants C3 and C4 = C1+C2 on any compact time interval [0, T ]. Therefore

E

�
sup

0≤t≤T
|ζ

λ
t |

�
≤ C5

�
λ+ C3

� T

0
E[|ζλs |]ds

�

≤ C6

�
λ+

� T

0
E

�
sup

0≤t≤T
|ζ

λ
s |

�
ds

�
,
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and it follows from the integral form of Gronwall’s lemma [34, Appendix 5] that

E

�
sup

0≤t≤T
|ζ

λ
t |

�
≤ λ exp(C7T ) .

Finally, noting that

Y
λ
t − Yt = c11(Q

λ
t , P

λ
t ) +

1

λ
c22(Q

λ
t , P

λ
t )− C̃1∇H̄(Qt)

and iterating the Poisson equation argument with

L2ψ(q, p) = c11(q, p) +
1

λ
c22(q, p)− C̃1∇H̄(q)

ψ(·, p) → 0 as |p| → ∞ .

yields Theorem 4.1. �

4.4. Optimal prediction

The averaging principle, Theorem 4.1, admits a nice variational interpretation
within the framework of optimal prediction that is due to Chorin and co-workers
[35]: Suppose we want to solve (3.4), but we do not know the initial value exactly.
All we know is that the initial values follow some joint probability distribution ρ

which we assume to be the unique invariant distribution

ρ = N

�
0, �

� ∞

0
exp(As)BB

T exp(AT
s) ds

�
.

Further assume that we have identified the most controllable and observable vari-
ables by balancing the controllability (rate) and observability Gramians of (3.4).
We shall call these variables the resolved variables; the remaining ones are called
unresolved variables. By nature of the resolved variables, namely, being easily con-
trollable and observable it is plausible that we can acquire knowledge about their
initial values. Given q = z1 ∈ Rd, the distribution of the unresolved variables
z2 ∈ R2n−d is given by the joint probability density ρ conditioned by z1, i.e.,
z2 ∼ η(·; q) with

η(·; q) = N

�
−Ẽ

−1
22 Ẽ21q, �

� ∞

0
exp(Ã22s)B̃2B̃

T
2 exp(ÃT

22s) ds

�
.

The aim now is to obtain an optimal prediction of the observed process Yt at time
t in terms of the resolved variables Qt given that we know Q0 = q at time t = 0.
Clearly Yt = C∇H(Xt) depends upon the unresolved variables via the Langevin
process Xt, so we seek an appropriate closure scheme. One way to close the equa-
tions consists in replacing the right hand side of (3.4) by its best-approximation as
a function of the resolved variables. To this end, we define the conditional expec-
tation

E [f |q] =

�

R2n−d

f dνq , dνq(z2) = η(z2; q)dz2 .
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It is easy to check that the conditional expectation is an orthogonal projection in
the weighted Hilbert space L

2
ρ equipped with the inner product

(f, g)ρ =

�

R2n−d

fg dρ .

That is, defining (Πf)(q) = E [f |q] we have Π2 = Π and (Πf, g)ρ = (f,Πg)ρ.
By being an orthogonal projection, the conditional expectation satisfies the best-
approximation property

�f −Πf�
2
ρ ≤ �f − g�

2
ρ ∀g = g(q) . (4.19)

The norm � · �ρ is the norm induced in L
2
ρ by the inner product (·, ·)ρ and, by

stationarity of ρ, it appears to be the most natural one for our purposes.
Now consider our Langevin equation (3.4); if, for all t ≥ 0, the process Xt

is distributed according to ρ, then its increments will be Gaussian distributed
according to what stands right of the equality in (3.4). Thus the best-approximation
as a function of the most controllable and observable degrees of freedom z1 = q

(with (z1, z2)T = Tx and T being the balancing transformation) is obtained upon
taking the conditional expectation Π = E [·|q]. It should not come as a surprise
that this yields the following projected Langevin equation

dQt = (J̃11 − D̃11)∇H̄(Qt)dt+
√
�B̃1dWt

Yt = C̃1∇H̄(Qt)

with the effective Hamiltonian

H̄(q) =
1

2
q · Ē1q , Ē1 = Ẽ11 − Ẽ12Ẽ

−1
22 Ẽ21 .

Hence the limit equation in Theorem 4.1 is the best-approximation with respect to
the norm � ·�ρ as a function of the most controllable and observable modes. Before
we conclude this section a final remark is in order.

Remark Interestingly enough the limit of vanishing small Hankel singular values
of a deterministic Langevin-like (or dissipative Hamiltonian) system of the form
(3.5) that has been studied in [21] yields formally the same limit system, namely,

q̇(t) = (J̃11 − D̃11)∇H̄(q(t)) +
√
�B̃1u(t)

y(t) = C̃1∇H̄(q(t))

with the same effective Hamiltonian (4.10). The convergence yλ(t) → y(t), however,
is rather different as in the limit the negligible modes get ”slaved” by the dominant
ones and the system fully collapses to the controllable/observable subspace. No
other dynamics remain. As has been shown, the reduced system nicely preserves
stability and passivity and admits the usual H∞ error bound for the corresponding
transfer function.
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5. Numerical illustration

It readily follows from the convergence proof of the averaging principle that the
deviations between the original observed process and the reduced one are, at least
formally, of order λ. Consequently we expect an error that is of the order of the
negligible Hankel singular values, bearing resemblance to the typical Hankel norm
bounds for transfer functions [9]. Note, however, that the scaling parameter λ is a
fake parameter that was introduced in order to highlight the scaling properties of
the equations; the real small parameters are the negligible σi.
In this section, we discuss two numerical examples the first of which is taken from

the SLICOT library of benchmark examples [36]. The second is purely pedagogical,
but it allows us to control the small parameter which in the example below is the
vanishing mass of a particle that is subject to random forcing and friction.

5.1. An example from structural mechanics

The following example is an adaptation of [36]. Consider a second-order Langevin
equation of the form

dQt = Vtdt

MdVt = − (KQt +RVt) dt+ SdWt

Yt = C1Qt + C2Vt

(5.1)

with symmetric and positive definite coefficients M,R,K ∈ R135×135 and matrices
S ∈ R135×3 and C1, C2 ∈ R3×135. The equations are a model for structural vibra-
tions of a mechanical device that is embedded in a thermal bath. In our particular
case the device is an elastic beam that is part of the international space station
(ISS). Equivalently the equations can be thought of as the Markovian limit of the
generalized Langevin equation for the beam where the degrees of freedom of the
surrounding material are implicitly described by the noise and the dissipation [37].
However no assumptions regarding fluctuation-dissipation relation are made.
Upon introducing the Hamiltonian

H : R135
×R135

→ R , H(x1, x2) =
1

2
x2 ·M

−1
x2 +

1

2
x1 ·Kx1

the above system can be seen to be a Langevin equation of the form (3.4). Rate and
observability Gramians are then computed as solutions to the Lyapunov equations

AK +KA
T = −BB

T
, A

T
Wo +WoA = −N

T
N

with the matrices

A =

�
0 M

−1

−K −RM
−1

�
, B =

�
0
S

�
, N =

�
C1 C2M

−1
�
.

The resulting Hankel singular values (HSV) are shown in Figure 1. The value of
the 40-th singular value is below 5 · 10−5 which is less than one thousand of the
first one. Interestingly enough the dominant HSV decay in pairs which indicates
that the skew-symmetric Hamiltonian part contributes most to this part of the
dynamics.
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Figure 1. Left panel: The first 50 Hankel singular values of the ISS model (logarithmic scale). Right
panel: Comparison between typical realizations of the third component of Yt of the full system (dashed
black curve) and reduced systems of degrees d ∈ {4, 10, 24}; for d = 24 the two full dynamics and the
approximant (orange curve) are virtually indistinguishable.

Reduced dynamics We compare two types of realizations of the Langevin equation:
those starting from the initial value x = 0 and those starting from non-zero initial
conditions that are randomly drawn from a Gaussian distribution. The respective
Langevin equations are discretized employing the Euler-Maruyama scheme with
stable step size h = 5 · 10−6 (this is a rather conservative choice).
In case of zero initial conditions, the solution of (5.1) is

Yt = N

� t

0
exp(A(t− s))B dWs .

Since E[Yt] = 0 the solution consists in Brownian fluctuations. The right panel
of Figure 1 shows a comparison between a typical realization of the full, 270-
dimensional dynamics and reduced systems of different degrees. For d = 24., i.e.,
a ratio of 1/100 between the first and the first neglected HSV the observable
y3 is almost exactly approximated by the averaged dynamics; for the first two
components y1, y2 an even smaller degree with HSV ratio of about 1/25 is sufficient
(d = 10), so y3 represents the worst-case scenario for our test system.
As for non-zero initial conditions and noise and friction coefficients as given, the

solutions are dominated by the oscillatory Hamiltonian part. We distinguish two
scenarios: In the first case, we randomly pick the value of the dominant variable
and then compute the corresponding equilibrium value of the unresolved (i.e., neg-
ligible) variables; here the word equilibrium refers to the invariant distribution of
the fast variables (recall the consideration from the beginning of Section 4.2). This
scenario is contrasted with the case of completely random Gaussian initial values
with zero mean (this is the “out-of-equilibrium” situation).
The left panel of Figure 2 shows a typical realization of the full dynamics and the

approximant of degree d = 10. As one should expect the approximation is much
better than for the fluctuations (i.e., for the second moment); the approximation
is virtually indistinguishable from the original.
The approximation becomes slightly worse, however, if we drop the restriction

on the equilibrium initial conditions as the right panel of Figure 2 shows for an
approximant of degree d = 24. In this case a HSV ratio of about 1/1000 . . . 1/2000
is required before the relaxation of the fast dynamics to their invariant distribution
kicks in, and the approximation becomes as good as for the equilibrium situation.
This behaviour can easily be explained by bearing in mind that relaxation time of
the fast dynamics (i.e., the time that is needed to equilibrate) is of the order of the
first neglected HSV squared.
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Figure 2. Left panel: Output Yt of the full, 270-dimensional system and its 10-dimensional approximant
(dashed curves) for random initial conditions restricted to the invariant subspace. Right panel: The same
for Gaussian random initial conditions and an approximant of degree d = 24.

5.2. High friction limit of the Langevin equation

Our second example is more fundamental in terms of physical relevance. As we
have seen balanced averaging preserves the structure of the Langevin equation,
including its statistical equilibrium properties. However there may be situations in
which the structure-preservation turns out be very subtle. An interesting scenario
in this respect is the overdamped limit of the Langevin equation that is also known
by the name of inertia-less Langevin or Smoluchowski equation. The following
result is due to Nelson [38].

Theorem 5.1 Let (Qµ
t , V

µ
t ) ⊂ Rn ×Rn be the solution of

dQ
µ
t = V

µ
t dt

µdV
µ
t = − (∇ϕ(Qµ

t ) + γV
µ
t ) dt+ σdWt

where ϕ : Rn → R is a smooth potential and friction and noise coefficients satisfy
the fluctuation-dissipation relation 2γ = σσ

T . Then, as µ → 0, the process Q
µ
t

converges with probability one to a diffusion process Qt that is the solution of

γdQt = −∇ϕ(Qt)dt+ σdWt .

The above limit is an example of a model reduction procedure, in which the re-
duced equations have a genuinely different structure (second-order vs. first-order).
Nonetheless we can interpret the above result nicely in terms of the balancing
method as we shall illustrate with a simple example. For (Qµ

t , P
µ
t ) ∈ R×R, con-

sider the equation

dQ
µ
t =

1

µ
P

µ
t dt

dP
µ
t = −

�
Q

µ
t +

1

µ
P

µ
t

�
dt+

√
2dWt

Y
µ
t = Q

µ
t

(5.2)

that describes damped oscillations of a stochastic particle of mass µ. Up to rescal-
ing of time, sending µ → 0 is equivalent to letting γ diverge while keeping the
temperature constant, i.e., γ,σ → ∞ with γ/σ

2 = const; for this reason the zero-
inertia limit µ → 0 is often referred to as the high-friction limit. It is easy to see



March 28, 2011 14:34 Mathematical and Computer Modelling of Dynamical Systems
mcmds˙revised

23

that (5.2) is a Langevin system of the form (3.4) with the Hamiltonian

H(q, p) =
1

2µ
p
2 +

1

2
q
2

The two Gramians are

K =

�
1 0
0 µ

�
, Wo =

1

2

�
1 + µ 1
1 1

�

with corresponding Hankel singular values σ1 ∼ 1 and σ2 ∼ µ for µ → 0. After
balancing and averaging over the low energy mode and sending µ → 0 we obtain

dZt = −Ztdt+
√
2dWt

Yt = Zt .

It is interesting to note that the dominant balanced variable (i.e., the one corre-
sponding to σ1) is of the form z

µ = q + p+O(µ), that is, the dominant balanced
variable z is not just q as one might naively expect. Nonetheless the observed pro-
cess converges in expectation, E[|Y µ

t − Yt|] → 0 uniformly on [0, T ], as Theorem
4.1 asserts.

Appendix A. Derivation of the linear Langevin equation

We shall briefly sketch the derivation of a one-dimensional linear Langevin equation
from deterministic Newtonian dynamics. The derivation goes as follows: consider a
chain of n+1 identical particles of unit mass m = 1 that are connected by identical
springs with spring constant k = 1. Letting qi denote the elongation of the i-th
particle from its rest position, Newton’s equations for the chain read

q̈i = qi+1 − 2qi + qi−1 , i = 0, . . . n

where we impose the Dirichlet boundary conditions, q−1 = 0, at the left end of the
chain and Neumann conditions, qn+1 = qn, at the other end.
Now let h be the equilibrium distance between neighbouring particles so that,

setting h = 1/n, the total length of the chain becomes l = 1. Introducing the scaled
time τ = t/h we recover the discrete wave equation

q
��
i =

qi+1 − 2qi + qi−1

h2
, i = 0, . . . n

with the notation q
� = dq/dτ . It is known that, as n → ∞ and h = 1/n, the last

equation converges to the continuous wave equation on an interval of length one
with its left end fixed (Dirichlet b.c.) and the right end loose (Neumann b.c.).
Exploiting the linearity of the system, the equation for q = (q1, . . . qn) can be

solved analytically (e.g., by using Laplace transform). Plugging the result into the
solution for the distinguished particle and integrating by parts once, we obtain a
closed Volterra integro-differential equation for Q = q0, namely,

Q
��(τ) +

� τ

0
γn(τ − σ)Q�(σ) dσ + knQ(τ) = fn(τ) (A1)
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where kn ≡ 2/3 and

γn(τ) =
n�

i=1

αi cos(ωiτ) , fn(τ) =
n�

i=1

(ηi sin(ωiτ) + ζi cos(ωiτ)) (A2)

with coefficients αi and ωi that can be explicitly computed, given the eigenvalues of
the discrete wave equation, and ηi = ηi(q(0), q̇(0)) and ζi = ζi(q(0), q̇(0)) depending
linearly on the initial conditions of the unresolved particles. Provided that the
initial values for q(0) and q

�(0) are known, equation (A1) is still deterministic—no
randomness whatsoever.
The randomness comes into play, when we assume that the q(0), q�(0) are inde-

pendent and identically distributed Gaussian random variables with mean zero and
unit variance in which case also fn becomes a stationary Gaussian random process
with mean zero and autocorrelation function

E[fn(τ)fn(σ)] = γn(τ − σ) .

Note that the last equation is nothing but the fluctuation-dissipation (FD) rela-
tion for our problem. Finally, we may take the limit n → ∞ in case of which γn

becomes the Fourier cosine transform of Dirac’s delta function which implies that
fn converges to a white noise process in the distributional sense, i.e., fn becomes
delta-correlated. This last statement can be rephrased by saying that fn becomes
the Karhunen-Loéve expansion of the white noise process—therefore, by the FD
relation, the memory kernel converges to a Dirac delta at τ = 0.
Hence in the thermodynamic limit n → ∞, h = 1/n, the motion of the distin-

guished particle will be governed by a Langevin equation of the form

Q
��(τ) + γQ

�(τ) + kQ(τ) =
√
γξ(τ) (A3)

with ξ being a stationary white noise process.
The model of a particle coupled to a wave is known as Lamb’s problem [23]. We

are aware of the “hand-waviness” of our derivation, but it may serve the reader
to understand that the Langevin equation is a plausible model for, e.g., linear
materials that are surrounded by a heat bath (cf. [24]). For related studies of the
Kac-Zwanzig heat bath model that gives rise to an intrinsically non-Markovian
Langevin equation, the reader may consult the work [25].

Appendix B. The Support Theorem

Many properties of stochastic differential equations can be studied in terms of the
corresponding control system. Consider the stochastic differential equation

dXt = AXtdt+BdWt , X0 = x (B1)

on X ⊆ Rd with the associated control system

ẋ(t) = Ax(t) +Bu(t) , x(0) = x (B2)

Now let V = C([0, T ]) be the space of continuous functions ϕ assuming values on
X ⊆ Rd and define Vx = {ϕ ∈ V : ϕ(0) = x} to be the set of smooth curves starting
in x. Let further Xt, t ∈ [0, T ] be the unique solution of the stochastic differential
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equation (B1); obviously Xt ∈ Vx, and we may define the support of the diffusion
process Xt as the smallest closed subset Ux ⊂ Vx for which

P [Xt ∈ Ux] = 1

with P[·] being the probability measure on the path space Vx that is induced by
the Brownian motion Wt. A typical question regarding the control system (B2)
would be the following: given a control u : [0, T ] → Rm that is piecewise constant,
which states can be reached in finite time T . In particular the space of integrable
step functions is dense in L

2, so we can approximate any L
2 control by a series

of step functions. We call a state x
� ∈ X reachable if we can find a control u

such that x(0) = x and x(T ) = x
� and we denote by AT (x) the set of states

that are reachable within time T . The famous Support Theorem by Stroock and
Varadhan [26] bridges the gap between the stochastic differential equation (B1)
and its deterministic counterpart (B2).

Theorem B.1 Let φx(t;u) denote the solution of the controlled differential equation
(B2). Then the support of the diffusion process Xt is given by

Ux = {φx(t;u) : u ∈ L(R,Rm)}

where L(R,Rm) is the space of piecewise constant functions with values in Rm.

It is a straight consequence of the last theorem that the reachable subspace of
the stochastic differential equation is given by the set of states that can be reached
using piecewise constant control input.

Corollary B.1 Let suppµ ⊆ X denote the support of a measure µ on X. Then

suppPT (x, ·) = AT (x) , T > 0 .

where Pt(x,C) = P[Xt ∈ C |X0 = x] with C ⊂ X being any open set denotes the
transition probability of the Markov process Xt.

For linear systems such as (B2) complete controllability is guaranteed by
Kalman’s rank condition, i.e., rank(B|AB|A2

B| . . .) = d. By the support theo-
rem, this implies that for all t > 0 the transition probability Pt(·, dy) of Xt has a
smooth density ρt(·, y) with full topological support At(·) = X. As a consequence,
Xt is ergodic with respect to its invariant distribution N (0,Wc) with Wc being the
infinite-time controllability Gramian (rate Gramian, respectively) of (B2).

Appendix C. The rate function

Lemma C.1 The rate function of the Langevin equation (3.4) is given by

Lr(x) = x ·K
−1
T x ,

with KT = cov(XT ) being the covariance matrix of the process Xt at time t = T .

Proof : We start by revisiting the well-known property of linear control systems
to have a quadratic controllability function, and then show that it can be expressed
in terms of the covariance matrix. Regarding the first, let u ∈ L

2[0, T ] be such that
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φ0(T ;u) = x and consider the linear mapping f : L2[0, T ] → X defined by

fu =
√
�

� T

0
exp(A(T − s))Bu(s) ds .

By construction, we have x = fu. The adjoint map f
∗ : X → L

2[0, T ] is defined by
means of the inner products

(f∗
x, u)L2[0,T ] = x · fu

with the obvious generalization of the L
2 scalar product (·, ·) to vector-valued

functions. Hence

(f∗
x) (t) =

√
�B

T exp(AT (T − t))x

is an admissible control, i.e., the process with control u = f
∗
x reaches x at time

T . By ergodicity (i.e., complete controllability) the map f is onto which implies
that ff

∗ : X → X is invertible. Now consider any admissible u with x = fu.
The optimal such u is obtained by minimizing the L

2 norm �u�2[0,T ] subject to the
constraint x = fu. The solution to this problem is provided by Hilbert’s projection
theorem [39], viz.,

u∗ = f
∗ (ff∗)−1

x .

Obviously u∗ ∈ L
2[0, T ] and, by the definition of the rate function, we obtain

Lr(x) = x · (ff∗)−1
x

which completes the first part of the proof. Finally the assertion follows upon
comparing ff

∗ to the expression (2.7) for the covariance matrix of XT , namely,

cov(XT ) = �

� T

0
exp(As)BB

T exp(AT
s) ds .

This concludes the proof. �

Appendix D. Numerical issues: proper orthogonal decomposition

The argument from Section C establishes a relation between controllability and the
covariance matrix of a stable linear stochastic differential equation, and we may fur-
ther exploit this correspondence so as to compute controllability and observability
Gramians without solving Lyapunov equations.
Given any discrete realization {X0, X1, . . .} of (3.4) with arbitrary initial value

X0 = x, we define the empirical covariance matrix by

KN =
1

N

N−1�

i=0

�
Xi − X̄N

� �
Xi − X̄N

�T
,
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where

X̄N =
1

N

N−1�

i=0

Xi .

By stability of the Langevin process and the law of large numbers (i.e., ergodicity)
we have KN → K as N → ∞ with probability one for almost all initial conditions
X0. But as the covariance matrix for N → ∞ equals the controllability Gramian
Wc—the reader should compare the respective Lyapunov equations—, we have
just computed the controllability Gramian for (3.4). Conversely, we may compute
the observability Gramian Wo from a sufficiently long realization of the adjoint
stochastic system (complete observability assumed), which is numerically feasible,
even if the system’s dimension is too high to solve the corresponding Lyapunov
equations.
The situation is even easier if the fluctuation-dissipation relation 2D = BB

T

is in force. In this case any (sufficiently long) discrete trajectory {X0, X1, . . .} is
distributed according to the equilibrium distribution ρ∞ ∝ exp(−H/�). In other
words, the distribution of sample points X0, X1, . . . is Gaussian with mean zero
and covariance given by K = �E

−1 where E = ∇2
H is the constant Hessian of H.

Consequently the rate or controllability Gramian for an equilibrium system, i.e.,
with coefficients satisfying 2D = BB

T , is simply given by the inverse Hessian of
the Hamiltonian.

Remark The empirical covariance matrix is the chief ingredient for computing low
rank approximants of a given data set. For {X0, X1, . . . , XN−1}, the optimal rank-d
approximation

min
Π

N−1�

i=0

|Xi −ΠXi|
2 s.t. Π2 = Π , rankΠ = d

is obtained by choosing Π to be the orthogonal projection onto the first d eigen-
vectors of KN . Upon replacing the Euclidean inner product in the last equation by
the Gramian-weighted one |x|o =

�
�Wox, x� and letting N → ∞, the projection

method recovers balanced truncation as has been pointed out in [40].
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[21] C. Hartmann, V.-M. Vulcanov, and Ch. Schütte. Balanced truncation of linear second-order systems:

a Hamiltonian approach. Multiscale Model. Simul. 8 (2010), pp. 1348–1367.
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