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We revisit the problem of the linear response of a constrained mechanical system. In doing so, we
show that the standard expressions of Green and Kubo carry over to the constrained case without
any alteration. The argument is based on the appropriate definition of constrained expectations by
means of which Liouville’s theorem and the Green–Kubo relations naturally follow. © 2010
American Institute of Physics. #doi:10.1063/1.3354126$

Linear response theory as originally formulated by
Green1 and Kubo2,3 provides a tool to describe the response
of a mechanical system to a small external perturbation. The
typical derivation of the linear response is based on the
Hamiltonian function generating the underlying dynamics.4

In many instances, however, the equations of motion are only
available in a non-Hamiltonian form, although the system is
of mechanical origin. One such case is a constrained me-
chanical system in Cartesian !ambient-space" coordinates
with explicit Lagrange multipliers, in which case a Hamil-
tonian formulation is not obvious.5

Steps toward a formulation of constrained systems in the
framework of non-Hamiltonian statistical mechanics have
been taken in Ref. 6. Therein, the authors demonstrate that it
is still possible to derive a response result that has the famil-
iar form, while involving additional terms that are hard to
interpret and which are attributed to an apparent nonzero
phase space compressibility.

In this communication, we argue that in the presence of
constraints, the standard linear response result does in fact
hold—unambigously and without any alteration from the un-
constrained case. Our reasoning is based on an appropriate
definition of constrained expectation values that gives rise to
the standard Liouville equation for probability densities and
Liouville’s theorem. The linear response result of Green and
Kubo then naturally follows from these ingredients.

I. CONSTRAINED DYNAMICS

Consider a particle of unit mass assuming states x!Rn

with potential energy V!x". The dynamics are confined to a
hypersurface S!Rn that is defined by

S = %x ! Rn:!!x" = 0& ,

with a scalar function ! and '"!'#0 everywhere on S. New-
ton’s equations for the particle read

ẍt = − "V!xt" − " " !!xt", !!xt" = 0, !1"

with initial values x0=x and ẋ0=v satisfying

!!x" = 0, v · "!!x" = 0. !2"

Here and in the following, we use the notation x ·y=xTy and
A :B=tr!AB" to denote the inner products between vectors x
and y or the double contraction of second-order tensors A
and B.

In Eq. !1", we may easily eliminate the Lagrange multi-
plier " by differentiating the constraint !!xt"=0 twice with
respect to time. This yields

ẍt · "!!xt" + ẋt ! ẋt:""!!xt" = 0,

where we use the notation ""=" ! " to denote the matrix of
second derivatives. Hence, with Eq. !1",

" " !!x" = − !"V!x""" + II!ẋ, ẋ" ,

with the abbreviations

!"V"" =
"! · "V

'"!'2
" !, II!v,v" =

v ! v:""!

'"!'2
" ! .

Inserting the expression for the constraint force into the
equations of motion, Eq. !1" then gives

ẍt = − !P " V"!xt" − II!ẋt, ẋt" , !3"

with the notation PX=X−X". Equation !3" is called an
ambient-space formulation of the differential-algebraic sys-
tem Eq. !1" as it is formulated in terms of the ambient-space
coordinates !x ,v" on R2n rather than generalized coordinates,
and it does not involve Lagrange multipliers. Introducing the
new variable v= ẋ it can be recast as

ẋt = vt, v̇t = − !P " V"!xt" − II!vt,vt" . !4"

Given initial values satisfying Eq. !2", its solution automati-
cally stays on the set

M = %!x,v" ! R2n:!!x" = 0,v · "!!x" = 0& .

II. LIOUVILLE EQUATION

Obviously, Eq. !4" is not Hamiltonian although it can be
shown to be equivalent to a Hamiltonian system !e.g., by
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using generalized coordinates". Nonetheless, its flow shares
basic properties of a Hamiltonian system such as being
volume-preserving. First of all, note that

d#!z" = '"!!z"'2$!!!z""$!!̇!z""dz !5"

is the natural Liouville measure on M expressed in terms of
the ambient-space coordinates z= !x ,v" !see Ref. 7 for de-
tails". Now, given an observable f!z", we call

(f)% = *
R2n

f!z"%!z,t"d#!z"

the expectation of f with respect to the !possibly time-
dependent" probability density %. It is convenient to write Eq.
!4" as the differential equation

żt = B!zt" , !6"

with the vector field B= !v ,−P"V− II"T and the solution zt
=zt!z", z0=z. The Liouville operator corresponding to Eq. !6"
then assumes the standard form

L = B!z" · " , !7"

whereas before and unless noted otherwise, " denotes the
derivative with respect to the argument !here: z".

A. Stationary distribution

Before we can state Liouville’s theorem, we have to say
what we mean by an invariant distribution. We employ what
is known as the Heisenberg picture in quantum mechanics
and call a distribution % invariant under Eq. !6" if the expec-
tation of an observable at time t

f!zt" = exp!Lt"f!z"

is stationary, i.e., if

(f!zt")% = (f!z0")%, !8"

where the average is understood over the initial values. By
construction, f solves the differential equation

d

dt
f!zt" = Lf!zt", f!z0" = f , !9"

so stationarity of expectation values is equivalent to say that
% is a stationary solution of the Liouville equation

%

%t
%!z,t" = L#%!z,t", %!z,0" = %0!z" . !10"

Here, %0 is understood as a probability density with respect
to the constrained Liouville measure #, i.e.,

*
R2n

%0d# = 1,

and the adjoint L# is defined by means of the duality relation
!Lf ,g"= !f ,L#g" with the natural scalar product !f ,g"
= (fg)%=1 between functions f and g.

The Liouville Eq. !10" is in fact the usual one for
!Lf ,g"=−!f ,Lg" or L#=−L, respectively. To see this, it is
helpful to note that !cf. Ref. 6, p. 750"

*
R2n

!Lf"g'"!'2dz = − *
R2n

!Lg"f '"!'2dz ,

which can be seen upon expanding the Liouvillian term by
term and integrating by parts

*
R2n

!Lf"g'"!'2dz

= *
R2n

!v · "xf − !P " V + II" · "vf"g'"!'2dz

= − *
R2n

+v · "xg − 2
g

'"!'2
v ! "!:""! − g"v · II

− !P " V + II" · "vg, f '"!'2dz

= − *
R2n

!v · "xg − !P " V + II" · "vg"f '"!'2dx

= − *
R2n

!Lg"f '"!'2dz ,

where in the third line we have used that '"!'2"v · II=2v
! "! :""!.

Hence, it follows that

*
R2n

!Lf"gd# = − *
R2n

!Lg"fd#

+ *
R2n

!L%$!!"$!!̇"&"fg'"!'2dz

with

*
R2n

!L%$!!"$!!̇"&"fg'"!'2dz

= *
R2n

!v · "x%$!!"$!!̇"& − !P " V + II"

· "v%$!!"$!!̇"&"fg'"!'2dz

= *
R2n

!v · "!$!!!"$!!̇" + v ! v:""!$!!"$!!!̇"

− !P " V + II" · "!$!!"$!!!̇""fg'"!'2dz

= *
R2n

!v · "!$!!!"$!!̇"

− !P " V" · "!$!!"$!!!̇""fg'"!'2dz .

Here, the second equality follows from II ·"!=v ! v :""!.
Finally !̇=v ·"! with !̇=0 and !P"V" ·"!=0, so the last
integral vanishes which proves that

*
R2n

!Lf"gd# = − *
R2n

!Lg"fd# , !11"

or, in other words, L#=−L.
Now, Liouville’s theorem readily follows: Let A#! be

any compact subset of M. Then
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#!A" = *
R2n

&Ad# with &A!z" = -1 if z ! A

0 if z " A
.

is the phase space volume of A, and we have to show that
d#!A" /dt=0 under the flow of Eq. !6".

To this end, we choose f =&A as initial condition in Eq.
!9" and take the time derivative of Eq. !8" with %=1. Since f
solves Eq. !9", it remains to show that

*
R2n

Lfd# = 0.

But the integral equals !Lf ,1"=−!f ,L1" where L1=0. Hence
the integral vanishes and, since A is arbitrary, we have
proved conservation of volume.

Before we come to the formulation of the linear re-
sponse, a final remark is in order: it is a common fallacy that
the system Eq. !6" was not volume-preserving because its
ambient-space divergence is not zero. Indeed, a vector field
B is volume-preserving if and only if it is divergence-free.8

But here, the solutions generated by the vector field B live on
the constrained phase space M!R2n, so the appropriate no-
tion of divergence is the divergence on M, whereas the !un-
constrained" divergence in the ambient-space variables does
not tell us much about volume-preservation.

III. LINEAR RESPONSE

In Eq. !6", we add a small perturbation in the way that

żt
' = B!zt

'" + 'G!zt
'"ut, ' ( 1, !12"

where u is a time-dependent scalar forcing !not necessarily
smooth" and G is a Hamiltonian vector field compatible with
the constraint !in other words, the form of G resembles that
of B". Now set

Leq = B!z" · ", Lt = utG!z" · " .

The Liouville equation associated with Eq. !12" then reads

%

%t
%'!z,t" = !Leq

# + 'Lt
#"%'!z,t", %'!z,0" = %0!z" ,

with Leq
# =−Leq and Lt

#=−Lt; the latter follows mutatis mutan-
dis from Eq. !11". Applying variation of constants or Dyson’s
formula yields the formal solution

%'!z,t" = exp!tLeq
# "%0!z" + '*

0

t

exp!!t − s"Leq
# "Ls

#%'!z,s"ds ,

for which we seek a perturbative expansion of the form

%' = %0 + '%1 + '2%2 + . . . . !13"

Let us suppose that the initial distribution %!z ,0"=%0!z"
is independent of ' and is invariant under the unperturbed
dynamics, i.e., Leq

# %0=0. By plugging the ansatz Eq. !13" into
the Liouville equation and equating equal powers of ', we
recover the O!'"-approximation

%'!z,t" / %0!z" + '*
0

t

exp!!t − s"Leq
# "Ls

#%0!z"ds .

Now, let

H:R2n → R, H =
1
2

'v'2 + V

denote the Hamiltonian of the unperturbed system. Clearly,
H is preserved for '=0. The perturbed system Eq. !12" for
')0 obeys the energy balance

d

dt
H!zt

'" = − 'utJ!zt
'" , !14"

with zt
'=zt

'!z" denoting the solution of Eq. !12" and J!z"
=G!z" ·"H!z" being the dissipative flux.

A. Green-Kubo relations

We come to our main result that generalizes the classical
result of Green1 and Kubo2,3 for Hamiltonian systems to non-
Hamiltonian systems of the form !1".

In Eq. !12", suppose that ut=$!t", i.e., the perturbation is
impulsive at t=0, and the initial values z0

' =z are drawn from
the canonical distribution

%0!z" * exp!− +H!z"", *
R2n

%0!z"d#!z" = 1.

Moreover, let

(f)%' = *
R2n

f!z"%'!z,t"d#!z"

denote the expectation with respect to the probability distri-
bution %'. By replacing %' in the last equation by its
O!'"-approximation we find

(f)%' / (f)%0
+ '*

R2n
*

0

t

f exp!!t − s"Leq
# "Ls

#%0dsd# .

Using ut=$!t" in the expression for Lt
#=−Lt, the double

integral can be recast as

*
R2n
*

0

t

f exp!!t − s"Leq
# "Ls

#%0dsd#

= − *
R2n
*

0

t

f exp!!t − s"Leq
# "Ls%0dsd#

= − *
R2n
*

0

t

!exp!!t − s"Leq"f"!G · "%0"$!s"dsd#

= − *
R2n

!exp!tLeq"f"!G · "%0"d#

= +*
R2n

f!zt"!G · "H"%0d# ,

where the last equality is due to %0*exp!−+H". Employing
the definition of the dissipative flux J!z"=−G!z" ·"H!z", it
follows that
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*
R2n

f!G · "H"%0d# = − (Jf!zt")%0

with zt=zt!z" denoting the solution to the unperturbed prob-
lem. As a consequence we recover the classical linear re-
sponse result of Green and Kubo, viz.,

(f)%' / (f)%0
− '+(Jf!zt")%0

. !15"

IV. CONCLUSION

In this communication, we have demonstrated that the
common practice, namely, employing the standard linear re-
sponse result by Green and Kubo in case of a system with
holonomic constraints is indeed justified, although some ar-
ticles that can be found in the literature suggest otherwise
!e.g., Ref. 9". Although there has been no doubt that, in prin-
ciple, Hamiltonian systems that are subject to holonomic
constraints behave like any other natural mechanical system
from the viewpoint of statistical mechanics !which is cer-
tainly not true for nonholonomic systems", the result closes a
loophole in the statistical mechanics of constrained systems
involving Lagrange multipliers. Consequently, the reader us-
ing linear response theory should not worry as to whether his
system is subject to constraints or not.

This clearly raises the question whether the result carries
over to systems that are either inherently non-Hamiltonian or
which involve non-Hamiltonian perturbations. A typical rep-
resentative of the first class is Nosé–Hoover dynamics while
the SLLOD equations of motion belong to the second cat-
egory. We stress that the ingredients we have employed to
derive the Green–Kubo relations are relatively simple and
are not at all tied to a Hamiltonian framework: a perturbation
consistent with the equations of motion !e.g., divergence-
free", a preserved measure that induces an inner product via
an expectation and a formal expansion of the evolution equa-

tion for the corresponding probability densities. Addressing
general dynamical systems with arbitrary non-Hamiltonian
perturbations, however, is beyond the scope of this commu-
nication.

In the course of the derivation, we have also revisited the
misleading statement !see, e.g., Refs. 10 and 11" that flows of
constrained systems with nonvanishing ambient-space com-
pressibility do not conserve volume. This, in fact wrong,
statement is based on the misconception of taking the
ambient-space divergence of a constrained vector field as
indicative of being volume-preserving. The reader should
also not worry about this issue.

Last but not least, all the results in this paper easily
generalize to the case of multiple constraints, nontrivial mass
matrices or more complicated types of perturbations !clearly,
being compatible with the constraints". For the sake of read-
ability, we refrain from presenting our results in such gener-
ality and leave it to the interested reader to fill this gap.
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