
Computing free energy differences using
conditioned diffusions

Carsten Hartmann and Juan Latorre

Institut für Mathematik, Freie Universität Berlin, D-14195 Berlin, Germany

Abstract.
We derive a Crooks-Jarzynski-type identity for computing free energy differences between

metastable states that is based on nonequilibrium diffusion processes. Furthermore we outline a
brief derivation of an infinite-dimensional stochastic partial differential equation that can be used to
efficiently generate the ensemble of trajectories connecting the metastable states.
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INTRODUCTION

Given a system assuming states x ∈X ⊆ Rd with the energy V (x), the free energy at
temperature ε > 0 as a function of a scalar reaction coordinate Φ(x) is defined as

F(ξ ) =−ε ln
∫
X

exp(−ε
−1V (x))δ (Φ(x)−ξ )dx . (1)

Given that x ∈X follows the Boltzmann distribution ρ ∝ exp(−ε−1V ), the free en-
ergy is just the marginal distribution in Φ(x). However estimating the marginal numeri-
cally from samples of ρ may be prohibitively expensive, e.g., when V has large barriers
in the direction of Φ. Therefore we dismiss this option and propose a different scheme
that employs realizations of the overdamped Langevin equation

dXτ = f (Xτ ,τ)dτ +
√

2εdWτ , τ ∈ [0,T ] (2)

subject to the boundary conditions (see Fig. 1)

Φ(X0) = ξA and Φ(XT ) = ξB . (3)

The vector field f (x,τ) = −∇V (x) + g(x,τ) is assumed to be smooth with the time-
dependent part g being such that the process hits the level set {Φ(x) = ξB} at time T ;
without loss of generality we set T = 1.

As we will demostrate below, the free energy difference ∆F = F(ξB)−F(ξA) can be
computed as the weighted average (cf. [1, 2, 3])

∆F =−ε lnE
[

exp
(
−ε
−1
∫ 1

0
g(Xτ ,τ)◦dXτ

)]
(4)

where “◦” means integration in the sense of Stratonovich and E[·] denotes the expecta-
tion over all (bridge) paths that solve the conditioned Langevin equation (2)–(3).
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FIGURE 1. Boundaries of metastable states A and B as level sets of the reaction coordinate Φ.

DERIVATION: EULER’S METHOD

Our derivation of (4) is based on the discrete Euler-Maruyama approximation of (2),

Xk+1 = Xk +∆τ f (Xk,τk)+
√

2ε∆τ ηk+1 , k = 0, . . . ,n−1 . (5)

Here ∆τ = 1/n and ηk ∼N (0, I) are i.i.d. distributed Gaussian random variables.
We call Pn(x) = Prob [X0 = x0,X1 = x1, . . . ,Xn = xn] the joint distribution of the path

x = {x0,x1, . . . ,xn} ⊂ X . Assuming that the x0 follow the Boltzmann distribution ρ

conditional on Φ(x0) = ξA, the distribution of the paths is readily shown to be

Pn(x) ∝ ρ(x0|ξA)exp

(
−∆τ

4ε

n−1

∑
k=0

∣∣∣∣xk+1− xk

∆τ
− f (xk,τk)

∣∣∣∣2
)

δ (Φ(xn)−ξB) .

We are interested in the likelihood ratio of forward and backward paths. To this end we
introduce P̃n(x) = Pn(x̃) as the distribution of the reversed paths x̃ = {xn,xn−1, . . . ,x0} ⊂
X with xn ∼ ρ(·|ξB). By the smoothness of f , the forward measure Pn has a density
with respect to P̃n that is is given in terms of their Radon-Nikodym derivative,

ψn(x) = exp
(
ε
−1(∆V +Wn(x))

)
exp
(
−ε
−1

∆F
)
. (6)

Here ∆V =V (xn)−V (x0) and

Wn(x) =
1
2

n−1

∑
k=0

(xk+1− xk) · ( f (xk,τk)+ f (xk+1,τk+1))+O(|∆τ|)

is the Stratonovich approximation of the stochastic work integral, i.e.,

lim
n→∞

Wn(x) =−∆V +
∫ 1

0
g(Xτ ,τ)◦dXτ (∆τ → 0, n∆τ = 1) .

The free energy difference in (6) pops up as a boundary term, exp(−ε−1∆F) = ZB/ZA,
with ZA and ZB normalizing the conditional distributions for forward and backward
paths. Upon noting that both Pn and P̃n are probability measures, (6) entails (4) as n→∞.



AN INFINITE-DIMENSIONAL LANGEVIN SAMPLER

Now comes our main result: To evaluate the expectation in (4) we have to generate the
ensemble of bridge paths. For this purpose we introduce the auxiliary potential

ϕ = ∆τ
−1V (x0)+

1
4

n−1

∑
k=0

∣∣∣∣xk+1− xk

∆τ
+ f (xk,τk)

∣∣∣∣2 +∆τ
−1

ε (ln |∇Φ(x0)|+ ln |∇Φ(xn)|) ,

so that exp(−ε−1∆τϕ) is the density of Pn with respect to the surface element on the
image space Σ = {x ∈X n+1 : Φ(x0) = ξA, Φ(xn) = ξB} ⊂X n+1 of admissible paths.
Conversely, exp(−ε−1∆τϕ) is the stationary distribution of the Langevin equation [4]

dQs =−
(
∇ϕ(Qs)+∇σ(Qs)λ

T)ds+
√

2ε∆τ−1dWs , σ(Qs) = 0 (7)

where Qs = (q0(s), . . . ,qn(s)) and λ = (λ1,λ2) labels the Lagrange multipliers deter-
mined by the constraint σ = 0, the latter being shorthand for Φ(q0)= ξA and Φ(qn)= ξB.

Using formal arguments (that can be made rigorous using Girsanov’s theorem), we
can take the limit n→ ∞ which turns the Langevin sampler (7) into a stochastic partial
differential equation (SPDE) for bridge paths [5]. If we denote the continuous path by
γ = γ(τ,s) with τ ∈ [0,1] now being the “spatial” variable, our SPDE reads

∂γ

∂ s
=

1
2

∂ 2γ

∂τ2 −
1
2
(∇ f f + ε∇(∇ · f ))+

√
2ε

∂W
∂ s

∀(τ,s) ∈ [0,1]× (0,∞)

Φ(γ) = ξA ,

(
∂γ

∂ s

)‖
= (2ε Sn− f )‖ ∀(τ, t) ∈ {0}× (0,∞)

Φ(γ) = ξB ,

(
∂γ

∂ s

)‖
= ( f −2ε Sn)‖ ∀(τ, t) ∈ {1}× (0,∞)

γ = γ0 ∀(τ,s) ∈ [0,1]×{0}

(8)

where ∂W/∂ s is space-time white noise and we have introduced the various shorthands:
n = ∇Φ/|∇Φ| for the unit normal to the level sets {Φ(x) = ξ}, f ‖ = (I− n⊗ n) f for
the vector field f tangent to the level sets, and S = ∇2Φ/|∇Φ| for the shape operator
(second fundamental form) of {Φ(x) = ξ} understood as a submanifold of X .

Note that although γ lives in X ⊆ Rd , which may be high-dimensional, its two argu-
ments are scalar variables (namely, arc length τ and time s). Methods for numerically
solving SPDEs such as (8) are discussed in, e.g., [6].
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