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Abstract.

We derive a Crooks-Jarzynski-type identity for computing free energy differences between
metastable states that is based on nonequilibrium diffusion processes. Furthermore we outline a
brief derivation of an infinite-dimensional stochastic partial differential equation that can be used to
efficiently generate the ensemble of trajectories connecting the metastable states.

Keywords: Conditional free energy, fluctuation theorem, rare events, diffusion bridge
PACS: 02.50.Ga, 05.10.Gg, 05.70.Ln, 65.40.gh

INTRODUCTION

Given a system assuming states x € 2~ C R with the energy V (x), the free energy at
temperature € > 0 as a function of a scalar reaction coordinate ®(x) is defined as

F(E) = —sln/% exp(—e 'V (x))8(D(x) — )dx. (1)

Given that x € 2~ follows the Boltzmann distribution p o exp(—&~'V), the free en-
ergy is just the marginal distribution in ®(x). However estimating the marginal numeri-
cally from samples of p may be prohibitively expensive, e.g., when V has large barriers
in the direction of ®. Therefore we dismiss this option and propose a different scheme
that employs realizations of the overdamped Langevin equation

dX; = f(X¢,7)dT+V2€dW;, 1€]0,T] )
subject to the boundary conditions (see Fig. 1)
CI)(X()) = éA and CD(XT) = §B~ (3)

The vector field f(x,7) = —VV(x) 4 g(x,7) is assumed to be smooth with the time-
dependent part g being such that the process hits the level set {®(x) = &g} at time T;
without loss of generality we set 7 = 1.

As we will demostrate below, the free energy difference AF = F(Eg) — F(E4) can be
computed as the weighted average (cf. [1, 2, 3])

AF = —elnE [exp (—8_1 /lg(Xr,T) ode>} 4)
0
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where “o” means integration in the sense of Stratonovich and E[-] denotes the expecta-
tion over all (bridge) paths that solve the conditioned Langevin equation (2)—(3).



FIGURE 1. Boundaries of metastable states A and B as level sets of the reaction coordinate ®.

DERIVATION: EULER’S METHOD

Our derivation of (4) is based on the discrete Euler-Maruyama approximation of (2),
Xk+1:Xk+ATf(Xk7Tk)+ V28Afnk+17 k=0,....,n—1. (5)

Here At = 1/n and ny ~ .47(0,1) are i.i.d. distributed Gaussian random variables.

We call P, (x) = Prob [Xy = x0,X] = x1,...,X, = x,] the joint distribution of the path
x = {x0,x1,...,%,} C Z . Assuming that the xo follow the Boltzmann distribution p
conditional on ®(xp) = &y, the distribution of the paths is readily shown to be

At "] Xk41 — Xk 2
Py, (x) o< p(x0|&a) exp ~ e k;) - SlweT)] | 8(P0n) — &) -

We are interested in the likelihood ratio of forward and backward paths. To this end we
introduce P, (x) = P, (%) as the distribution of the reversed paths ¥ = {x,,,x,—1,...,X0} C
2" with x, ~ p(-|Eg). By the smoothness of f, the forward measure P, has a density

with respect to P, that is is given in terms of their Radon-Nikodym derivative,
W, (x) = exp (871(AV+Wn(x))) exp (—e’IAF) . (6)
Here AV =V (x,) —V(xp) and

1}1—1

Wa(x) = 5};}(%“ —xz) - (f o, ) + f (k15 Ty 1)) + O(|AT])

is the Stratonovich approximation of the stochastic work integral, i.e.,

n—oo

1
limW,,(x):—AV+/ e(Xe,7)0dX: (AT —0,nAT=1).
0

The free energy difference in (6) pops up as a boundary term, exp(—&~'AF) = Zp/Z4,
with Z4 and Zp normalizing the conditional distributions for forward and backward
paths. Upon noting that both P, and P,, are probability measures, (6) entails (4) as n — oo.



AN INFINITE-DIMENSIONAL LANGEVIN SAMPLER

Now comes our main result: To evaluate the expectation in (4) we have to generate the
ensemble of bridge paths. For this purpose we introduce the auxiliary potential

2
X
0 =At 'V (xo)+- Z k“ + f(x, )| +AT e (In|VP(xp)| +1In |[VD(x,)])

so that exp(—£~'AT@) is the density of P, with respect to the surface element on the
image space £ = {x € 27" ®(xy) = &4, P(x,) = Ep} € Z"H! of admissible paths.
Conversely, exp(—&~'At@) is the stationary distribution of the Langevin equation [4]

dQ; = — (Vo(Qy) + Vo (Qs)AT) ds+V2eAt—1dW,, o(Qs)=0 (7)

where Qs = (qo(s),--.,qn(s)) and A = (A,A,) labels the Lagrange multipliers deter-
mined by the constraint ¢ = 0, the latter being shorthand for ®(gg) = 4 and ®(g,) = Ep.

Using formal arguments (that can be made rigorous using Girsanov’s theorem), we
can take the limit n — oo which turns the Langevin sampler (7) into a stochastic partial
differential equation (SPDE) for bridge paths [5]. If we denote the continuous path by
y = v(t,s) with T € [0, 1] now being the “spatial” variable, our SPDE reads

dy 19%y 1

9 20w 2l
I

o=t (57) =Cesi-n (w0 e 0} x(0.)

VIS V(Y1) +VEE DY (z) € [0,1] % (0,%)

®)

|
=&, (57) =r-2e50) virne (1} x(0.2)

Y=mn V(r,5)€[0,1]x{0}

where dW /ds is space-time white noise and we have introduced the various shorthands:
n = V®/|V®d| for the unit normal to the level sets {®(x) = £}, fl = (I —n@n)f for
the vector field f tangent to the level sets, and S = V2>®/|V®| for the shape operator
(second fundamental form) of {®(x) = &} understood as a submanifold of 2.

Note that although ¥ lives in .2~ C R¢, which may be high-dimensional, its two argu-
ments are scalar variables (namely, arc length 7 and time s). Methods for numerically
solving SPDEs such as (8) are discussed in, e.g., [6].
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