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Abstract: Rare but important transition events between long lived states are a key feature1

of many molecular systems. In many cases the computation of rare event statistics by direct2

molecular dynamics (MD) simulations is infeasible even on the most powerful computers3

because of the immensely long simulation timescales needed. Recently a technique for4

spatial discretization of the molecular state space designed to help overcome such problems,5

so-called Markov State Models (MSMs), has attracted a lot of attention. We review the6

theoretical background and algorithmic realization of MSMs and illustrate their use by some7

numerical examples. Furthermore we introduce a novel approach to using MSMs for the8

efficient solution of optimal control problems that appear in applications where one desires9

to optimize molecular properties by means of external controls.10

Keywords: rare events; Markov state models; long timescales; optimal control11

1. Introduction12

Stochastic processes are widely used to model physical, chemical or biological systems. The goal is13

to approximately compute interesting properties of the system by analyzing the stochastic model. There14

are mainly two options for performing this analysis: (1) Direct or accelerated sampling of the process15

and (2) the construction of a discrete coarse grained model of the system. In a sampling approach,16

one tries to generate a statistically significant amount of events that characterize the property of the17

system one is interested in. For this purpose, computer simulations of the model are a powerful tool.18

For example, an event could refer to the transition between two well-defined macroscopic states of the19

system. In chemical applications such transitions can often be interpreted as reactions, or in the context20



Version June 2, 2013 submitted to Entropy 2 of 27

of a molecular system as conformational changes. Interesting properties are e.g. average waiting times21

for such reactions or conformational changes and along which pathways the transitions typically occur.22

The problem with a direct sampling approach is that many interesting events are so called rare events.23

Therefore the computational effort for generating sufficient statistics for reliable estimates is very high,24

and, particularly if the state space is continuous and high dimensional, estimation by direct numerical25

simulation is infeasible. Accelerated sampling tries to overcome this problem but cannot be applied in26

general.27

Available techniques for rare event simulations in continuous state space are discussed in [1]. In this28

article, we will discuss approach (2) to the estimation of rare event statistics via discretization of the29

state space of the system under consideration. That is, instead of dealing with the computation of rare30

events for the original, continuous process, we will approximate them by a so-called Markov State Model31

(MSM) with discrete finite state space. The reason is that for such a discrete model one can numerically32

compute many interesting properties without simulation, mostly by solving linear systems of equations33

as in discrete transition path theory (TPT) [2]. We will see that this approach, called Markov State34

Modelling, avoids the combinatorial explosion of the number of discretization elements with increasing35

size of the molecular system in contrast to other methods for spatial discretization.36

The actual construction of an MSM requires to sample certain transition probabilities of the37

underlying dynamics between sets. The idea is (1) to choose the sets such that the samling effort is much38

lower than the direct estimation of the rare events under consideration, and (2) to compute all interesting39

quantities for the MSM from its transition matrix, cf. [2,3]. There are many examples for the successful40

application of this strategy. In [4], for example, it was used to compute dominant folding pathways for41

the PinWW domain in explicit solvent. However, we have to make sure that the Markov State Model42

approximates the orginial dynamics well enough. For example, the MSM should correctly reproduce43

the timescales of the processes of interest. These approximation issues have been discussed since more44

than a decade now [5,6]; in this article we will review the present state of research on this topic. In45

the algorithmic realization of Markov State Modelling for realistic molecular systems the transition46

probabilities and the respective statistical uncertainties are estimated from short MD trajectories only, cf.47

[7]. This makes Markov State Modelling applicable to many different molecular systems and processes,48

cf. [8–13].49

In the first part of this article we will discuss the approximation quality of two different types of50

Markov State Models that are defined with respect to a full partition of state space or with respect to51

so-called core sets. We will also discuss the algorithmic realization of MSMs and provide references52

to the manifold of realistic applications to molecular systems in equilibrium that are available in the53

literature today.54

The second part will show how to use MSMs for optimizing particular molecular properties. In this55

type of application one wants to steer the molecular system at hand by external controls in a way such56

that a pre-selected molecular property is optimized (minimized or maximized). That is, one wants to57

compute a specific external control from a family of admissible controls that optimizes the property of58

interest under certain side conditions. The property to be optimized can be quite diverse: For example,59

it can be (1) the population of a certain conformation that one wants to maximize under a side condition60

that limits the total work done by the external control or (2) the mean first passage time to a certain61
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conformation that one wants to minimize (in order to speed up a rare event) but under the condition62

that one can still safely estimate the mean first passage time of the uncontrolled system. The theoretical63

background of case (1) has been considered in [14], for example, and of case (2) in [1,15]. There one64

finds the mathematical problem that has to be solved in order to compute the optimal control. Here we65

will demostrate that one can use MSMs for the efficient solution of such a mathematical problem (for66

both cases). We will see that the spatial discretization underlying an MSM turns the high-dimensional67

continuous optimal control problem into a rather low-dimensional discrete optimal control problem of68

the same form that can be solved efficiently. Based on these insights, MSM discretization yields an69

efficient algorithm for solving the optimal control problem whose performance we will outline in some70

numerical examples including an application to Alanine dipeptide.71

2. MSM Construction72

Let (Xt)t≥0 be a time-continuous Markov process on a continuous state space E, e.g. E ⊂ R
d.73

That is, Xt is the state of the molecular system at time t as resulting from any usually used from74

of molecular dynamics simulation, be it based on Newtonian dynamics with thermostats or resulting75

from Langevin dynamics or other diffusion molecular dynamics models. The idea of Markov State76

Modelling is to derive a Markov chain (X̂k)k∈N on a finite and preferably small state space Ê = {1, ..., n}77

that models characteristic dynamics of the continuous process (Xt). For example, in molecular78

dynamics applications such characteristic dynamics could refer to protein folding processes [16,17],79

conformational rearrangements between native protein substates [18,19], or ligand binding processes80

[20]. Since the approximating Markov chain (Xk)k∈N lives on a finite state space, the construction of an81

MSM boils down to the computation of its transition matrix P82

Pij = P[X̂k+1 = j|X̂k = i]. (1)

The main benefit is that for a finite Markov chain one can compute many interesting dynamical83

properties directly from its transition matrix, e.g. timescales and metastability in the system [5,21,22], a84

hierarchy of important transition pathways [2], or mean first passage times between selected states. With85

respect to na MSM, these computations should be used afterwards to answer related questions for the86

original continuous process. To do this we must be able to link the states of the Markov chain back to87

spatial information of the original process and the approximation of the process (Xt) by the MSM must88

be valid in some sense.89

Having this in mind the first natural idea is to let the states of an MSM correspond to sets A1, ..., An ⊂

E in continuous state space that form a full partition, i.e.

Ai ∩ Aj = ∅ for i �= j,

n�

i=1

Ai = E. (2)

Typical choices for such sets are box discretizations or voronoi tesselations [23]. For such a full partition90

it is trivial to also define a corresponding discretized process by the original switching dynamics between91

the sets. For a given lag time τ > 0, we can define the index process92

X̃k = i ⇔ Xkτ ∈ Ai. (3)
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It is well known that this process is not Markovian, mainly due to the so called recrossing problem.93

It refers to the fact that the original process typically crosses the boundary between two sets Ai and Aj94

several times when transitions take place, as illustrated in Fig. 1. This results in cumulative transitions95

between indices i and j for the index process, that is, a not memoryless transition behavior.96

Figure 1. Cumulative transitions between two sets along boundaries are typical.

A1

A2

The non-Markovianity of the index process is often seen as a problem in Markov State Modeling97

because many arguments assume that X̃k is a Markov process. In this article, we will not make this98

assumption. We interpret the process (X̃k) as a tool to construct the following transition matrix P
τ

99

P
τ
ij = P[X̃k+1 = j|X̃k = i] = P[X(k+1)τ ∈ Aj|Xkτ ∈ Ai] (4)

and hence the MSM as the Markov chain (X̂k)k∈N associated with this transition matrix. From above100

it is clear that in general we have X̂k �= X̃k and in[24] it was analyzed how these two processes101

relate in terms of density propagation. In the following, we will show under which assumptions and102

in which sense the MSM (X̂k) will be a good approximation of the original dynamics given by (Xt). For103

convenience we will usually write P
τ ≡ P and leave the τ -dependence implicit.104

3. Analytical Results105

In order to compare the MSM to the continuous process we introduce one of the key objects for our
analysis, the transfer operator of a Markov process. We assume that the Markov process (Xt) has a
unique, positive invariant probability measure µ and that it is time-reversible. Then, for any time-step
t ≥ 0 we define the transfer operator Tt via the property

�

A

Ttv(y)µ(dy) =

�

E

v(x)p(t, x, A)µ(dx) for all measurable A (5)

as an operator Tt : L
2(µ) → L

2(µ). Here, p(t, x, A) = P[Xt ∈ A|X0 = x] defines the transition
probability measure and L

2(µ) denotes the Hilbert space of functions v with
�

E

v(y)2µ(dy) ≤ ∞ (6)

and the scalar product

�v, w� =

�

E

v(y)w(x)µ(dy). (7)
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Note that Tt is nothing else than the propagator of densities under the dynamics, but the densities
are understood as densities with respect to the measure µ. That is, if the Markov process is initially
distributed according to

P[X0 ∈ A] =

�

A

v0(x)µ(dx), (8)

its probability distribution at time t is given by

P[Xt ∈ B] =

�

B

vt(x)µ(dx), vt = Ttv0. (9)

The benefit of working with µ-weighted densities is that the transfer operator Tt becomes essentially
self-adjoint on L

2(µ) for all cases of molecular dynamics satisfying some form of detailed balance
condition. Hence, it has real eigenvalues and orthogonal eigenvectors with respect to (7) (or at least
the dominant spectral elements are real-valued). Moreover, the construction of an MSM can be seen
as a projection of the transfer operator [25] . Assume Q is an orthogonal projection in L

2(µ) onto an
n-dimensional subspace D ⊂ L

2(µ) with 1 ∈ D, and χ1, ..., χn is a basis of D. Then, the so called
projected transfer operator QTτQ : D → D has the matrix representation

PQ = PM
−1
, (10)

with the non-negative, invertible mass matrix M ∈ Rn,n with entries

Mij =
�χi, χj�

�χi,1�
. (11)

The matrix P ∈ Rn,n is also non-negative and has entries

Pij =
�χi, Tτχj�

�χi,1�
. (12)

Full Partition MSM. If we choose χi = 1Ai to be the characteristic function of set Ai for i = 1, ..., n,
one can easily check that we get M = I to be the identity matrix and

Pij = Pµ[Xτ ∈ Aj|X0 ∈ Ai] (13)

as in (4). The subscript µ shall indicate that X0 ∼ µ. So the transition probabilities are evaluated along106

equilibrium paths.107

The previously constructed transition matrix of the MSM based on a full partition can be interpreted
as a projection onto a space of densities which are constant on the partitioning sets. This interpretation
of an MSM is useful since it allows to analyze its approximation quality. For example, in [25,26] it
is proven that we can reproduce an eigenvalue λ of a self-adjoint transfer operator Tt by the MSM by
choosing the subspace appropriately. That is, if u is a corresponding normalized eigenvector, Q the
orthogonal projection to a subspace D with 1 ∈ D, then there exists an eigenvalue λ̂ of the projected
transfer operator QTtQ with

|λ− λ̂| ≤ λ1δ(1− δ
2)−

1
2 ,

where λ1 < 1 is the largest non-trivial eigenvalue of Tt and δ = �u−Qu�.108
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In particular, for δ ≤ 3
4 one can simplify the equation to

|λ− λ̂| ≤ 2λ1δ. (14)

109

An eigenvalue λi of the transfer operator directly relates to an implied timescales Ti of the system via

Ti = −
τ

log(λi)
. (15)

So the transition matrix (4) that we construct from transitions between the sets A1, ..., An will generate110

a Markov chain that will reproduce the original timescales well if the partitioning sets are chosen such111

that the corresponding eigenvectors are almost constant on these sets. In this case δ = �u−Qu�, that is112

the approximation error of the eigenvector by a piecewise constant function on the sets will be small.113

The projection error δ depends on our choice of the discretizing sets. As an example let us consider a
diffusion in the potential that is illustrated in Fig. 2, that is, the reversible Markov process given by the
stochastic differential equation

dXt = −∇V (Xt)dt+
√
2εdBt, (16)

where V is the potential, Bt denotes a Brownian motion and ε > 0.114

Figure 2. A potential with three wells and a choice of 3 sets A1, A2, A3.
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The figure also shows a choice of three sets that form a full partition of state space. The computation
of the transition matrix (4) for σ = 0.7 and a lag time τ = 1 yields

PQ = P =




0.9877 0.0123 0.0000

0.0420 0.9160 0.0419

0.0000 0.0123 0.9877





that has three eigenvalues λ0 = 1, λ1 = 0.9877, λ2 = 0.9037. The following table shows the two115

resulting implied timescales (15) in comparison to the timescales of the original system.116

T1 T2

original 103.7608 11.9566

full partition 3 sets 80.6548 9.8784

117
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As one can see, the timescales are strongly underestimated. This is a typical phenomenon. From a118

statistical point of view, the recrossing problem will lead to cumulatively appearing transition counts119

when one computes the transition probabilities Pµ[Xτ ∈ Aj|X0 ∈ Ai] from a trajectory (Xt), as120

discussed above. Therefore on average transitions between sets seem to become too likely and hence121

the processes in the coarse grained system get accelerated. We have seen in (14) that this cannot happen122

if the associated eigenvectors can be approximated well by the subspace that corresponds to the MSM.123

Fig. 3 shows the first non-trivial eigenvector u1 belonging to the timescale T1 = 103.7608 and its124

best-approximation by a step function.125

Figure 3. The first non-trivial eigenvector u1 (solid blue) and its projection Qu1 (dashed red)
onto step functions that are constant on A1, A2, A3.
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The eigenvector is indeed almost constant in the vicinity of the wells, but within the transition region126

between the wells the eigenvector is varying and the approximation by a step function is not accurate.127

So we have two explanations why the main error is introduced in the region close to shared boundaries128

of neighboring sets: (1) because of recrossing issues and (2) because of the main projection error of the129

associated eigenvector. Of course, one solution would be an adaptive refinement of the discretization,130

that is, one could choose a larger number of smaller sets such that the eigenvector is better approximated131

by a step function on these sets. In the following section, we will present an alternative solution for132

overcoming the recrossing problem and reducing the projection error without refining the discretization.133

4. The Core Set Approach134

From (10) we know how to compute a matrix representation for a projected transfer operator for an
arbitrary subspace D ⊂ L

2(µ). For a given basis χ1, ..., χn we have to compute (11) and (12), so

Mij =
�χi, χj�

�χi,1�
, Pij =

�χi, Tτχj�

�χi,1�
. (17)

In general, the evaluation of these scalar products for arbitrary basis functions is a non-trivial task. On135

the other hand, we have seen that for characteristic functions χi = 1Ai on a full partition we do not136

have to compute the scalar products numerically since the matrix entries have a stochastic interpretation137

in terms of transition probabilities between sets (13). This means they can be directly estimated from138
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a trajectory of the process which is a strong computational advantage, particularly in high dimensional139

state spaces.140

Now, the question is if there is another basis than characteristic functions that a) is more adapted141

to the eigenvectors of the transfer operator, and b) still leads to a probabilistic interpretation of the142

matrix entries (17) such that scalar products never have to be computed. The basic idea is to stick to a143

set-oriented definition of the basis, but to relax the full partition constraint. We will define our basis with144

respect to so called core sets C1, ..., Cn ⊂ E that are still disjoint, so Ci∩Cj = ∅, but they do not have to145

form a full partition. Figure 4 suggests that this could lead to a reduction of the recrossing phenomenon146

since the sets do not share boundaries anymore.147

Figure 4. Core sets do not have to share boundaries anymore. This can reduce the recrossing
effect.

C1

C2

Now, we use the core sets to define our basis functions χ1, ..., χn. Assume Tτ is again a self-adjoint148

transfer operator and consider n core sets C1, ..., Cn. For every i, take the committor function χi of the149

process with respect to core set Ci, that is, χi(x) denotes the probability to hit the core set Ci next rather150

than the other core sets when starting the process in x. If we now study the the projection Q onto the151

space spanned by these committor functions, the two following properties hold [25,27].152

(P1) The matrices M and P in (10) can be written as

Mij = Pµ[X̃
+
k = j|X̃

−
k = i], Pij = Pµ[X̃

+
k+1 = j|X̃

−
k = i], (18)

where (X̃+
k ) and (X̃−

k ) are forward and backward milestoning processes [25,28], that is, X̃−
k = i153

if the process came at time t = kτ last from core set Ci and X̃
+
k = j if the process went next to154

core set Cj after time t = kτ .155

(P2) Let ui be an eigenvector of Tτ that is almost constant on the core sets. Let the region C = E\
�

i Ci156

that is not assigned to a core set be left quickly enough, so Ex[τ(Cc)] � Ti for all x ∈ C, where Ti157

is the timescale associated with ui and Ex[τ(Cc)] is the expected hitting time of Cc =
�

i Ci when158

starting in x ∈ C. Then, �ui − Qui� is small, so the committor approximation to the eigenvector159

is accurate.160

The message behind (P1) is that it is possible to relax the full partition constraint and use a core set161

discretization that does not cover the whole state space. We can still define a basis for a projection of162

the transfer operator that leads to a matrix representation that can be interpreted in terms of transition163

probabilities.164
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Important remark: The construction of the projection onto the committors is only necessary for165

theoretical purposes. In practice, neither the committor functions, nor scalar products between the166

committors have to be computed numerically, since the matrix entries of M and P can be estimated167

from trajectories again.168

169

Property (P2) yields that the relaxation of the full partition constraint should also lead to an170

improvement of the MSM if the region C between the core sets is typically left on a faster timescale171

than the processes of interest take place. Let us get back to the example from above. We will see that we172

can achieve a strong improvement of the approximation by simply excluding a small part of state space173

from our discretiazion. In Figure 5 we have turned our initial full partition into a core set discretization174

by removing parts of the transition region between the wells.175

Figure 5. Excluding a small region of state space from the sets A1, A2, A3 as in Fig. 2 to
form core sets C1, C2, C3 that do not share boundaries anymore.
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The matrix PQ = PM
−1 that represents the projection QTτQ of the transfer operator onto the176

committor space associated with the core sets is given by177

PQ =




0.9897 0.0103 0.0000

0.0352 0.9298 0.0351

0.0000 0.0103 0.9897





Comparing to the MSM for the full partition one can see that transitions between indices i and j, i �= j are178

less likely. As the following table shows this leads to a far more accurate reproduction of the timescales179

in the system.180

T1 T2

original 103.7608 11.9566

3 core sets 100.8066 11.9145
full partition 3 sets 80.6548 9.8784

181

From the discussion above this has to be expected because the eigenvectors are almost constant in182

the vicinity of the wells and we removed a part of state space from the discretization that is typically183
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left quickly compared to the timescales T1 and T2. So, the committor functions should deliver a good184

approximation of the first two eigenvectors. Figure 6 underlines this theoretical result.185

Figure 6. Upper panel: The first non-trivial eigenvector u1 (solid blue) and its projection
Qfu1 (finely dashed red) onto stepfunctions (full partition) and its projection Qcu1 (dashed
green) onto committors (core sets). Lower panel: The same plot for the second non-trivial
eigenvector u2.
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5. Practical Considerations and MD Applications186

In the previous sections we have interpreted the construction of an MSM as projection of the dynamics
onto some finite dimensional ansatz space. We have discussed two types of spaces that both have
been defined on the basis of a set discretization. First, we chose a full partition of state space and
the associated space of step functions, and second we analyzed a discretization by core sets and the
associated space spanned by committor functions. These two methods have the advantage that the
resulting projections lead to transition matrices for the MSM with entries that are given in terms of
transition probabilities between the sets. That is, one can compute estimates for the transition matrices
from simulation data. This is an important property for practical applications because it means that we
never need to compute committor functions, or scalar products between committors or step functions.
We rather generate trajectories x0, x1, ...xN of the process (Xt), let us say for a time step h > 0, so
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xi = Xhi. For example, we can then define for a full partition A1, ..., Am and a lag time τ = nh the
discrete trajectory sk = i ⇔ xk ∈ Ai and compute the matrix P̂

P̂ij =
Cij�
j
Cij

, Cij =
N−n�

k=0

1{sk=i}1{sk+n=j}. (19)

It is well-known [29] that P̂ is a maximum likelihood estimator for the full partition MSM transition
matrix (4). Similarly one can also compute estimates for a core set MSM by using the definition of
milestoning processes [27,28]. That is, if we have core sets C1, ..., Cm, a lag time τ = nh as before, and
we define discrete milestoning trajectories by

s
−
k = i ⇔ xk ∈ Ai or came last from Ai before time k

s
+
k = i ⇔ xk ∈ Ai or went next to Ai after time k,

we can compute an estimator P̂Q = P̂ M̂
−1 of the core set MSM matrix (10) by counting transitions:

P̂ij =
Cij�
j
Cij

, Cij =
N−n�

k=0

1{s−k =i}1{s+k+n=j}, (20)

M̂ij =
Nij�
j
Nij

, Nij =
N�

k=0

1{s−k =i}1{s+k =j}. (21)

Since in practice we will only have a finite amount of data available, we will have statistical errors187

when constructing an MSM. This is an additional error to the projection error related to the discretization188

that we have discussed above. On the other hand, one should note that these errors are not independent189

of each other. For example, it is clear that if we take a full partition of state space and we let the partition190

become arbitrarily fine by letting the number of sets go to infinity, the discretization error will vanish. At191

the same time, for a fixed amount of statistics, the statistical error will become arbitrarily large because192

we will need to compute more and more estimators for transition events between the increasing number193

of sets. For more information on statistical errors we refer to the literature [29,30].194

Besides the choice of discretization and the available statistics, the estimates above also depend on a
lag time τ . This dependence can be used to validate an MSM by a Chapman Kolmogorov test [29]. This
is based on the fact that the MSM matrices approximately form a semi-group for all large enough lag
times τ > τ

∗, although for small lag times this is typically not true due to memory effects. These facts
also motivate to look at something like an infinitesimal generator that approximately generates these
MSM transition matrices for large enough lag times. In [27], two types of generator constructions have
been compared for a core set setting. The first generator K is simply constructed from the transition
rates between the core sets in the milestoning sense, that is

Kij = lim
T→∞

N
T
ij

R
T
i

, i �= j Kii = −

�

j �=i

Kij, (22)

where N
T
ij is the amount of time in [0, T ] the process has spent on its way from core set Ci to Cj , and

R
T
i is the total time in [0, T ] the process came last from Ci. On the other hand, one can see [27,31] that
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K
∗ = KM

−1 with the mass matrix M from above (18) can be interpreted as a projection of the original
generator of the process, and also as derivative of the core set MSM from above, i.e.

K
∗ = lim

τ→0

PM
−1 − I

τ
, (23)

where P depends on τ (17).195

Let us now analyze how the choice of core sets, particularly the size of the core sets, influences the196

resulting approximation. Therefore, we consider an MD example that was discussed in [27], namely197

one molecule of alanine dipeptide monitored via its φ and ψ backbone dihedral angles. Two core sets198

are defined as balls with radius r around the two points with angular coordinates xα = (−80,−60) and199

xβ = (−80, 170). The stationary distribution of the process and the two centers of the core sets xα, xβ200

in the angular space are shown in Fig. 7.201

Figure 7. The stationary distribution of alanine dipeptide and the two centers of the core sets
xα, xβ in the angular space as white dots.

For computing a reference timescale several MSMs based on full partitions using 10,15, and 250 sets202

have been constructed for increasing lag times. In [27], it is shown that in each setting the estimate for203

the longest implied timescale of the process converged to ≈ 19 ps for large enough τ . Now the implied204

timescales for the two different generators K (22) and K
∗ (23) are computed. In Fig. 8, the resulting205

timescales are plotted against the reference timescale ≈ 19 ps for varying size of the core sets.206

One can see that the estimate by the milestoning generator K is rather sensitive to the size of core207

sets. It overestimates the timescales for small core sizes and underestimates it for larger core sizes. On208

the other hand, the projected genetator K∗ can never overestimate the timescale due to its interpretation209

as projection. It is also rather robust against the choice of size of the core sets until the core sets become210

too large, e.g. r > 15. Then, the discretization becomes close to a full partition discretization using only211

two sets. In this case the timescales have to be underestimated heavily because of recrossing phenomena.212

On the other hand, the underestimation for very small core sets has to be explained by a lack of statistics.213

When the core sets are chosen arbitrarily small, it is clearly more difficult for the process to hit the sets214

and therefore transition events become rare. Note that for the straightforward milestoning generator K215

the processes seem to become very slow, but for the projected generator K∗ = KM
−1 this effect is216

theoretically corrected by the mass matrix M . Nevertheless, in both cases the generation of enough217

statistics will be problematic for too small core sets.218
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Figure 8. Estimate of the implied timescales from K (22), the projected generator K∗ (23)
and the reference computed from several full partition MSMs.
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Further Applications in MD. Markov State Modelling has been show to apply successfully to many219

different molecular systems like peptides including time-resolved spectroscopic experiments [10–12],220

proteins and protein folding [4,9,13], or DNA [32]. In most of the respective publications full partition221

MSMs are used and the underlying dicretization is based on cluster finding methods, see [29] for a222

review. Core set based approaches have been used just recently [10,27].223

6. MSM for Optimal Control Problems224

In this section we will borrow ideas from the previous section and explain how MSMs can be used to
discretize optimal control problems that are linear-quadratic in the control variables and which appear in
e.g. sampling of rare events. Specifically, we consider the case that (Xt)t≥0 is the solution of

dXt = (
√
2ut −∇V (Xt))dt+

√
2εdBt , (24)

with potential V , Brownian motion Bt and temperature ε > 0 as in (16) and an unknown control variable
u : [0,∞) → Rd that is chosen so as to minimize the cost function

J(u; x) = E
�� τ

0

�
f(Xs) +

1

2
|ut|

2

�
ds

����X0 = x

�
. (25)

(The factors of 1/2 and
√
2 in front of the control terms are for notational convenience.) Here f ≥ 0225

is a bounded continuous function called running cost and τ < ∞ (a.s.) is a random stopping time that226

is determined by Xt hitting a given target set A ⊂ E, i.e. τ = inf{t > 0: Xt ∈ A}, in other words,227

we are interested in controlling Xt = X
u
t until it reaches A. As an example, consider the case f = 1228

and A = C1 with the potential considered in Figure 5, which amounts to the situation that one seeks to229

minimize the time to reach the core set C1 by tilting the potential towards the target set C1; tilting the230

potential too much is prevented by the quadratic penalization term in the cost functional that grows when231

too much force is applied.232
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Other choices of f in (24) result in alternative applications. One obvious application would be to233

set τ = T to a fixed time and f to the characteristic function of the complement of a conformation set234

C, f = 1E\C . In this case, minimization of J wrt. the control ut would mean maximization of the235

probability to find the system in the conformation C until time T under a penalty on the external work236

done to the system. See [14] for more details on such applications.237

There are other types of cost functions J one might consider, e.g. control until a deterministic finite238

time τ = T is reached, or even τ → ∞, and the construction would follow analogously. For compactness239

we consider here only cost functions as in (25).240

Optimal control and equilibrium expectation values. It turns out that when minimizing J it is
sufficient to consider control strategies that are Markovian and depend only on Xt, i.e. we consider
feedback laws of the form ut = α(Xt) for some smooth function α : E → Rd. Moreover only controls
with finite energy are considered, for otherwise J(u; x) = ∞. For control problems of the form (24)–(25)
the optimal feedback function can be shown to be α

∗(x) = −
√
2∇W where W is the value function or

optimal-cost-to-go [1,15]
W (x) = min

u
J(u; x) (26)

with the minimum running over all admissible Markovian feedback strategies. It can be shown that W
satisfies the following dynamic programming equation of Hamilton-Jacobi-Bellman type (see [33]):

LW (x)− |∇W (x)|2 + f = 0

W |A = 0 ,
(27)

with the second-order differential operator

L = ε∆−∇V · ∇

that is the infinitesimal generator of the process Xt for u = 0. If the value function W is known, it can
be plugged into the equation of motion which then turns out to be of the form

dX
∗
t = −∇U(X∗

t )dt+
√
2εdBt , (28)

with the new potential
U(x) = V (x) + 2W (x) .

The difficulty is that equation (27) is a nonlinear partial differential equation and for realistic high-
dimensional systems it is not at all obvious how to discretize it, employing any kind of state space
partitioning. It has been demonstrated in [14,15] that (27) can be transformed into a linear equation
by a logarithmic transformation. Setting W (x) = −ε log φ(x) it readily follows, using chain rule and
equation (27), that φ solves the linear equation

(L− ε
−1
f)φ = 0

φ|A = 1 .
(29)

The last equation is linear and can be solved by using MSMs as we will show below. Moreover, by the
Feynman-Kac theorem [34], the solution to (29) can be expressed as

φ(x) = E
�
exp

�
−
1

ε

� τ

0

f(Xt)dt

�����X0 = x

�
, (30)
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where Xt solves the control-free equation

dXt = −∇V (Xt)dt+
√
2εdBt .

That is, the optimal control for (24) can be computed by solving (29) which can be done in principle via241

Monte-Carlo approximation of the expected value in (30) if critical slowing down by rare events can be242

avoided.243

Remark. The optimization problem (26) admits an interpretation in terms of entropy minimization:
Let Q = Q

u
x and P = Q

0
x denote the path probability measures of controlled and uncontrolled trajectories

starting at x at time t = 0, and set

Z =

� τ

0

f(Xs) ds,

then it follows that we can write

W (x) = min
Q�P

J(u; x), J(u; x) =

� �
Z + ε log

�
dQ

dP

��
dQ, (31)

where the notation “Q � P ” means that Q has a density1 with respect to P . It turns out that for every
such Q there is exactly one control strategy u such that Q = Q

u
x is generated by (24), in this sense the

notation in (31) is meaningful. The second term

H(Q�P ) = ε

�
log

�
dQ

dP

�
dQ

is the relative entropy or Kullback-Leibler divergence between Q and P . For details on this matter that244

are based on Girsanov transformations for stochastic differential equations we refer to [35] or the article245

[1] in this special issue.246

7. MSM Discretization of Optimal Control Problems247

The basic idea is now to choose a subspace D ⊂ L
2(µ) with basis χ1, . . . , χn as in Markov state248

modelling and then discretize the dynamic programming equation (27) of our optimal control problem by249

projecting the equivalent log transformed equation (29) onto that subspace. As we will see the resulting250

discrete matrix equation can be transformed back into an optimal control problem for a discrete Markov251

jump process (MJP).252

We will do this construction for the full partition case χi = 1Ai and the core set case χi = qi discussed253

earlier. We will see that in both cases, we arrive at a structure-preserving discretization of the original254

optimal control problem where the states of the corresponding MJP will be related to the partition subsets255

Ai. The first case will give us back a well-known lattice discretization for continuous control problems,256

the Markov chain approximation [36]. This is illustrated in the following diagram:257

1That is, the density function dQ/dP exists, is almost everywhere positive and normalized.
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Lφ = �
−1
fφ

SDE

W = minu J(u)

Gφ̂ = �
−1
f̂ φ̂

MJP

Ŵ = minv Ĵ(v)

Linear equation

Control Problem

W = −� log φ Ŵ = −� log φ̂

discretize

D ⊂ V

?

Subspace projection. The key steps for the discretization is that we pick a suitable subspace D ⊂258

L
2(µ) that is adapted to the boundary value problem (29). Specifically, we require that the subspace259

contains the constant function 1 ∈ D and that it gives a good representation of the most dominant260

metastable sets. To this end we choose basis functions χ1, . . . , χn+1 with the following properties:261

(S1) The χi form a partition of unity, that is
�n+1

i=1 χi = 1.262

(S2) The χi are adapted to the boundary conditions in (29), that is χn+1|A = 1 and χi|A = 0 for263

i ∈ {1, . . . , n}.264

Now let Q be the orthogonal projection onto D, and define the matrices

Fij =
�χi, fχj�

�χi,1�
, Kij =

�χi, Lχj�

�χi,1�
.

Now, if φ solves the linear boundary value problem (29), then the coefficients φ̂1, . . . , φ̂n+1 of its finite-
dimensional representation Qφ =

�
j φ̂jχj on the subspace D satisfy the constrained linear system

n+1�

j=1

�
Kij − ε

−1
Fij

�
φ̂j = 0 , i ∈ {1, . . . , n}

φ̂n+1 = 1 ,

(32)

that is the discrete analogue of (29). The discrete solution φ̂ = Qφ is optimal in the sense of being the
best approximation of φ in the energy norm, i.e.,

�φ− φ̂�A = inf
ψ∈D

�φ− ψ�A , (33)

where
�φ�

2
A =

�
φ, (ε−1

f − L)φ
�

is the energy norm on L
2(µ), and the infimum runs over all functions ψ ∈ L

2(µ) that are of the form
ψ(x) =

�
j ψjχj(x) with coefficients ψj ∈ R. This is a standard result about projections of PDEs, see

[37] for details.2 In analogy with equation (14) we can use the above result to get the error estimate

�φ− φ̂�
2
µ ≤

�
1 +

1

δ2
�QAQ

⊥
�
2

�
inf
ψ∈D

�φ− ψ�
2
µ (34)

2By the same argument as in the previous sections A = ε−1f −L is symmetric and positive definite as an operator on the
weighted Hilbert space L2(µ). Moreover �φ�2A = ε−1�φ, fφ�+ ε�∇φ,∇φ�.
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where A = ε
−1
f − L is a shorthand for the operator appearing in (29) and the constant δ > 0 is defined265

such that �v�2A ≥ δ�v�2µ holds for all v ∈ L
2(µ); see [38]. The bottom line of (33) is that discretizing (29)266

via (32) minimizes the projection error measured in the energy norm. Since all functions are µ-weighted,267

the approximation will be good in regions visited with high probability and less good in regions with268

lower probability. The error estimate (34) is along the lines of the MSM approximation result: If we269

switch to the norm on L
2(µ), the function φ̂ = Qφ is still almost the best approximation of φ, provided270

that A leaves the subspace D almost invariant. As was pointed out earlier this is exactly the case when271

the χi are close to the eigenfunctions of A (e.g., when the system is metastable).272

Properties of the projected problem. We introduce now the diagonal matrix Λ with entries Λii =
�

j Fij (zero otherwise) and the full matrix G = K − ε
−1(F − Λ), and rearrange (32) as follows:

n+1�

j=1

�
Gij − ε

−1Λij

�
φ̂j = 0 , i ∈ {1, . . . , n}

φ̂n+1 = 1 ,

(35)

This equation can be given a stochastic interpretation. To this end let us introduce the vector π ∈ Rn+1
273

with nonnegative entries πi = �χi,1� and notice that
�

i πi = 1 follows immediately from the fact that274

the basis functions χi form a partition of unity, i.e.
�

i χi = 1. This implies that π is a probability275

distribution on the discrete state space Ê = {1, . . . , n+1}. We summarise properties of the matrices K,276

F and G, see also [38]:277

(M1) K is a generator matrix of a MJP (X̂t)t≥0 (i.e., K is a real-valued square matrix with row sum zero
and positive off-diagonal entries) with stationary distribution π that satisfies detailed balance

πiKij = πjKji , i, j ∈ Ê

(M2) F ≥ 0 (entry-wise) with πiFij = πjFji for all i, j ∈ Ê.278

(M3) G has row sum zero and satisfies πT
G = 0 and πiGij = πjGji for all i, j ∈ Ê; furthermore there279

exists a constant 0 < C < ∞ such that Gij ≥ 0 for all i �= j if �f�∞ ≤ C. In this case equation280

(35) admits a unique and strictly positive solution φ̂ > 0.281

It follows that if the running costs f are such that (M3) holds, then G is a generator matrix of a MJP
that we shall denote by (X̂t)t≥0, and (35) has a unique and positive solution. In this case the logarithmic
transformation Ŵ = −ε log φ̂ is well-defined. It was shown in [39] that Ŵ can be interpreted as the
value function of a Markov decision problem with cost functional (cf. also [33])

Ĵ(v; i) = E
�� τ

0

�
f̂(X̂s) + k(X̂s, vs)

�
ds

����X̂0 = i

�
(36)

that is minimized over the set of Markovian control strategies v : Ê → (0,∞) subject to the constraint
that the controlled process X̂t = X̂

v
t is generated by G

v where

G
v
ij =

�
v(i)−1

Gijv(j) , i �= j

−
�

j �=i G
v
ij , i = j

(37)
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with stopping time τ = inf{t > 0: X̂t = n+ 1} and running costs

f̂(i) = Λii , k(i, v) = ε

�

j �=i

Gij

�
v(j)

v(i)

�
log

v(j)

v(i)
− 1

�
+ 1

�
. (38)

Properties of the projected problem, cont’d. From [39] we know that the optimal cost

Ŵ (i) = min
v

Ĵ(v; i)

is given by Ŵ = −� log φ̂ where φ̂ solves (35), with the optimal feedback strategy given by v
∗(i) = φ̂i282

(see [33]). We list additional properties:283

(i) The v-controlled system has the unique invariant distribution

π
v = (πv

1 , . . . , π
v
n+1) , π

v
i =

v(i)2πi

Zv

with Zv an appropriate normalization constant; in terms of the value function π
∗ = π

v∗ reads

π
∗ = (π∗

1, . . . , π
∗
n+1) , π

∗
i =

1

Z∗
e
−2ε−1Ŵ (i)

πi.

(ii) G
v is reversible and stationary with respect to π

v, i.e., πv
iG

v
ij = π

v
jG

v
ji for all i, j ∈ Ê.284

(iii) Ĵ admits the same interpretation as (31) in terms of the relative entropy:

Ŵ (i) = min
Q�P

Ĵ(v; i), Ĵ(v; i) =

� �
Ẑ + ε log

�
dQ

dP

��
dQ

where P denotes expectation with respect to the uncontrolled MJP X̂t starting at X̂0 = i, Q
denotes the path measure of the corresponding controlled process with generator Gv and

Ẑ =

� τ

0

f̂(X̂s) ds .

A few remarks seem in order: Item (i) of the above list is in accordance with the continuous setting,
in which the optimally controlled dynamics is governed by the new potential U = V + 2W and has the
stationary distribution µ

∗ ∝ exp(−2�−1
W )µ with µ being the stationary distribution of the uncontrolled

process. Hence the effect of the control on the invariant distribution is the same in both cases. Further
note that optimal strategies change the jump rates according to

G
v∗

ij = Gije
−ε−1(Ŵ (j)−Ŵ (i))

, (39)

that is Ŵ acts as an effective potential as in the continuous case, and the change in the jump rates can be285

interpreted in terms of Kramer’s law for this effective potential.286

This completes our derivation of the discretized optimal control problem, and we now compare it with287

the continuous problem we started with for the case of a full partition of E and a core set partition of E.288

289

290
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8. Markov Chain Approximations and Beyond291

Full partitions. Let E be fully partitioned into disjoint sets A1, . . . , An+1 with centers x1, . . . , xn+1292

and such that An+1 := A, and define χi := χAi . These χi satisfy the assumptions (S1) and (S2) discussed293

in section 7. Since they are not overlapping, F is diagonal, and294

f̂(i) =
1

πi

�

Ai

f(x)µ(x)dx = Eµ[f(Xt)|Xt ∈ Ai] (40)

is just obtained by averaging f(x) over the cell Ai. (40) is also a sampling formula for f̂(i). It follows295

directly that G = K, and in particular (M3) holds for any f . One can show that K has components296

Kij ≈
1

∆ij
e
−β(V (x̄ij)−V (xi)), ∆−1

ij = β
−1 m(Sij)

m(hij)m(Ai)
(41)

if i and j are neighbours (Kij = 0 otherwise). Here m is the Lebesgue measure, and hij , Sij and x̄ij297

are defined as in figure 9. K is the generator of a MJP on the cells Ai and coincides with the so-called298

finite volume approximation of L discussed in [40]. It is reversible with stationary distribution299

πi =

�

Ai

dµ ≈ m(Ai)e
−βV (xi).

Figure 9. The mesh for the full partition.

xi

xj

x̄ij

Sij

Ai

Aj

hij

One can show that the approximation error vanishes for n → ∞. K and π can be computed from the300

potential V and the geometry of the mesh. By inspecting (12) and (13), we see that K is connected to301

the transition matrix P
τ of a full partition MSM with lagtime τ by302

lim
τ→0

1

τ

�
P

τ
ij −Mij

�
= lim

τ→0

1

πi
�χi,

1

τ
(Tτ − 1)χj� =

1

πi
�χi, Lχj� = Kij,

thus K is the generator of the semigroup of transition matrices P τ . Therefore we could obtain K by303

sampling in the same way we obtained P
τ through equation (19) in section 5. This is difficult however304
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due to recrossing problems for small τ , see e.g. [41]. Finally, let us note in passing that we can drastically305

simplify k
v if the cells Ai are boxes of length h. Denote the elementary lattice vectors by en. Then306

k
v(i) =

1

2
|u

v(i)|2 +O(h), u
v
n(i) :=

1
√
2

�

2h
(log v(i+ en)− log v(i− en))

which establishes the connection to the continuous case. But more is true: The whole discrete control307

problem reduces to first order in h to the well-known Markov chain approximation (MCA) [36], which308

allows us to use convergence theory for MCAs to conclude that for n → ∞, optimal control and value309

function of the discrete control problem converge to their continuous counterparts. More details can be310

found in [38].311

Core set partition. Now we choose core sets C1, . . . , Cn+1 with Cn+1 = A and we let χi = qi to be312

the commitor function of the process with respect to Ci as in section 4. These χi satisfy the assumptions313

(S1) and (S2) discussed in section 7. Recall the definition of the forward and backward milestoning314

process X̃±
t from (18). The discrete costs can be written as315

f̂(i) =
1

πi
�qi, f

�

j

qj� =

�
νi(x)f(x)dx = Eµ

�
f(Xt)

���X̃−
t = i

�
(42)

where νi(x) =
qi(x)µ(x)

πi
= P(Xt = x|X̃

−
t = i) is the probability density of finding the system in state316

x given that it came last from i. Hence f̂(i) is the average costs conditioned on the information X̃
−
t = i,317

i.e. Xt came last from Ai, which is the natural extension to the full partition case where f̂(i) was the318

average costs conditioned on the information that Xt ∈ Ai.319

The matrix K = π
−1
i �qi, Lqj� is reversible with stationary distribution320

πi = �qi,1� = Pµ(X̃
−
t = i)

and is related to core MSMs again:321

K = lim
τ→0

1

τ
(P τ

−M)

where P
τ and M are now the matrices for core MSMs as in (18). Formally, K is the generator of the322

P
τ , but these do not form a semigroup since M �= 1, and therefore we cannot interpret K directly as323

e.g. the generator of X̃−
t . Nevertheless, the entries of K are the transition rates between the core sets as324

defined in transition path theory [42]. We can sample P
τ and M using (20) and (21), and because we325

used an incomplete partition, the recrossing problem is removed, and there is no difficulty in sampling326

P
τ for all lagtimes τ and therefore K directly. It is worth noting that F can also be sampled:327

Fij = Eµ

�
f(Xt)χ{X̃+

t =j}

���X̃−
t = i

�

Therefore, as in the construction of core MSMs, we do not need to compute committor functions328

explicitly. Note however that G �= L, there is a reweighting due to the overlap of the qi’s which causes329

F to be nondiagonal. This reweighting is the surprising bit of this discretization. From properties330

(M1)-(M3) from section 7 we see however that G and K are both reversible with stationary distribution331

π. Finally, note that if the cost function f(x) doesn’t satisfy �f�∞ ≤ C from (M3), G will not even be332
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a generator matrix. In this case (32) still has a solution φ̂ which is the bestapproximation to φ, but this333

solution may not be unique, it may not satisfy φ̂ > 0, and we have no interpretion as a discrete control334

problem.335

9. Numerical Results336

9.1. 1D Potential Revisited337

Firstly, we study diffusion in the triple well potential which is presented in Figure 2. This potential338

has three mimima at approximately x0/1 = ±3.4 and x2 = 0. We choose the three core sets Ci =339

[xi − δ, xi + δ] around the minima with δ = 0.2. Take τ to be the first hitting time of C0. We are340

interested in the moment generating function φ(x) = E
�
e
−�−1στ

�
of passages into C0 and the cumulant341

generating function W = � log φ. This is of the form (30) for A = Ci and f = σ a constant function.342

In figure 10a the potential V and effective potential U are shown for β = 2 and σ = 0.08 (solid343

lines), cf. equation (28). One can observe that the optimal control effectively lifts the second and third344

well up which means that the optimal control will drive the system into C0 very quickly. The reference345

computations here have been carried out using a full partition FEM discretization of (29) with a lattice346

spacing of h = 0.01. Now we study the MJP approximation constructed via the committor functions347

shown in Figure 10b. These span a three-dimensional subspace, but due to the boundary conditions348

the subspace D of the method is actually two-dimensional. The dashed line in Figure 10a gives the349

approximation to U calculated by solving (35). We can observe extremely good approximation quality,350

even in the transition region. In Figure 10c the approximation to the optimal control α∗(x) (solid line)351

and its approximation α̂
∗ = −

√
2∇Ŵ (dashed line) are shown. The core sets are shown in blue. We can352

observe jumps in α̂
∗ at the left boundaries of the core sets. This is to be expected and comes from the353

fact that the committor functions are not smooth at the boundaries of the core sets, but only continuous.354

Therefore the approximation to U is continuous, but the approximation to α
∗ is not.355

Next we construct a core MSM to sample the matrices K and F . 100 trajectories of length T = 20000356

were used to build the MSM. In Figure 10d, W and its estimate using the core MSM is shown for � = 0.5357

and different values of σ. Each of the 100 trajectories has seen about four transitions. For comparison,358

a direct sampling estimate of W using the same data is shown (green). The direct sampling estimate359

suffers from a large bias and variance and is practically useless. In contrast, the MSM estimator for W360

performs well for all considered values of σ and always its variance is significantly small. The constant361

C which ensures φ̂ > 0 when σ ≤ C is approximately 0.2 in this case. This seems restrictive but still362

allows to capture all interesting information about φ and W .363
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Figure 10. Three well potential example for � = 0.5 and σ = 0.08. (a) Potential V (x) (blue),
effective potential U = V + 2W (green) and approximation of U with committors (dashed
red). (b) The three committors q1(x), q2(x) and q3(x). (c) The optimal control α∗(x) (solid
line) and its approximation (dashed line). Core sets are shown in blue. (d) Optimal cost W
for β = 2 as a function of σ. Blue: Exact solution. Red: Core MSM estimate. Green: Direct
sampling estimate.
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9.2. Alanine Dipeptide364

Lastly, we study α-β-transitions in Alanine dipeptide, a well-studied test system for Molecular365

Dynamics applications. We use a 1µs long trajectory simulated with the CHARMM 27 force field. The366

conformational dynamics is monitored as usual via the backbone dihedral angles φ and ψ. The data was367

first presented in [43]. We construct a full partition MSM with 250 clusters using k-means clustering.368

We are interested in the MFPT t̂(i) = Ei[τα] where τα is the first hitting time of the α conformation,369

which we define as a circle with radius r = 45 around (φα, ψα) = (−80,−60). The MFPT vector t̂370

solves the boundary value problem371

Kt̂ = −1 outside of α, t̂ = 0 in α,

but since K is not available directly via sampling, we have to consider the equation372

1

τ
(P τ

− 1) t̂ = −1 outside of α, t̂ = 0 in α

instead. The result will depend on the choice of lagtime τ . In Figure 11a, the results are shown for373

τ = 5, we can identify the β-structure as the red cloud of clusters where t̂(i) is approximately constant.374

In 11b, t̂βα = E(t̂(i)|i ∈ β) is shown as a function of τ . We observe a linear behavior for large τ which375

is due to the linear error introduced in the replacement of K with 1
τ (P

τ − 1) and a nonlinear drop for376

small τ which is due to Non-Markovianity. Our best guess is therefore a linear interpolation to τ = 0,377

which is indicated by the solid line. The result is t̂
(0)
βα = 35.5ps. As a comparison the reference value378

t̂
ref
βα = 36.1ps from [43] is shown as a dashed line. It was computed in [43] as an inverse rate, using379

the slowest ITS and information about the equilibrium weights of the α and β structure. We see very380

good agreement. The result is of course dependent though on the assignment of clusters to the α and β381

structure. Some tests show that t̂(0)βα as computed with the interpolation method is fairly insensitive to this382

choice.383

In [14] it is demonstrated how to use the method presented herein for maximizing the population of384

the α-conformation of Alanin dipeptide based on the MSM used here.385

10. Conclusion386

In this article, we have discussed an approach to overcome direct sampling issues of rare events387

in molecular dynamics based on spatial discretization of the molecular state space. The strategy is to388

define a discretization by subsets of state space such that the samling effort with respect to transitions389

between the sets is much lower than the direct estimation of the rare events under consideration. That390

is, without having to simulate rare events we construct a so called Markov State Model, a Markov chain391

approximation to the original dynamics. Since the state space of the MSM is finite, we can then calculate392

the properties of interest by simply solving linear systems of equations. Of course, it is crucial that these393

properties of the MSM can be related to the rare event properties of the original process that we have not394

been able to sample directly.395

This is why we have analyzed the approximation quality of MSMs in the first part of the article. We396

have used the interpretation of MSMs as projections of the transfer operator to (1) derive conditions that397
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Figure 11. Dipeptide example. (a) MFPT from β to α in φ-ψ space for τ = 5. The red
cloud to the right is the β-structure. (b) MFPT as a function of τ (dashed line) and linear
interpolation to τ = 0 (solid line). Green dashed line: Reference computed via slowest ITS.
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guarantee an accurate reproduction of the dynamics, and (2) show how to construct models based on a398

core set discretization by leaving the state space partly undiscretized.399

In the second part of the article, we have used the concept of MSM discretization to solve MD optimal400

control problems in which one computes the optimal external force that drives the molecular system401

to show an optimized behavior (maximal possible population in a conformation; minimal mean first402

passage time to a certain conformation) under certain constraints. We have demonstrated that the spatial403

discretization underlying an MSM turns the high-dimensional continuous optimal control problem into a404

rather low-dimensional discrete optimal control problem of the same form that can be solved efficiently.405

This result allows two different types of application: (1) If one can construct an MSM for a molecular406

system in equilibrium, then one can use it to compute optimal controls that extremize a given costs407

criterion. (2) If an MSM can be computed based on transition probabilities between neighboring core408

sets alone then the rare event statistics for transitions between strongly separated metastable states409

of the system can be computed from an associated optimal control problem that can be solved after410

discretization using the pre-computed MSM.411
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11. Prinz, J.H.; Keller, B.; Noé, F. Probing molecular kinetics with Markov models: Metastable435

states, transition pathways and spectroscopic observables. Phys. Chem. Chem. Phys. 2011,436

13, 16912–16927.437
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