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Abstract The most classic approach to the dynamics of an n-dimen-
sional mechanical system constrained by d independent holonomic con-
straints is to pick explicitly a new set of (n−d) curvilinear coordinates
parametrizing the manifold of configurations satisfying the constraints,
and to compute the Lagrangian generating the unconstrained dynamics
in these (n−d) configuration coordinates. Starting from this Lagrangian
an unconstrained Hamiltonian H(q, p) on 2(n − d) dimensional phase
space can then typically be defined in the standard way via a Legendre
transform. Furthermore, if the system is in contact with a heat bath,
the associated Langevin and Fokker-Planck equations can be intro-
duced. Provided that an appropriate fluctuation-dissipation condition
is satisfied, there will be a canonical equilibrium distribution of the
Gibbs form exp(−βH) with respect to the flat measure dqdp in these
2(n−d) dimensional curvilinear phase space coordinates. The existence
of (n− d) coordinates satisfying the constraints is often guaranteed lo-
cally by an implicit function theorem. Nevertheless in many examples
these coordinates cannot be constructed in any tractable form, even
locally, so that other approaches are of interest. In ambient space for-
mulations the dynamics are defined in the full original n-dimensional
configuration space, and associated 2n-dimensional phase space, with
some version of Lagrange multipliers introduced so that the 2(n − d)
dimensional sub-manifold of phase space implied by the holonomic con-
straints and their time derivative, is invariant under the dynamics. In
this article we review ambient space formulations, and explain that for
constrained dynamics there is in fact considerable freedom in how a
Hamiltonian form of the dynamics can be constructed. We then dis-
cuss and contrast the Langevin and Fokker-Planck equations and their
equilibrium distributions for the different forms of ambient space dy-
namics.
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1 Introduction

This article is primarily concerned with the statistical mechanics of finite dimensional
Lagrangian dynamical systems that are subject to holonomic constraints, stochastic
forcing, and viscous damping. One important class of physical systems of this type
comprise coarse grain models of polymers, such as DNA, in a solvent heat bath.
Such models involve rigid monomer sub-units, for example, in the case of DNA either
rigid base or rigid base-pairs depending upon the level of coarse graining. These rigid
sub-units interact with each other in a Lagrangian, conservative way, and with the
heat bath in a nonconservative way, which, when the detailed motion of the solvent
is not of interest, can be modelled in a Langevin fashion. In other words the time
evolution can be described as a system of stochastic differential equations (SDEs) with
a Hamiltonian part dependent on the polymer degrees of freedom, and the effects of
the solvent bath are modelled by the addition of dissipative and stochastic forcing
terms in the momentum balance equations. When the monomers are modelled as
point masses, or beads on a string, the degrees of freedom are Cartesian and the mass
matrix appearing in the Hamiltonian part is typically constant coefficient. In this
case it is well known that under an appropriate fluctuation-dissipation hypothesis
the Langevin system has an equilibrium distribution on phase space given by the
usual canonical expression exp(−βH) which also induces a measure on configuration
space after the quadratic momentum variables are integrated away. Our interests
lie primarily in examples where the mass matrix is not constant, but rather is a
configuration dependent, generalized mass matrix, as is the case for polymers that are
described in internal coordinates and are modelled as a system of rigid bodies whose
configuration includes their orientation. To our knowledge the Langevin theory, in
which the stochastic motion of both translational and rotational degrees of freedom
can be strongly coupled, has only recently been fully described [32]; cf. also [11,20,21].

The motivation for the present article is the further special case in which the
Langevin dynamics is subject to holonomic constraints. In the context of polymers
these constraints can arise in at least two distinct ways. First, many polymer theories
constrain the translational degrees of freedom between adjacent monomers, so as to
freeze relative extension or shear. These constraints are similar in nature to bond
length or distance constraints in molecular dynamics simulations. Second, in simu-
lations of orientations it can be useful to parametrize the locally three dimensional
group of rotations SO(3) with the four dimensional Euler parameter (or quaternion)
description, in which the four parameters describing the orientation of one monomer
are constrained to lie on the unit sphere in R4. The question of primary interest in
this presentation is what effect a generalized mass matrix has on the constrained equi-
librium distributions in both phase and configuration spaces. We answer the question
by providing rather explicit expressions for the equilibrium distributions.

In this tutorial review article our objective is to describe the mathematical under-
pinnings of the statistical mechanics of holonomically constrained Langevin systems.
In particular we point out that in the presence of holonomic constraints there is
considerable freedom in how a Hamiltonian form of the stochastic dynamics can be
introduced. We do not restrict ourselves to the case of stochastic polymer dynamics,
but that motivation does set the three features of the class of systems that we do
treat, namely, a) holonomically constrained Langevin systems, where b) the use of
local coordinates satisfying the constraints is unduly cumbersome, and c) there is a
configuration dependent kinetic energy. The first issue is therefore how to obtain an
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ambient space system of SDEs for which the holonomic constraints are (determinis-
tically) satisfied. The first, comparatively standard, of two such systems of SDE is
outlined in Section 2. Section 3 is then devoted to the analysis of the equilibrium
distribution associated with this constrained dynamics; in particular the influence of
the momentum constraint on the distribution of the geometrically constrained con-
figurations is analyzed (Section 3.2). In Section 4 we describe a second, much less
standard, formulation of a Langevin ambient-space system where a different conju-
gate variable is introduced in the Legendre transformation to the Hamiltonian form
(the impetus-striction formulation). In analogy with Section 3, the existence of a
stationary probability distribution for the impetus-striction formulation is briefly dis-
cussed in Section 5, and the differences between the two approaches are highlighted.
We summarize the results in Section 6.

The article has two appendices. In the first we record divers identities used in the
analysis, while the second contains the lengthy, but straightforward, computations
that form part of the proof of the invariance of the canonical distribution under the
constrained Langevin dynamics.

1.1 Elementary Notation

We denote the entries of any matrix A ∈ Rn×m by Aij , whereas when n = m

the elements of the inverse matrix are labeled with upper indices: A−1ij = Aij . The
columns of the matrix A are denoted Ai. We do not explicitly distinguish between
row and column vectors, with the meaning set by the context. We set the summation
convention over repeated upper and lower indices. For example, for A ∈ Rn×m, x ∈
Rm,

Aijxj =

m∑
j=1

Aijxj =

m∑
j=1

A−1ij xj .

We use the notation x · y = xT y for the inner product between vectors and A :
B = tr(ATB) for the inner product between square matrices. We denote the tensor
product by ⊗, i.e., for x, y ∈ Rn we have (x⊗ y)ij = xiyj ∈ RN×N . The gradient of
a function f : Rn → R is denoted

∇xf =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
,

while

∇2
xf =

(
∂2f

∂xi∂xj

)
1≤i,j≤n

is the corresponding Hessian matrix. For a function f : Rn → Rm the nabla-operator
denotes the corresponding Jacobian

∇xf =

(
∂fi
∂xj

)
1≤i≤m,1≤j≤n

.

When unambiguous, we omit the explicit differentiation parameter:∇f(x, y) = ∇(x,y)f
for a function f = f(x, y) etc, while differentiation with respect to only the second
argument is written ∇yf(x, y). Similarly, we denote by ∂if the partial derivative
∂f/∂xi of a function f = f(x), but use ∂xi

f for f = f(x, y) depending on two vector
arguments x, y. We also use the abbreviation

∂

∂x
=

(
∂

∂x1
, . . . ,

∂

∂xn

)
.



4 Will be inserted by the editor

2 Ambient-space formulation of constrained Langevin dynamics

We first record results for a finite dimensional system evolving on an n-dimensional
configuration manifold Q ⊆ Rn. There is little loss of generality in assuming the
case Q = Rn, but the more general case encompasses situations such as rigid body
dynamics where some of the coordinates are Euler angles with a bounded range of
definition. We further assume that there is a smooth potential energy V (q), V : Q →
R, where q = (q1, . . . , qn) denotes the configuration variable. The potential V is
assumed to be bounded from below and to satisfy appropriate growth conditions so
as to prevent escape to infinity. We further assume that there is a kinetic energy

which is a quadratic function of the generalized velocities |q̇|2g/2 where |x|g =
√
xT gx

is a Riemannian metric with respect to the n × n generalized mass or metric tensor
g = gT > 0. In general when working in curvilinear coordinates the metric tensor g(q)
will be position dependent. When the standard conjugate momenta p = (p1, . . . , pn)
are introduced via p := g(q)q̇ then the total (i.e., kinetic plus potential) energy or
Hamiltonian takes the form

H : Q×Rn → R , H(q, p) =
1

2
|p|2g−1 + V (q) .

The Markovian model that we will assume for motion in the presence of a thermal
bath is the Langevin or Hamiltonian-Langevin equation

q̇ =
∂H

∂p

ṗ = −∂H
∂q
− γ(q)

∂H

∂p
+ σ(q)Ẇ

(2.1)

where W is standard n-dimensional Brownian motion (i.e. Ẇ denotes Gaussian white
noise), γ : Q →∈ Rn×n is a field of symmetric positive definite friction coefficients and
σ : Q →∈ Rn×n is a field of full-rank noise coefficients. We assume throughout that
the fluctuation-dissipation relation 2γ(q) = βσ(q)σ(q)T holds for almost all values of
q ∈ Q. As a consequence, the Gibbs-Boltzmann distribution

ρ(q, p) =
1

Z
exp(−βH(q, p)) , Z =

∫
Q×Rn

exp(−βH(q, p)) dqdp

is a stationary distribution of (2.1). Furthermore, under suitable conditions on the
potential V and the smallest eigenvalues of γ(·) and g(·), it is the unique stationary
distribution.

Remark 1 For later purposes it is important to note that ρ(q, p) is a probability
density function with respect to the flat Liouville measure dqdp on phase space even
when the configuration coordinates q are curvilinear.

Remark 2 The Langevin system (2.1) is a widely assumed model for a system in-
teracting with a solvent bath. However it is rather difficult to derive it from a first
principles analysis of the solvent for anything but very simple systems (e.g., see [19]
and the references therein). Here we merely take (2.1) as the starting point of our
analysis.

2.1 Constraints

We now discuss Langevin dynamics that are constrained to lie on a smooth (strict)
submanifold Σ ⊂ Q of admissible configurations. To begin, we discuss some general
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aspects of holonomic constraints and suppose we can define Σ as the zero level set of
a function f : Q → Rd, i.e.,

Σ = {q ∈ Q : f(q) = 0} ⊂ Q .

We assume throughout that f is sufficiently differentiable and that its Jacobian
∇f : Rn → Rd has maximum rank d for almost all values of q ∈ Σ, in which case Σ is
a smooth submanifold of Q of dimension n− d. (We will say that Σ has codimension
d in Q.) In case of a scalar constraint the rank condition reduces to the requirement
that ∇f is not the null vector. We further assume that Σ is connected in order to
exclude the situation of possibly having several invariant probability distributions
with distinct topological support.

To every point q ∈ Σ, we assign the tangent space

TqΣ = {v ∈ Rn : ∇f(q) v = 0}

as the set of vectors tangential to Σ. Note that the requirement that the admissible
generalized velocities q̇ are in the kernel of ∇f simply expresses the fact that

d

dt
f(c(t))

∣∣∣∣
t=0

= ∇f(q) ċ(0)

must be identically zero for any differentiable curve c : (−ε, ε) → Q going through
c(0) = q. We call the “dual” to the tangent space,

T ∗qΣ =
{
p ∈ Rn : ∇f(q) g−1(q)p = 0

}
the cotangent space at q ∈ Σ, which characterizes the admissible momenta p for each
q ∈ Σ. In the usual manner we identify both tangent and cotangent spaces with the
respective (n − d)-dimensional linear subspaces of Rn and emphasize that for each
q ∈ Σ there is a natural linear transformation p = g(q)v between the tangent and
cotangent subspaces.

Later we argue that imposing constraints on the Langevin system (2.1) can be
usefully interpreted as a projection of the dynamics onto the sets of admissible states.
To this end we abbreviate A = ∇f(q), A ∈ Rd×n and introduce the orthogonal
projection onto the tangent space as the linear map

P : Rn → TqΣ , Pu = u−AT (AAT )−1Au . (2.2)

As can be readily checked, P = PT and P 2 = P , so that P is the orthogonal projection
on to the tangent space TqΣ with the normal space (TqΣ)⊥ := span{∇f1, . . . ,∇fd} as
nullspace. (For any c ∈ Rd, Pm = 0 for any vector m = AT c ∈ span{∇f1, . . . ,∇fd},
i.e., Pm = 0 for any vector m normal to Σ.) Similarly, using the isomorphism between
TqΣ and T ∗qΣ, it follows that

P ∗ : Rn → T ∗qΣ , P ∗w = w − g−1AT (Ag−2AT )−1Ag−1 w (2.3)

is the orthogonal projection onto the corresponding cotangent space T ∗qΣ (in other

words, a projection of the momentum vectors) with the normal space (T ∗qΣ)⊥ :=

span{g−1∇f1, . . . , g−1∇fd} as nullspace. A third, oblique, projection will be key in
our discussion of the constrained equations of motion, namely

P : Rn → Rn , Pv = v −AT (Ag−1AT )−1Ag−1 v , (2.4)



6 Will be inserted by the editor

which satisfies P2 = P and PT g−1 = g−1P. The first property implies that P is
indeed a projection, while the second implies

(Px)T g−1(y −Py) = 0 ,

which is to say that P and I −P are orthogonal with respect to the inner product
weighted with the inverse generalized mass matrix

〈x, y〉g−1 = xT g−1y .

Note that Ag−1Pw = 0 for all w ∈ Rn. Accordingly we may regard P as a mapping
P : Rn → T ∗qΣ, with nullspace (TqΣ)⊥. Nonetheless P ∗w 6= Pw for arbitrary vectors
w ∈ Rn, with equality being attained only if w ∈ T ∗qΣ.

2.2 Constrained dynamics

With the above preliminaries in hand, we now turn to our main subject and generalize
the stochastic dynamics (2.1) to the case including holonomic constraints f(q) = 0.
We will verify that the constrained dynamics can be written in the form

q̇ =
∂H

∂p

ṗ = −∂H
∂q
− γ(q)

∂H

∂p
+ σ(q)Ẇ + Λ

(2.5)

with Λ = Λ(t) being a suitable stochastic process adapted to W , such that

P (q(t))Λ(t) = 0 and f(q(t)) = 0 . (2.6)

In complete analogy to the deterministic case (cf. [30,10,31,11,20] and Section 4 of the
present article), the modifying term Λ can be interpreted as a Lagrange multiplier (or
constraint reaction force) which enforces that the dynamics respect the constraint.
The requirement that Λ be normal to the constraint manifold (i.e., PΛ = 0) is known
as d’Alembert’s principle; it implies that the multiplier is uniquely determined.

In the present stochastic case, the constraint reaction force Λ(t) has both a de-
terministic and stochastic part, depending on the realization of the Brownian motion
W (s) up to time s ≤ t (which is what is meant by “adapted to W”). The reaction
force can be explicitly computed to satisfy (2.6) by a method directly analogous to
that used in the classic case of a deterministic Hamiltonian system subject to holo-
nomic constraints, but with Itô’s formula replacing the chain rule for differentiation.
To this end we define the “time-differentiated” constraint

h(q, p) = A(q)g(q)−1p , A = ∇f ,

which must vanish along the solutions (q(t), p(t)) of the constrained Langevin equation
(2.5) due to the requirement that f(q(t)) = 0 for all t > 0. We seek a representation

of the constraint reaction force that is of the form Λ(t) = F (q(t), p(t), Ẇ (t)), with a
suitable function F satisfying PF = 0. Without loss of generality we can decompose
the multiplier according to

Λ(t) = C(t) +D(t)Ẇ (t)
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where C is a deterministic process of bounded variation, whereas DẆ is generally
unbounded. Using Itô’s formula for h yields (see [28, Sec. 4.2])

d

dt
h(q(t), p(t)) =

∂

∂qk

(
gij

∂f

∂qi
pj

)
q̇k +

∂f

∂qi
gik ṗk

=
∂

∂qk

(
gij

∂f

∂qi
pj

)
gklpl −

∂f

∂qi
gik
(
∂H

∂qk
+ γkl

∂H

∂pl
− Ck

)
+
∂f

∂qi
gik (σkj +Dkj) Ẇ

j .

In order that dh/dt = 0 we must have that the deterministic drift and the white
noise term vanish independently. Recalling that, by d’Alembert’s principle, Λ, and
therefore C and DẆ are aligned with the normal directions ∇f1, . . . ,∇fd, we can
use the ansatz C = AT c and DẆ = AT d, and solve for c and d. We easily find

Kc = Ag−1
(
∂H

∂q
+ γ

∂H

∂p

)
− S

Kd = −Ag−1σẆ

where K = Ag−1AT , and the vector S ∈ Rd is a curvature term that is quadratic in
p and has the entries

Sk(p, p) = pT∇(g−1∇fk)g−1p , k = 1, . . . , d .

By the assumptions on f and A = ∇f , respectively, the d × d matrices K(q) are
invertible for almost all q ∈ Σ, so that

C = ATK−1
(
Ag−1

(
∂H

∂q
+ γ

∂H

∂p

)
− S

)
DẆ = −ATK−1Ag−1σẆ .

Upon noting that P in (2.4) can be written as P = I − ATK−1Ag−1, the last
equations can be recast as

C = (I −P)

(
∂H

∂q
+ γ

∂H

∂p

)
−ATK−1S

D = −(I −P)σ ,

which uniquely determine the reactive force Λ(t) = C(t) +D(t)Ẇ (t) as a function of

the phase variables (q(t), p(t)) and the noise Ẇ (t) at time t > 0.
The terms in the constraint force have suggestive interpretations: The two terms

that involve the projection (I−P) are the negative of the driving and random forces
in the Langevin equation perpendicular to the constraint surface. The quadratic form
II(p, p) = ATK−1S(p, p) is a curvature term known as the second fundamental form
of the submanifold Σ ⊂ Q. Roughly speaking, it generates accelerations according to
the curvatures of the constraint surface in the direction of the momenta [14].

By substitution for Λ = C+DẆ in equation (2.5), we find the following ambient-
space formulation of the constrained Langevin system

q̇ =
∂H

∂p
,

ṗ = −P

(
∂H

∂q
+ γ

∂H

∂p
− σẆ

)
− II(p, p)

(2.7)
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Properties of the ambient-space formulation and its relation to (2.5)–(2.6) are sum-
marized in the following result.

Proposition 1 Let h : Q × Rn → Rd be defined by h(q, p) = A(q)g(q)−1p. The
Langevin system (2.7) has the following properties:

1. The function h(q, p) is an integral for (2.7).
2. For any regular value c of f : Q → Rd, the set

A(c) = {(q, p) ∈ Q×Rn : f(q) = c and h(q, p) = 0}

is invariant under the dynamics (2.7).
3. If (q(t), p(t)) is a solution of (2.7), then it is also a solution of (2.5)–(2.6) where

the multiplier Λ = Λ(t) is given by

Λ = (I −P)

(
∂H

∂q
+ γ

∂H

∂p
− σẆ

)
− II(p, p) .

3 Equilibrium distribution

We now discuss some properties of the invariant probability distribution for the dy-
namics (2.7). The corresponding phase space is defined as the set

A =
{

(q, p) ∈ Q×Rn : f(q) = 0 and ∇f(q)g(q)−1p = 0
}

that is isomorphic to the cotangent bundle T ∗Σ = ∪q∈ΣT ∗qΣ. As the energy of the
constrained system (2.7) is the Hamiltonian H restricted to A, a natural candidate
for the stationary distribution of the constrained dynamics (2.7) seems to be the
restriction of the unconstrained canonical density

ρ(q, p) =
1

Z
exp(−βH(q, p)) , Z =

∫
Q×Rn

exp(−βH(q, p)) dqdp

to the set A. However, care must be taken with the precise meaning of this restriction;
while we can unambiguously restrict the canonical density function ρ ∝ exp(−βH)
to A, it is less obvious how to obtain an explicit expression for the appropriate
restricted measure defined on A corresponding to the restriction of the Liouville
measure dΓ = dqdp. For deterministic Hamiltonian systems, i.e., with γ, σ = 0, the
restricted Liouville measure is typically defined in terms of the associated symplectic
form, and so is the Liouville measure of the constrained system (see, e.g., [23,14]
and the discussion in the Abstract). But this measure should not be confused with
the surface measure on the embedded manifold A ⊂ Q × R that is obtained from
restricting the Lebesgue measure dλ = dqdp. We next propose an explicit “ambient”
expression for the appropriate restricted measure on A.

3.1 Integration over fibres

We will show that the constrained Liouville measure on A can be represented as
a product of the surface element on Σ (the so-called base manifold) together with
the (n − d)-dimensional Lebesgue measure on the cotangent space at q ∈ Σ (the
so-called fibre), and a q-dependent multiplicative correction that depends upon the
angle between the tangent and cotangent spaces at q. It is the presence of the angle
correction factor that is perhaps somewhat surprising.
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T ∗
q Σ

Σ = f−1(0)

q

Figure 1. Integration over the fibres: integration against the constrained phase space Liou-
ville measure can be decomposed into an integration along the cotangent space fibre for each
q, then multiplication by a q-dependent angle correction term, finally followed by integration
over the base manifold Σ regarded as a subset of Q ⊆ Rn.

While our final formula does not depend upon local coordinates, our derivation of
it does, so to give precise statements, we first introduce local coordinates (which we
tacitly assume to exist) by the continuously differentiable and locally invertible map

φ :

{
Rn−d → Σ , x 7→ q(x)

Rn−d → T ∗qΣ , v 7→ [t∗1(q), . . . , t∗n−d(q)]v
(3.8)

where {t∗1(q), . . . , t∗n−d(q)} is an orthonormal basis of T ∗qΣ for any fixed q ∈ Σ.1

It will be convenient to state our result for a single scalar constraint d = 1 first.
Then the aforementioned surface elements can be written as

dσΣ(q) =
√

det(∇q∇qT ) dx , dλ∗q(p) = dv . (3.9)

We denote the constrained Liouville measure by ΓA, and introduce the notation
∠(x, y) for the angle between two vectors, i.e.,

∠(x, y) = arccos

( 〈x, y〉
‖x‖‖y‖

)
.

Integration against dΓA can now be understood in the following way: for any ΓA-
integrable function w : A → R and subsets A ⊂ Σ and Bq ⊂ T ∗qΣ, q ∈ A, we
have ∫

{q∈A, p∈Bq}⊂A
w(q, p) dΓA(q, p) =

∫
A

cos∠
{
∇f(q), g(q)−1∇f(q)

}(∫
Bq

w(q, p) dλ∗q(p)

)
dσΣ(q),

1 Recall that we identify all tangent and cotangent spaces with the respective subspaces of
Rn; finding an orthonormal basis for T ∗

q Σ therefore merely means finding an orthonormal
basis for a linear subspace of Rn.
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The integral identity can be readily verified by doing a suitable change of coor-
dinates (see the Appendices for details). Since the integration splits into an integral
over the momentum in the cotangent space p ∈ Bq ⊂ T ∗qΣ, followed by an integration
over the admissible configurations q ∈ A ⊂ Σ, we will describe it as “integration over
the fibres”. The cosine correction term involves the angle between the normal vectors
to the tangent and cotangent spaces at q, which, as a matter of definition, is also the
angle between the codimension one tangent and cotangent spaces.

The only complication in the case of multiple constraints is that we must introduce
the notion of angle between subspaces, rather than between vectors. While this notion
of angle is less well known, it is nevertheless entirely standard (see, e.g., [33,26,17]).

Definition 1 Let X,Y ⊂ Rn be subspaces of equal dimension dimX = dimY = k,
and let {x1, . . . ,xk} and {y1, . . . ,yk} be arbitrary bases of X and Y . The angle
∠{X,Y } between X and Y is defined by

∠{X,Y } := arccos
det([x1, . . . ,xk]T [y1, . . . ,yk])√

det([x1, . . . ,xk]T [x1, . . . ,xk])
√

det([y1, . . . ,yk]T [y1, . . . ,yk])

Note that ∠{X,Y } is well-defined as the right hand side does not depend on the
specific choice of the bases, and

det([x1, . . . ,xk]T [y1, . . . ,yk]) ≤√
det([x1, . . . ,xk]T [x1, . . . ,xk])

√
det([y1, . . . ,yk]T [y1, . . . ,yk]).

Based on Definition 1 we can now state our main result, the proof of which can be
found in Appendix B.

Proposition 2 Let NqΣ = (TqΣ)⊥ and N∗qΣ = (T ∗qΣ)⊥ be the orthogonal comple-
ments of TqΣ and T ∗qΣ in Rn and assume that the fluctuation-dissipation relation

2γ = βσσT holds. Further let HA = H|A denote the restriction of the total energy to
the constrained phase space A. Then

ρA =
1

ZA
cos∠{NqΣ,N∗qΣ} exp(−βHA(q, p)) ,

with ZA being the normalization constant

ZA =

∫
Σ

∫
T∗
q Σ

cos∠{NqΣ,N∗qΣ} exp(−βHA(q, p)) dλ∗q(p)dσΣ(q) ,

is the density function for the canonical equilibrium distribution of the Langevin dy-
namics (2.7) when the measure is the product dλ∗q(p)dσΣ(q) of Lebesgue measure over
the cotangent fibres, followed by integration with respect to the surface measure in the
configuration constraint manifold Σ(q) ∈ Rn.

Remark 3 Even if the generalized mass matrix g is independent of q, the angle cor-
rection term will in general not be constant unless the normal subspace NqΣ is also
independent of q.

Remark 4 If X and Y are two subspaces of Rn with equal dimension k, and X⊥, Y ⊥

are their orthogonal complements in Rn, then it is a standard result that

∠{X,Y } = ∠{X⊥, Y ⊥} .
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Hence
cos∠{NqΣ,N∗qΣ} = cos∠{TqΣ,T ∗qΣ} . (3.10)

In other words, the correction factor involves the angle between velocity and momen-
tum (i.e., tangent and cotangent) spaces to the constraint set Σ(q), just as in the
codimension one case.

Remark 5 There is a considerable literature on how to compute the angle between two
subspaces (see, e.g., [33,26,17]). If we write {∇f1, . . . ,∇fd} and {g−1∇f1, . . . , g−1∇fd}
as bases of NqΣ and N∗qΣ, and write K = Ag−1AT with A = ∇f , G = AAT , and

J = Ag−2AT , the angle formula becomes

∠{NqΣ,N∗qΣ} = arccos

(
detK(q)√

detG(q) detJ(q)

)
. (3.11)

The angle can also be computed from the eigenvalues of the matrix KG−1KTJ−1[16].
Specifically

cos∠{NqΣ,N∗qΣ} =

d∏
i=1

cos(φi). (3.12)

where the cosines of the so-called principal angles φ1, . . . , φd are the square roots of
the eigenvalues of the matrix KG−1KTJ−1.

3.2 The configuration space marginal distribution

In many situations the observables of interest are independent of the momenta p.
In such cases the expectations can be evaluated with respect to the marginal of the
canonical distribution in the configuration variables q. The latter can be obtained
from the phase space distribution by integrating out the momenta, i.e.,

dνΣ(·) =

∫
T∗
q Σ

dρA(·, p) ,

and because the kinetic energy is assumed to be pure quadratic we expect this
marginal to be explicitly computable. Using (3.8) we conclude that∫

T∗
q Σ

exp(−βHA(q, p)) dλ∗q(p) =
(
det((t∗)T g−1t∗)

)−1/2
exp(−βV )

with the columns of the n× (n−d)-matrix t∗ = [t∗1, . . . , t
∗
n−d] being a set of orthonor-

mal basis vectors for the cotangent space T ∗qΣ. Such an orthonormal basis for T ∗qΣ
may exist only locally in a neighbourhood of q ∈ Σ, but this is all we need here.
Further using the identity (3.11), it follows that

cos∠{NqΣ,N∗qΣ}√
det((t∗)T g−1t∗)

=

√
det((t∗)T g−1t∗)√
det((t∗)T g−2t∗)

,

which implies

dνΣ(q) =
1

ZΣ

√
det((t∗)T g−1t∗)√
det((t∗)T g−2t∗)

exp(−βV (q)) dσΣ(q) .
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Here ZΣ is the constant that normalizes the total probability to one. The appearance
of the orthonormal vectors t∗i in the ratio of determinants seems rather inconvenient
and we may further simplify the expression by instead using an arbitrary basis of the
tangent space. Exploiting the fact that the metric tensor g ∈ Rn×n can be regarded
as a linear map g : TqΣ → T ∗qΣ that transforms velocity vectors into momentum
vectors, we arrive at:

Lemma 1 Let {t1, . . . , tn−d} be an arbitrary basis of the tangent space TqΣ and set

t = [t1, . . . , tn−d] ∈ Rn×(n−d). Then the configuration marginal distribution νΣ for
the Langevin dynamics (2.7) has the form

dνΣ(q) =
1

ZΣ

√
det(tT gt)√
det(tT t)

exp(−βV (q)) dσΣ(q) .

Remark 6 When there is no constraint, i.e. Σ = Q the matrix t is square and the
measure reduces to

dν =
1

Z

√
det(g(q)) exp(−βV (q)) dq ,

in which
√

det(g(q)) is the classic metric correction factor, and the distribution is pure
Boltzmann with respect to dq if and only if the generalized mass matrix is constant.
In contrast the constrained marginal distribution may not be Boltzmann with respect
to dσΣ(q) even if the generalized mass matrix is constant.

Remark 7 If we introduce a local parametrization x 7→ q(x) of the embedding Σ ⊂ Q
we may take t = ∇q(x) and dσΣ(q) =

√
det(∇qT∇q)dx. Then we obtain

dνΣ(q) =
1

ZΣ

√
det(∇qT g(q)∇q) exp(−βV (q) dx ,

which again may not be Boltzmann with respect to dx even if the generalized mass
matrix is constant.

Remark 8 Finally we note that when Q is considered as a Riemannian manifold that
is endowed with the Riemannian metric 〈·, ·〉g, then the Riemannian surface element
that is induced by g and the embedding Σ ⊂ Q is

dσΣ,g(q) =
√

det(∇qT g(q)∇q) dx

so that we arrive at

dνΣ(q) =
1

ZΣ
exp(−βV (q)) dσΣ,g(q) .

which is pure Boltzmann with respect to the Riemannian surface element dσΣ,g(q).

Remark 9 An ambient configuration space representation of dνΣ in terms of Dirac’s
delta function that is common in the molecular dynamics literature is (see, e.g., [1,7,2])

dνΣ(q) =
1

ZΣ
exp(−βV (q))

√
detK(q)δ(f(q)) dq . (3.13)

The appearance of the weight
√

detK with K = ∇fg−1∇fT can be understood as
follows: Letting the level sets Σ(c) = {q ∈ Q : f(q) = c} define a complete foliation
of Q ⊆ Rn, Federer’s coarea formula asserts [9,8,12]∫

Q
h dλQ =

∫
Rd

(∫
Σ(c)

h (detK)−1/2 dσΣ(c),g

)
dc ,
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for any integrable function h ∈ L1(dλQ). Here dλQ(q) =
√

det g(q)dq denotes the
volume element on Q with respect to the Riemannian metric 〈·, ·〉g. Noting that∫

Q
h dλQ =

∫
Rd

(∫
Q
h(q)δ(f(q)− c) dλQ(q)

)
dc ,

by definition of the delta function, it follows that

dσΣ,g(q) =
√

detK(q)δ(f(q)) dq

which implies (3.13). Note that the delta function δ(f(q)− c) depends on the specific
choice of the level set function f , even though the constraint surface Σ(c) does not.

The weight
√

detK =
√

det(∇fg−1∇fT ) absorbs this gauge dependence.

4 The Impetus-Striction ambient space formulation of constrained
dynamics

In this section we will present a second ambient space formulation of holonomically
constrained Langevin dynamics, which has the feature that the constraints are by con-
struction integrals of the resulting Hamiltonian-Langevin system. The central idea is
that in the presence of holonomic constraints there is a freedom in the choice of the
conjugate variable leading to the Hamiltonian form of the dynamics. No matter what
choice of conjugate variable is made, the evolution in configuration space is identical,
but the phase space dynamics differ, and this freedom can be used to some advantage.
The impetus-striction approach has previously been exploited in the analysis of var-
ious deterministic infinite dimensional Lagrangian systems where the dynamics are
governed by partial differential equations [22,4,3,10], but the approach applies equally
well to the finite dimensional case governed by ordinary differential equations where
the introduction of the stochastic Langevin terms is more straightforward (e.g., see
[13]). As the impetus-striction formulation is not entirely standard we first introduce
the basic ideas for deterministic systems. More details can be found in [10].

4.1 The deterministic case of holonomically constrained dynamics

The most natural way to introduce the impetus-striction formulation is via Hamilton’s
least action principle. In the unconstrained case the action integral takes the form

S[q] =

∫ b

a

L(q(t), q̇(t)) dt

where, consistent with the earlier presentation, we are primarily interested in La-
grangians of the special form

L : Q×Rn → R , L(q, v) =
1

2
|v|2g − V (q) .

Then the Lagrangian dynamics are the Euler-Lagrange equations of the action inte-
gral, and their Hamiltonian form is the system

q̇ =
∂H

∂p

ṗ = −∂H
∂q

(4.14)
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(corresponding to the unconstrained Hamiltonian-Langevin equation (2.1) with γ =
σ = 0) which arises via the Legendre transform, with the conjugate variable unam-
biguously defined as p := Lq̇(q, q̇), and

H : Q×Rn → R , H(q, p) =
1

2
|p|2g−1 + V (q) .

If d holonomic constraints of the form f(q) = 0 are now introduced, then the
action principle is typically modified by the addition of a term of the form −λ · f(q)
where λ(t) is a d-vector of Lagrange multipliers. (The Lagrange multiplier λ should
not be confused with the Lebesgue measure from the previous section.) One then
arrives at the augmented Lagrangian

L̄ : Q×Rn → R , L̄(q, v) =
1

2
|v|2g − V (q)− λ · f(q) ,

and the dynamics is given by the differential-algebraic system comprising the Euler-
Lagrange equations of the augmented Lagrangian L̄ with respect to q, and the addi-
tional d algebraic equations f(q(t)) = 0 corresponding to the additional d unknowns
λ(t) whose time derivative appears nowhere.

It is then also standard to write the Hamiltonian form of the Euler-Lagrange equa-
tions with respect to q for the augmented Lagrangian L̄. The significant point is that
the additional augmented terms are effectively a modification of the potential part of
the action because the generalized velocity q̇ does not appear in them. Consequently
the conjugate momentum for this augmented Lagrangian is the same as for the un-
constrained case p := L̄q̇(q, q̇) = Lq̇(q, q̇), and one arrives at the differential-algebraic
Hamiltonian system:

q̇ =
∂H

∂p

ṗ = −∂H
∂q
−∇f(q)Tλ

f(q) = 0 ,

(4.15)

with precisely the same Hamiltonian as before.
It is then a standard computation to eliminate the algebraic equations in (4.15) via

the (much simpler) deterministic (σ = γ = 0) version of the stochastic computation
that we carried out in Section 2.2 to arrive at an explicit functional form λ(q, p) which
guarantees that the constraint set f(q) = 0 = ∇f(q)g−1(q)p is an invariant of the
dynamics

q̇ =
∂H

∂p

ṗ = −∂H
∂q
−∇f(q)Tλ(q, p) .

(4.16)

Equations (4.16) are an ambient space formulation of the holonomically con-
strained dynamics for which the constraint set is invariant. The dynamics are perfectly
well-defined off the constraint set, as they must be, but there are two unattractive
features. First the dynamics off the constraint set are in general not Hamiltonian.
Second the constraint set is itself repelling in the sense that trajectories that start
close by move away, which is a feature that can be problematic for numerics.

Now we are ready to introduce the impetus-striction formulation. The start-
ing point is that from the calculus of variations point of view it is equally valid
to augment the Lagrangian with the differentiated constraint h(q, q̇) = 0 (where
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h(q, v) = ∇f(q)v), and a multiplier vector µ(t) ∈ Rd associated with the time dif-
ferentiated constraint, which we call the striction for brevity, to arrive at a different
augmented Lagrangian

L̂(q, v, µ) = L(q, v)− µ · h(p, v) ,

which imposes the constraint at the velocity level rather than on the configuration
level. By construction, the velocity constraint is integrable so that h(q, q̇) = 0 implies
f(q) = c and, by properly choosing the initial conditions, we can make the integration
constant c = 0. An integration by parts in time in the action integral reveals that the
striction µ and multiplier λ are related through the identity −µ̇ = λ. Then it is simple
to compute that the Euler-Lagrange equations of the two augmented Lagrangians with
respect to q are identical.2

The interesting features of the impetus-striction formulation arise when we com-
pute the Hamiltonian form of the dynamics. Now there is a different conjugate mo-
mentum, which we call the impetus:

ξ := ∂L̂/∂q̇ = ∂L/∂q̇ −∇f(q)Tµ = p−∇f(q)Tµ .

In particular the striction and constraint Jacobian ∇f(q) enter in the definition of
the impetus ξ.

Then the impetus-striction formulation of the constrained dynamics is as follows.
The constraint h(q, q̇) = 0 is enforced by choosing the striction µ(q, ξ) via

µ(q, ξ) := argmin
µ

H(q, ξ +∇f(q)Tµ) ,

where as before H is the Hamiltonian associated with the unconstrained Lagrangian
L. This prescription defines the function µ(q, ξ) uniquely for any Hamiltonian that
is strictly convex in the momenta p, but for the simple class of Lagrangians and
Hamiltonians assumed here the minimization step is particularly straightforward and
has linear first-order (necessary and sufficient) conditions

0 = ∇f g−1
(
ξ +∇fTµ

)
= ∇f g−1p = ∇f q̇ = h(q, q̇) ,

so that the minimization step enforces the constraint, and yields the explicit formula

µ(q, ξ) = −
(
Ag−1AT

)−1
Ag−1ξ ,

where we have again introduced the abbreviation A = ∇f . Recalling the definition
(2.4) of the oblique projection P, it follows that

ξ +∇fTµ = Pξ = p .

Now we introduce the impetus-striction Hamiltonian

H : Q×Rn , H(q, ξ) = H (q,Pξ) = min
µ
H
(
q, ξ +A(q)Tµ

)
. (4.17)

2 For readers interested in nonholonomic constraints we remark that the Euler-Lagrange
equations of an augmented Lagrangian with a general velocity level constraint of the form
η(q)q̇ = 0 for η some d × n matrix do not in general correspond to the dynamics given
by d’Alembert’s principle for constrained systems. Analogously our equivalence of the two
systems of Euler-Lagrange equations for the two different forms of augmented Lagrangian
depends crucially upon the particular structure that for the holonomic case η(q) = ∇f(q) is
a Jacobian matrix.
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It can be computed that the Euler-Lagrange equations of motion of the augmented
action L̂ with respect to q can be recast as the Hamiltonian system

q̇ =
∂H
∂ξ

ξ̇ = −∂H
∂q

.

(4.18)

For our special class of Lagrangians we arrive at the concrete form

q̇ = g−1
(
ξ +∇fTµ

)
ξ̇ = −∇V (q) +

1

2

(
ξ +∇fTµ

)T [∇g−1] (ξ +∇fTµ
)

+ µT∇2f g−1
(
ξ +∇fTµ

)
,

where it is understood that µ(q, ξ) is the known function defined through the mini-
mization step above.3 Here ∇2f and ∇g−1 are order three tensors, so that (with the
summation convention) µT∇2f = µi∇2fi and ηT [∇g−1]η is understood as a vector
with the entries (

ηT [∇g−1]η
)
k

=
∂

∂qk
gijηiηj .

Remark 10 The system (4.18) is an ambient space formulation of the constrained
Lagrangian dynamics that is a standard canonical, unconstrained Hamiltonian in all
of phase space Q×Rn with a completely explicit formula for the Hamiltonian H. The
only unusual feature is that while H is a convex function of the conjugate momentum
(or impetus) ξ, it is not strictly convex. This follows because while the Hamiltonian
H(q, p) is a strictly convex function of p, we have H(q, ξ) = H (q,Pξ) and the
intervening projection P has a nullspace, specifically the column space of ∇f(q)T ,
or equivalently the normal space to the tangent space TqΣ. Thus for each q, H(q, ξ)
is exactly constant on a d-dimensional subspace. This corresponds to a d-dimensional
infinitesimal (variational) symmetry of H, ξ 7→ ξ + ∇f(q)T ε and so, via Noethers
Theorem, generates d integrals of motion, which are precisely the quantities f(q). Thus
the impetus-striction formulation starts from a constrained Lagrangian that is strictly
convex in the generalized velocities q̇ and constructs an unconstrained Hamiltonian
formulation which is only convex in the impetus ξ, and for which the Lagrangian
constraints are recast as Hamiltonian integrals. In this sense the impetus-striction
construction is dual to Dirac’s theory of constraints, which starts from a Lagrangian
that is a convex, but not strictly convex, function of the generalized velocities, and
constructs an equivalent strictly convex Hamiltonian system with constraints [5,6].

Remark 11 The component of the impetus ξ in the normal space to the tangent space
TqΣ is in some sense not a physical quantity, and it corresponds to a gauge freedom.
If the right hand side of the impetus equation is modified by the addition of a vector
field in the constraint normal space, but is otherwise arbitrary, then the evolution of
ξ is of course changed, but the associated evolution of the configuration variable q is
unaltered.

Remark 12 Because the f(q) are integrals, the level sets form (at least locally) a
foliation of configuration space. As a consequence any particular constraint set, e.g.,
f(q) = 0 is neutrally stable to the full ambient space dynamics, in contrast to the
instability in the more standard ambient space formulation described previously.

3 When computing partial derivatives it should be noted that the minimizing property of
the function µ(q, ξ) means that its partial derivatives do not contribute any terms.
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Remark 13 The fact that the Hamiltonian is only defined via an auxiliary minimiza-
tion, which for the class of Lagrangians considered here leads to an explicit projection,
is reminiscent of Pontryagins maximum principle in optimal control. However the re-
semblance is to our understanding merely superficial.

4.2 Impetus-striction Langevin dynamics

As the Hamiltonian system (4.18) is now a standard canonical one it is natural to
modify it to be a Langevin equation by adding friction and noise in the standard way,
which then yields

q̇ =
∂H
∂ξ

ξ̇ = −∂H
∂q
− γ(q)

∂H
∂ξ

+ σ(q)Ẇ

(4.19)

which is our second ambient space Langevin formulation. Here we assume that friction
and noise coefficients are the same as in (2.1) or (2.7). We have:

Proposition 3 Define the impetus-striction Hamiltonian as

H : Q×Rn → R , H(q, ξ) = H (q,Pξ)

where P = I −AT (Ag−1AT )−1Ag−1 and H is the standard Hamiltonian dual to the
given Lagrangian

H(q, p) =
1

2
|p|2g−1 + V (q) .

Then the Langevin system (4.19) has the following properties

1. For any regular value c of f : Q → Rd, the set

Σ(c)×Rn = {(q, p) ∈ Q×Rn : f(q) = c}

is invariant under the dynamics (4.19). In other words the f(q) are integrals of
the dynamics, so that a constraint of the form f(q) = c is automatically satisfied
along trajectories of the dynamics for all t, with the value of c set by the initial
conditions on the configuration q(0).

2. If (q(t), ξ(t)) ⊂ Σ(c) × Rn is the solution of (4.19), then, with probability one,
(q(t), p(t)) ⊂ A(c) is the solution of (2.7) where ξ(t) and p(t) are related by

p(t) = P(q(t))ξ(t) ,

which holds almost surely (i.e., with probability one).

5 The Impetus-Striction-Langevin equilibrium distributions

It remains to discuss the properties of the equilibrium distribution associated with
the dynamics (4.19). Because (4.19) are a standard Hamiltonian system, it is well-
known that provided the fluctuation-dissipation relation 2γ = βσσT holds, the Gibbs-
Boltzmann density exp(−βH) is a stationary solution of the Fokker-Planck or Kol-
mogorov forward equation(

∂

∂t
− L∗

)
ψ = 0 , ψ(·, ·, 0) = ψ0
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that propagates the evolution of probability densities forward in time. Here L∗ is the
corresponding Fokker-Planck or forward operator

L∗ =
1

2
σσT : ∇2

ξ −∇ξH · ∇q + (∇qH+ γ∇ξH) · ∇ξ + (γ : ∇2
ξH) .

To verify that ψ0 = exp(−βH) is a stationary solution with ∂ψ/∂t = 0 one merely
computes the various expressions on the right hand side of the Fokker-Planck equation
in the standard way. Because the d constraints f(q) are by construction integrals of
the impetus-striction dynamics, both with and without the fluctuation-dissipation
terms, an analogous computation reveals that any expression of the form exp(−β{H+
Φ(f(q))}) is another stationary solution of the Fokker-Planck equation, where Φ :
Rd → R is arbitrary (cf. [29]). Thus it can be seen that the only equilibrium measures
of interest are marginals on f(q) = 0.

In the case of an impetus-striction Hamiltonian there remains a problem of normal-
izability. Specifically we cannot call exp(−βH) a stationary probability distribution
because ∫

Rn

exp(−βH(·, ξ)) dξ =∞ ,

i.e., exp(−βH) is not normalizable over all of R2n. And the difficulty remains even
with the restriction f(q) = 0. The reason for the divergence of the integral are the flat
directions of the Hamiltonian under the impetus-striction symmetry ξ → ξ+∇f(q)T ε.
The saving grace is that, as previously remarked, these flat directions of ξ are not
true physical unknowns, so that any expectation of physical interest should involve
only the tangential component of ξ. We will show that the appropriate marginal
distribution is normalizable. Specifically we restrict to the tangent bundle TΣ on
which f(q) = 0 and the degenerate directions ξ are suppressed.

5.1 Integration over fibres revisited

Proposition 4 Let TqΣ be the constraint tangent space in Rn and assume that the
fluctuation-dissipation relation 2γ = βσσT holds. Let dλq(ξ) denote the Lebesgue
measure on the tangent space TqΣ. Then the probability distribution

dρA =
1

ZA
exp(−βH(q, ξ)) dλq(ξ)dσΣ(q) , ξ ∈ TqΣ ,

with the partition function given by

ZA =

∫
Σ

(∫
TqΣ

exp(−βH(q, ξ)) dλq(ξ)

)
dσΣ(q) ,

is invariant under the dynamics (4.19).

Proof Using that ∠{NqΣ,N∗qΣ} = ∠{TqΣ,T ∗qΣ}, it is sufficient to show that∫
U⊂TqΣ

exp(−βH) dλq = cos∠{TqΣ,T ∗qΣ}
∫
U∗⊂T∗

q Σ

exp(−βH)dλ∗q .

Let the vectors {t1, . . . , tn−d} form a locally orthonormal basis of TqΣ and define the

matrix t = [t1, . . . , tn−d] ∈ Rn×(n−d). On TqΣ, we introduce local coordinates by

ϕ : Rn−d → TqΣ , u 7→ tu .



Will be inserted by the editor 19

Then, for any fixed q ∈ Σ,∫
U⊂TqΣ

exp(−βH(q, ξ)) dλq(ξ) =

∫
U⊂TqΣ

exp(−βH(q,Pξ)) dλq(ξ)

=

∫
U⊂TqΣ

exp(−βH(q,Ptu)) du .

But the column space of the matrix Pt equals the cotangent space T ∗qΣ, where a
parametrization of T ∗qΣ is given by p = ϕ∗(w) with

ϕ∗ : Rn−d → T ∗qΣ , w 7→ gtĝ−1w .

Hence∫
U⊂TqΣ

exp(−βH) dλq =

∫
U⊂TqΣ

exp(−βH(·,Ptu)) du

=
1√

det([gtĝ−1]T [gtĝ−1])

∫
U∗⊂T∗

q Σ

exp(−βH) dλ∗q .

The assertion follows upon noting that

1√
det([gtĝ−1]T [gtĝ−1])

=
det(tT gt)√
det(tT g2t)

= cos∠{TqΣ,T ∗qΣ} .

Remark 14 Because it is orthogonal projection of the impetus ξ onto the tangent
(and not cotangent) space that encapsulates the physical variables, there is now no
angle correction term in the expression for stationary measure.

Remark 15 Addressing the question of whether or not the dynamics (2.7) or (4.19)
are ergodic with respect to the marginal distribution ρA would involve verification of
various technical conditions such as weak controllability (i.e., Hörmander’s condition)
and growth conditions on the functions V and f . However such analyses lie beyond
the scope of this article [24,25].

Remark 16 The situation is similar to that of deterministic Hamiltonian dynamics,
in which any function of the Hamiltonian is a stationary solution of the Liouville
equation. Moreover, the only candidate for an ergodic invariant measure, namely, the
microcanonical measure δ(H −E), is singular with respect to the Liouville measure.
In point of fact rather few concrete, physically motivated, Hamiltonian systems are
actually known to be ergodic. Examples that are known to be ergodic include certain
billiards and geodesic flows on surfaces of constant negative mean curvature.

5.2 The configuration space marginal

We can of course continue and compute further marginals. For example, the configu-
ration space marginal should not depend on which Hamiltonian formulation is used
in phase space. In fact the configuration space marginal from the impetus-striction
Langevin dynamics coincides with any of the forms described in Section 3.2. For
example, using the Riemannian surface measure we have:

Corollary 1 The configuration space marginal of the stationary measure for (4.19)
can be expressed as

dνΣ(q) =
1

ZΣ
exp(−βV (q)) dσΣ,g(q) .
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6 Summary and Conclusions

We have developed various expressions for the stationary or equilibrium measures
of holonomically constrained Langevin dynamics, both in phase and configuration
spaces. Here by holonomically constrained Langevin dynamics we mean n-dimensional
Lagrangian dynamics to which are appended both d independent holonomic con-
straints f(q) = 0, f = (f1, . . . , fd), and dissipative and stochastic terms, which are
assumed to be related through the standard fluctuation-dissipation relation. We as-
sume that it is not feasible to construct explicitly n−d generalized coordinates leading
to an unconstrained Langevin formulation, for otherwise the ambient space approach
we follow is moot.

The natural route to consider the statistical mechanics of such systems is via
a Hamiltonian form of the Lagrangian dynamics, and we have explained that in
the presence of holonomic constraints, and whether or not the Langevin fluctuation-
dissipation terms are present or not, there is freedom in how the Hamiltonian part
of the dynamics can be constructed. The first possibility is that a Legendre trans-
form may be performed in the standard way, specifically independent of the holo-
nomic constraints and their associated Lagrange multipliers, by the introduction of
the standard momentum as conjugate variable. A second, less standard approach,
the impetus-striction formulation, is to introduce an alternative conjugate variable,
the impetus, which does involve the time-differentiated constraints and their La-
grange multiplers, or strictions. (As discussed in [10] there is actually a continuous
family of possible impetus-striction formulations, but we only consider the simplest
case here.) It is explained that in either case the appropriate multipliers or stric-
tions can be evaluated as functions of the phase variables, which leads to an ambient
space dynamics in 2n-dimensional phase space. In the standard formulation there is
a 2(n − d)-dimensional submanifold formed by the zero level set of the constraints
and their time-derivatives that is invariant under the dynamics. However the ambient
dynamics is non-Hamiltonian off this sub-manifold, and the sub-manifold is itself a
repelling set. In contrast in the impetus-striction formulation the ambient space dy-
namics is Hamiltonian in the full 2n-dimensional phase space, and the d-dimensional
constraints are by construction d (commuting) integrals of both the conservative
Hamiltonian version, where the dissipation and fluctuation terms are dropped, and
the full Hamiltonian-Langevin system. Of course integrals are by definition neutrally
stable invariant sets.

We have not investigated the properties of numerical implementations of the
impetus-striction formulation of ambient space Langevin dynamics. However a nu-
merical impetus-striction simulation of a deterministic, infinite-dimensional (partial
differential equation), holonomically constrained, Lagrangian system was described
in [3], and the associated numerics were found to be rather stable and robust. On
the other hand it remains unclear whether or not the impetus-striction formulation
can lead to particularly efficient numerical implementations. To our knowledge very
few of the existing numerical schemes for Langevin equations can handle holonomic
constraints [31,18,21] or general (possibly degenerate) Hamiltonians [27].

With the ambient space dynamics in hand we then turned to consideration of var-
ious expressions for the associated equilibrium measures of the constrained Langevin
dynamics that allow expectations to be computed. In the standard Hamiltonian for-
mulation this stationary measure reduces to the (anticipated) Gibbs-Boltzmann den-
sity exp(−βH(q, p)) evaluated on the invariant set where integration is understood
to be decomposed into a (flat) integration along the (n − d)-dimensional cotangent
space fibre for each q, followed by (an unanticipated) multiplication by the cosine of
the angle between the tangent and cotangent spaces at q, and finally by integration
over the base configuration constraint set Σ regarded as a subset of Rn. In contrast in
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the impetus-striction formulation, the natural stationary measure reduces to the (an-
ticipated) Gibbs-Boltzmann density exp(−βH(q, ξ)) evaluated on the tangent bundle
of Σ where integration is understood to be decomposed into a (flat) integration of
the impetus ξ along the (n− d)-dimensional tangent space at each q, followed (with
no angle correction term) by integration over the base configuration constraint set Σ
regarded as a subset of Rn.

Finally we showed that the appropriate configuration space marginal equilibrium
distribution implied by (necessarily either of) the Hamilton-Langevin ambient phase
space equilibrium distributions involves the Boltzmann density exp(−βV (q)) inte-
grated against the Riemannian surface measure on Σ, where the Riemannian inner
product is weighted by the generalized mass matrix g. We presented various explicit
forms of this measure, with the conclusion that except for the very particular case
in which det(∇f(q)g(q)∇f(q)T ) = a det(∇f(q)∇f(q)T ) for some constant a > 0, the
constrained configuration space stationary measure does not in fact coincide with the
simplest possible conjecture, namely the Boltzmann weight exp(−βV (q)) integrated
over the constraint set Σ regarded as a subset of Rn.
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A Some useful equalities

We provide a few useful identities that are used throughout the text. First of all,
recall that the oblique projection P that was introduced in Section 2.1 is orthogonal
with respect to the metric 〈·, ·〉g−1 and projects onto the constrained cotangent space
T ∗qΣ. It will be convenient to have a more explicit representation for the projection
matrix in terms of a basis of T ∗qΣ. To this end let {t1, . . . , tn−d} be an arbitrary basis
of the tangent space TqΣ and define the (n− d)× (n− d)-matrix ĝ by

ĝ(q) := [t1, . . . , tn−d]
T g[t1, . . . , tn−d] (A.20)

with entries ĝij = tTi gtj . For brevity, we use the notation t = [t1, . . . , tn−d]. The
projector P now can be expressed as

P = gtĝ−1tT . (A.21)

The representation (A.21) shows that ker(P) = NqΣ and that we can regard the
projector P as a compound mapping: first, a vector x ∈ Rn is orthogonally projected
onto the tangent space TqΣ, then the tangent vector Px is mapped one-to-one onto
the cotangent space T ∗qΣ; cf. also (2.2)–(2.3). Therefore, considering the restriction

of P to the tangent space TqΣ we may define its inverse P−1 : Rn → TqΣ as the
n× n-matrix

P−1 = t(tT t)−1ĝ(tT t)−1tT g−1 , (A.22)

which, in the case that t is orthonormal, simplifies to

P−1 = tĝtT g−1 . (A.23)

The projection matrix P that maps onto the tangent space and which was defined
in (2.2) has the following property.
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Lemma 2 Let P : Rn → TqΣ be as defined in (2.2). Then, we have for k = 1, . . . , n

Pjk
∂Pij
∂qi

= Pkj
∂ ln
√

detG

∂qj
.

The proof follows directly from the Jacobi identity

(detA)′ = detA · tr(A−1A′),

for an invertible matrix A = A(s) where the ′ denotes differentiation with respect to
the parameter s ∈ R.

We also make use of a simplified version of the divergence theorem on manifolds:
Define a Riemannian submanifold M ⊂ Rn that is compact (i.e., has no boundary)
and that is equipped with surface element dσM. Further let PM denote the orthogonal
projection onto corresponding tangent spaces, and let X : M → TM be a smooth
vector field tangential to M, i.e., we have PMX = X. Then∫

M
divM(X) dσM = 0, (A.24)

where divM(X) = tr(PM∇X) denotes the surface divergence. In case of non-compact
submanifolds, the divergence theorem can be generalized to fast decaying functions,
e.g., the Xi being Schwartz functions. In particular we will use the following two
versions for M = Σ and cotangent spaces M = T ∗qΣ for fixed q ∈ Σ:

∀X : T ∗qΣ → TT ∗qΣ with P ∗X = X :

∫
T∗
q Σ

divT∗
q Σ

(X) dλ∗q = 0, (A.25)

and

∀X : Σ → TΣ with PX = X :

∫
Σ

divΣ(X) dσΣ = 0. (A.26)

Here the surfaces divergences are given by

divT∗
q Σ

(X) = tr(P ∗(q)∇X(p)), divΣ(X) = tr(P (q)∇X(q)).

B Stationarity of the constrained canonical distribution

This section is devoted to the proof of Proposition 2 using the Kolmogorov backward
equation. To this end let the function w ∈ C2,1(Q × Rn,R) be the solution of the
backward Kolmogorov equation(

∂

∂t
− L

)
w = 0 , w(·, ·, 0) = φ

where

L =
1

2
PσσTPT : ∇2

p +∇pH · ∇q − (P∇qH + Pγ∇pH + II) · ∇p

is the infinitesimal generator of the Langevin dynamics (2.7). The solution of the
backward equation is given by

w(q, p, t) = E[φ(q(t), p(t)) | (q(0), p(0)) = (q, p)]
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with (q(t), p(t)) being the solution to (2.7) for initial conditions (q, p) ∈ A(0) ∼= T ∗Σ.
We will call a probability measure µ invariant under (q(t), p(t)) if∫

A
w(q, p, t) dµ(q, p) =

∫
A
w(q, p, 0) dµ(q, p) .

Taking the time derivative on both sides of the equation and exploiting the fact that
w solves the backward equation, it follows that µ is invariant if∫

A
Lw dµ = 0 .

Thus to prove Proposition 2, it remains to show that∫
Σ

∫
T∗
q Σ

(Lw) cos∠{NqΣ,N∗qΣ} exp(−βH) dλ∗qdσΣ = 0 .

To abbreviate notation we set

ρ(q) = ∠{NqΣ,N∗qΣ} .
We split the contributions in the integrand as follows:∫

Σ

∫
T∗
q Σ

(Lw) cos ρ exp(−βH) dλ∗qdσΣ

=

∫
Σ

∫
T∗
q Σ

(
1

2
PσσTPT : ∇2

pw −Pγ∇pH · ∇pw
)

cos ρ exp(−βH) dλ∗qdσΣ︸ ︷︷ ︸
forcing and dissipation

+

∫
Σ

∫
T∗
q Σ

(∇pH · ∇qw − (P∇qH + II) · ∇pw) cos ρ exp(−βH) dλ∗qdσΣ︸ ︷︷ ︸
constrained Hamiltonian dynamics

We now address the two terms separately. The first term represents the stochastic part
of the Langevin equation for γ, σ 6= 0. Keeping q fixed, we can regard it as a degenerate
Ornstein-Uhlenbeck process in p that is known to have a stationary distribution that
is Gaussian with a possibly singular covariance matrix [28]. The second integrand
represents the constrained Liouville operator corresponding to Hamiltonian dynamics
that is subject to a holonomic constraint f(q) = 0.

B.1 Forcing and dissipation part

We first consider the forcing and dissipation integral. Using ∇f∇pH = 0 for all
p ∈ T ∗qΣ, we observe that PT∇pH = ∇pH when p ∈ T ∗qΣ. Hence the second term
in the integrand becomes

−
∫
Σ

∫
T∗
q Σ

(Pγ∇pH · ∇pw) cos ρ exp(−βH) dλ∗qdσΣ

=
1

β

∫
Σ

∫
T∗
q Σ

(
PγPT [∇p exp(−βH)] · ∇pw

)
cos ρ dλ∗qdσΣ

=
1

β

∫
Σ

∫
T∗
q Σ

tr
(
P ∗∇p · [PγPT (∇pw) exp(−βH)]

)
cos ρ dλ∗qdσΣ

−
∫
Σ

∫
T∗
q Σ

(
1

2
PσσTPT : ∇2

pw

)
cos ρ exp(−βH) dλ∗qdσΣ
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where, in the second equality, we used P ∗P = P and the fluctuation-dissipation
relation 2γ = βσσT . But the second term in the last equality annihilates the fluctua-
tion terms in the forcing and dissipation integral, while the first integral vanishes by
application of the divergence theorem (A.25). Hence it follows that∫

Σ

∫
T∗
q Σ

(
1

2
PσσTPT : ∇2

pw −Pγ∇pH · ∇pw
)

cos ρ exp(−βH) dλ∗qdσΣ = 0 .

B.2 Constrained Hamiltonian part

This second part is slightly more involved (cf. [15]). We demonstrate that∫
Σ

∫
T∗
q Σ

(∇pH · ∇qw − (P∇qH + II) · ∇pw) cos ρ exp(−βH) dλ∗qdσΣ = 0 . (B.27)

For this purpose we switch to a locally adapted coordinate system on T ∗qΣ⊕N∗qΣ for
any fixed q ∈ Σ. Although the integration over the fibres in (B.27) does not involve the
normal part of p, including it is necessary, for the integrand involves derivatives with
respect to p ∈ Rn. We introduce orthonormal bases {t∗1, . . . , t∗n−d} and {n∗1, . . . ,n∗d}
of T ∗qΣ and N∗qΣ, respectively, to define the orthogonal n× n matrix R = R(q) by

R = [t∗,n∗] , t∗ = [t∗1, . . . , t
∗
n−d] , n

∗ = [n∗1, . . . ,n
∗
d] .

An adapted coordinate chart is now defined by the map

θ : Rn−d ×Rd → T ∗qΣ ⊕N∗qΣ , (u, ζ) 7→ t∗u+ n∗ζ .

We use the shorthand Rn−d
0 := Rn−d × {0} with {0} ⊂ Rd for vectors

Rv ∈ T ∗qΣ ⇐⇒ v = (u, 0) ∈ Rn−d
0 .

In order to avoid confusion in taking derivatives, we introduce the following notation:
for a function a : Rn → R, p 7→ a(p) we write ∇a(p) = R∇va(Rv), whereas for
functions b : Q×Rn → R, (q, p) 7→ b(q, p) we write

∇qb(q, p) = ∇1b(q, p) + [∇qR(q)v]TR(q)∇vb(q, p) (B.28)

with ∇1 denoting the derivative with respect to the first argument.
We now prove (B.27). We start with the first term in the integrand and use (B.28):∫
Σ

∫
T∗
q Σ

(∇pH · ∇qw) cos ρ e−βH(q,p) dλ∗q(p)dσΣ(q) (here ∇q = ∇1)

=

∫
Σ

∫
Rn−d

0

(R∇vH · ∇qw) cos ρ e−βH dvdσΣ︸ ︷︷ ︸
=:A1

−
∫
Σ

∫
Rn−d

0

(
R∇vH · (∇q[Rv])TR∇vw

)
cos ρ e−βH dvdσΣ︸ ︷︷ ︸

=:A2

,
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and, addressing these two terms separately,

A1 =

∫
Σ

∫
Rn−d

0

((
R∇vH · ∇q[w cos ρ e−βH ]

)
− (R∇vH · ∇q cos ρ)w e−βH

)
dv dσΣ︸ ︷︷ ︸

=:C1

+ β

∫
Σ

∫
Rn−d

0

(R∇vH · ∇qH)w cos ρ e−βH dvdσΣ ,

and

A2 =−
∫
Σ

∫
Rn−d

0

(P∇q[Rv]R∇vH ·R∇vw) cos ρ e−βH dvdσΣ︸ ︷︷ ︸
=:C2

+

∫
Σ

∫
T∗
q Σ

(λn∇fn · ∇pw) cos ρ e−βH(q,p) dλ∗q(p)dσΣ

where λn = λn(q, p) denotes the Lagrange multiplier from the constraint force (not
to be confused with the Lebesgue measure λ∗q). Substitution of the constraint force
in last integral can be readily verified by using (A.21) with p = Rv:

(I −P)∇q[Rv]R∇vH = Kkm〈∇q[Rv]g−1Rv, g−1∇fk〉∇fm = −λn(q, p)∇fn.

We proceed by calculating the second integral in (B.27). Again we use (B.28) and get

−
∫
Σ

∫
T∗
q Σ

(P∇qH · ∇pw) cos ρ e−βH(q,p) dλ∗q(p)dσΣ(q) (here ∇q = ∇1)

=−
∫
Σ

∫
Rn−d

0

((
P∇qH − (∇q[Rv])TR∇vH

)
·R∇vw

)
cos ρ e−βH dvdσΣ

=−
∫
Σ

∫
Rn−d

0

(
P∇qH ·R∇v(w e−βH)

)
cos ρ dvdσΣ︸ ︷︷ ︸

=:B1

− β
∫
Σ

∫
Rn−d

0

(P∇qH ·R∇vH)w cos ρ e−βH dvdσΣ

+

∫
Σ

∫
Rn−d

0

(
P(∇q[Rv])TR∇vH ·R∇vw

)
cos ρ e−βH dvdσΣ︸ ︷︷ ︸

=:B2

.

We observe that the second integral on the r.h.s. of the above equation cancels with
the second integral of the term A1. Moreover the third integrand countervails the
second integral of the term A2. Reassembling the results so far, (B.27) reads

B1 + B2 + C1 + C2 = 0. (B.29)

In the next step we evaluate the terms B2 and C2 both of which contain the Jacobian
∇q[R(q)v] as a part of their integrands. This gives

B2 + C2 = B′2 + C′2 (B.30)
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with

B′2 =

∫
Σ

∫
Rn−d

0

(
P(∇q[Rv])TR∇vH ·R∇v(w e−βH)

)
cos ρ dvdσΣ

C′2 = −
∫
Σ

∫
Rn−d

0

(
P∇q[Rv]TR∇vH ·R∇v(w e−βH)

)
cos ρ dvdσΣ ,

so that (B.29) can be equivalently expressed as

B1 + B′2 + C1 + C′2 = 0.

We turn to the computation of B′2 and C ′2 and get after some simple manipulations

B′2 =−
∫
Σ

∫
Rn−d

0

Rij [P]im∂vj

[
∂Rsl
∂qm

vlg
soRonvn

]
w e−βH cos ρ dvdσΣ

=−
∫
Σ

∫
Rn−d

0

Rij [P]im
∂Rsj
∂qm

Rsn∂vnH w e−βH cos ρ dvdσΣ

−
∫
Σ

∫
Rn−d

0

Rij [P]im
∂Rsl
∂qm

vlg
soRoj w e

−βH cos ρ dvdσΣ

=−
∫
Σ

∫
Rn−d

0

[P]imRij
∂2H

∂qm∂vj
w e−βH cos ρ dvdσΣ

+

∫
Σ

∫
Rn−d

0

[P]im
∂(ginRnovo)

∂qm
w e−βH cos ρ dvdσΣ

−
∫
Σ

∫
Rn−d

0

gsi[P]im
∂Rsl
∂qm

vlw e
−βH cos ρ dvdσΣ

(B.31)

while the other integral becomes

C′2 =−
∫
Σ

∫
Rn−d

0

(
P∇q[Rv]R∇vH ·R∇v(w e−βH)

)
cos ρ dvdσΣ

=

∫
Σ

∫
Rn−d

0

Rij [P]im∂vj

[
∂Rml
∂qs

vlg
soRonvn

]
w e−βH cos ρ dvdσΣ

=

∫
Σ

∫
Rn−d

0

Rij [P]im
∂Rmj
∂qs

gsoRonvn w e
−βH cos ρ dvdσΣ

+

∫
Σ

∫
Rn−d

0

[P]im
∂Rml
∂qs

vlg
si w e−βH cos ρ dvdσΣ

=−
∫
Σ

∫
Rn−d

0

Kkn[∇fk ⊗ g−1∇fn]imRij
∂Rmj
∂qs

gsoRonvn w e
−βH cos ρ dvdσΣ

+

∫
Σ

∫
Rn−d

0

gsi[P]im
∂Rml
∂qs

vl w e
−βH cos ρ dvdσΣ .

(B.32)
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Exploiting that g−1P = PT g−1, we observe that the last integral cancels with the
last integral in (B.31). Moreover the first integral of (B.31) cancels with B1. Hence

B1 + B′2 + C′2 + C1 =

∫
Σ

∫
Rn−d

0

[P]im
∂(ginRnovo)

∂qm
w e−βH cos ρ dvdσΣ

−
∫
Σ

∫
Rn−d

0

Kkn[∇fk ⊗ g−1∇fn]imRij
∂Rmj
∂qs

gsoRonvn w e
−βH cos ρ dvdσΣ

+

∫
Σ

∫
Rn−d

0

(
R∇vH · ∇q[w cos ρ e−βH ]

)
dv dσΣ

−
∫
Σ

∫
Rn−d

0

(R∇vH · ∇q cos ρ)w e−βH dvdσΣ .

(B.33)
Now, the first integral on the r.h.s. can be expressed as follows:∫

Σ

∫
Rn−d

0

[P]im
∂(ginRnovo)

∂qm
w e−βH cos ρ dvdσΣ

=

∫
Σ

∫
Rn−d

0

Pim
∂(Rmn∂vnH)

∂qi
w e−βH cos ρ dvdσΣ

+

∫
Σ

∫
Rn−d

0

(I − P )im
∂(Rmn∂vnH)

∂qi
w e−βH cos ρ dvdσΣ

−
∫
Σ

∫
Rn−d

0

Kkn[∇fk ⊗ g−1∇fn]im
∂(gisRsovo)

∂qm
w e−βH cos ρ dvdσΣ

where the first integral is further manipulated according to∫
Σ

∫
Rn−d

0

Pim
∂(Rmn∂vnH)

∂qi
w e−βH cos ρ dvdσΣ

=

∫
Σ

∫
Rn−d

0

tr
(
P∇q[R∇vH · w cos ρ e−βH ]

)
dvdσΣ

−
∫
Σ

∫
Rn−d

0

(
PR∇vH · ∇q[w cos ρ e−βH)

)
dvdσΣ .

The first integral after the equality is seen to be zero by applying the divergence
theorem, equation (A.26); the second one cancels with the second one from below in
(B.33). Collecting all the terms, in order that (B.29) be fulfilled, we need that∫
Σ

∫
Rn−d

0

(
R∇vH · ∇q[we−βH ]

)
cos ρ dvdσΣ

=

∫
Σ

∫
Rn−d

0

(I − P )im
∂(Rmn∂vnH)

∂qi
w e−βH cos ρ dvdσΣ

−
∫
Σ

∫
Rn−d

0

Kkn[∇fk ⊗ g−1∇fn]im
∂(gisRsovo)

∂qm
w e−βH cos ρ dvdσΣ

−
∫
Σ

∫
Rn−d

0

Kkn[∇fk ⊗ g−1∇fn]imRij
∂Rmj
∂qs

gsoRonvn w e
−βH cos ρ dvdσΣ

(B.34)
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We address each term on the r.h.s. separately. For the first integral, we use Lemma 2
together with R∇vH = PR∇vH to get∫

Σ

∫
Rn−d

0

(I − P )im
∂(Rmn∂vnH)

∂qi
w e−βH cos ρ dvdσΣ

=

∫
Σ

∫
Rn−d

0

(
∇q ln((detG)−1/2) · PR∇vH

)
w cos ρ dvdσΣ .

(B.35)

The second integral of (B.34) is changed with [∇f1, . . . ,∇fd]T g−1Rv = 0 to

−
∫
Σ

∫
Rn−d

0

Kkn[∇fk ⊗ g−1∇fn]im
∂(gisRsovo)

∂qm
w e−βH cos ρ dvdσΣ

=

∫
Σ

∫
Rn−d

0

Kkngms∂sfn∂
2
imfkg

ioRolvlw e
−βH cos ρ dvdσΣ .

(B.36)

Further manipulating the third integral on the r.h.s. of (B.34) yields

−
∫
Σ

∫
Rn−d

0

Kkn[∇fk ⊗ g−1∇fn]imRij
∂Rmj
∂qs

gsoRonvn w e
−βHcosρ dvdσΣ

= −
∫
Σ

∫
Rn−d

0

∂[Kkn(∇fk ⊗ g−1∇fn)R]ij
∂qs

Rijg
soRolvl w e

−βH cos ρ dvdσΣ .

(B.37)
To further simplify (B.37) we recall that R is an orthogonal matrix given by R =
[t∗,n∗] and note that for some invertible matrix ζ ∈ Rd×d

n∗ := [n∗1, . . . ,n
∗
d] = g−1[∇f1, . . . ,∇fd] ζ

such that
ζ−1 = [n∗1, . . . ,n

∗
d]
T g−1[∇f1, . . . ,∇fd],

by which (B.37) becomes

−
∫
Σ

∫
Rn−d

0

Kkn[∇fk ⊗ g−1∇fn]imRij
∂Rmj
∂qs

gsoRonvn w e
−βH cos ρ dvdσΣ

=

∫
Σ

∫
Rn−d

0

∂(Kknζjn)

∂qs
〈∇fk,n∗j 〉gsoRolvl w e−βH cos ρ dvdσΣ

−
∫
Σ

∫
Rn−d

0

Kknζjn∂2isfkg
ir∇rfmζmjgsoRolvl w e−βH cos ρ dvdσΣ .

(B.38)
A careful inspection now reveals that the last integral cancels with (B.36). The re-
maining terms can be further simplified by using that

〈∇fk,n∗j 〉 = ζmj〈∇fk, g−1∇fm〉 = ζmjKmk

which, upon collecting all the remaining terms in (B.35) and (B.38), and applying
Lemma 2 to the second line of (B.38), shows that (B.34) reduces to∫

Σ

∫
Rn−d

0

(R∇vH · ∇q cos ρ(q))w e−βH dvdσΣ

=

∫
Σ

∫
Rn−d

0

(
∇q ln((detG)−1/2) · PR∇vH

)
w cos ρ dvdσΣ

+

∫
Σ

∫
Rn−d

0

(∇q ln(det(Kζ)) · PR∇vH) w e−βH cos ρ dvdσΣ .
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The equation obviously is satisfied if

∇q ln(cos ρ) = ∇q ln

(
det(Kζ)√

detG

)
.

But (3.11) implies that

cos ρ =

(
detK√

detGdet J

)
,

so that the above assertion follows upon noting that

ζ−T ζ−1 = [∇f1, . . . ,∇fd]g−2[∇f1, . . . ,∇fd] ⇒ det(ζ) =
1√

det(J)
.

Hence Proposition 2 is proved.
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20. T. Lelièvre, M. Rousset, and G. Stoltz. Free Energy Computations: A Mathematical
Perspective. Imperial College Press, 2010.
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