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A combinatorial criterion for the toric ideal arising from a finite graph to be
generated by quadratic binomials is studied. Such a criterion guarantees that every
Koszul algebra generated by squarefree quadratic monomials is normal. We present
an example of a normal non-Koszul squarefree semigroup ring whose toric ideal is
generated by quadratic binomials as well as an example of a non-normal Koszul
squarefree semigroup ring whose toric ideal possesses no quadratic Gröbner ba-
sis. In addition, all the affine semigroup rings which are generated by squarefree
quadratic monomials and which have 2-linear resolutions will be classified. More-
over, it is shown that the toric ideal of a normal affine semigroup ring generated by
quadratic monomials is generated by quadratic binomials if its underlying polytope
is simple. © 1999 Academic Press

INTRODUCTION

Let K be a field and K�t� = K�t1; t2; : : : ; td� the polynomial ring in d
variables over K with each deg ti = 1. If A = �f1; f2; : : : ; fn� is a finite set
of monomials belonging to K�t� such that all the fi’s have the same de-
gree, then we write K�A� for the subalgebra of K�t� which is generated by
f1; f2; : : : ; fn over K. Let K�x� = K�x1; x2; : : : ; xn� denote the polynomial
ring in n variables over K and πx K�x� → K�A� the surjective homomor-
phism of semigroup rings defined by π�xi� = fi for all 1 ≤ i ≤ n. We write
IA for the kernel of π and call IA the toric ideal associated with the affine
semigroup ring K�A�. It follows from, e.g., [11, Corollary 4.3] that the toric
ideal IA is generated by binomials.
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Recently, the following three properties on A were investigated by several
commutative algebraists:

(i) IA is generated by quadratic binomials;
(ii) K�A� is Koszul;

(iii) IA possesses a quadratic Gröbner basis.

We refer the reader to, e.g., Backelin and Fröberg [1] for the foundation
on Koszul algebras and to [2], [6], and [7] for detailed information about
Gröbner bases. The hierarchy (iii) ⇒ (ii) ⇒ (i) is known (e.g., [4]). The
converse hierarchy is true for normal toric surfaces [5] and for affine semi-
group rings arising from bipartite graphs [9]. On the other hand, it is shown
in [10] that there exist a non-Koszul monomial curve whose toric ideal is
generated by quadratic binomials and a Koszul monomial curve whose toric
ideal has no quadratic Gröbner basis.

Regarding K�x� as a graded ring with each deg xi = 1 and writing
K�x��−a�, where a is an integer, for the graded module K�x� over itself
with deg xi = a, we are interested in a graded minimal free resolution

0−→
βh⊕
j=1

K�x��−ahj �
ϕh−→ · · · ϕ2−→

β1⊕
j=1

K�x��−a1j �
ϕ1−→K�x� π−→K�A�−→ 0

of K�A� over K�x�. See, e.g., [3] for detailed information about graded
minimal free resolutions. Such a resolution is called m-linear if aij = m+
i − 1 for all i and j. We say that K�A� has m-linear resolution if a graded
minimal free resolution of K�A� over K�x� is m-linear. Thus, in particular,
if K�A� has m-linear resolution, then the toric ideal IA is generated by
binomials of degree m. It is known [1] that K�A� has 2-linear resolution if
and only if K�A� is both a Koszul algebra and a Golod algebra.

The present manuscript follows our previous paper [8] and we are mainly
interested in a finite set A consisting of squarefree quadratic monomials.
First, in Section 1, we give a combinatorial criterion for IA to be gener-
ated by quadratic binomials; see Theorem 1.2. Such a criterion guarantees
that every Koszul algebra generated by squarefree quadratic monomials is
normal; see Corollary 1.3. Second, in Section 2, we present an example
of a normal non-Koszul algebra generated by squarefree quadratic mono-
mials whose toric ideal is generated by quadratic binomials (cf. Example
2.1) and an example of a non-normal Koszul algebra generated by square-
free cubic monomials whose toric ideal possesses no quadratic Gröbner
basis (cf. Example 2.2). On the other hand, a proof of Theorem 1.2 will
be given in Section 3. Moreover, in Section 4, we classify all the affine
semigroup rings K�A� such that A is a finite set of squarefree quadratic
monomials and that K�A� has 2-linear resolutions. See Theorem 4.6. In
Section 5, we prove that the toric ideals of a finite set A consisting of (not
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necessarily squarefree) quadratic monomials is generated by quadratic bi-
nomials if K�A� is normal and if the convex polytope associated with A is
simple.

It would be, of course, of great interest to find all the Koszul algebras
generated by squarefree quadratic monomials as well as to find all the
Golod algebras generated by squarefree quadratic monomials. These prob-
lems belong to the research plan in our project about the combinatorial
and algebraic study on binomial ideals arising from finite graphs.

1. BINOMIAL IDEALS ARISING FROM FINITE GRAPHS

The goal of this section is to give a combinatorial criterion for the toric
ideal IA associated with an affine semigroup ring K�A�, where A is a finite
set of squarefree quadratic monomials, to be generated by quadratic bino-
mials. First, we recall fundamental material from [8] for the discussion of
affine semigroup rings generated by squarefree quadratic monomials.

(1.1) Let G be a finite connected graph having no loop and no multiple
edge on the vertex set V �G� = �1; 2; : : : ; d� and E�G� = �e1; e2; : : : ; en�
be the set of edges of G. Let K�t� = K�t1; t2; : : : ; td� denote the polynomial
ring in d variables over a field K. If e = �i; j� is an edge of G combining
i ∈ V �G� with j ∈ V �G�, then we write te for the squarefree quadratic
monomial titj belonging to K�t�. Let K�G� denote the subalgebra of K�t�
which is generated by te1; te2; : : : ; ten over K. The affine semigroup ring
K�G� is called the edge ring of G. Let K�x� = K�x1; x2; : : : ; xn� denote the
polynomial ring in n variables over K and πx K�x� → K�G� the surjective
homomorphism of semigroup rings defined by by π�xi� = tei for all 1 ≤ i ≤
n. We write IG for the kernel of π and call IG the toric ideal of G.

(1.2) A walk of length q of G connecting v1 ∈ V �G� and vq+1 ∈ V �G� is
a finite sequence of the form

0 = ��v1; v2�; �v2; v3�; : : : ; �vq; vq+1�� (1)

with each �vk; vk+1� ∈ E�G�. Such a walk 0 can be regarded as a subgraph
of G in the obvious way, i.e., its vertex set V �0� consists of all the vertices
v ∈ V �G� with v = vk for some 1 ≤ k ≤ q+ 1 and its edge set E�0� consists
of all the edges e ∈ E�G� with e = �vk; vk+1� for some 1 ≤ k ≤ q. An even
(resp. odd) walk is a walk of even (resp. odd) length. A walk 0 of the form
�1� is called closed if vq+1 = v1.

A cycle is a closed walk

C = ��v1; v2�; �v2; v3�; : : : ; �vq; v1�� (2)
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with vi 6= vj for all 1 ≤ i < j ≤ q. A chord of a cycle �2� is an edge
e ∈ E�G� of the form e = �vi; vj� for some 1 ≤ i < j ≤ q with e 6∈ E�C�.
When a cycle �2� is even, an even-chord (resp. odd-chord) of �2� is an chord
e = �vi; vj� with 1 ≤ i < j ≤ q such that j − i is odd (resp. even).

If e = �vi; vj� and e′ = �vi′; vj′ � are chords of a cycle �2� with 1 ≤ i <
j ≤ q and with 1 ≤ i′ < j′ ≤ q, then we say that e and e′ cross in C if either
i < i′ < j < j′ or i′ < i < j′ < j and if either �vi; vi′ �; �vj; vj′ � are edges of
C or �vi; vj′ �; �vj; vi′ � are edges of C.

A minimal cycle of G is a cycle having no chords. If C1 and C2 are cycles
of G having no common vertex, then a bridge between C1 and C2 is an edge
�i; j� of G with i ∈ V �C1� and j ∈ V �C2�.

(1.3) Given an even closed walk

0 = �ei1; ei2; : : : ; ei2q�
of G with each ek ∈ E�G�, we write f0 for the binomial

f0 =
q∏
k=1

xi2k−1
−

q∏
k=1

xi2k

belonging to IG. We often employ the abbreviated notation

f0 = f �+�0 − f �−�0 ;

where

f
�+�
0 =

q∏
k=1

xi2k−1
; f

�−�
0 =

q∏
k=1

xi2k :

Even though the following Lemma 1.1 must be an easy exercise, we give
its proof for the sake of completeness.

Lemma 1.1. The toric ideal IG is generated by all the binomials f0, where
0 is an even closed walk of G.

Proof. It is known, e.g., [11, Corollary 4.3] that, in general, every toric
ideal is generated by binomials. Choose a binomial f = ∏q

k=1 xik −
∏q
k=1 xjk

belonging to IG with ik 6= jk′ for all 1 ≤ k ≤ q and for all 1 ≤ k′ ≤ q. Let,
say, π�xi1� = t1t2. Since π�∏q

k=1 xik� = π�
∏q
k=1 xjk�, we have π�xjm� = t2tr

for some 1 ≤ m ≤ q with r 6= 1. Say m = 1 and r = 3, i.e., π�xj1� =
t2t3. Then π�xi`� = t3ts for some 2 ≤ ` ≤ q with s 6= 2. Repeated ap-
plication of such procedure enables us to find an even closed walk, say,
0′ = �ei1; ej1; ei2; ej2; : : : ; eip; ejp� with f0′ =

∏p
k=1 xik −

∏p
k=1 xjk ∈ IG. Since

π�∏q
k=1 xik� = π�

∏q
k=1 xjk� and since π�∏p

k=1 xik� = π�
∏p
k=1 xjk�, we have

π�∏q
k=p+1 xik� = π�

∏q
k=p+1 xjk�. Hence

∏q
k=p+1 xik −

∏q
k=p+1 xjk belongs to
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IG. Working with induction on q �≥ 2�, we may assume that
∏q
k=p+1 xik −∏q

k=p+1 xjk belongs to the ideal which is generated by all the binomials f0,
where 0 is an even closed walk of G. Now, we have

f =
q∏

k=p+1

xik

( p∏
k=1

xik −
p∏
k=1

xjk

)
+

p∏
k=1

xjk

( q∏
k=p+1

xik −
q∏

k=p+1

xjk

)

= f0′
q∏

k=p+1

xik +
p∏
k=1

xjk

( q∏
k=p+1

xik −
q∏

k=p+1

xjk

)
:

Hence, the binomial f belongs to the ideal which is generated by all the
binomials f0, where 0 is an even closed walk of G. Thus, the toric ideal IG
is generated by all the binomials f0, where 0 is an even closed walk of G
as required. Q. E. D.

(1.4) We are now in the position to state a combinatorial criterion for
the toric ideal IG of G to be generated by quadratic binomials.

Theorem 1.2. Let G be a finite connected graph having no loop and no
multiple edge. Then, the toric ideal IG of G is generated by quadratic binomials
if and only if the following conditions are satisfied:

(i) If C is an even cycle of G of length ≥ 6, then either C has an
even-chord or C has three odd-chords e, e′, e′′ such that e and e′ cross in C;

(ii) If C1 and C2 are minimal odd cycles having exactly one common
vertex, then there exists an edge �i; j� /∈ E�C1� ∪ E�C2� with i ∈ V �C1� and
j ∈ V �C2�;

(iii) If C1 and C2 are minimal odd cycles having no common vertex,
then there exist at least two bridges between C1 and C2.

The proof will be postponed to Section 3. We discuss complementary
results and some examples related with Theorem 1.2. By virtue of [8],
it follows immediately that every Koszul algebra generated by squarefree
quadratic monomials is normal.

Corollary 1.3. Let G be a finite connected graph having no loop and
no multiple edge and suppose that the affine semigroup ring K�G� is Koszul.
Then K�G� is normal.

Proof. It is known, e.g., [8, Corollary 2.3] that K�G� is normal if and
only if G satisfies the following condition: If C1 and C2 are minimal odd
cycles of G having no common vertex, then there exists a bridge between
C1 and C2. Now, if K�G� is Koszul, then the toric ideal IG is generated by
quadratic binomials. In particular, Theorem 1.2 guarantees that G satisfies
the above condition for normality as desired. Q. E. D.
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Example 1.4. We give an example of a non-normal edge ring K�G�
whose toric ideal IG is generated by quadratic binomials and cubic binomi-
als. Let G be the graph on the vertex set �1; 2; 3; 4; 5; 6; 7� with the edges
e1 = �1; 2�, e2 = �2; 3�, e3 = �3; 4�, e4 = �1; 4�, e5 = �4; 5�, e6 = �4; 7�,
e7 = �6; 7�, e8 = �5; 6�, e9 = �1; 3�, and e10 = �5; 7�. Then IG is not gen-
erated by quadratic binomials by Theorem 1.2 and K�G� is non-normal by
[8, Corollary 2.3]. The toric ideal IG is generated by two quadratic binomi-
als x1x3 − x2x4; x5x7 − x6x8 and one cubic binomial x3x4x10 − x5x6x9.

Example 1.5. We present an example of a non-normal semigroup
ring generated by quadratic monomials whose toric ideal has a quadratic
Gröbner basis. The affine semigroup ring K�t12; t1t2; t2

2; t2t3; t3
2� is non-

normal; however, its toric ideal has a quadratic Gröbner basis �x2
2 − x1x3;

x2
4 − x3x5�.
On the other hand, the result below guarantees that if an affine semi-

group ring K�A� is generated by squarefree monomials of the same degree
and if its toric ideal IA possesses a quadratic Gröbner basis, then K�A� is
normal.

Proposition 1.6. Let K�t� = K�t1; t2; : : : ; td� denote the polynomial ring
in d variables over a field K with each deg ti = 1 and K�A� the subalgebra
of K�t� generated by squarefree monomials f1; f2; : : : ; fn such that all the fi’s
have the same degree. Suppose that the toric ideal IA associated with K�A�
has a quadratic Gröbner basis. Then K�A� is normal.

Proof. If a binomial f = xi
2 − xjxk belongs to IG, then fi

2 = fjfk.
Thus fi = fj = fk since fi; fj and fk are squarefree. Hence, all quadratic
binomials belonging to IA are squarefree. Thus, in particular, if IA has a
quadratic Gröbner basis, then some initial ideal of IA is squarefree. Hence,
by [11, Corollary 8.9] the affine semigroup ring K�A� is normal. Q. E. D.

2. SOME EXAMPLES

We now present an example of a normal non-Koszul squarefree semi-
group ring whose toric ideal is generated by quadratic binomials as well as
an example of a non-normal Koszul squarefree semigroup ring whose toric
ideal possesses no quadratic Gröbner basis.

Example 2.1. Let G be the graph below with 6 vertices and 10 edges.
Then K�G� is normal by [8, Corollary 2.3] and its toric ideal IG is generated
by the quadratic binomials

x4x6 − x5x9; x3x10 − x4x8; x2x9 − x3x7;

x1x10 − x5x7; x1x8 − x2x6:
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However, by an explicit computation with MACAULAY it turns out that
K�G� is non-Koszul. Thus, in particular, IG has no quadratic Gröbner basis.

A
A
A
A
A
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Example 2.2. Let K�A� denote the affine semigroup which is generated
by squarefree monomials

t1t2t3; t1t3t4; t1t4t5; t1t2t5;

t2t3t6; t4t5t6; t3t4t7; t2t5t7:

Then, its toric ideal IA is generated by the quadratic binomials

x2x8 − x4x7; x1x6 − x3x5; x1x3 − x2x4:

Let f denote the squarefree monomial t2t3t4t5t6t7. Then f is integral over
K�A� since

f 2 = �t2t3t6��t4t5t6��t3t4t7��t2t5t7�
and f belongs to the quotient field of K�A� since

f = �t2t3t6��t3t4t7��t1t2t5�
t1t2t3

:

However, f /∈ K�A�. Thus, the affine semigroup ring K�A� is non-normal.
Hence, by Proposition 1.6 the toric ideal IA has no quadratic Gröbner basis.
For example,{
x2

3x5x8 − x2
4x6x7; x2x8 − x4x7; x2x4x6 − x2

3x5; x1x6 − x3x5; x1x3 − x2x4
}

is a Gröbner basis of the toric ideal IA.
We now prove that K�A� is Koszul. Let K�A′� denote the subalgebra

of K�A� generated by

t1t2t3; t1t3t4; t1t4t5; t1t2t5; t2t3t6; t4t5t6; t3t4t7:

Then, the toric ideal IA′ has a quadratic Gröbner basis

�x2x4 − x1x3; x1x6 − x3x5�:
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Hence K�A′� is Koszul. Thus K�A′��x8� is also Koszul. Since

K�A� = K�A′��x8�/�x2x8 − x4x7�
and since the quadratic binomial x2x8 − x4x7 is a non-zerodivisor on
K�A′��x8�, it follows from [1, Theorem 4] that the affine semigroup ring
K�A� is Koszul as required.

Remark. (a) A non-Koszul monomial curve whose toric ideal is gen-
erated by quadratic binomials constructed in [10] is non-normal. Our
non-Koszul squarefree semigroup ring whose toric ideal is generated by
quadratic binomials discussed in Example 2.1 is normal.

(b) A Koszul monomial curve whose toric ideal has no quadratic
Gröbner basis constructed in [10] is defined by 11 quadratic binomials. Our
Koszul squarefree semigroup ring whose toric ideal possesses no quadratic
Gröbner basis discussed in Example 2.2 is defined by three quadratic bi-
nomials. It is not difficult to show that every affine semigroup ring whose
toric ideal is generated by at most two quadratic binomials is Koszul.
It might be of interest to find an edge ring K�G� such that (i) K�G� is
normal, (ii) K�G� is Koszul, and (iii) IG has no quadratic Gröbner basis.

3. PROOF OF THEOREM 1.2

The purpose of the present section is to give a proof of Theorem 1.2.
For a while we keep the same notation as in Section 1. Every graph G to
be studied is a finite connected graph having no loop and no multiple edge.

We say that an even closed walk 0 = �ei1; ei2; : : : ; ei2q� of G is primitive if
there exists no even closed walk of G of the form �ej1; ej2; : : : ; ej2p� with 1 ≤
p < q such that each j2k−1 belongs to �i1; i3; : : : ; i2q−1�, each j2k belongs
to �i2; i4; : : : ; i2q�, and j2k−1 6= j2` for all 1 ≤ k ≤ p and for all 1 ≤ ` ≤ p.

Lemma 3.1. The toric ideal IG of G is generated by the binomials f0,
where 0 is a primitive even closed walk of G.

Proof. If an even closed walk 0 of G of length 2q is not primitive, then
we can find an even closed walk 0′ of G of length < 2q such that f �+�0′ di-
vides f �+�0 and f �−�0′ divides f �−�0 . It follows that the binomial g = f �+�0 /f

�+�
0′ −

f
�−�
0 /f

�−�
0′ belongs to IG. Since f0 = gf �+�0′ + f0′f �−�0 /f

�−�
0′ , Lemma 1.1 guar-

antees that the toric ideal IG is generated by the binomials associated with
primitive even closed walks of G as required. Q. E. D.

It follows from the proof of Lemma 1.1 that the set of all binomials f0,
where 0 is a primitive even closed walk of G, coincides with the Graver
basis [11, p. 35] of IG.
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Lemma 3.2. A primitive even closed walk 0 of G is one of the following:

(i) 0 is an even cycle of G;

(ii) 0 = �C1; C2�, where C1 and C2 are odd cycles of G having exactly
one common vertex;

(iii) 0 = �C1; 01; C2; 02�, where C1 and C2 are odd cycles of G having
no common vertex and where 01 and 02 are walks of G both of which combine
a vertex v1 of C1 and a vertex v2 of C2.

Proof. If 0 is a cycle of G, then 0 must be an even cycle. Let us assume
that 0 is not a cycle. We then have 0 = �01; 02�, where 01 and 02 are closed
walks of G having a common vertex v ∈ V �0�. Since 0 is primitive, both 01
and 02 must be odd. If 01 and 02 have a common vertex w (6= v), then it
follows that 0 is not primitive. Hence, 01 and 02 have exactly one common
vertex v. If both 01 and 02 are odd cycles, then 0 is of the form required
in (ii). If 01 is not a cycle, then 01 = �03; 04; 05�, where 03 is a walk of
G connecting v and a vertex of 01, say v′, where 04 is a closed walk of G
and where 05 is a walk of G connecting v′ and v. Since 0 is primitive, we
have v 6= v′. Moreover, 04 must be odd with v 6∈ V �04�. If 04 is a cycle,
then 0 is of the form required in (iii). While, if 04 is not a cycle, then
by repeating the above technique 0 turns out to be of the desired form
in (iii). Q. E. D.

If W is a subset of the vertex set V �G� of G, then the induced subgraph
of G on W is the subgraph of G whose vertex set is W and whose edge set
is ��v1; v2� ∈ E�G�y v1; v2 ∈ W; v1 6= v2�.

An even closed walk 0 of G is called fundamental if every even closed
walk 0′ of the induced subgraph on V �0� satisfies either f0 = f0′ or
f0 = −f0′ .

Lemma 3.3. Let 0 be a fundamental even closed walk of G and suppose
that the toric ideal IG is generated by f01

; f02
; : : : ; f0s , where each 0i is an

even closed walk of G. Then, either f0 = f0i or f0 = −f0i for some 1 ≤ i ≤ s.

Proof. Since f0 ∈ IG we can choose f0i such that f �+�0i
divides either

f
�+�
0 or f �−�0 . It then follows that each vertex of 0i must belong to V �0�.

Hence, 0i is an even closed walk of the induced subgraph on V �0�. Thus
f0 coincides with f0i as required. Q. E. D.

If e is an edge of G, then we write xe for the variable of K�x� with
π�xe� = te ∈ K�G�.

Proof of Theorem 1.2. First, to show the “only if” part of Theorem 1.2
suppose that the toric ideal IG of G is generated by quadratic binomials.
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(i) Let C be an even cycle of length ≥ 6 of G. Since fC ∈ IG and
since IG is generated by quadratic binomials, we can find two quadratic
binomials fC1

and fC2
, where both C1 and C2 are even cycles of length 4,

such that f �+�C1
divides f �+�C and f �+�C2

divides f �−�C . It then follows that C has
either an even-chord or two odd-chords which cross in C. If C has exactly
two chords e and e′ such that e and e′ are odd-chords which cross in C
and if C ′ = �e; ei; e′; ej� with ei; ej ∈ E�C� is a cycle of length 4, then we
have either fC ′ = fC ′′ or fC ′ = −fC ′′ for all even cycles C ′′ of length 4 of the
induced subgraph on V �C�. Hence, it is impossible to find two even cycles
C1 and C2 required above.

(ii) Let C1 and C2 be minimal odd cycles of G having exactly one
common vertex and suppose that there exists no edge �i; j� 6∈ E�C1� ∪
E�C2� with i ∈ V �C1� and j ∈ V �C2�. Since the even closed walk 0 =
�C1; C2� is fundamental, by Lemma 3.3 the toric ideal IG cannot be gener-
ated by quadratic binomials.

(iii) Let C1 and C2 be minimal odd cycles of G having no common
vertex and suppose that there exists no bridge between C1 and C2. Since
G is connected, there exists a walk 01 = ��v0; v1�; �v1; v2�; : : : ; �vt−1; vt��
of length t ≥ 2 with v0 ∈ V �C1� and vt ∈ V �C2�. We may assume that
t is the minimum length of a walk connecting a vertex of C1 and a ver-
tex of C2. Let 0 denote the even closed walk �C1; 01; C2; 0

?
1�, where

0?1 is a walk ��vt; vt−1�; �vt−1; vt−2�; : : : ; �v1; v0��. Let GV �0� denote the
induced subgraph of G on V �0�. If GV �0� = 0, then by Lemma 3.3
a contradiction arises since the degree of the binomial f0 is at least
t + 3 ≥ 5. Thus GV �0� 6= 0 and we can find an edge e ∈ E�GV �0�� \ E�0�.
Since C1 and C2 are minimal odd cycles of G having no common ver-
tex, since there exists no bridge between C1 and C2, and since t is the
minimum length of a walk connecting a vertex of C1 and a vertex of
C2, it follows that either e = �i; v1� with i ∈ V �C1� or e = �vt−1; j�
with j ∈ V �C2�. Let us assume that e = �i; v1� with i ∈ V �C1�. We then
find an odd cycle C3 (6= C1) with E�C3� ⊂ E�C1� ∪ ��i; v1�; �v0; v1��
and choose a minimal odd cycle C4 with V �C4� ⊂ V �C3�. Note that
v1 belongs to V �C4� since C1 is a minimal cycle. Let 0′ be the even
closed walk �C4; 02; C2; 0

?
2�, where 02 = ��v1; v2�; �v2; v3�; : : : ; �vt−1; vt��

and 0?2 = ��vt; vt−1�; �vt−1; vt−2�; : : : ; �v2; v1��. Let GV �0′� denote the
induced subgraph of G on V �0′�. If GV �0′� = 0′, then by Lemma
3.3 a contradiction arises again since the degree of the binomial f0′
is at least t + 2 ≥ 4. Thus GV �0′� 6= 0′ and we can find an edge
e′ = �vt−1; j� ∈ E�GV �0′�� \ E�0′� with j ∈ V �C2�. We then find an
odd cycle C5 (6= C2� with E�C5� ⊂ E�C2� ∪ ��vt−1; j�; �vt−1; vt�� and
choose a minimal odd cycle C6 with V �C6� ⊂ V �C5�. Note that vt−1 be-
longs to V �C6� since C6 is a minimal cycle. Let 0′′ denote the even closed
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walk �C4; 03; C6; 0
?
3�, where 03 = ��v1; v2�; �v2; v3�; : : : ; �vt−2; vt−1�� and

0?3 = ��vt−1; vt−2�; �vt−2; vt−3�; : : : ; �v2; v1��. It follows that 03 is funda-
mental and by Lemma 3.3 IG cannot be generated by quadratic binomials
since the degree of f03

is at least t + 1 ≥ 3. Such a contradiction guar-
antees that there exists a bridge between C1 and C2. Now, if there exists
exactly one bridge b ∈ E�G� between C1 and C2, then the even closed walk
0 = �C1; b; C2; b� is fundamental of length ≥ 8. By Lemma 3.3 again, the
toric ideal IG cannot be generated by quadratic binomials. Hence, there
exist at least two bridges between C1 and C2 as desired.

Second, in order to see why the “if” part of Theorem 1.2 is true, by virtue
of Lemma 3.1, given a primitive even closed walk 0 of G of length 2q ≥ 6,
we must prove that the binomial f0 belongs to the ideal �IG�<q (⊂ K�x�)
which is generated by the binomials of degree < q belonging to IG.

(First Step) Let 0 be a primitive even closed walk of G of length 2q ≥ 6
which is of the form stated in (i) of Lemma 3.2; i.e., 0 is an even cycle
C = ��v1; v2�; �v2; v3�; : : : ; �v2q; v1��.

(a) Suppose that C has an even-chord e = �v1; v2t� with 2 ≤ t <
q. Let C1 be the even cycle �e; �v2t ; v2t+1�, �v2t+1; v2t+2�; : : : ; �v2q−1; v2q�,
�v2q; v1�� and C2 the even cycle �e; �v2t ; v2t−1�, �v2t−1; v2t−2�; : : : ; �v2; v1��.
Then fC = gfC1

− hfC2
∈ �IG�<q, where g = f �+�C2

/xe and h = f �+�C1
/xe, as

desired.
(b) Suppose that C has no even-chord and that C has three odd-

chords e, e′, and e′′ such that e and e′ cross in C. Let e = �v1; vt� and e′ =
�v2; vt+1� with 3≤ t ≤ 2q− 1. Let 0=��vt; vt−1�; �vt−1; vt−2�; : : : ; �v3; v2��
and 0′ = ��vt+1; vt+2�; �vt+2; vt+3�; : : : ; �v2q−1; v2q�; �v2q; v1��. If C1 is the
even cycle �e; 0; e′; 0′� and if C2 is the even cycle �e; �vt; vt+1�; e′; �v2; v1��,
then fC = fC1

− hfC2
with h = f

�+�
C1
/xexe′ . Note that the binomial fC1

is of degree q and fC2
is a quadratic binomial. Let e′′ = �vi; vj�, S =

�v1; vt+1; vt+2; : : : ; v2q�, and T = �i2; i3; : : : ; it�. If vi ∈ S and vj ∈ T , then
e′′ is an even-chord of C1. Hence, fC ∈ �IG�<q as desired.

Let us assume that both vi and vj belong to T with 2 ≤ i < j ≤ t. We
choose a minimal odd cycle C3 with V �C3� ⊂ S ∪ �vt� and a minimal odd
cycle C4 with V �C4� ⊂ S ∪ �v2�. For a while, suppose that the cycle C has
no chord �vi′; vj′ � with 2 ≤ i′ < j′ ≤ t such that either i′ = 2 or j′ = t.
Note that �v2; vt� cannot be a chord of C since C has no even-chord. Let
C5 denote a minimal odd cycle with V �C5� ⊂ �vi; vi+1; : : : ; vj�. Since C3
and C5 are odd cycles of G having no common vertex, we can find a bridge
b = �vk; v`� between C3 and C5. The bridge b must be an odd-chord of C
with vk ∈ S and v` ∈ T . On the other hand, suppose that the cycle C has a
chord �v2; vj′ � with 2 < j′ < t and that C has no chord �v2; vj′′ � with 2 <
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j′′ < j′. We choose a minimal odd cycle C6 with V �C6� ⊂ �v2; v3; : : : ; vj′ �.
If C4 and C6 have exactly one common vertex (= v2), then there exists a
bridge �vk; v`� between C4 and C6 with vk ∈ S and v` ∈ T . If C4 and C6
have no common vertex, then there exist at least two bridges between C4
and C6. It then follows that one of the bridges between C4 and C6 is of the
form �vk; v`� with vk ∈ S and v` ∈ T .

(Second Step) Let 0 be a primitive even closed walk of G of length ≥ 6
which is of the form stated in (ii) of Lemma 3.2, i.e., 0 = �C1; C2�, where
C1 = ��w; v1�; �v1; v2�; : : : ; �v2s−1; v2s�; �v2s; w�� is an odd cycle and C2 =
��w; v′1�; �v′1; v′2�; : : : ; �v′2t−1; v

′
2t�; �v′2t ; w�� is an odd cycle having exactly

one common vertex w.

(a) Suppose that there exists an edge e = �vi; v′j� of G with 1 ≤ i ≤
2s and with 1 ≤ j ≤ 2t. Let us assume that both i and j are even. Let 01
denote the even closed walk

��w; v1�; �v1; v2�; : : : ; �vi−1; vi�; e; �v′j; v′j+1�; : : : ; �v′2t−1; v
′
2t�; �v′2t ; w��

and 02 the even closed walk

��w; v′1�; �v′1; v′2�; : : : ; �v′j−1; v
′
j�; e; �vi; vi+1�; : : : ; �v2s−1; v2s�; �v2s; w��:

Then f0 = gf01
− hf02

, where g = f �+�02
/xe and h = f �+�01

/xe.

(b) Suppose that C1 is not minimal and that the edge �vi; v′j� does
not belong to E�G� for all 1 ≤ i ≤ 2s and for all 1 ≤ j ≤ 2t. Let e be a
chord of C1. If e = �vi; w�, where i is even, and if

01 = ��w; v1�; �v1; v2�; �v2; v3�; : : : ; �vi−1; vi�; e; C2�
and

02 = �e; �vi; vi+1�; : : : ; �v2s−1; v2s�; �v2s; w��;

then f0 = gf01
− hf02

, where g = f �+�02
/xe and h = f �+�01

/xe.

If e = �vi; vj� with 1 ≤ i < j ≤ 2s, then we write C3 for the odd cycle
of G with e ∈ E�C3� ⊂ E�C1� ∪ �e� and C4 for the even cycle of G with
e ∈ E�C4� ⊂ E�C1� ∪ �e�. If w 6∈ V �C3� then, since C2 and C3 have no
common vertex, there exist at least two bridges between C2 and C3. Thus,
in particular, we can find a chord e1 = �vi; w� of C1 since �vi; v′j� 6∈ E�G�
for all 1 ≤ i ≤ 2s and for all 1 ≤ j ≤ 2t. Suppose that w ∈ V �C3�. Let 01

denote the even closed walk �C2; C3�. Assuming that xe divides both f �+�01

and f �+�C4
, let g = f �+�01

/xe and h = f �+�C4
/xe. Then, either f0 = gfC4

− hf01
or

f0 = −gfC4
+ hf01

.
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(Third Step) Let 0 be a primitive even closed walk of G of length ≥ 6
which is of the form stated in (iii) of Lemma 3.2, i.e., 0 = �C1; 01; C2; 02�,
where C1 = ��v1; v2�; �v2; v3�; : : : ; �v2s; v2s+1�; �v2s+1; v1�� is an odd cycle
and C2 = ��v′1; v′2�; �v′2; v′3�; : : : ; �v′2t ; v′2t+1�; �v′2t+1; v

′
1�� is an odd cycle

having no common vertex, and where 01 and 02 are walks of G both of
which combine v1 and v′1. Since there exist at least two bridges between
C1 and C2, we can find a bridge e = �vi; v′j� between C1 and C2 with, say,
j 6= 1. Since 0 is an even closed walk, the sum of the length of 01 and the
length of 02 must be even. When both the length of 01 and the length of
02 are odd, we assume that both i and j are odd. When both the length of
01 and the length of 02 are even, we assume that i is odd and j is even.
Let 03 denote the even closed walk

�e; �v′j; v′j−1�; : : : ; �v′2; v′1�; 01; �v1; v2�; : : : ; �vi−1; vi��
and 04 the even closed walk

�e; �v′j; v′j+1�; : : : ; �v′2t+1; v
′
1�; 02; �v1; v2s+1�; : : : ; �vi+1; vi��:

Then f0 = gf01
− hf02

, where g = f �+�02
/xe and h = f �+�01

/xe. Q. E. D.

4. EDGE RINGS WITH 2-LINEAR RESOLUTIONS

We discuss the problem of finding the finite connected graphs G for
which the edge ring K�G� has 2-linear resolution. Let, as before, G be a
finite connected graph having no loop and no multiple edge on the vertex
set V �G� = �1; 2; : : : ; d� and E�G� = �e1; e2; : : : ; en� be the set of edges
of G. If e = �i; j� is an edge of G joining i ∈ V �G� with j ∈ V �G�, then we
define ρ�e� ∈ Rd by ρ�e� = ei + ej . Here ei is the ith unit coordinate vector
in Rd. We write PG ⊂ Rd for the convex hull of the finite set �ρ�e�y e ∈
E�G�� ⊂ Rd and call PG the edge polytope of G. The edge polytope PG of
G is called normal if the edge ring K�G� is normal. Let δ�PG� denote the
normalized volume (e.g., [11, p. 36]) of PG.

Lemma 4.1. If the edge ring K�G� ofG is Cohen–Macaulay, then δ�PG� ≥
n − �d − ε�G�� + 1, where ε�G� = 1 if G is bipartite and ε�G� = 0 if G is
non-bipartite.

Proof. Since the Krull-dimension of K�G� is equal to d− ε�G� and since
K�G� is Cohen–Macaulay, it follows that the Hilbert series of K�G� is

F�K�G�; λ� = h0 + h1λ+ · · · + hd−ε�G�−1λ
d−ε�G�−1

�1− λ�d−ε�G� ;

where h0 = 1, h1 = n− �d − ε�G��, and each hi ≥ 0. Since the normalized
volume δ�PG� of PG coincides with h0 + h1 + · · · + hd−ε�G�−1, we have
δ�PG� ≥ n− �d − ε�G�� + 1 as required. Q. E. D.
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We say that the edge polytope PG of G is of minimal volume if PG is
normal and its normalized volume δ�PG� is equal to n − �d − ε�G�� + 1.
For example, if G is either a tree (i.e., a connected graph having no cycle) or
an odd cycle, then PG is of minimal volume with δ�PG� = 1. While, if G is
an even cycle of length 2q ≥ 6, then δ�PG� = q. Hence, its edge polytope
is of minimal volume if and only if q = 2. Moreover, the edge polytope
of the complete graph with d (≥ 2) vertices is of minimal volume if and
only if either d = 2 or d = 3. Let G�p;q� denote the complete bipartite
�p; q�-graph with 2 ≤ p ≤ q; i.e., G�p;q� is the graph on the vertex set
�1; 2; : : : ; p; 1′; 2′; : : : ; q′� with the edge set ��i; j′�y 1 ≤ i ≤ p; 1 ≤ j ≤ q�.
Then, the edge polytope of G�p;q� is of minimal volume if and only if p = 2.

Lemma 4.2. The edge ring K�G� of G has 2-linear resolution if and only
if the edge polytope PG is of minimal volume.

Proof. If the edge ring K�G� is normal, then K�G� is Cohen–Macaulay.
If K�G� is Cohen–Macaulay, then it follows from, e.g., [3, Exercise 4.1.17]
that K�G� has 2-linear resolution if and only if the normalized volume
δ�PG� of the edge polytope PG is equal to n − �d − ε�G�� + 1. Now,
by virtue of Theorem 1.2 the edge ring K�G� must be normal if IG
is generated by quadratic binomials, in particular, if K�G� has 2-linear
resolution. Q. E. D.

Lemma 4.3. Let G′ be a connected subgraph of G. If the edge polytope
PG of G is of minimal volume and if G′ is a connected subgraph of G whose
edge polytope PG′ is normal, then PG′ is of minimal volume.

Proof. First, we choose a sequence G0;G1; : : : ;Gm of subgraphs of G
such that (i) G0 = G′, (ii) Gm = G, and (iii) each Gi is obtained by adding
one edge to Gi−1. Let di denote the number of vertices of Gi and ni the
number of edges of Gi. It then follows that ni − �di − ε�Gi�� + 1 is equal to
or one more than ni−1 − �di−1 − ε�Gi−1�� + 1 and that δ�PGi

� ≥ δ�PGi−1
�.

Moreover, δ�PGi
� > δ�PGi−1

� if ni − �di − ε�Gi�� + 1 = �ni−1 − �di−1 −
ε�Gi−1�� + 1� + 1. Hence, if PG′ is not of minimal volume, then the edge
polytope PG of G cannot be of minimal volume. Q. E. D.

Lemma 4.4. If the edge polytope PG of G is of minimal volume, then none
of the following can be a subgraph of G: (a) the even cycle of length 6, (b) the
complete graph with 4 vertices, (c) C ∪ C ′, where C and C ′ are odd cycles of
G of length 3 having exactly one common vertex, or (d) C ∪ C ′, where C and
C ′ are even cycles of G of length 4 having at most one common vertex.

Proof. The edge polytope of each (a), (b), and (c) is normal but cannot
be of minimal volume. Let us assume that G has a subgraph C ∪C ′, where
C and C ′ are even cycles of G of length 4 having at most one common
vertex. We then find a subgraph G′ of G such that the cycles of G′ are



toric ideals 523

only C and C ′. The edge polytope of G′ is normal; however, it cannot be
of minimal volume. Hence, by Lemma 4.3, none of the graphs (a), (b), (c),
and (d) can be a subgraph of G as desired. Q. E. D.

Lemma 4.5. Let C and C ′ be even cycles of G of length 4 and suppose
that the edge polytope PG of G is of minimal volume. Then, either (i) C and
C ′ have exactly two common vertices with no common edge, or (ii) C and C ′

have exactly three common vertices and exactly two common edges.

Proof. It follows from Lemma 4.4 that C and C ′ have at least two and at
most three common vertices. If C and C ′ have exactly two common vertices
and one common edge, then the cycle of length 6 must be a subgraph of G.
If C and C ′ have exactly three common vertices and exactly one common
edge, then G must contain a subgraph which consists of the two odd cycles
of length 3 having exactly one common vertex. Hence, by Lemma 4.4 again
we have either (i) or (ii) as required. Q. E. D.

We come to the main result on the edge rings with 2-linear resolutions.

Theorem 4.6. Let G be a finite connected graph having no loop and no
multiple edge with d vertices and with n edges. Then, the edge ring K�G� of G
has 2-linear resolution if and only if K�G� is isomorphic to the polynomial ring
in n− 2δ variables over the edge ring K�G�2;δ�� of the complete bipartite �2; δ�-
graph G�2;δ�. (It then follows that δ coincides with the normalized volume of
the edge polytope PG of G.)

Proof. Thanks to Lemma 4.2, the edge ring K�G�2;δ�� of the complete
bipartite �2; δ�-graph G�2;δ� has 2-linear resolution. Hence, if K�G� is iso-
morphic to the polynomial ring in n − 2δ variables over K�G�2;δ��, then
K�G� has 2-linear resolution. Suppose that the edge ring K�G� of G has
2-linear resolution. Let δ denote the largest integer for which the complete
bipartite �2; δ�-graph G�2;δ� is contained in G and choose a subgraph G′

of G with G′ = G�2;δ�. Then, Lemma 4.5 guarantees that any even cycle of
G of length 4 are contained in G′. Let us assume that the edges of G′ are
e1; e2; : : : ; e2δ. Since the toric ideal IG is generated by all binomials asso-
ciated with even cycles of G of length 4 and since any even cycles of G of
length 4 are contained in G′, it follows that IG = IG′K�x2δ+1; x2δ+2; : : : ; xn�
and that K�G� = K�G′��x2δ+1; x2δ+2; : : : ; xn� as desired. Q. E. D.

5. SIMPLE EDGE POLYTOPES

In the final section, we discuss the edge polytope and the edge ring of a
finite graph allowing loops (and having no multiple edges) studied in [8]. If
G has a loop, then K�G� is not necessarily normal even if IG is generated
by quadratic binomials. See Example 1.5.
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A convex polytope P of dimension d is called simple if each vertex of P
belongs to exactly d edges of P .

Theorem 5.1. Let G be a finite connected graph allowing loops and hav-
ing no multiple edge. If the edge ring K�G� is normal and if the edge polytope
PG is simple, then the toric ideal IG is generated by quadratic binomials.

However, even though PG is simple, IG is not necessarily generated
by quadratic binomials. For example, if G is a finite graph with V �G� =
�1; 2; 3� and with E�G� = ��1; 1�; �1; 2�; �2; 3�; �3; 3��, then PG is sim-
ple, K�G� is not normal, and IG is generated by one cubic binomial.

Lemma 5.2. LetG′ be a connected induced subgraph ofG. If PG is simple,
then PG′ is also simple.

Proof. In general, all faces of a simple polytope are also simple. Since
G′ is a connected induced subgraph of G, the edge polytope PG′ is a face
of PG. Thus, PG′ is a simple polytope as required. Q. E. D.

Lemma 5.3. Let G be a finite graph having no loop and no multiple edge.
Let e = �i; j� and f = �k; `� be edges of G with e 6= f and let �ρ�e�; ρ�f ��
denote the convex hull of �ρ�e�; ρ�f ��. Then, the segment �ρ�e�; ρ�e′�� is a
face of PG if and only if the induced subgraph of G on �i; j� ∪ �k; `� contains
no cycle of length 4. In particular, if e and f possess exactly one common
vertex, then �ρ�e�; ρ�e′�� is a face of PG.

Proof. Let G′ denote the induced subgraph of G on �i; j� ∪ �k; `� and
F = PG′ . Since F is a face of PG, the segment �ρ�e�; ρ�e′�� is a face of
PG if and only if �ρ�e�; ρ�e′�� is a face of F . If e and f have exactly one
common vertex, then F is a simplex and �ρ�e�; ρ�e′�� is a face of F . If e and
f have no common vertex, say e = �1; 2� and f = �3; 4�, then F may be
regarded as a subpolytope of the convex hull of ��1; 1; 0�; �1; 0; 1�; �1; 0; 0�;
�0; 1; 1�; �0; 1; 0�; �0; 0; 1�� in R3. Then, ��1; 1; 0�; �0; 0; 1�� is a face of F
if and only if F is a simplex. Moreover, F is a simplex if and only if G′

contain no cycle of length 4. Hence, the segment �ρ�e�; ρ�e′�� is a face of
PG if and only if G′ contains no cycle of length 4 as desired. Q. E. D.

Corollary 5.4. If G has no loop with IG 6= �0�, then the edge polytope
PG is a simple polytope if and only if G is a complete bipartite graph.

Proof. First, let us assume that G is a complete bipartite �p; q�-
graph. Then dim PG = p + q − 2. Moreover, Lemma 5.3 guarantees that
�ρ�e�; ρ�e′�� with e; e′ ∈ E�G� is a 1-face of PG if and only if e and e′

possess exactly one common vertex of G. Thus, PG is a simple polytope.
Second, suppose that PG is simple. By Lemma 5.3 again, if G possesses

no cycle of length 4, then PG is simple if and only if PG is a simplex.
Moreover, PG is a simplex if and only if either G is a tree or G has exactly
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one odd cycle and it is a unique cycle of G. Thus, PG is a simplex if and
only if IG = �0�. Hence, G has a cycle C of length 4 since IG 6= �0�. It then
follows from Lemma 5.2 that C has no chord. We now choose a complete
bipartite subgraph 0 of G with C ⊂ 0. Let V �0� = V1 ∪ V2 be the partition
of V �0�. If 0 6= G, then we can find an edge �i; j� ∈ E�G� \ E�0� with
i ∈ V �0�, say i ∈ V1. Then, j 6∈ V �0� since every cycle of G of length 4
has no chord. Let i′ ∈ V1 with i′ 6= i and C ′ a cycle in 0 of length 4 with
i; i′ ∈ V �C ′�, say V �C ′� = �i; i′; k; k′� with k; k′ ∈ V2 and k 6= k′. Let
G′ denote the induced subgraph of G on �i; i′; k; k′; j�. It then follows
from Lemma 5.2 again that E�G′� = E�C ′� ∪ ��i; j�; �i′; j��. Thus, the
induced subgraph 0′ of G on V �0� ∪ �j� is a complete bipartite graph with
�i; j� ∈ E�0′�. Repeated application of such technique enables us to see
that G itself is a complete bipartite graph. Q. E. D.

Lemma 5.5. Suppose that K�G� is normal and PG is simple. If PG is
not a simplex and if G has a loop at i ∈ V �G�, then all edges �i; j� with
j ∈ V �G� \ �i� belong to G.

Proof. Let W denote the subset of V �G� consisting of all vertices j with
�i; j� ∈ E�G� and G′ the induced subgraph of G on W . Let e be a loop
at i ∈ V �G�. In particular, i ∈ W and e ∈ G′. Since K�G� is normal, all
vertices j belong to W if G has a loop at j. If f ∈ E�G�, then �ρ�e�; ρ�f ��
is a face of PG if and only if either (i) f is a loop, or (ii) f = �i; k� with
k 6= i such that G has no loop at k, or (iii) f = �k; `� with k 6= i and ` 6= i
such that either �i; k� 6∈ E�G� or �i; `� 6∈ E�G�. If W 6= V �G�, then the
number of edges e′ of G with e′ 6∈ E�G′� is equal to the number of vertices
i′ of G with i′ 6∈ W . Since PG is not a simplex, we then find an edge �j; j′�
of G with j; j′ ∈ W \ �i� and j 6= j′. We choose an edge f = �j′′;m� of G
with j′′ ∈ W and m 6∈ W and write G′′ for the induced subgraph of G on
W ∪ �m�. Then, the edge polytope PG′′ of G′′ cannot be simple. Hence, W
coincides with V �G� as required. Q. E. D.

Lemma 5.6. Let G be a finite connected graph allowing loops and having
no multiple edge. If the edge ring K�G� is normal and if the edge polytope PG
is simple, then

(a) Each of the even cycles of G of length ≥ 6 has an even-chord.
(b) If e is a loop at i and C is a minimal odd cycle of G of length ≥ 3

with i ∈ E�C�, then the length of C must be 3.
(c) If C1 and C2 are minimal odd cycles of G of length ≥ 3 having

exactly one common vertex, then there exists an edge �i; j� 6∈ E�C1� ∪ E�C2�
with i ∈ V �C1� and j ∈ V �C2�.

(d) If e is a loop at i and f is a loop at j with i 6= j, then �i; j� is an
edge of G.
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(e) Let C1 be either a loop or a minimal odd cycle of length ≥ 3 and
C2 a minimal odd cycle of length ≥ 3. If C1 and C2 have no common vertex,
then there exist at least two bridges between C1 and C2.

Proof. (a) Let C be an even cycle of G and let G′ be the induced
subgraph of G on V �C�. Then, by Lemma 5.2 the edge polytope PG′ is
simple. If G′ has a loop, then Lemma 5.5 guarantees the existence of an
even-chord of C. While, if G′ has no loop, then Corollary 5.4 guarantees
that G′ is a complete bipartite graph. In particular, C has an even-chord.

(b) By Lemma 5.5 all edges of the form �i; j� with j ∈ V �C� must
belong to G. Thus, C must be of length 3 since C has no chord.

(c) Let i ∈ V �C1� ∩ V �C2� and write G′ for the induced subgraph of
G on V �C1� ∪ V �C2�. Since G′ is non-bipartite and since PG′ is simple, it
follows from Corollary 5.4 that G′ has a loop. If G′ has a loop at j �6= i�,
then the existence of a required edge is guaranteed by Lemma 5.5. While,
if G′ has a loop e at i and if E�G′� = E�C1� ∪ E�C2� ∪ �e�, then both C1
and C2 are odd cycles of length 3 by (b) above. Then, the edge polytope of
the induced subgraph of G on V �C1� ∪ �k�, where k ∈ V �C2� and k 6= i,
cannot be simple, a contradiction.

(d) Since K�G� is normal, the edge �i; j� must belong to G.
(e) Let G′ denote the induced subgraph of G on V �C1� ∩ V �C2�.

Then, G′ is connected since K�G� is normal. We know that G′ has a loop
since G′ is non-bipartite and since PG′ is simple. Hence, the existence of
required edges is guaranteed by Lemma 5.5. Q. E. D.

Proof of Theorem 5.1. By virtue of the technique appearing in the proof
of the “if” part of Theorem 1.2, the toric ideal IG is generated by quadratic
binomials if the conditions (a), (b), (c), (d), and (e) in Lemma 5.6 are
satisfied. Hence, if the edge ring K�G� is normal and if the edge polytope
PG is simple, then the toric ideal IG is generated by quadratic binomials.
This completes the proof of Theorem 5.1. Q. E. D.

We close the present paper with a remark on the toric variety XG x=
Proj �K�G�� ↪→ Pn−1 associated with IG. The toric variety XG ↪→ Pn−1 is
projectively normal if and only if the edge ring K�G� is normal. Moreover,
if XG ↪→ Pn−1 is nonsingular, then the edge polytope PG is simple. Hence,
by virtue of Theorem 5.1, if the toric variety XG ↪→ Pn−1 associated with IG
is nonsingular and projectively normal, then IG is generated by quadratic
binomials. See, e.g., [11, p. 138].
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1. J. Backelin and R. Fröberg, Koszul algebras, Veronese subrings, and rings with linear
resolutions, Rev. Roum. Math. Pures Appl. 30 (1985), 85–97.



toric ideals 527

2. T. Becker, H. Kredel, and V. Weispfenning, “Gröbner Bases: A Computational Approach
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