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Toyonaka Osaka 560]0043, Japan

Communicated by Craig Huneke

Received April 1, 1997

� 4Let G be a finite connected graph on the vertex set 1, . . . , d allowing loops and
w xhaving no multiple edge. Let K t , . . . , t denote the polynomial ring in d1 d

w x w xindeterminates over a field K and let K G be the subalgebra of K t , . . . , t1 d
� 4generated by all quadratic monomials t t such that i, j is an edge of G and by alli j

quadratic monomials t 2 such that G has a loop at i. We describe the normalizationi
w x w xof K G explicitly and we give a combinatorial criterion for K G to be normal.

Q 1998 Academic Press

INTRODUCTION

w y1 y1 xLet K be a field and let K t , t , . . . , t , t , s be the Laurent polyno-1 1 N N
mial ring over K. Given an integral convex polytope PP ; R N, i.e., a convex
polytope any of whose vertices has integer coordinates, we may associate

w x w y1 y1 xthe subalgebra K PP of K t , t , . . . , t , t , s which is generated by all1 1 N N
a1 aN Ž . Nmonomials t ??? t s with a , . . . , a g PP l Z . We say that an inte-1 N 1 N

w xgral convex polytope PP is normal if the subalgebra K PP is a normal
domain. We are interested in the problem of finding a combinatorial
criterion for a convex polytope to be normal. One of the most effective
conditions which guarantees the normality of PP is the existence of a

w xunimodular covering of PP. Thus, in particular, if the toric ideal of K PP

w xhas a square-free initial ideal, then PP is a normal polytope. See, e.g., 7 .
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Ž .Every graph G is a finite connected graph on the vertex set V G s
� 4 Ž .1, . . . , d allowing loops and having no multiple edge. Let E G denote

� 4the set of edges and loops of G. If e s i, j is an edge of G joining
Ž . Ž . Ž . d Ž .i g V G with j g V G , then we define r e g R by r e s e q e .i j

Here e is the ith unit coordinate vector in R d. Moreover, if e is a loop ati
Ž . Ž . di g V G , then r e [ e q e . We write PP ; R for the convex hull ofi i G

� Ž . Ž .4 dthe finite set r e ; e g E G ; R and we call PP the edge polytope ofG
G. Some fundamental combinatorial structures on edge polytopes are
discussed. Among other things, the facets of edge polytopes are deter-
mined. See Theorem 1.7.

w xLet K t , . . . , t denote the polynomial ring in d indeterminates over a1 d
w x w xfield K and let K G be the subalgebra of K t , . . . , t generated by all1 d

� 4quadratic monomials t t such that i, j is an edge of G and by alli j
quadratic monimials t 2 such that G has a loop at i. The affine semigroupi

˜w xring K G is called the edge ring of G. Let G denote the graph obtained
� 4 Ž � 4 Ž ..by adding those edges i, j to G if i, j f E G such that G has both a

w xloop at i and a loop at j. It then follows that PP s PP and that K PP is˜G G G

˜w xisomorphic to K G .
The main purpose of the present article is to describe the normalization

w xof the edge ring K G of a graph G explicitly in terms of combinatorics on
G and to give a combinatorial criterion for the edge polytope PP to beG
normal. See Theorem 2.2 and Corollary 2.3. A cycle C in a graph is called
minimal if C possesses no chord. An odd cycle in a graph is a cycle whose

Žlength is odd. Thus, in particular, a loop is minimal and is an odd cycle of
. w xlength 1 . We say that a graph G satisfies the odd cycle condition 2 , if for

arbitrary two minimal odd cycles C and C9 in G, either C and C9 have a
common vertex or there exists an edge of G joining a vertex of C with a
vertex of C9.

COROLLARY 2.3. Let G be a finite connected graph allowing loops and
ha¨ing no multiple edge. Then, the following conditions are equï alent:

Ž . w xi the edge ring K G is normal;
Ž .ii the edge polytope PP possesses a unimodular co¨ering;G

Ž .iii the graph G satisfies the odd cycle condition.

In particular, the edge polytope PP of G is a normal polytope if and only ifG
˜the graph G satisfies the odd cycle condition.

Corollary 2.3 is an affirmative answer to the conjecture in Simis, Vas-
w xconcelos, and Villarreal 5, p. 412 . See also Fulkerson, Hoffman, and

w x w xMcAndrew 2 and Stanley 6 for some information about the graphs
satisfying the odd cycle condition. We are grateful to Richard P. Stanley

w x w xfor bringing the articles 2 and 6 to our attention.
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1. EDGE POLYTOPES OF FINITE GRAPHS

Ž .Every graph G is a finite connected graph on the vertex set V G s
� 4 Ž .1, . . . , d allowing loops and having no multiple edge. Let E G denote

Ž . Ž .the set of edges and loops of G. If i g V G , then we write N G; i for the
set of vertices which are joined with i by edges or loops of G. Thus,

Ž . Ž .i g N G; i if and only if G has a loop at i. The degree of i g V G in G is
< Ž . < < <deg i [ N G; i . Here, X is the cardinality of a finite set X. An oddG

cycle in G is a cycle whose length is odd. In particular, a loop is an odd
Ž .cycle of length 1 . A spanning subgraph of G is a subgraph of G whose

vertex set coincides with that of G. A tree is a connected graph having no
cycle and having at least one edge. A simple graph is a graph having
no loop and no multiple edge.

� 4 Ž . Ž .If e s i, j is an edge of a graph G joining i g V G with j g V G ,
Ž . d Ž .then we define r e g R by r e s e q e . Here e is the ith uniti j i

d Ž .coordinate vector in R . Moreover, if e is a loop at i, then r e [ e q e .i i
d � Ž . Ž .4We write PP ; R for the convex hull of the finite set r e ; e g E GG

d ˜; R and we call PP the edge polytope of G. Let G denote the graphG
� 4 Ž � 4 Ž ..obtained by adding those edges i, j to G if i, j f E G such that G

has both a loop at i and a loop at j. It then follows that PP s PP .˜G G
Moreover,

d ˜� Ž . Ž .4PROPOSITION 1.1. PP l Z s r e ; e g E G .G

Proof. First, the edge polytope PP ; R d is contained in the hyper-G
plane,

d
dHH s x , . . . , x g R ; x s 2 ,Ž . Ý1 d i½ 5

is1

d Ž . Ž .in R . Because each r e with e g E G satisfies the linear inequalities,

FF : x F x , 1 F i F d ,Ýi i j
Ž .jgN G ; i

the edge polytope PP is contained in the closed half-space in R d definedG
Ž . dby FF for every 1 F i F d. Let a , . . . , a g PP l Z . Because eachi 1 d G

a G 0 and because Ýd a s 2, we have eitheri is1 i

i

˘a , . . . , a s 0, . . . , 0, 2 , 0, . . . , 0 ,Ž .1 d ž /
for some 1 F i F d, or

ji

˘ ˘a , . . . , a s 0, . . . , 0, 1 , 0, . . . , 0, 1 , 0, . . . , 0 ,Ž .1 d ž /
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for some 1 F i - j F d. The first vector satisfies the inequality FF if andi
only if G has a loop at i, while the second vector satisfies the inequalities

� 4FF and FF if and only if either i, j is an edge of G, or G has both a loop ati j
Ž . d Ž .i and a loop at j. Hence, every a , . . . , a g PP l Z is of the form r e1 d G

˜Ž .for some e g E G as desired. Q.E.D.

A graph G is called reduced if G possesses no subgraph having two
vertices and consisting of two loops together with one edge. If G is

Ž . Ž .reduced, then none of the r e s with e g E G belongs to the convex hull
� Ž . Ž .4 dof r e9 ; e / e9 g E G in R . Hence,

Ž . Ž .PROPOSITION 1.2. If a graph G is reduced, then each r e with e g E G
is a ¨ertex of the edge polytope PP .G

Ž . Ž .A simple graph G is called bipartite if V G has a partition V G s
V j V with V / B, V / B, and V l V s B such that each edge of1 2 1 2 1 2

� 4 Ž .G is of the form i, j with i g V and j g V . Such a partition V G s1 2
Ž .V j V is unique and, in what follows, is called the partition of V G if1 2

G is connected. A graph G is bipartite if and only if G has no odd cycle.

PROPOSITION 1.3. We ha¨e

d y 2, if G has no odd cycle ;
dim PP sG ½ d y 1, if G has at least one odd cycle.

Proof. Because the edge polytope PP ; R d of G is contained in theG
hyperplane HH ; R d defined in the proof of Proposition 2.1, it follows that
dim PP F d y 1. Because G is connected, we can find a spanning subtreeG

Ž .G of G. Because PP is a d y 2 -simplex, we have dim PP G dim PP s0 G G G0 0

d y 2.
Ž .First, if G has no odd cycle, then G is a bipartite graph. Let V G s

Ž .V j V denote the partition of V G and define the hyperplanes HH1 2 k
Ž . dk s 1, 2 in R by

HH s x , . . . , x g R d ; x s 1 .Ž . Ýk 1 d i½ 5
igVk

Ž . Ž .Because r e g HH l HH for every e g E G , we have PP ; HH l HH .1 2 G 1 2
Thus, dim PP s d y 2.G

Second, suppose that G has at least one odd cycle. Then, we can find a
connected subgraph G9 of G such that

Ž .i G9 is a spanning subgraph of G;
Ž .ii G9 has d edges;
Ž .iii G9 has exactly one odd cycle and it is a unique cycle in G9.
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Let e , e , . . . , e denote the edges of G9 and let B denote the d = d1 2 d
Ž . Ž . Ž .matrix whose row vectors are r e , r e , . . . , r e , i.e., B is the inci-1 2 d

Ž .dence matrix of G9. If G9 is an odd cycle, then det B s "2. Otherwise,
Ž .we can find i g V G9 with deg i s 1. We may assume that deg d s 1G9 G9

� 4 Ž .and e s d y 1, d . Let G0 denote the subgraph of G9 with V G0 sd
� 4 Ž . � 41, 2, . . . , d y 1 and let E G0 s e , e , . . . , e . Then, G0 has exactly1 2 dy1
one odd cycle and it is a unique cycle in G0. If C is the incidence matrix

< Ž . < < Ž . <of G0, then det B s det C . Thus, it follows by induction on d that
Ž . �Ž .4det B s "2. Hence, the convex hull of PP j 0, . . . , 0 is a d-simplex.G9

Ž . d Ž . dHere, 0, . . . , 0 is the origin of R . Thus, PP is a d y 1 -simplex in R .G9

Because PP ; PP , we have dim PP s d y 1 as required. Q.E.D.G9 G G

w xEven though Lemma 1.4 is a simple modification of 7, Lemma 9.5 , we
give its proof for the convenience of the reader.

LEMMA 1.4. Let G9 be a reduced subgraph of G and let PP be its edgeG9

Ž .polytope. Then, PP is a d y 1 -simplex if and only if G9 satisfies theG9

following conditions:

Ž .i G9 is a spanning subgraph of G;
Ž .ii G9 has d edges;
Ž .iii e¨ery cycle in G9 is odd;
Ž .iv e¨ery connected component of G9 has exactly one odd cycle.

Proof. First, suppose that the edge polytope PP of a reduced subgraphG9

Ž . dG9 of G is a d y 1 -simplex in R . Then, because G9 is reduced,
Ž . Ž .Propositions 1.1 and 1.2 guarantee that the conditions i and ii are
Ž .satisfied. If B is the incidence matrix of G9, then det B / 0. Let

H , H , . . . , H denote the connected components of G9 and let B denote1 2 p k
the incidence matrix of H for each 1 F k F p. Let us assume thatk

B 01

B2
B s ,. . .� 00 Bp

Ž .after relabeling the vertices of G9. Because det B / 0, every B must be ai
Ž .square matrix with det B / 0. Hence, for every 1 F k F p, the numberk

of the vertices of H is equal to the number of edges of H . Thus, each Hk k k
Ž .has exactly one cycle. Because det B s 0 if the cycle in H is even, thek k

cycle in H must be odd.k
Ž . Ž .Second, if G9 is a reduced subgraph of G satisfying i ] iv , then the

technique appearing in the proof of Proposition 1.3 enables us to see that
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< Ž . < pdet B s 2 / 0, where B is the incidence matrix of G9 and where p is
the number of the connected components of G9. Hence, dim PP s d y 1.G9

Ž .Thus, PP is a d y 1 -simplex as desired. Q.E.D.G9

Ž . Ž .An easy modification, i.e., replacing det B / 0 with rank B s d y 1;
in the proof of Lemma 1.4 enables us to find the reduced subgraphs G9 of

Ž .G for which PP is a d y 2 -simplex.G9

LEMMA 1.5. Let G9 be a reduced subgraph of G and let PP be its edgeG9

Ž .polytope. Then, PP is a d y 2 -simplex if and only if either the followingG9

four conditions

Ž .i G9 has d y 1 ¨ertices;
Ž .ii G9 has d y 1 edges;
Ž .iii e¨ery cycle in G9 is odd;
Ž .iv e¨ery connected component of G9 has exactly one odd cycle

are satisfied, or the following fï e conditions

Ž .i9 G9 is a spanning subgraph of G:
Ž .ii9 G9 has d y 1 edges;
Ž .iii9 e¨ery cycle in G9 is odd;
Ž .iv9 e¨ery connected component of G9 has at most one odd cycle;
Ž .v9 exactly one connected component is a tree

are satisfied.

When G is a bipartite graph, i.e., dim PP s d y 2, it would be requiredG
Ž .to find the subgraphs G9 of G for which PP is a d y 3 -simplex.G9

LEMMA 1.6. Suppose that G has no odd cycle, i.e., dim PP s d y 2. IfG
Ž .G9 is a subgraph of G, then PP is a d y 3 -simplex if and only if either G9G9

is a tree with d y 1 ¨ertices, or if G9 is a spanning subgraph of G consisting of
two connected components each of which is a tree.

Proof. If G9 has k connected components, then it follows that dim PPG9

F d y k y 1. Hence, G9 has at most two connected components if PP isG9

Ž .a d y 3 -simplex. Q.E.D.

We now turn to the problem of finding the facets of the edge polytope
PP of a graph G. Let G be a finite connected graph on the vertex setG
� 41, . . . , d allowing loops and having no multiple edge. In general, given a

Ž . � 4subset W / B of 1, . . . , d , we write G for the subgraph of G havingW
� 4the vertex set W and consisting of all edges i, j of G with i, j g W and of

� 4 Žall loops of G at i with i g W. We say that i g 1, . . . , d is regular resp.,
.ordinary in G if every connected component of G has at least�1, . . . , d4_�i4

Ž .one odd cycle resp., if G is connected .�1, . . . , d4_�i4
� 4 Ž .A subset B / T ; 1, . . . , d is called independent in G if N G; i l T
Ž � 4s B for every i g T in other words, no edge i, j with i, j g T belongs
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. Ž .to G and no loop at i with i g T belongs to G . Let N G; T s
Ž . � 4D N G; i . If B / T ; 1, . . . , d is independent in G, then the bipar-ig T

tite graph induced by T in G is defined to be the bipartite graph having the
Ž . � 4vertex set T j N G; T and consisting of all edges i, j of G with i g T

Ž .and j g N G; T .
When G has at least one odd cycle, we say that a subset B / T ;

� 4 Ž .1, . . . , d is fundamental in G if i T is independent in G and the
Ž .bipartite graph induced by T in G is connected, and ii either T j

Ž . � 4N G; T s 1, . . . , d or every connected component of the subgraph
G has at least one odd cycle.�1, . . . , d4_ŽT j NŽG; T ..

� 4When G is a bipartite graph, we say that a subset B / T ; 1, . . . , d
Ž .is acceptable in G if i T is independent in G and the bipartite graph

Ž .induced by T in G is connected, and ii G is a con-�1, . . . , d4_ŽT j NŽG; T ..
Ž .nected graph with at least one edge. If V G s V j V is the partition of1 2

Ž .V G and if T is acceptable in G, then it follows easily that either T ; V1
or T ; V .2

Let HH denote the hyperplanei

HH s x , . . . , x g R d ; x s 0 ,Ž .� 4i 1 d i

in R d and HH Žq. the closed half-space,i

HH Žq. s x , . . . , x g R d ; x G 0 ,Ž .� 4i 1 d i

in R d for each 1 F i F d. Then, PP ; HH Žq. for every 1 F i F d. If B /G i
� 4T ; 1, . . . , d is independent in G, then we write HH for the hyperplane,T

HH s x , . . . , x g R d ; x s x ,Ž . Ý ÝT 1 d i j½ 5
igT Ž .jgN G ; T

in R d and HH Žy. for the closed half-space,T

HH Žy. s x , . . . , x g R d ; x F x ,Ž . Ý ÝT 1 d i j½ 5
igT Ž .jgN G ; T

in R d. It then follows that PP ; HH Žy. because T is independent in G.G T

Ž .THEOREM 1.7. a Let G be a finite connected graph on the ¨ertex set
� 41, . . . , d allowing loops and ha¨ing no multiple edge and suppose that G has
at least one odd cycle, i.e., dim PP s d y 1. Let C denote the set of thoseG
hyperplanes HH such that i is regular in G and of those hyperplanes HH suchi T
that T is fundamental in G. Then, the set of facets of the edge polytope PPG

� 4coincides with HH l PP ; HH g C .G
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Ž . Ž .b Let G be a finite connected bipartite graph on the ¨ertex set V G s
� 4 Ž .1, . . . , d , i.e., dim PP s d y 2, and let V G s V j V be the partition ofG 1 2
Ž .V G . Let C denote the set of those hyperplanes HH such that i is ordinary ini

G and of those hyperplanes HH such that T is acceptable in G with T ; V .T 1
�Then, the set of facets of the edge polytope PP coincides with HH l PP ;G G

4HH g C .

Ž . Ž .Proof. a First, we show that each hyperplane HH g C G is a sup-
porting hyperplane of PP such that HH l PP is a facet of PP .G G G

� 4Let i g 1, . . . , d be regular in G. Because every connected component
of G has at least one odd cycle, we can find a reduced subgraph�1, . . . , d4_�i4

Ž . Ž .G9 of G satisfying i ] iv in Lemma 1.5 such that PP ; HH l PP . More-G9 i G
over, HH l PP / PP and PP ; HH Žq.. Hence, HH l PP is a facet of PP .i G G G i i G G

� 4Let B / T ; 1, . . . , d be fundamental in G. Because the bipartite
graph induced by T in G is connected and because every connected
component of G has at least one odd cycle if T j�1, . . . , d4_ŽT j NŽG; T ..
Ž . � 4N G; T / 1, . . . , d , we can find a reduced subgraph G9 of G satisfying

Ž . Ž .i9 ] v9 in Lemma 1.5 such that PP ; HH l PP . Moreover, HH l PP / PPG9 T G T G G
because dim PP s d y 1, and PP ; HH Žy. because T is independent in G.G G T
Hence, HH l PP is a facet of PP .T G G

Second, to see why each facet F of PP is of the form F s HH l PP forG G
some HH g C, given a facet F of PP , we choose a reduced subgraph G9 ofG

Ž .G with PP ; F for which PP is a d y 2 -simplex.G9 G9

Ž . Ž . Ž .If G9 satisfies i ] iv in Lemma 1.5 and if i f V G9 with 1 F i F d,
then i is regular in G and PP ; HH . We already proved that HH l PP is aG9 i i G
facet of PP . Hence, both F and HH l PP are facets of PP with PP ; FG i G G G9

and PP ; HH l PP . Thus, F s HH l PP as desired.G9 i G i G
Ž . Ž .If G9 satisfies i9 ] v9 in Lemma 1.5 and if a connected component H

Ž .of G9 is a tree having the vertex set V H s T j S with T / B, S / B,
� 4and T l S s B such that each edge of H is of the form i, j with i g T

and j g S. We then define the hyperplane HH ; R d by

HH s x , . . . , x g R d ; x s x ,Ž . Ý Ý1 d i j½ 5
igT jgS

and the closed half-spaces HH Žq. and HH Žy. in R d by

HH Žq. s x , . . . , x g R d ; x G x ;Ž . Ý Ý1 d i j½ 5
igT jgS

HH Žy. s x , . . . , x g R d ; x F x .Ž . Ý Ý1 d i j½ 5
igT jgS

Ž . Ž .Then, PP ; HH. If neither N G; T s S nor N G; S s T arises, thenG9

Ž Žq. . Ž Žy. .PP l HH _ HH / B and PP l HH _ HH / B. Thus, none of the facetsG G
of PP can contain PP because dim PP s dim PP y 1. Thus, eitherG G9 G9 G
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Ž . Ž . Ž .N G; T s S or N G; S s T arises. Let us assume that N G; T s S.
In particular, T is fundamental in G and HH s HH . Thus, PP ; HH . WeT G9 T
already proved that HH l PP is a facet of PP . Hence, both F andT G G
HH l PP are facets of PP with PP ; F and PP ; HH l PP . Thus,T G G G9 G9 T G
F s HH l PP as required.T G
Ž .b If we replace ‘‘regular’’ with ‘‘ordinary’’ and if we replace ‘‘funda-

Ž .mental’’ with ‘‘acceptable’’ in the preceding proof of a and if we employ
Lemma 1.6 instead of Lemma 1.5, then we immediately obtain the proof of
Ž . Ž .b . Note that if S ; V is acceptable, then V _ N G; S is also acceptable2 1
and HH l PP s HH l PP . Q.E.D.S G V _ NŽG; S . G1

Ž .COROLLARY 1.8. a Let G be a finite connected graph on the ¨ertex set
� 41, . . . , d allowing loops and ha¨ing no multiple edge and suppose that G has
at least one odd cycle. Let HH denote the hyperplane,

d
dHH s x , . . . , x g R ; x s 2 ,Ž . Ý1 d i½ 5

is1

in R d. Then, we ha¨e

d
Žq. Žy.PP s HH l HH l HH ,F FG i Tž /ž /

is1 T

� 4where T ranges o¨er all independent subsets T ; 1, . . . , d .
Ž . Ž .b Let G be a finite connected bipartite graph on the ¨ertex set V G s

� 4 Ž . Ž . Ž .1, . . . , d and let V G s V j V be the partition of V G . Let HH k s 1, 21 2 k
denote the hyperplanes,

HH s x , . . . , x g R d ; x s 1 ,Ž . Ýk 1 d i½ 5
igVk

in R d. Then, we ha¨e

d
Žq. Žy.PP s HH l HH l HH l HH ,Ž . F FG 1 2 i Tž /ž /

is1 T

where T ranges o¨er all independent subsets T ; V .1

2. NORMALIZATIONS OF EDGE RINGS

Let PP ; R N denote a convex polytope of dimension d and suppose that
PP is integral, i.e., each vertex of PP has integer coordinates. Let t , . . . , t1 N
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and s be indeterminates over a field K. Given an integer n G 1, we write
Ž .A PP for the vector space over K which is spanned by those monomialsn

a n a1 aN n Ž . Nt s s t ??? t s such that a s a , . . . , a l n PP l Z . Here n PP [1 N 1 N
� 4 Ž . Ž . Ž .na ; a g PP . Because PP is convex, A PP A PP ; A PP for all nn m nqm

Ž . ` Ž .and m. It then follows that the graded algebra A PP [ [ A PP isnns0
Ž . Ž .finitely generated over K s A PP with Krull-dim A PP s d q 1. More-0

Ž . Ž .over, A PP is a normal domain. We say that A PP is the Ehrhart ring
N w x w xassociated with an integral convex polytope PP ; R . Consult 1 and 3

for the detailed information about algebra and combinatorics on Ehrhart
w x Ž .rings. Let K PP denote the subalgebra of A PP which is generated by

Ž . a1 aN Ž .A PP , i.e., generated by all monomials t ??? t s with a , . . . , a g PP1 1 N 1 N
N w xl Z . An integral convex polytope PP is called normal if K PP is a

Ž .normal domain. Because the Ehrhart ring A PP of PP is normal and is
w x Ž .integral over K PP , it follows that, when A PP is contained in the

w x w x w x Ž .quotient field of K PP , K PP is normal if and only if K PP s A PP .
� 4Let G be a finite connected graph on the vertex set 1, . . . , d allowing

w xloops and having no multiple edge. Let K t , . . . , t denote the polynomial1 d
w xring in d indeterminates over a field K and let K G denote the subalge-

w xbra of K t , . . . , t generated by all quadratic monomials t t such that1 d i j
� 4 2i, j is an edge of G and by all quadratic monomials t such that G has ai

w xloop at i. The affine semigroup ring K G is called the edge ring of G.
A cycle C in a graph is called minimal if C possesses no chord. Thus, in

Ž .particular, a loop is minimal and is an odd cycle of length 1 . If C and C9
� 4are cycles in a graph G having no common vertex, then an edge i, j of G

is called a bridge of C and C9 if i is a vertex of C and if j is a vertex of C9.
w xWe say that a graph G satisfies the odd cycle condition 2 if, for arbitrary

two minimal odd cycles C and C9 in G, either C and C9 have a common
vertex or there exists a bridge of C and C9.

w xProposition 2.1 is discussed in 5, Proposition 6.8 .

w xPROPOSITION 2.1. If the edge ring K G of a graph G is normal, then G
satisfies the odd cycle condition.

Proof. Suppose that G does not satisfy the odd cycle condition and
choose minimal odd cycles C and C in G having no common vertex such1 2

Ž .that there exists no bridge of C and C . Let us assume that V C s1 2 1
� 4 Ž . � 4 Ž .1, 2, . . . , 2 m y 1 , V C s 2 m , 2 m q 1, . . . , 2 n , E C s2 1
�� 4 � 4 � 4 � 441, 2 , 2, 3 , . . . , 2 m y 2, 2 m y 1 , 2 m y 1, 1 and
Ž . �� 4 � 4 � 4 � 44E C s 2m, 2m q 1 , 2m q 1, 2m q 2 , . . . , 2n y 1, 2n , 2n, 2m .2

Let

a s 1, . . . , 1 , 0, . . . , 0 g n PP l Zd ,½ 5^ ` _
2n
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and
a w xt s t t ??? t g K t , . . . , t .1 2 2 n 1 d

Because

2my2 2 ny1
2at s t t t t t t t tŽ . Ž . Ž .Ł Łj jq1 2 my1 1 j jq1 2 n 2 mž / ž /js1 js2 m

w x a w xbelongs to K G , we know that t is integral over K G . Because G is
Ž .connected, we can find a walk or path of odd length in G, say

� 4 � 41, i , i , i , . . . , i , i , i , 2n ,� 4 � 4Ž .1 1 2 2 py1 2 p 2 p

Ž . Ž .from 1 g V C to 2n g V C . Then,1 2

ny1
at s t t t t ,Ł1 2 n 2 j 2 jq1

is1

and

t tt t t t i i1 i i i 2 py2 2 py11 2 3t t s ??? t t .1 2 n i 2 n2 pt t t t t ti i i i i i1 2 3 4 2 py1 2 p

a w x a w xThus, t belongs to the quotient field of K G . Because t f K G , the
w x w xedge ring K G is not normal. Hence, if the edge ring K G of a graph G

is normal, then G must satisfy the odd cycle condition. Q.E.D.

We are now in the position to describe the normalization of the edge
w xring K G of a graph G explicitly in terms of combinatorics on G and to

give a combinatorial criterion for the edge polytope PP to be normal.G
� 4Let, as before, G be a finite connected graph on the vertex set 1, . . . , d

� 4allowing loops and having no multiple edge. A pair P s C, C9 , where C
Ž . Ž .and C9 are minimal odd cycles in G with V C l V C9 s B, is called

exceptional if there exists no bridge of C and C9 in G. Given an excep-
� 4tional pair P s C, C9 of minimal odd cycles C and C9 in G, we write MMP

Ž .Ž . w xfor the monomial P t Ł t in K t , . . . , t .ig V ŽC . i jg V ŽC 9. j 1 d

THEOREM 2.2. Let G be a finite connected graph on the ¨ertex set
� 4 w x1, . . . , d allowing loops and ha¨ing no multiple edge and let K G be the

� X 4 � X 4 � X 4edge ring of G. Let P s C , C , P s C , C , . . . , P s C , C denote1 1 1 2 2 2 q q q
the exceptional pairs of minimal odd cycles in G. Then, the normalization of

w xK G is generated by the monomials MM , MM , . . . , MM as an algebra o¨erP P P1 2 qw x w x w xK G . More precisely, as a module o¨er K G , the normalization of K G is
Ž .generated by those square-free monomials of the form MM MM ??? MMP P Pi i i1 2 l
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Ž Ž . Ž X .. Ž Ž .with 1 F i - i - ??? - i F q such that V C j V C l V C j1 2 l i i if f g
Ž X ..V C s B for all 1 F f - g F l.i g

Our proofs of Theorem 2.2 and Corollary 2.3 are given after preparing
Lemmas 2.4 and 2.5 together with Corollary 2.6.

Let, in general, PP ; R N be given an integral convex polytope of
dimension d. We say that a finite set D consisting of integral d-simplices
QQ ; R N with QQ ; PP is a unimodular co¨ering of PP if the normalized

Ž w x.volume e.g., 7, p. 36 of each simplex QQ g D is equal to 1 and PP s
Ž w x.D QQ. Thus, in particular, a unimodular triangulation e.g., 7, p. 69 of

QQ g D

PP is a unimodular covering of PP. It follows that an integral convex
polytope which possesses a unimodular covering is a normal polytope.

˜ � 4Recall that G is the graph obtained by adding those edges i, j to G
Ž � 4 Ž ..if i, j f E G such that G has both a loop at i and a loop at j. Thus,

˜w x w xPP s PP and K PP is isomorphic to K G .˜G G G

COROLLARY 2.3. Let G be a finite connected graph allowing loops and
ha¨ing no multiple edge. Then the following conditions are equï alent:

Ž . w xi the edge ring K G is normal;
Ž .ii the edge polytope PP possesses a unimodular co¨ering;G

Ž .iii the graph G satisfies the odd cycle condition.

In particular, the edge polytope PP of G is a normal polytope if and only ifG
˜the graph G satisfies the odd cycle condition.

Corollary 2.3 is an affirmative answer to the conjecture in Simis, Vas-
w x w xconcelos, and Villarreal 5, p. 412 . In 4 we discover a simple graph G

satisfying the odd cycle condition such that PP possesses no regularG
unimodular triangulation. It seems, however, an open question if there
exists a normal polytope which possesses no unimodular covering. We

w x w xrefer the reader to Fulkerson, Hoffman, and McAndrew 2 and Stanley 6
for some information about the graphs satisfying the odd cycle condition.

Lemma 2.4 explains the essential role of a bridge of odd cycles in a
graph. Some combinatorial techniques appearing in its proof will be
indispensable to understand the proof of Theorem 2.2.

Ž .LEMMA 2.4. Let G resp., G be a finite connected graph allowing loops1 2
� 4 Ž �and ha¨ing no multiple edge on the ¨ertex set 1, . . . , d9 resp., d9 q 1,

4. Ž . Ž .. . . , d . Suppose that G resp., G has exactly one odd cycle C resp., C1 2 1 2
Ž . Ž .and C resp., C is a unique cycle in G resp., G . Let G be a graph on1 2 1 2

� 4 Ž . Ž . Ž .the ¨ertex set 1, . . . , d9, d9 q 1, . . . , d with E G s E G j E G j1 2
� 4e , where e is a bridge of C and C . Then, the edge polytope PPŽC , C . ŽC , C . 1 2 G1 2 1 2

of G is normal.
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Ž .Proof. Because the Ehrhart ring A PP is normal, in order to see whyG
w xthe edge polytope PP of G is normal, we may show that K PP coincidesG G

Ž . w x Ž .with A PP . It follows that K PP s A PP if and only if every a gG G G
d Ž .n PP l Z can be expressed in the form a s Ý a r e with eachG eg EŽG. e

0 F a g Z and with Ý a s n.e eg EŽG. e
First, every a g n PP l Zd can be expressed in the form a sG

Ž .Ý a r e with each 0 F a g R and with Ý a s n. Becauseeg EŽG. e e eg EŽG. e

a s a r e q a y a r e? @ Ž . ? @ Ž .Ž .Ý Ýe e e
Ž . Ž .egE G egE G

d Ž ? @. Ž . dbelongs to Z , we have Ý a y a r e g Z . Thus, if deg i s 1eg EŽG. e e G
� 4 Ž . ? @and e s i, j g E G , then a y a s 0, i.e., 0 F a g Z. Let G9 denotee e e

the subgraph of G obtained by removing all vertices i of G with deg i s 1G
� 4and by removing all edges e s i, j of G with deg i s 1. Then, becauseG

Ž ? @. Ž . d � 4 Ž .Ý a y a r e g Z , if deg i s 1 and if e s i, j g E G9 ,eg EŽG9. e e G9

? @then a y a s 0, i.e., 0 F a g Z. Hence, repeated applications of suche e e
Ž .techniques enable us to see that if e is an edge of G with e f E C j1

Ž . � 4E C j e , then 0 F a g Z. Thus,2 ŽC , C . e1 2

a y a r e g Zd .? @ Ž .Ž .Ý e e
Ž . Ž . � 4egE C jE C j e1 2 ŽC , C .1 2

Ž . � 4 Ž . �Let us assume that V C s 1, 2, . . . , 2 l y 1 , V C s 2 l, 2 l q1 2
4 � 4 � 4 � 41, . . . , 2m , e s 1, 2m and set e s 1, 2 , e s 2, 3 , . . . , e sŽC , C . 1 2 2 ly21 2

� 4 � 4 � 4 �2 l y 2, 2 l y 1 , e s 2 l y 1, 1 , e s 2m, 2 l , e s 2 l, 2 l q2 ly1 2 l 2 lq1
4 � 4 � 41 , . . . , e s 2m y 2, 2m y 1 , and e s 2m y 1, 2m . Note that if2 my1 2 m

Ž . Ž . Ž .l s 1 resp., l s m , then e resp., e is a loop at 1 resp., m . Let1 2 m

b s b , . . . , b , 0, . . . , 0Ž .1 2 m

s a y a r e g Zd .? @ Ž .Ž .Ý e e
Ž . Ž . � 4egE C jE C j e1 2 ŽC , C .1 2

d Ž .then, because Ý b is even, it follows easily that b , . . . , b isis1 i 1 2 m
Ž . Ž . Ž .0, 0, . . . , 0 , or 1, 1, . . . , 1 , or 2, 1, 1, . . . , 1, 2 . Hence, b is equal to
Ž .0, 0, . . . , 0 , or

ly1 my1

r e q r e q r e ,Ž . Ž . Ž .Ý Ý2 k 2 kq1 ŽC , C .1 2
ks1 ksl

or
ly1 my1

r e q r e q 2 r e .Ž . Ž . Ž .Ý Ý2 k 2 kq1 ŽC , C .1 2
ks1 ksl
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Thus, every a g n PP l Zd can be expressed in the form a sG
Ž .Ý a r e with each 0 F a g Z as required. Q.E.D.eg EŽG. e e

LEMMA 2.5. Work with the same situation as in Lemma 2.4. Gï en an
Ž .expression in the form a s Ý a r e g PP with each 0 F a g R andeg EŽG. e G e

with Ý a s 1, we may assume that a s 0 for at least one edgeeg EŽG. e e
Ž . Ž .e g E C j E C .1 2

Proof. In fact, keeping the notation on the vertices and edges of C1
and C , we define d G 0 by2

d s min a ; 1 F i F l j a ; l F i F m .� 4 � 4Ž .e e2 iy1 2 i

Ž . iThen, replacing a with a q y1 d if 1 F i F 2 l y 1 and with a ye e ei i i
Ž . iy1 d if 2 l F i F 2m and replacing a with a q 2d in thee eŽC , C . ŽC , C .1 2 1 2
previous expression for a produces a required expression. Q.E.D.

COROLLARY 2.6. Let G be a finite connected graph on the ¨ertex set
� 41, . . . , d allowing loops and ha¨ing no multiple edge and suppose that G has
at least one odd cycle. Let V denote the set of all reduced subgraphs G9 of G

Ž . Ž .satisfying the conditions i ] iv in Lemma 1.4 such that e¨ery odd cycle in G9
is minimal in G and that, for arbitrary two odd cycles C and C9 in G9 with

� 4C / C9, the pair P s C, C9 of minimal odd cycles in G is exceptional.
Then, we ha¨e

PP s PP .DG G9
G9gV

Proof. Let V9 denote the set of all reduced subgraphs G9 of G
Ž . Ž .satisfying the conditions i ] iv in Lemma 1.4. It then follows that

PP s D PP . Moreover, we write V0 for the set of subgraphsG G9G9g V9

G9 g V9 any of whose odd cycles is minimal in G. Thus, V ; V0 ; V9.
First, we show that PP s D PP . Because PP s D PP ,G G9 G G9G9g V0 G9g V9

Ž .given a s a , . . . , a g PP , we can choose G g V9 with a g PP and1 d G 0 G 0
Ž .then we can express a in the form a s Ý a r e with eacheg EŽG . e0

0 F a g R and with Ý a s 1. Let us, for a while, assume that Ge eg EŽG . e 00

contains at least one nonminimal odd cycle C in G. We work with the
Ž . � 4 Ž . � 4notation V C s 1, 2, . . . , 2 l y 1 and E C s e , e , . . . , e with e1 2 2 ly1 1

� 4 � 4 � 4 � 4s 1, 2 , e s 2, 3 , . . . , e s 2 l y 2, 2 l y 1 , e s 2 l y 1, 1 . Let2 2 ly2 2 ly1
� 4e9 s 1, 2k be a chord of C, where 2 F k F l y 1. We define d G 0 by

d s min a ; 1 F i F k .� 4e2 iy1
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Ž . iThen, replacing a with a q y1 d for each 1 F i F 2k y 1 in thee ei i

foregoing expression for a and setting a s d , we obtain an expression,e9

a s a r e . 1Ž . Ž .Ý e
Ž . � 4egE G j e90

Ž . Ž .In expression 1 , we have a s 0 for at least one edge e g E C withe ii

1 F i F 2k y 1. Fix such an edge e and construct the subgraph G byi 1
deleting e from G and adding e9 to G . Then, G g V9 with a g PP .i 0 0 1 G1

Hence, repeated applications of such techniques enable us to find a
desired subgraph G9 g V0 with a g PP .G9

Now, we prove that PP s D PP . Because we know PP sG G9 GG9g V
Ž .D PP , given a s a , . . . , a g PP , we can choose G g V0 withG9 1 d G 0G9g V0

a g PP . If G contains no nonexceptional pair of minimal odd cycles inG 00

G, then G belongs to V. Let us assume that G contains at least one0 0
nonexceptional pair of minimal odd cycles in G. Then, by virtue of Lemma
2.5, we can find G g V0 with a g PP such that the number of nonex-1 G1

ceptional pairs of minimal odd cycles which G contains is less than the1
number of nonexceptional pairs of minimal odd cycles which G contains.0
Hence, repeated applications of Lemma 2.5 guarantee the existence of a
required subgraph G9 g V with a g PP . Thus, PP s D PP asG9 G G9G9g V

desired. Q.E.D.
We now come to the proof of Theorem 2.2.

Proof of Theorem 2.2. The proof of Proposition 2.1 guarantees that
w xeach MM belongs to the quotient field of the edge ring K G andP i

Ž .2 w x Ž .MM g K G . Because the Ehrhart ring A PP of the edge polytopeP i G
Ž .PP of G is normal, our goal is to prove that A PP is generatedG G

n1 n2 n q w xby MM s , MM s , . . . , MM s as an algebra over K PP , where n sP P P G i1 1 1
< Ž . Ž X. <V C j V C .i i

Ž .First Step . First, we assume that there exists at least one odd cycle in
the graph G, i.e., dim PP s d y 1. By virtue of Corollary 2.6, givenG

Ž . da s a , . . . , a g n PP l Z , we can find G9 g V with a g n PP . Let1 d G G9

B , . . . , B denote the odd cycles in G9. Then, the technique appearing in1 m
the proof of Lemma 2.4 enables us to see that a can be expressed in the
form,

m

a s a r e q « r e ,Ž . Ž .Ý Ý Ýe k ž /
Ž . ks1 Ž .egE G9 egE Bk

1� 4 Ž .with each 0 F a g Z and with each « g 0, . Let V resp., V denotee k 1 22
1� 4 Ž .the subset of 1, . . . , m consisting of all k for which « s resp., « s 0 .k k2

Because Ýd a s 2n, the cardinality of V must be even. Let us assumeis1 i 1
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� 4 � 4that V s 1, 2, . . . , 2 l and V s 2 l q 1, 2 l q 2, . . . , m . Thus, a can be1 2
expressed in the form,

2 l 1
a s a r e q r eŽ . Ž .Ý Ý Ýe ž /2Ž . ks1 Ž .egE G9 egE Bk

l 1
s a r e q r e ,Ž . Ž .Ý Ý Ýe ž /2Ž . ks1 Ž . Ž .egE G9 egE B jE B2ky1 2 k

w xwith each 0 F a g Z. It then follows that, as a module over K PP , thee G
Ž .Ehrhart ring A PP is generated by all square-free monomials in the formG

MM sni1 MM sni2 ??? MM snil with 1 F i - i - ??? - i F q such thatP P P 1 2 li i i1 2 lŽ Ž . Ž X .. Ž Ž . Ž X ..V C j V C l V C j V C s B for all 1 F f - g F l, wherei i i if f g g

< Ž . Ž X . <n s V C j V C .i i ij j j

Ž .Second Step . If a connected graph G has no odd cycle, then PP is aG
w xnormal polytope, e.g., 5, Theorem 5.9 . In fact, dim PP s d y 2 if G hasG

no odd cycle. By Lemma 1.5, for a subgraph G9 ; G, the edge polytope
Ž .PP of G9 is a d y 2 -simplex if and only if G9 is a spanning subtree of G.G9

w x Ž .It then follows easily that K PP coincides with the Ehrhart ring A PP .G G
Hence, PP is a normal polytope. Q.E.D.G

We conclude the present article with the proof of Corollary 2.3.

w xProof of Corollary 2.3. If the edge ring K G of a graph G is normal,
Ž .then G must satisfy the odd cycle condition Proposition 2.1 . If G satisfies

the odd cycle condition, then there exists no exceptional pair of minimal
w xodd cycles in G. Hence, Theorem 2.2 guarantees that K G is normal. We

now prove the existence of a unimodular covering of the edge polytope PPG
of a graph G which satisfies the odd cycle condition.

Ž .First Step . Suppose that G satisfies the odd cycle condition and that
G has at least one odd cycle. Let L denote the set of all reduced connected

Ž . Ž .subgraphs G9 of G satisfying the conditions i ] iv in Lemma 1.4 such
Ž .that every in fact, a unique odd cycle in G9 is minimal in G. Then,

Corollary 2.6 guarantees that PP s j PP because L s V. More-G G9G9g L
w xover, it follows from 7, Lemma 9.5 that the normalized volume of the

� 4edge polytope PP of each G9 g L is equal to 1. Hence, PP ; G9 g L isG9 G9

a unimodular covering of PP as desired.G

Ž .Second Step . Because the incidence matrix of a bipartite graph is
totally unimodular, the edge polytope of a bipartite graph possesses a

w xunimodular triangulation. See 7, pp. 69]70 . Q.E.D.
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APPENDIX

We give here some supplements related with Fulkerson, Hoffman, and
w xMcAndrew 2 . First, we present a quick proof of the result in the following

w xtext generalizes the ‘‘marriage theorem’’ as well as 2, Theorem 2.5 . Recall
w x � 4that a perfect matching of a simple graph G on d s 1, . . . , d is a subset

Ž . w xMM of E G such that each i g d is a vertex of a unique edge belonging to
MM. In particular, if G possesses a perfect matching, then d must be even.

w xPROPOSITION A.1. Let G be a finite simple connected graph on d , where
d is e¨en, and suppose that G satisfies the odd cycle condition. Then, G

Ž . Ž . Ž Ž ..possesses a perfect matching if and only if a T F a N G; T for all
w x Ž .independent subsets T ; d in G. Here, a T is the cardinality of a finite

set T.

Proof. In general, G possesses a perfect matching if and only if
w x Ž . Ž Ž ..t t ??? t belongs to K G . Because a T F a N G; T for all inde-1 2 d

w xpendent subsets T ; d in G, Corollary 1.8 enables us to see that
Ž . d2rd, . . . , 2rd g R belongs to PP . Hence, t t ??? t is integral overG 1 2 d

w xK G . Moreover, because G is connected, it follows that t t ??? t belongs1 2 d
w x w xto the quotient field of K G . Because K G is normal, t t ??? t belongs1 2 d

w xto K G as required. Q.E.D.
w xSecond, we present a direct proof, which follows from 2, Theorem 2.1 ,

Ž . Ž .of iii « i of Corollary 2.3. We are grateful to the referee for pointing
out the discussion in the following text.

LEMMA A.2. Let a , a , . . . , a belong to Zd. Let L denote the lattice1 2 n
generated by the a s and let Z denote the zonotope generated by the a s, i.e.,i i

� n 4 � n 4L s Ý a a ; a g Z and Z s Ý x a ; x g R, 0 F x F 1 . Supposeis1 i i i is1 i i i i
that e¨ery b g Z l L is a nonnegatï e integer linear combination of the a s.i

w a1 a2 an xThen, the affine semigroup ring K t , t , . . . , t is normal.

Proof. Let g s Ýn a a , with each a g Z and suppose that mg sis1 i i i
Ýn b a , where m is a positive integer and where each b is a nonnegativeis1 i i i

g w a1 a2 an xinteger. Thus, t belongs to the quotient field of K t , t , . . . , t and is
w a1 a2 an x nintegral over K t , t , . . . , t . What we must prove is that g s Ý c ais1 i i

for some nonnegative integers c s. Let b s mq q r , where q G 0 andi i i i i
0 F r - m are integers. Thus, we havei

n n ri
g y q a s a g Z l L.Ý Ýi i imis1 is1

It then follows from the hypothesis that g y Ýn q a s Ýn d a foris1 i i is1 i i
n Ž .some nonnegative integers d s. Hence g s Ý q q d a as desired.i is1 i i i

Q.E.D.
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w xNow, if G is a finite connected graph on d , then the lattice LG
� Ž . Ž .4generated by r e ; e g E G is

L s a , a , . . . , a g Z; a q a q ??? qa is even .� 4Ž .G 1 2 d 1 2 d

Ž � Ž . Ž .4In fact, if G9 is a spanning tree of G, then r e ; e g E G9 is a Z-basis
. w xfor L . By virtue of 2, Theorem 2.1 , the hypothesis of Lemma A.2 isG

guaranteed if G satisfies the odd cycle condition. This completes the direct
Ž . Ž .proof of iii « i of Corollary 2.3.

Note added in proof. After this paper was submitted, the authors learned that the
w x w xnormalization of K G is also obtained in 8 .
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