NORMAL POLYTOPES, TRIANGULATIONS, AND KOSZUL ALGEBRAS

WINFRIED BRUNS, JOSEPH GUBELADZE AND NGÔ VIÊT TRUNG

This paper is devoted to the algebraic and combinatorial properties of polytopal semigroup rings defined as follows. Let P be a lattice polytope in \mathbb{R}^{n}, i. e. a polytope whose vertices have integral coordinates, and K a field. Then one considers the embedding $\iota: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}, \iota(x)=(x, 1)$, and defines S_{P} to be the semigroup generated by the lattice points in $\iota(P)$; the K-algebra $K\left[S_{P}\right]$ is called a polytopal semigroup ring. Such a ring can be characterized as an affine semigroup ring that is generated by its degree 1 elements and coincides with its normalization in degree 1 .

The first question to be asked about $K\left[S_{P}\right]$ is whether it is normal, and a geometric or combinatorial characterization of normality is certainly the most important problem in the theory of polytopal semigroup rings. (By a theorem of Hochster [18], the normality of $K\left[S_{P}\right]$ implies the Cohen-Macaulay property.) However, it is by no means clear whether such a characterization exists. The best known upper approximation to normality is the existence of a unimodular lattice covering (that is, a covering by lattice simplices of normalized volume 1). In Section 1 we show that the homothetic images $c P$ of an arbitrary lattice polytope have such a covering for $c \gg 0$. The existence of a unimodular covering is derived from a unimodular triangulation of the unit n-cube.

The second ring-theoretic question we are interested in is the Koszul property: a graded K-algebra R is called Koszul if K has a linear free resolution as an R-module. (The resolution is linear if all the entries of its matrices are forms of degree 1 ; see Backelin and Fröberg [3] for a discussion of the basic properties of Koszul algebras.) It is immediate that a Koszul algebra is generated by its degree 1 component and is defined by degree 2 relations. (Though these properties do in general not imply that R is Koszul, no counterexample seems to be known among the semigroup rings.) A sufficient condition for the Koszul property is the existence of a Gröbner basis of degree 2 elements for the defining ideal of R (for example, see [9]).

An algebraic approach to the multiples $c P$ yields that $K\left[S_{c P}\right]$ is normal for $c \geq$ $\operatorname{dim} P-1$, a Koszul algebra for $c \geq \operatorname{dim} P$, and a level ring of a-invariant -1 for $c \geq$ $\operatorname{dim} P+1$ (this means that the canonical module is generated by elements of degree $1)$. The Koszul property is proved by the Gröbner basis argument just mentioned; actually we generalize the theorem on the Koszul property of high Veronese subrings of an algebras generated in degree 1 (Eisenbud, Reeves, and Totaro [12]) to algebras that are just finite modules over a subalgebra generated in degree 1. This algebraic result is of general interest.

A basic tool for the study of polytopal semigroup rings is the connection between regular triangulations of P and Gröbner bases of the defining ideal I_{P} of $K\left[S_{P}\right]$
established by Sturmfels [23]. (All the triangulations of lattice polytopes to be considered in this paper are triangulations into lattice simplices.) After a discussion of some auxiliary results for the manipulation of regular triangulations, we show in Section 2 that polytopes whose facets are parallel to the hyperplanes given by the equations $X_{i}=0$ and $X_{i}-X_{j}=0$ have regular unimodular triangulations such that the minimal non-faces of the associated simplicial complexes are edges. It follows that these polytopes are normal and Koszul.

Let us call the maximal number of vertices of a minimal non-face of a triangulation Δ its degree. Then it is clear that a triangulation of an n-polytope P is of degree at most $n+1$, and there obviously exist lattice n-polytopes P for which every full triangulation, i. e. a triangulation for which every lattice point is a vertex, has degree $n+1$: if ∂P contains exactly $n+1$ lattice points and P has at least one interior lattice point, then the boundary lattice points form a minimal non-face. (A unimodular triangulation is evidently full). However, it will be shown in Section 3 that these obvious exceptions are the only ones: if P has at least $n+2$ lattice points in its boundary or no interior lattice point, then P has a regular full triangulation of degree at most n. If P is a polygon (i. e. of dimension 2), then every full triangulation of P is unimodular, and it follows that I_{P} has a Gröbner basis of degree 2, provided that P has at least 4 lattice points in its boundary; in particular such polygons yield Koszul algebras. Furthermore, in this case one can always find a unimodular triangulation of degree 2 that is induced by a lexicographic term order.

Bruns and Gubeladze [6] discuss the semigroup rings defined by rectangular simplices. Despite of their 'simplicity', these rings illustrate many of the phenomena discussed in the following.

The visits of the second and third author to the Hochschule Vechta and Universität Essen respectively that made this paper possible were supported by the DFG. We thank the DFG for the generous grants, and the Hochschule Vechta and the Universität Essen for their hospitality.

We are grateful to Jürgen Herzog for his interest in this work and for many stimulating discussions.

1. Polytopal semigroup rings

1.1. Preliminaries. We use the following notation: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are the additive groups of integral, rational, and real numbers, respectively; $\mathbb{Z}_{+}, \mathbb{Q}_{+}$and \mathbb{R}_{+}denote the corresponding additive subsemigroups of non-negative numbers, and $\mathbb{N}=\{1,2, \ldots\}$. An affine semigroup is a semigroup (always containing a neutral element) which is finitely generated and can be embedded in \mathbb{Z}^{n} for some $n \in \mathbb{N}$.

We write $\operatorname{gp}(S)$ for the group of differences of S, i. e. $\operatorname{gp}(S)$ is the smallest group (up to isomorphism) which contains S. Thus every element $x \in \operatorname{gp}(S)$ can be presented as $s-t$ for some $s, t \in S$.

An affine semigroup S is called normal if every element $x \in \operatorname{gp}(S)$ such that $c x \in S$ for some $c \in \mathbb{N}$ belongs to S. It is well known that for any field K and any affine semigroup S the normality of the semigroup ring $K[S]$ is equivalent to the normality of S (see Hochster [18] or Bruns and Herzog [7], 6.1.4). The normalization
\bar{S} of a semigroup S is the set of all $x \in \operatorname{gp}(S)$ for which there exists $c \in \mathbb{N}$ with $c x \in S$; it follows that \bar{S} is a normal semigroup.

Let M be a subset of \mathbb{R}^{n}. We set

$$
\begin{aligned}
& L_{M}=M \cap \mathbb{Z}^{n}, \\
& E_{M}=\left\{(x, 1): x \in L_{M}\right\} \subset \mathbb{Z}^{n+1}
\end{aligned}
$$

so L_{M} is the set of lattice points in M, and E_{M} is the image of L_{M} under the embedding $\mathbb{R}^{n} \mapsto \mathbb{R}^{n+1}, x \mapsto(x, 1)$. Very frequently we will consider \mathbb{R}^{n} as a hyperplane of \mathbb{R}^{n+1} under this embedding; then we may identify L_{M} and E_{M}. By S_{M} we denote the subsemigroup of \mathbb{Z}^{n+1} generated by E_{M}.

Now suppose that P is a (finite convex) lattice polytope in \mathbb{R}^{n}, where 'lattice' means all the vertices of P belong to the integral lattice \mathbb{Z}^{n}. The affine semigroups of the type S_{P} will be called polytopal semigroups. A lattice polytope P is normal if S_{P} is a normal semigroup.

It follows immediately from the dimension theory of commutative semigroup rings that

$$
\operatorname{dim} K\left[S_{P}\right]=\operatorname{dim}(P)+1
$$

for an arbitrary field K. Note that S_{P} (or, more generally, S_{M}) is a graded semigroup, i. e. $S_{P}=\bigcup_{i=0}^{\infty}\left(S_{P}\right)_{i}$ such that $\left(S_{P}\right)_{i}+\left(S_{P}\right)_{j} \subset\left(S_{P}\right)_{i+j}$; its i-th graded component $\left(S_{P}\right)_{i}$ consists of all the elements $(x, i) \in S_{P}$. Therefore $R=K\left[S_{P}\right]$ is a graded K-algebra in a natural way. Its i-th graded component R_{i} is the K-vector space generated by $\left(S_{P}\right)_{i}$. The elements of $E_{P}=\left(S_{P}\right)_{1}$ have degree 1 , and therefore R is a homogeneous K-algebra in the terminology of [7].

Remark 1.1.1. If P and P^{\prime} are two lattice polytopes in \mathbb{R}^{n} that are integral-affinely equivalent, then $S_{P} \cong S_{P^{\prime}}$.

Integral-affine equivalence means the equivalence under some affine transformation $\psi \in \operatorname{Aff}\left(\mathbb{R}^{n}\right)$ carrying \mathbb{Z}^{n} onto \mathbb{Z}^{n}. The remark follows from the fact that such an integral-affine transformation of \mathbb{R}^{n} can be lifted to (a uniquely determined) linear automorphism of \mathbb{R}^{n+1} given by a matrix $\alpha \in \mathrm{GL}_{n+1}(\mathbb{Z})$. (Of course, we understand that \mathbb{R}^{n} is embedded in \mathbb{R}^{n+1} by the assignment $\left.x \mapsto(x, 1)\right)$.

Next we describe the normalization of a semigroup ring that is 'almost' a polytopal semigroup ring.

Proposition 1.1.2. Let M be a finite subset of \mathbb{Z}^{n}. Let $C_{M} \subset \mathbb{R}^{n}$ be the (convex) cone generated by E_{M}. Then the normalization of $R=K\left[S_{M}\right]$ is the semigroup ring $\bar{R}=K\left[\operatorname{gp}\left(S_{M}\right) \cap C_{M}\right]$. Furthermore, with respect to the natural gradings of R and \bar{R}, one has $R_{1}=\bar{R}_{1}$ if and only if $M=P \cap \mathbb{Z}^{n}$ for some lattice polytope P.

Proof. It is an elementary observation that $G \cap C$ is a normal semigroup for every subgroup G of \mathbb{R}^{n+1} and that every element $x \in \operatorname{gp}\left(S_{P}\right) \cap C$ satisfies the condition $c x \in S_{P}$ for some $c \in \mathbb{N}$.

Consider \mathbb{R}^{n} as a hyperplane in \mathbb{R}^{n+1} as above. Then the degree 1 elements of $\operatorname{gp}\left(S_{P}\right) \cap C$ are exactly those in the lattice polytope generated by $\operatorname{gp}\left(S_{P}\right) \cap C \cap \mathbb{R}^{n}$. This implies the second assertion.

The class of polytopal semigroup rings can now be characterized in purely ringtheoretic terms.

Proposition 1.1.3. Let R be a domain. Then R is (isomorphic to) a polytopal semigroup ring if and only if it has a grading $R=\bigoplus_{i=0}^{\infty} R_{i}$ such that
(i) $K=R_{0}$ is a field, and R is a K-algebra generated by finitely many elements $x_{1}, \ldots, x_{m} \in R_{1}$;
(ii) the kernel of the natural epimorphism $\varphi: K\left[X_{1}, \ldots, X_{m}\right] \rightarrow R, \varphi\left(X_{i}\right)=$ x_{i}, is generated by binomials $X^{\mathbf{a}}-X^{\mathbf{b}}$ where $X^{\mathbf{a}}=X_{1}^{a_{1}} \ldots X_{m}^{a_{m}}$ for $\mathbf{a}=$ $\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}_{+}^{m} ;$
(iii) $R_{1}=\bar{R}_{1}$ where \bar{R} is the normalization of R (with the grading induced by that of R).

Proof. We have seen above that a polytopal semigroup ring has the properties (i) and (iii). Let $E_{M}=\left\{x_{1}, \ldots, x_{m}\right\}$. Then the kernel I_{P} of the natural projection $K\left[X_{1}, \ldots, X_{m}\right] \mapsto K\left[x_{1}, \ldots, x_{m}\right], X_{i} \mapsto x_{i}$, is generated by binomials (see Gilmer [16], §7).

Conversely, a ring with property (ii) is a semigroup ring over K with semigroup H equal to the quotient of \mathbb{Z}_{+}^{m} modulo the congruence relation defined by the pairs (\mathbf{a}, \mathbf{b}) associated with the binomial generators of $\operatorname{Ker} \varphi([16], \S 7)$; in particular, H is finitely generated. Since R is a domain, H is cancellative and torsion-free, and 0 is its only invertible element. Thus it can be embedded in \mathbb{Z}_{+}^{n} for a suitable n (for example see [7], 6.1.5), and we may consider x_{1}, \ldots, x_{m} as points of \mathbb{Z}_{+}^{n}. Set $x_{i}^{\prime}=\left(x_{i}, 1\right) \in \mathbb{Z}_{+}^{n+1}$ and S equal to the semigroup generated by the x_{i}^{\prime}. We claim that R is isomorphic to $K[S]$. In fact, let $\psi: K\left[X_{1}, \ldots, X_{m}\right] \rightarrow K[S]$ be the epimorphism given by $\psi\left(X_{i}\right)=x_{i}^{\prime}$. We obviously have $\operatorname{Ker} \psi \subset \operatorname{Ker} \varphi$, but the converse inclusion is also true: if $X^{\mathbf{a}}-X^{\mathbf{b}}$ is one of the generators of $\operatorname{Ker} \varphi$, then $X^{\mathbf{a}}$ and $X^{\mathbf{b}}$ have the same total degree, and therefore they are in $\operatorname{Ker} \psi$, too.

Finally it remains to be shown that $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$ are exactly the lattice points in the polytope spanned by them. This, however, follows directly from (iii) and 1.1.2 above.
1.2. Normality and unimodular coverings. We begin with a sufficient condition for the normality of a polytopal semigroup ring. (Not all polytopal semigroups are normal as will be demonstrated by some examples in Section 1.2; see also Hoa [17].)
Proposition 1.2.1. If an affine semigroup S is a union (set-theoretically) of normal subsemigroups S_{α} which have the same groups of differences $\operatorname{gp}\left(S_{\alpha}\right)($ in $\operatorname{gp}(S))$, then S itself is normal.

In fact, $\operatorname{gp}\left(S_{\alpha}\right)=\operatorname{gp}(S)$ for all indices α, and the proof is straightforward.
Recall that an n-dimensional lattice simplex Δ in \mathbb{R}^{n} is called a unimodular simplex if its volume has the smallest possible value $1 / n$! (or normalized volume 1 ; we fix on \mathbb{R}^{n} the standard translation invariant volume function). The verification of the equivalence of the following three conditions is left to the reader.
(i) Δ is a unimodular lattice simplex in \mathbb{R}^{n};
(ii) Δ is a lattice simplex in \mathbb{R}^{n} and $\operatorname{gp}\left(S_{\Delta}\right)=\mathbb{Z}^{n+1}$;
(iii) Δ is a lattice simplex in \mathbb{R}^{n} and for some (equivalently, any) vertex v_{0} of Δ the elements

$$
v_{1}-v_{0}, \ldots, v_{n}-v_{0} \in \mathbb{Z}^{n}
$$

form a \mathbb{Z}-basis of \mathbb{Z}^{n}, where v_{1}, \ldots, v_{n} are the other vertices of Δ.
A collection of (unimodular) lattice simplices covering P is called a (unimodular) covering of P.

Proposition 1.2.2. Let P be an n-polytope in \mathbb{R}^{n}. If P has a unimodular covering, then it is normal.

Proof. Assume $P=\bigcup_{\alpha} \Delta_{\alpha}$ where the Δ_{α} are unimodular lattice simplices. Then $S_{\Delta_{\alpha}} \cong \mathbb{Z}_{+}^{n+1}$ and $\operatorname{gp}\left(S\left(\Delta_{\alpha}\right)\right)=\mathbb{Z}^{n+1}$ for all α. Since free semigroups are normal, the proof is complete in view of the previous proposition.

Let P be a n-dimensional polytope in \mathbb{R}^{n}. Clearly, the equality $\operatorname{gp}\left(S_{P}\right)=\mathbb{Z}^{n+1}$ holds for the polytopes P which are covered by lattice unimodular simplices (as we have mentioned in the proof of Proposition 1.2.2). However, it is not true in general that $\operatorname{gp}\left(S_{P}\right)=\mathbb{Z}^{n+1}$. For instance, for any $n \geq 3$ and $c \in \mathbb{N}$ there exists a lattice simplex $\delta \subset \mathbb{R}^{n}$ such that $\delta \cap \mathbb{Z}^{n}$ is just the vertex set of δ and $\operatorname{vol}(\delta)=c / n!$; in this situation $\operatorname{gp}\left(S_{\delta}\right)$ is a subgroup of \mathbb{Z}^{n+1} of index c.

However, after changing the lattice of reference, we can always assume that $\operatorname{gp}\left(S_{P}\right)=\mathbb{Z}^{n+1}$. Let $M \subset \mathbb{R}^{n}$ be the lattice generated by the differences of the vertices of P. Then we replace \mathbb{Z}^{n+1} by $M \oplus \mathbb{Z}$.

Question 1.2.3. Let the n-dimensional lattice polytope $P \subset \mathbb{R}^{n}$ satisfy the conditions

$$
\text { (i) } \operatorname{gp}\left(S_{P}\right)=\mathbb{Z}^{n+1}, \quad \text { (ii) } P \text { is normal. }
$$

Does P then have a unimodular covering?
In other words, is the existence of a unimodular covering a necessary (and sufficient) condition for the normality of P ?

The answer to this question seems to be open. A more special case of a covering by unimodular lattice simplices is a triangulation $\left(\Delta_{\alpha}\right)$ into such simplices, called a unimodular triangulation. It follows immediately that every integral point of P is a vertex of at least one Δ_{α}. In general, if we speak of a triangulation $\left(\Delta_{\alpha}\right)$, then we always require that the simplices of $\left(\Delta_{\alpha}\right)$ are lattice simplices; it is called full if every lattice point in P is the vertex of some simplex Δ_{α}.

Proposition 1.2.4. (a) A lattice polytope that has a unimodular triangulation is normal.
(b) Every full triangulation of a lattice polygon (2-dimensional polytope) is unimodular.
(c) There exists a normal 4-dimensional lattice polytope P that has no unimodular triangulation.

Proof. (a) This is just a special case of Proposition 1.2.2.

Part (b) follows from the observation that a lattice triangle Δ has area $1 / 2$ if and only if its vertices are the only integral points of Δ. In particular, a triangulation $\left(\Delta_{\alpha}\right)$ of a lattice polygon is unimodular if and only if it is full.
(c) will be discussed after the proof of Theorem 1.3.1.

In the last part of this subsection we describe the connection between unimodular coverings and the canonical module of a polytopal semigroup ring. Let P be a lattice polytope in \mathbb{R}^{n} and \mathcal{C} a covering of P by (not necessarily unimodular) lattice simplices. We say that a face $\sigma \in \mathcal{C}$ is interior if $\sigma \not \subset \partial P$, and we call the number

$$
\operatorname{int} \operatorname{deg} \mathcal{C}:=\min \{\operatorname{dim} \sigma \mid \sigma \text { is an interior face of } \mathcal{C}\}+1
$$

the interior degree of \mathcal{C}. For every affinely independent set $\left\{x_{1}, \ldots, x_{t}\right\}$ of points we denote by $\left\langle x_{1}, \ldots, x_{t}\right\rangle$ the simplex spanned by them. Let $M_{\mathcal{C}}$ denote the ideal generated by the monomials corresponding to the sums $x_{1}+\cdots+x_{t}$ with $x_{i} \in E_{P}$ such that the simplex $\left\langle x_{1}, \ldots, x_{t}\right\rangle$ is a minimal interior face of \mathcal{C} with respect to inclusion. By a theorem of Danilov [10] and Stanley [22] the canonical module ω_{R} of a normal affine semigroup ring $R=K[S]$ is spanned over K by the monomials corresponding to the points of $\operatorname{gp}(S)$, equivalently: of S, inside the relative interior of the cone C generated by S; see also [7], 6.3.5 or Trung and Hoa [25]. This applies in particular to $K\left[S_{P}\right]$ where P is a normal polytope.

For a Cohen-Macaulay graded ring R the number

$$
a(R)=-\min \left\{i:\left(\omega_{R}\right)_{i} \neq 0\right\}
$$

is called the a-invariant of R (see [7], Chapters 3 and 4). If $R=K\left[S_{P}\right]$ is normal, then $a(R)<0$, since the monomials spanning ω_{R} have positive degrees, as pointed out above.

Proposition 1.2.5. Let P be a lattice polytope with a unimodular covering \mathcal{C}. Then the ideal $M_{\mathcal{C}}$ is the canonical module ω_{R} of $R=K\left[S_{P}\right]$, and

$$
a(R)=-\operatorname{int} \operatorname{deg} \mathcal{C} .
$$

Proof. Let C_{P} denote the convex cone spanned by E_{P} in \mathbb{R}^{n+1}. The conclusion will follow if every lattice point x in the interior of C_{P} can be written as a sum $x_{1}+\cdots+x_{t}+y$ for some minimal interior face $\left\langle x_{1}, \ldots, x_{t}\right\rangle$ of \mathcal{C} and $y \in S_{P}$. Let $\sigma \in \mathcal{C}$ be a unimodular lattice simplex that covers the intersection point of P with the line passing through x and the origin. Then we may write x as a sum $x_{1}+\cdots+x_{r}$ of vertices of $\sigma\left(x_{1}, \ldots, x_{r}\right.$ need not be different). Let ρ be the convex hull of these vertices. Since x is in the interior of $C_{P}, \rho \nsubseteq \partial P$. Hence ρ is an interior face of \mathcal{C}. Let ε be a minimal interior face of \mathcal{C} in ρ, say $\varepsilon=\left\langle x_{1}, \ldots, x_{t}\right\rangle$. Put $y=x_{t+1}+\cdots+x_{r}$. Then we get $x=x_{1}+\cdots+x_{t}+y$, as required.

Recall that a graded algebra R is called level if the canonical module ω_{R} of R is generated by elements of the same degree. This notion leads us to call a unimodular covering \mathcal{C} of P-level if the dimension of every minimal interior face of \mathcal{C} is $s-1$.

Corollary 1.2.6. If P has an s-level unimodular covering, then $R=K\left[S_{P}\right]$ is level with $a(R)=-s$.

Now we will use the above result to prove the level property of polygon semigroup rings. ($\sharp M$ denotes the cardinality of the set M.)
Theorem 1.2.7. Let P be a lattice polygon with $\sharp L_{P} \geq 4$. Then $R=k\left[S_{P}\right]$ is level with $a(R)=-2$ if P has no interior lattice points, and $a(R)=-1$ else.

Proof. By Proposition 1.2.4 (b) and Lemma 1.2 .6 we only need to show that P has an s-level triangulation \mathcal{C} for the appropriate integer $s=1$ or $s=2$. If P has no interior lattice points, we choose any triangulation \mathcal{C} of P. Since every lattice point of \mathcal{C} lies on ∂P, every edge not contained in ∂P is a minimal interior face of \mathcal{C}. Moreover, since $\sharp L_{P} \geq 4$, every triangle of \mathcal{C} is not a minimal interior face of \mathcal{C}. Therefore, \mathcal{C} is 2 -level. If P has an interior lattice point, say x, then we connect x with the vertices of P. As a consequence we obtain a triangulation of P. Let \mathcal{C} be any full triangulation of P which is finer than this triangulation. Then every edge of \mathcal{C} which does not lie on ∂P must have a vertex not contained in ∂P. Therefore, no edge of \mathcal{C} is a minimal interior face of \mathcal{C}. Thus \mathcal{C} is 1 -level.
1.3. High multiples of polytopes. Let $P \subset \mathbb{R}^{n}$ be a polytope. Then $c P$ denotes the image of P under the homothetic transformation of \mathbb{R}^{n} with factor c and centre at the origin $0 \in \mathbb{R}^{n}$.

Theorem 1.3.1. For any lattice polytope P there exists $c_{0}>0$ such that $c P$ has a unimodular covering (and, hence, is normal by Proposition 1.2.2) for all $c \in \mathbb{N}$, $c>c_{0}$.

Proof. We will use the well-known (and easy) observation that any finite convex rational polyhedral cone in \mathbb{R}^{n} admits a finite subdivision into simplicial cones C_{α} such that the edges of each C_{α} correspond to a basis of \mathbb{Z}^{n}; more precisely, we obtain a basis of \mathbb{Z}^{n} if we choose on each edge of C_{α} the first integral point different from 0 . (Equivalently, toric varieties admit equivariant resolutions of singularities; Kempf et al. [19] or Fulton [14].) 'Subdivision' here means that the intersection $C_{\alpha} \cap C_{\alpha^{\prime}}$ is a face (of arbitrary dimension) of both C_{α} and $C_{\alpha^{\prime}}$.

Now let P be our polytope (of arbitrary dimension n) and v be an arbitrary vertex of it. Since the properties of P we are dealing with are invariant under integral-affine transformations (see above), we can assume $v=0 \in \mathbb{Z}^{n}$. Let C be the cone in \mathbb{R}^{n} spanned by 0 as its vertex and P itself, i. e. C corresponds to the corner of P at v. Let $C=\bigcup_{\alpha} C_{\alpha}$ be a subdivision into simplicial cones C_{α} as above. So the edges of C_{α} for each α are determined by the radial directions of some basis $\left\{e_{\alpha 1}, \ldots, e_{\alpha n}\right\}$ of \mathbb{Z}^{n}. Denote by Λ_{α} the parallelepiped in \mathbb{R}^{n} spanned by the edges $\left[0, e_{\alpha 1}\right], \ldots,\left[0, e_{\alpha n}\right] \subset \mathbb{R}^{n}$. Thus $\operatorname{vol}\left(\Lambda_{\alpha}\right)=1$ for all α. Equivalently, $\Lambda_{\alpha} \cap \mathbb{Z}^{n}$ coincides with the vertex set of Λ_{α}. Clearly, each of the C_{α} is covered by parallel translations of Λ_{α} (precisely as \mathbb{R}_{+}^{n} is covered by parallel translations of the standard unit n-cube).

For each α and each $c \in \mathbb{N}$ let $Q_{\alpha c}$ be the union of the parallel translations of Λ_{α} inside $C_{\alpha} \cap c P$. Clearly, $Q_{\alpha c}$ is not convex in general. By $c^{-1} Q_{\alpha c}$ we denote the homothetic image of $Q_{\alpha c}$ centered at $v=0$ with factor c^{-1}. The detailed verification of the following claim is left to the reader.

Claim. Let F_{v}^{op} denote the union of all the facets of P not containing v (i. e. 0 in our case). Then for any real $\varepsilon>0$ there exists $c_{\varepsilon} \in \mathbb{N}$ such that

$$
P \backslash U_{\varepsilon}\left(F_{v}^{\mathrm{op}}\right) \subset \bigcup_{\alpha} c^{-1} Q_{\alpha c}
$$

whenever $c>c_{\varepsilon}\left(U_{\varepsilon}\left(F_{v}^{\mathrm{op}}\right)\right.$ denotes the ε-neighbourhood of F_{v}^{op} in $\left.\mathbb{R}^{n}\right)$.
Let us just remark that the crucial point in showing this inclusion is that the covering of each C_{α} by parallel translations of the $c^{-1} \Lambda_{\alpha}$ becomes finer in the appropriate sense when c tends to ∞. (The finiteness of the collection $\left\{C_{\alpha}\right\}$ is of course essential).

For an arbitrary vertex w of P we define F_{w}^{op} analogously.
Claim. There exists $\varepsilon>0$ such that

$$
\bigcap_{w} U_{\varepsilon}\left(F_{w}^{\mathrm{op}}\right)=\emptyset,
$$

where w runs over all vertices of P.
Indeed, first one easily observes that

$$
\bigcap_{w} U_{\varepsilon}\left(F_{w}^{\mathrm{op}}\right)=\bigcap_{F} U_{\varepsilon}(F),
$$

where on the right hand side F ranges over the set of facets of P, while $U_{\varepsilon}(F)$ is the ε-neighbourhood of F, and then one completes the proof as follows. Consider the function

$$
d: P \rightarrow \mathbb{R}_{+}, \quad d(x)=\max (\operatorname{dist}(x, F)),
$$

where F ranges over the facets of P and $\operatorname{dist}(x, F)$ stands for the (Euclidean) distance from x to F. The function d is continuous and strictly positive. So, by the compactness of P, it attains its minimal value at some $x_{0} \in P$. Now it is enough to choose $\varepsilon<d\left(x_{0}\right)$.

Summing up the two claims, one is directly lead to the conclusion that, for $c \in \mathbb{N}$ sufficiently large, $c P$ is covered by lattice n-parallelepipeds which are integral-affinely equivalent to the standard unit cube, i. e. they have volume 1. Now the proof of our theorem is finished by the well-known fact that the standard unit cube has a unimodular triangulation (see Subsection 2.3 for more details.)

We have still to provide a justification for part (c) of 1.2.4 in which we have stated that a normal polytope P does not always have a unimodular triangulation. Bouvier and Gonzalez-Sprinberg [5] have found that the cone D in \mathbb{R}^{4} spanned by $(1,0,0,0)$, $(0,1,0,0),(0,0,0,1)$, and $(1,3,4,7)$ does not have a subdivision into simplicial cones C_{α} satisfying the following conditions: (i) the edges of C_{α} correspond to a basis of \mathbb{Z}^{4} (as described in the proof of 1.3.1); (ii) each edge of C_{α} is a ray from 0 through an element of the (uniquely determined) minimal set E of generators of the semigroup $D \cap \mathbb{Z}^{4}$.

Let the polytope $P \in \mathbb{R}^{4}$ be spanned by $E \cup\{0\}$. It can be checked numerically that P is a normal polytope and $E \cup\{0\}=P \cap \mathbb{Z}^{4}$. If P had a unimodular triangulation $\left(\Delta_{\alpha}\right)$, then the cones (with vertices in $0 \in \mathbb{R}^{5}$) over those Δ_{α} that contain $0 \in \mathbb{R}^{4}$ would constitute a subdivison of D satisfying the conditions (i) and (ii) above. (See also Sturmfels [24], 13.17.)

As will be discussed in Subsection 2.3, the subsets $Q_{\alpha c} \subset c P$, mentioned in the proof of Proposition 1.3.1 have a unimodular triangulation; moreover, these triangulations are regular and the minimal non-faces of the corresponding simplicial complexes are necessarily edges (i. e. have dimension 1). (For all of these notions see Subsection 2.1). This observation suggests the following

Question 1.3.2. Let P be a lattice polytope (of arbitrary dimension). Does the polytope $c P$ then have a unimodular triangulation for $c \in \mathbb{N}$ sufficiently large? Can such a triangulation be chosen to be regular? Can it be chosen such that the minimal non-faces of the corresponding simplicial complex are edges, and furthermore level of interior degree 1 ?

We will see below that all the algebraic properties one can derive from the existence of such a triangulation are indeed satisfied. Furthermore, the existence of a regular unimodular triangulation of $c P$ for some $c \gg 0$ is a major result of [19], p. 161, Theorem 4.1. It is however by no means clear that the existence of such a triangulation for $c P$ has anything to do with its existence for $(c+1) P$.

One can give an algebraic proof of the normality of $c P$ for c sufficiently large, avoiding a reference to the triangulations of cubes. The algebraic approach not only yields an explicit range for c, but also several other properties of $K\left[S_{c P}\right]$. Altogether, these properties give a rather complete structural description of the rings $K\left[S_{c P}\right]$.

Recall from the introduction that a graded K-algebra R is called a Koszul algebra if K (considered as the R-module R / \mathfrak{m} where \mathfrak{m} is the maximal homogeneous ideal) has a linear free resolution over R. Clearly, a Koszul algebra is generated over K by its degree 1 elements, and the defining ideal of every representation $K\left[X_{1}, \ldots, X_{m}\right] \rightarrow R$ that maps X_{1}, \ldots, X_{m} to a basis of the vector space R_{1} is generated by homogeneous polynomials of degree 2. We call a polytope P Koszul if $K\left[S_{P}\right]$ is Koszul for every field K. (See also Remark 1.3.5 below.)

The c-th Veronese subring $\bigoplus_{i} R_{i c}$ of a graded ring R is denoted by $R^{(c)}$. If $x \in R^{(c)}$ is homogeneous of degree $k c$ as an element of R, then its normalized degree as an element of $R^{(c)}$ is k.

Theorem 1.3.3. Let P be a lattice n-polytope with $\operatorname{gp}\left(S_{P}\right)=\mathbb{Z}^{n+1}$.
(a) Then $c P$ is normal for $c \geq n-1$, Koszul for $c \geq n$, and level of a-invariant -1 for $c \geq n+1$.
(b) If P is normal, then $c P$ is Koszul for $c \geq(n+1) / 2$.

Proof. We may assume that K is infinite. If K should be finite, then we pass to some infinite extension field L of K; for each c we have $L\left[S_{c P}\right]=K\left[S_{c P}\right] \otimes_{K} L$, and all the properties considered in the theorem are invariant under an extension of K.

A key point of the proof is the relationship between $K\left[S_{c P}\right]$ and the c-th Veronese subrings of $R=K\left[S_{P}\right]$ and its normalization S (see 1.1.2 for the description of S): one has the inclusions

$$
R^{(c)} \subset K\left[S_{c P}\right] \subset S^{(c)}
$$

of graded K-algebras. (In general both of these inclusions are strict, and one can give examples where the first inclusion is strict for all c.) It is easy to see that
$K\left[S_{c P}\right]$ is normal if and only if $K\left[S_{c P}\right]=S^{(c)}$, equivalently, if $S^{(c)}$ is generated by its elements of normalized degree 1 . If P is normal then this equality holds for all c.

Let us first show that $c P$ is normal for $c \geq n$. Afterwards we will improve the bound. We choose a graded Noether normalization $R_{0} \subset R$. Then S is a finite R_{0}-module generated by $1 \in S$ and homogeneous elements y_{1}, \ldots, y_{w} of positive degree. Since S is Cohen-Macaulay by Hochster's theorem, S is a free module over the polynomial ring R_{0}, and thus these elements can even be chosen such that $1, y_{1}, \ldots, y_{w}$ form a basis of S.

In order to bound the degree of the y_{t} we look at the Hilbert series

$$
H_{S}(t)=\frac{1+h_{1} t^{1}+\cdots+h_{s} t^{s}}{(1-t)^{n+1}}, \quad h_{s} \neq 0
$$

Then $h_{i}=\sharp\left\{j: \operatorname{deg} y_{j}=i\right\}$. Furthermore, $a(S)$ is the degree of $H_{S}(t)$ as a rational function, so that $s=n+1+a(S) \leq n$, since $a(S)<0$ (see the discussion preceding 1.2.5). Thus $\operatorname{deg} y_{j} \leq n$ for all j.

It follows easily that $S^{(c)}, c \geq n$, is generated by its elements of normalized degree 1: every element of $S^{(c)}$ is a K-linear combination of the monomials $x_{i_{1}} \ldots x_{i_{v}} y_{j}$ where $v+\operatorname{deg} y_{j}$ is a multiple of c. Therefore, if $c \geq \operatorname{deg} y_{j}$, then, as a K-algebra, $S^{(c)}$ is generated by the monomials $x_{i_{1}} \ldots x_{i_{v}} y_{j}$ with $v+\operatorname{deg} y_{j}=c$. This proves the normality of $K\left[S_{c P}\right]$ for $c \geq n$.

In order to derive the level property we use a similar argument. Let ω be the canonical module of S. Its Hilbert series is

$$
H_{\omega}(t)=\frac{t^{n+1}+h_{1} t^{n}+\cdots+h_{s} t^{n+1-s}}{(1-t)^{n+1}}
$$

(see [22] or [7], 4.3.8). It is also a free R_{0}-module, and as such a module it has a basis of elements of degree at most $n+1$ (and $n+1$ is indeed attained as such a degree). Since $K\left[S_{c P}\right]=S^{(c)}$ for $c \geq n$, its canonical module is $\omega^{(c)}$. (This follows either by general algebraic arguments or by the description of the canonical module given above 1.2.5.) Similarly as above we conclude that the canonical module of $K\left[S_{c P}\right]$ is generated by its elements of normalized degree 1 if $c \geq n+1$ (even as a $R_{0}^{(c)}$-module).

Let us now show that $c P$ is also normal for $c=n-1$. This is clear from the previous arguments if P has no interior lattice point: in that case one has $a(R) \leq-2$. In the general case we start with a full lattice triangulation $\left(\Delta_{\alpha}\right)$ of P. (Such a triangulations always exists; see the discussion preceding Lemma 3.1.1.) Then each simplex Δ_{α} has no interior lattice point. The normalization \bar{S}_{P} of S_{P} is the union of the integral closures

$$
\hat{S}_{\alpha}=\left\{x \in \mathbb{Z}^{n+1}: k x \in S_{\alpha} \text { for some } k \in \mathbb{N}\right\}
$$

of the semigroups $S_{\alpha}=S_{\Delta_{\alpha}}$ in $\operatorname{gp}\left(S_{P}\right)=\mathbb{Z}^{n+1}$. (Note that $\operatorname{gp}\left(S_{\alpha}\right)=\mathbb{Z}^{n+1}$ if and only if Δ_{α} is unimodular.) The assertions on the Hilbert series and the canonical module of S hold analogously for $K\left[\hat{S}_{\alpha}\right]$ (for example, see [7], p. 265). Since $a\left(K\left[\hat{S}_{\alpha}\right]\right) \leq-2$, it follows that $K\left[\hat{S}_{\alpha}\right]$ has a basis of degree at most $n-1$ as a $K\left[S_{\alpha}\right]$-module (the latter ring is a polynomial ring whose indeterminates correspond to the vertices of
$\left.\Delta_{\alpha}\right)$. Since such a basis can always be chosen to consist of monomials, we conclude that each of the semigroups \hat{S}_{α} has a description as follows: there exist elements y_{k} of degree at most $n-1$ such that each element z of \hat{S}_{α} is a product $x_{1} \cdots x_{l} y_{k}$ with elements x_{i} corresponding to the vertices of Δ_{α}. Consequently this holds for the union \bar{S}_{P} of the \hat{S}_{α} with respect to the set of lattice points of P, whence S is generated as an R-module by elements of degree at most $n-1$, as was to be shown. (However, note that one can replace R by R_{0} in the last statement only if P has no interior lattice point.)

Part (a) is complete once we have proved the Koszul property of $K\left[S_{c P}\right]$ for $c \geq n$. However, it is useful to treat (b) first. If P is normal, then one has $R=S$ so that S is generated by its degree 1 elements. The Castelnuovo-Mumford regularity $\operatorname{reg}(R)$ (see [11]) is given by

$$
\operatorname{reg}(R)=\max \left\{i+j: H_{\mathfrak{m}}^{i}(R)_{j} \neq 0\right\}
$$

$(\mathfrak{m}$ is the irrelevant maximal ideal of R). Since (for example by local duality) $a(R)=$ $\max _{j}\left\{H_{\mathfrak{m}}^{n+1}(R) \neq 0\right\}$ and $H_{\mathfrak{m}}^{i}(R)=0$ for $i<n+1$ because of the Cohen-Macaulay property of R, we see that $\operatorname{reg}(R)=n+1+a(R)=s \leq n$ (with the notation introduced above).

Now we use the theorem of Eisenbud, Reeves, and Totaro [12] by which $R^{(c)}$ is Koszul for $c \geq(\operatorname{reg}(R)+1) / 2)$. This completes the proof of (b). (Note that the results in [12] are formulated in terms of $\left.\operatorname{reg}\left(I_{P}\right)=\operatorname{reg}(R)+1\right)$.

If P is not normal, then S is not generated by its degree 1 elements, but it is Cohen-Macaulay and a finitely generated R-module, and this is sufficient to make its Veronese subalgebras Koszul for $c \geq \operatorname{reg}(S)$; see Theorem 1.4.1(b) below.

We single out a result derived in the previous proof:
Corollary 1.3.4. Let P be a lattice n-polytope. Then the normalization of $K\left[S_{P}\right]$ is generated as a $K\left[S_{P}\right]$-module by elements of degree at most $n-1$.

One should note that 1.3.3 and 1.3.4 include the normality of lattice polygons stated in 1.2.4.

Remark 1.3.5. (a) The theorem of Eisenbud, Reeves, and Totaro and Theorem 1.4.1 even says that the defining ideal of $K\left[S_{c P}\right]$ has a Gröbner basis (see Eisenbud [11] for an introduction to Gröbner bases) of degree 2 for $c \geq(n+1) / 2$ if P is normal and for $c \geq n$ in general; if we could find such a Gröbner basis with squarefree initial monomials, then we could draw strong combinatorial consequences for $c P$. (See Subsection 2.1 for the connection between Gröbner bases and regular triangulations.) However, we do not see how to modify the proof of 1.4.1 in order to achieve such an improvement.
(b) We do not know an example of a polytope P for which the Koszul property of $K\left[S_{P}\right]$ depends on K. However, in general the graded Betti numbers of K as a $K\left[S_{P}\right]$-module depend on K. Such an example is given by the affine semigroup ring R associated with the minimal triangulation of the real projective plane as described in Bruns and Herzog [8], Theorem 2.1. This semigroup ring is polytopal
(with a grading different from that in [8]), and the third Betti number of K in characteristic 2 is greater by 1 than that in any other characteristic.
(c) The assertion on the normality of $c P$ in 1.3 .3 is essentially equivalent to the results of Ewald and Wessels [13] and Liu, Trotter, and Ziegler [21] which, however, have been derived by different methods. Modifying an example of [13], one sees easily that the bound $c \geq \operatorname{dim} P-1$ for the normality is sharp. In fact, let $P \subset \mathbb{R}^{n}$ be the polytope whose vertices are $e_{0}=0, e_{1}=(1,0, \ldots, 0), \ldots, e_{n}=(0, \ldots, 0,1)$, and $a_{n}=(1, \ldots, 1, n)$; then $\operatorname{gp}\left(S_{P}\right)=\mathbb{Z}^{n+1}$, the vertices are the only lattice points in P, and $(1, \ldots, 1, n-1) \in \mathbb{Z}^{n+1}$ belongs to a minimal system of generators of \bar{S}_{P}. (We are grateful to G. Ziegler for informing us about the results of [13] and [21].)
1.4. High Veronese subrings are Koszul. The following theorem and its proof generalize the main result of Eisenbud, Reeves, and Totaro [12] who showed it for the case $R=S$ (and $c \geq(\operatorname{reg}(R)+1) / 2)$. Unfortunately the proof given in [12] requires several modifications, forcing us to include all the details. For the application to polytopal semigroup rings part (b) of the theorem is sufficient. Since the theorem is of independent interest, we treat the general case.

Theorem 1.4.1. Let K be an infinite field and S graded K-algebra that is a finitely generated module over a graded subalgebra R generated by its degree 1 elements. Let $y_{1}, \ldots, y_{n} \in S$ be homogeneous elements such that $y_{1}, \ldots, y_{n}, y_{n+1}=1$ is a minimal system of generators of the R-module S. Furthermore, let $\mathfrak{a}_{j} \subset R, j=i+1, \ldots, n+1$, denote the annihilator of y_{j} modulo the R-submodule of S generated by y_{j+1}, \ldots, y_{n+1} (thus \mathfrak{a}_{n+1} is the kernel of the structure morphism $R \rightarrow S$). We set

$$
e=\max _{j} \operatorname{deg} y_{j} \quad \text { and } \quad d=\max _{j}\left(\operatorname{deg} y_{j}+\operatorname{reg}\left(R / \mathfrak{a}_{j}\right)\right)
$$

(a) Then the following hold:
(i) for $c \geq e$ the Veronese subring $S^{(c)}$ is generated as a K-algebra by its elements of normalized degree 1;
(ii) for $c \geq d+1$ the defining ideal of $S^{(c)}$ with respect to a suitable representation as a quotient of a polynomial ring has a Gröbner basis of elements of degree at most 2 ;
(iii) $S^{(c)}$ is a Koszul algebra for $c \geq d+1$.
(b) Suppose that S is a Cohen-Macaulay ring. Then the bounds e and $d+1$ in (a) can be replaced by $\operatorname{reg}(S)$.

Proof. Part (a)(i) appears already in Bourbaki [4], Chap. III, §1, Lemme 1. It is easily seen as follows. Let x_{1}, \ldots, x_{m} be a vector space basis of R_{1}. Every homogeneous element $x \in S$ with $u=\operatorname{deg} x \geq e$ is a K-linear combination of the products $x_{k_{1}} \ldots x_{k_{u}}$ and $y_{j} x_{k_{1}} \ldots x_{k_{r}}$ with $u=\operatorname{deg} y_{j}+r$, and therefore $R^{(c)}$ is generated as a K-algebra by such products of total degree c and normalized degree 1 . Below we will always use the notation just introduced.

For (a)(ii) and (a)(iii) we consider the epimorphism

$$
\rho: Q \rightarrow S, \quad Q=K\left[X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n}\right], \quad X_{i} \mapsto x_{i}, Y_{i} \mapsto y_{i}
$$

we set $\operatorname{deg} X_{i}=1, \operatorname{deg} Y_{j}=\operatorname{deg} y_{j}$. That (a)(iii) follows from (a)(ii) (separately for each c) has been shown in Bruns, Herzog, and Vetter [9]. Part (a)(ii) requires some auxiliary results, and we will prove it later.

It is essential for (b) that we can replace R by a Noether normalization R_{0} of R that is generated by degree 1 elements. Then S is generated as an R_{0}-module by elements of degree at most $\operatorname{reg}(S)$, as shown in the proof of 1.3.3. Therefore we can replace e by the (possibly worse) bound $\operatorname{reg}(S)$ in (a)(i). Furthermore we have $\mathfrak{a}_{j}=0$ for all j, and therefore $d=e=\operatorname{reg}(S)$ after the replacement of R by R_{0}. The rest of the proof of (b) is also postponed.

In the following we will freely use that a term order on Q induces a term order on each of its subrings generated by monomials. On Q we set up a term order evaluating the following rules in the sequence given; in (ii) we denote by \sharp_{Y} the number of factors $Y_{j}: \mu \prec \nu$ if (i) $\operatorname{deg} \mu<\operatorname{deg} \nu$, (ii) $\sharp_{Y} \mu<\sharp_{Y} \nu$, (iii) the Y-factor of μ is reverse-lexicographically smaller than that of ν, (iv) the X-factor of μ is reverselexicographically smaller than that of ν. The variables are ordered by $Y_{1} \prec \cdots \prec Y_{n}$ and $X_{1} \prec \cdots \prec X_{m}$; we use the term 'reverse lexicographic order' as in [11].

We introduce some further notation: $P=K\left[X_{1}, \ldots, X_{m}\right]$, and $Q^{\langle c\rangle}$ is the subalgebra of Q generated by the monomials $X_{k_{1}} \ldots X_{k_{c}}$ and $Y_{j} X_{k_{1}} \ldots X_{k_{r}}$ with $\operatorname{deg} Y_{j}+$ $r=c$. The epimorphism $\rho: Q \rightarrow S$ introduced above induces an epimorphism $\rho^{\langle c\rangle}: Q^{\langle c\rangle} \rightarrow S^{(c)}$ for $c \geq e$ (as seen above). We set $J=\operatorname{Ker} \rho$ and $J^{\langle c\rangle}=\operatorname{Ker} \rho^{\langle c\rangle}=$ $J \cap Q^{\langle c\rangle}$.

Let I_{j} be the preimage of \mathfrak{a}_{j} with respect to the restriction of ρ to P. Then $R / \mathfrak{a}_{j} \cong P / I_{j}$, and in particular $\operatorname{reg}\left(R / \mathfrak{a}_{j}\right)=\operatorname{reg}\left(P / I_{j}\right)$. By a theorem of Bayer and Stillman [1], after a generic change of variables in P we may assume that $\operatorname{in}\left(I_{j}\right)$ is generated by elements of degree $\leq \operatorname{reg}\left(P / I_{j}\right)+1$.

Lemma 1.4.2. (a) Let $c \geq d+1$. Then the ideal $\operatorname{in}\left(J^{\langle c\rangle}\right)=\operatorname{in}(J) \cap Q^{\langle c\rangle}$ of $Q^{\langle c\rangle}$ is generated by monomials of the following type:
(i) $\left(\mu_{1} Y_{j}\right)\left(\mu_{2} Y_{k}\right)$ with $\mu_{1}, \mu_{2} \in P$ and $\operatorname{deg} \mu_{1} Y_{j}=\operatorname{deg} \mu_{2} Y_{k}=c$,
(ii) μY_{j} with $\mu \in \operatorname{in}\left(I_{j}\right), \operatorname{deg} \mu Y_{j}=c$;
(iii) $\nu \in \operatorname{in}\left(I_{n+1}\right), \operatorname{deg} \nu=c$.

Moreover, all monomials of type (i) are contained in in $\left(J^{(c)}\right)$.
(b) If $R=K\left[X_{1}, \ldots, X_{m}\right]$ and S is a free R-module, then $\operatorname{in}\left(J^{\langle c\rangle}\right)$ is generated by the monomials of type (i) for all $c \geq \operatorname{reg}(S)$.
Proof. A monomial $\lambda \in Q$ belongs to $Q^{\langle c\rangle}$ exactly when $\operatorname{deg} \lambda=k c$ for some k and $\sharp_{Y} \lambda \leq k$. The way we have ordered the monomials of Q guarantees that the initial monomial of a homogeneous element $f \in Q$ has the highest number of factors Y_{j} among all its monomials. Thus, $f \in Q^{\langle c\rangle}$ if and only if $\operatorname{in}(f) \in Q^{\langle c\rangle}$. This implies the equation $\operatorname{in}\left(J^{\langle c\rangle}\right)=\operatorname{in}(J) \cap Q^{\langle c\rangle}$ since J is generated by homogeneous elements.

Since $y_{1}, \ldots, y_{n}, 1$ generate S as an R-module, and thus as a P-module, it follows that J has a system of generators consisting of polynomials
(1) $f_{0}+f_{1} \ell(Y)+Y_{k} Y_{l}$ with $f_{i} \in P$ and a linear form ℓ (we include the case $k=l$).
(2) $f_{0}+f_{1} \ell(Y)$ with $f_{0}, f_{1} \in P$, and
(3) $f \in P$.

If we replace Y_{i} by e_{i}, then (2) and (3) yield a system of generators of W above. It is clear that the elements of (1) belong to a Gröbner basis \mathcal{G} of J with respect to our term order, and that the leading monomial of every other element of a (reduced) Gröbner basis \mathcal{G} has at most 1 factor Y_{j}. Thus the elements of \mathcal{G} are again of the types (1), (2), and (3). The leading monomial of (1) is $Y_{k} Y_{l}$, that of (2) has the form μY_{j} with $\mu \in \operatorname{in}\left(I_{j}\right)$, and that of (3) belongs to in $\left(I_{n+1}\right)$.

Since $Y_{k} Y_{l} \in \operatorname{in}(J)$ for all k, l, it follows that every monomial of type (i) belongs to in $\left(J^{\langle c\rangle}\right)$. Thus it remains to show that every monomial of in $\left(J^{\langle c\rangle}\right)$ with at most 1 factor Y_{j} is a multiple of one of the monomials of type (ii) or (iii). This is evident if one uses the inequalities for c and the fact that I_{j} is generated by monomials of degree at most $c-\operatorname{deg} y_{j}$.

For (b) we note that \mathcal{G} consists of elements of type (1) so that only the bound $c \geq e=\operatorname{reg}(S)$ is needed.

Let V be the polynomial ring over K whose indeterminates Z_{μ} are indexed by the monomials $\mu=X_{k_{1}} \cdots X_{k_{c}}, k_{1} \leq \cdots \leq k_{c}$, and $\mu=Y_{j} X_{k_{1}} \cdots X_{k_{r}}, k_{1} \leq \cdots \leq k_{r}$, $c=\operatorname{deg} Y_{j}+r$. For $c \geq e$ we define the epimorphism $\psi: V \rightarrow Q^{\langle c\rangle}$ by the substitution $\psi\left(T_{\mu}\right)=\mu$. Then $S^{(c)}$ is a homomorphic image of V via the composition $\rho^{\langle c\rangle} \circ \psi$. If we let U be the polynomial subring of V generated by the indeterminates T_{μ} with $\#_{Y} \mu=0$, then we obtain the following commutative diagram in which the vertical arrows denote the natural inclusions:

We introduce a term order on V as follows. Let M and N be monomials of V. In the case in which $\psi(M) \neq \psi(N)$ we set $M \prec N$ if $\psi(M) \prec \psi(N)$. This defines an order on the indeterminates T_{μ}, so that the case $\psi(M)=\psi(N)$ can be covered by letting $M \prec N$ if M precedes N in the reverse lexicographic order.

The next task is the analysis of $\mathfrak{a}=\operatorname{Ker} \psi$. For this purpose one introduce the K-linear map $\tau: V \rightarrow V$ by setting $\tau(M)$ for a monomial M to be the smallest monomial N with respect to \prec such that $\psi(N)=\psi(M)$. A monomial M is called standard if $M=\tau(M)$. By the definition of τ it is obvious that $\psi(\tau(f))=\psi(f)$ for every element $f \in V$. Furthermore each monomial dividing a standard monomial is standard. Therefore the vector subspace spanned by the non-standard monomials is an ideal H of V.

It is useful to describe $\tau(M)$ explicitly. We list all the factors X_{i} and Y_{j} of $\psi(M)$ as follows:

$$
X_{i_{1}}, \ldots, X_{i_{s}}, \quad i_{1} \leq \cdots \leq i_{s}, \quad Y_{j_{1}}, \ldots, Y_{j_{t}}, \quad j_{1} \leq \cdots \leq j_{t}
$$

Then we arrange them in the following sequence. The first factor is $Y_{j_{1}}$. It is followed by $X_{i_{1}} \cdots X_{i_{u}}$ with $u=c-\operatorname{deg} Y_{j_{1}}$. Then we proceed with $Y_{j_{2}}$ followed
by $X_{i_{u+1}} \cdots X_{i_{v}}$ with $v=u+c-\operatorname{deg} Y_{j_{2}}$ etc. Then we cut the total product into monomials μ_{1}, \ldots, μ_{k} of degree c. It is not hard to see that $\tau(M)=Z_{\mu_{1}} \cdots Z_{\mu_{k}}$.

In fact, suppose $\tau(M)=Z_{\nu_{1}} \cdots Z_{\nu_{k}}$. We may assume that ν_{1}, \ldots, ν_{k} are in descending order with respect to \prec, and, furthermore, that each μ_{i} has its factors ordered as just described: the potential factor Y_{j} first, and then the factors X_{l} in descending order with respect to \prec. If their product written out in this order is not the sequence described above, then we can pass to a smaller product $Z_{\pi_{1}} \cdots Z_{\pi_{k}}$ by exchanging factors between ν_{i} and ν_{i+1} for some i. This contradicts the choice of $\tau(M)$. (We leave it to the reader to check all the combinatorial details.)

The previous argument also shows that a non-standard monomial contains a nonstandard monomial of degree 2. In other words, H is generated by monomials of degree 2.

Lemma 1.4.3. $H=\operatorname{in}(\mathfrak{a})$, and H is generated by monomials of degree 2 .
Proof. By definition the standard monomials correspond bijectively to the monomials in $Q^{\langle c\rangle}$, and they also correspond bijectively to the monomial basis of V / H. It follows that Q / H and $Q^{\langle c\rangle}$ have the same Hilbert function. Thus the equation $H=\operatorname{in}(\mathfrak{a})$ is proved, once we know that $H \subset \operatorname{in}(\mathfrak{a})$. But this is also clear: if M is non-standard, then it is the leading monomial of $M-\tau(M) \in \mathfrak{a}$. That H is generated by degree 2 monomials, has been seen above.

It is useful to introduce the K-linear map $\sigma: Q^{\langle c\rangle} \rightarrow V$ by assigning each monomial $\mu \in Q^{\langle c\rangle}$ the unique standard monomial M with $\psi(M)=\mu$.

Now we look at the initial ideal of $\mathfrak{b}=\operatorname{Ker} \rho^{\langle c\rangle} \circ \psi$ of which we claim that it has a Gröbner basis of degree 2 .

Lemma 1.4.4. (a) For $c \geq d+1$ the initial ideal $\operatorname{in}(\mathfrak{b})$ is generated by (i) in(a), (ii) the monomials $Z_{\kappa} Z_{\lambda}$ with $\sharp_{Y} \kappa=\sharp_{Y} \lambda=1$, (iii) the monomials $\sigma(\mu)$ with $\mu \in Q^{\langle c\rangle}$, $\mu=\nu Y_{j}, \nu \in \operatorname{in}\left(I_{j}\right)$, and (iv) the monomials $\sigma(\pi)$ with $\pi \in \operatorname{in}\left(I_{n+1}\right) \cap Q^{\langle c\rangle}$.
(b) Under the hypothesis of 1.4.2(b) in(\mathfrak{b}) is generated by the monomials of type (i) and type (ii) for all $c \geq \operatorname{reg}(S)$.

Proof. (a) Pick $f \in \mathfrak{b}$. If the initial monomial A of f is non-standard, then it belongs to in (\mathfrak{a}). If $\sharp_{Y}(\psi(A)) \geq 2$, then it is of type (ii). In the remaining case we note that $\psi(A)$ is the leading monomial of $\psi(f)$. In fact, if A is standard, then $A=\operatorname{in}(\tau(f))$ as well, and since $\psi(\tau(f))=\psi(f)$, we may assume that $f=\tau(f)$. In this case the monomials of f are mapped to pairwise different monomials of $Q^{\langle c\rangle}$, and the leading monomial cannot be cancelled by the application of ψ. That A goes to the leading monomial of $\psi(f)$ follows from the definition of the term order on V. Since $\sharp_{Y} \psi(A) \leq 1$, the rest follows from Lemma 1.4.2 and the fact that $A=\sigma(\tau(A))$.
(b) In this case there are no monomials of type (iii) or (iv). Furthermore, note that 1.4.2(b) and 1.4.3 hold for $c \geq \operatorname{reg}(S)$.

Part (b) of 1.4.4 completes the proof of 1.4.1(b): in(\mathfrak{b}) has indeed a Gröbner basis of degree 2 elements for $c \geq \operatorname{reg}(S)$, since S is a free R_{0}-module with a basis in degrees $\leq \operatorname{reg}(S)$.

The reader may ask why 1.4.4 does not yet prove our claim in the general case: in 1.4 .2 we have shown that the ideal $\operatorname{in}\left(I_{j}\right) Y_{j} \cap Q^{\langle c\rangle}$ is generated by its elements of normalized degree 1. Therefore 1.4 .4 should yield that $\operatorname{in}(\mathfrak{b})$ has a Gröbner basis of degree 1 and 2 elements. However, if $\mu \mid \nu$ for monomials $\mu, \nu \in Q^{\langle c\rangle}$, then it does by no means follow that $\sigma(\mu) \mid \sigma(\nu)$. Fortunately this obstruction can be overcome. As usual we call a monomial ideal $I \subset K\left[X_{1}, \ldots, X_{m}\right]$ combinatorially stable if it contains with each monomial $X_{i_{1}} \cdots X_{i_{k}}, i_{1} \leq \cdots \leq i_{k}$, all the monomials $X_{j} X_{i_{1}} \cdots X_{i_{k-1}}$ with $j \leq i_{k}$.

According to a theorem of Bayer and Stillman [2] we may assume: $\operatorname{in}\left(I_{j}\right)$ is invariant under the action of the group of upper triangular matrices. Proposition 10 of [12] then implies that in $\left(I_{j}\right)_{\geq r}$ is combinatorially stable for all $r \geq \operatorname{reg}\left(P / I_{j}\right)+1$. Here $I_{\geq r}$ denotes the ideal generated by all elements of I that have degree $\geq r$.

We can now conclude the proof of Theorem 1.4.1. According to 1.4.4 we look at a monomial $\mu=\nu Y_{j} \in Q^{\langle c\rangle}$ with $\nu \in \operatorname{in}\left(I_{j}\right)$ (the case $j=n+1$ is covered if we let $Y_{n+1}=1$). By 1.4.2 there exists a monomial $\nu^{\prime} \in \operatorname{in}\left(I_{j}\right)$ that divides ν and for which $\nu^{\prime} Y_{j}$ has normalized degree 1. We write μ as a product in the order from which $\sigma(\mu)$ is computed:

$$
\mu=Y_{j} X_{i_{1}} \ldots X_{i_{r}}, \quad r=k c-\operatorname{deg} Y_{j} .
$$

Let $s=c-\operatorname{deg} Y_{j}$. Then ν^{\prime} is a product of s indeterminates among the $X_{i_{t}}$. Because of the combinatorial stability of $\operatorname{in}\left(I_{j}\right)$ in degrees $\geq c-\operatorname{deg} y_{j} \geq \operatorname{reg}\left(P / I_{j}\right)+1$ it follows that $X_{i_{1}} \ldots X_{i_{s}} \in \operatorname{in}\left(I_{j}\right)$, and $\sigma\left(Y_{j} X_{i_{1}} \ldots X_{i_{s}}\right)$ divides $\sigma(\mu)$. Altogether this shows that $\operatorname{in}(\mathfrak{b})$ is generated in degrees 1 and 2 .

2. Regular triangulations

2.1. Regular triangulations and Gröbner bases. In this subsection we recall the notion of a regular polyhedral subdivision (called 'projective' in [19] and 'coherent' in Gelfand, Kapranov, and Zelevinsky [15]) and review the connection between the regular triangulations of a polytope P and the Gröbner bases of the defining ideal I_{P} of $K\left[S_{P}\right]$.

Let n be a natural number and $P \subset \mathbb{R}^{n}$ a polytope (of dimension n). A polyhedral subdivision of P is a finite system $\left(Q_{\alpha}\right)$ of subpolytopes of P such that $\operatorname{dim} Q_{\alpha}=$ $\operatorname{dim} Q_{\beta}$ for all α and β and, furthermore, $Q_{\alpha} \cap Q_{\beta}$ is a face both of Q_{α} and Q_{β} (of arbitrary dimension, maybe empty). A polyhedral subdivision that consists of simplices only is called a triangulation.

Assume $Q \subset \mathbb{R}^{n}$ is a polytope of dimension n. A function $G: Q \rightarrow \mathbb{R}$ is said to be linear if there exists a function $G^{\prime}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with

$$
G^{\prime}\left(x_{1}, \ldots, x_{n}\right)=C_{1} x_{1}+\cdots+C_{n} x_{n}+C
$$

for some $C_{1}, \ldots, C_{n}, C \in \mathbb{R}$, such that $G^{\prime} \mid Q=G$. Clearly, if G^{\prime} exists, it is uniquely determined by G. The functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$ of the type of G^{\prime} are called affine.

Now assume $X \subset \mathbb{R}^{n}$ is a convex set. A function $F: X \rightarrow \mathbb{R}$ is convex if

$$
F\left(\sum_{i=1}^{k} \lambda_{i} x_{i}\right) \geq \sum_{i=1}^{k} \lambda_{i} F\left(x_{i}\right) \quad \text { for all } k \in \mathbb{N}, \lambda_{i} \in[0,1], \sum_{i=1}^{k} \lambda_{i}=1, x_{i} \in X .
$$

(Sometimes such functions are called concave, and the convex ones are defined by the opposite inequality.)

Let $\left(Q_{\alpha}\right)$ be a polyhedral subdivision of P. A function $F: P \rightarrow \mathbb{R}$ is called piecewise linear with domains of linearity $\left(Q_{\alpha}\right)$ if the restrictions $F \mid Q_{\alpha}$ are linear for all α, and F is not linear on an arbitrary subpolytope of P strictly containing one of the Q_{α}.

Definition 2.1.1. A polyhedral subdivision $\left\{Q_{\alpha}\right\}$ of P is regular if there exists a piecewise linear convex function $F: P \rightarrow \mathbb{R}_{+}$with domains of linearity $\left(Q_{\alpha}\right)$. Such a function F is called a realizing function of the subdivision $\left(Q_{\alpha}\right)$.

We have the following obvious observation: if F is a realizing function of the subdivision $\left(Q_{\alpha}\right)$, then $C_{1} F+C_{2}$ is so as well for arbitrary real numbers $C_{1}>0$ and $C_{2} \geq 0$.

Not all polyhedral subdivisions of P are regular. Below we shall give an example in connection with the patching lemma 2.2.2.

Assume $\left(Q_{\alpha}\right)$ is a regular polyhedral subdivision of P with realizing function F. The subset

$$
\{(x, F(x)): x \in P\} \subset \mathbb{R}^{n+1}
$$

is a polyhedral ball (of dimension n) mapping isomorphically into P via projection. Let H_{α} denote the affine hull of $\left\{(x, F(x)): x \in Q_{\alpha}\right\}$. It is an n-dimensional affine hyperplane of \mathbb{R}^{n+1}. One easily sees that for any point $x \in P \backslash Q_{\alpha}$ the inequality

$$
F(x)<h_{\alpha}(x)
$$

holds, where $h_{\alpha}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the unique affine function whose graph is H_{α} (this means $h_{\alpha}(x) \in H_{\alpha}$ for all $x \in \mathbb{R}^{n}$). Conversely, it is also true (and easily seen) that, for a polyhedral subdivision $\left\{Q_{\alpha}\right\}$ of P and a piece-wise linear function $F: P \rightarrow \mathbb{R}_{+}$ with domains of linearity $\left(Q_{\alpha}\right)$, the validity of the inequalities

$$
F(x)<h_{\alpha}(x)
$$

for all α and all $x \in P \backslash Q_{\alpha}$ implies the regularity of the subdivision $\left(Q_{\alpha}\right)$. In this situation F is a realizing function of this subdivision (h_{α} again denotes an affine continuation of $F \mid Q_{\alpha}$). Moreover, we could require the validity of these inequalities only for the points $x \in P \backslash Q_{\alpha}$ which appear as a vertex of some Q_{β} - the subdivision would again be regular and F would again realize it. This holds true because a polytope is the convex hull of its vertices, and an affine function preserves barycentric coordinates. We will freely use these observations in the sequel.

Now assume $A \subset \mathbb{R}^{n}$ is a finite subset whose convex hull $(\operatorname{conv}(A)$ for short) has dimension n. Let $\varphi: A \rightarrow \mathbb{R}_{+}$be an arbitrary function; later on it will be called a height function and $\varphi(a)$ will be called the height at a. Consider the convex hull W (in \mathbb{R}^{n+1}) of the set

$$
\{(a, 0): a \in A\} \cup\{(a, \varphi(a)): a \in A\} .
$$

Below \mathbb{R}^{n} is identified with $\mathbb{R}^{n} \oplus 0 \subset \mathbb{R}^{n+1}$. We see that W is an $(n+1)$-dimensional polytope, and $\operatorname{conv}(A)$ is one of its facets. Let $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ denote the projection with respect to the last coordinate. Then any facet of W different from $\operatorname{conv}(A)$ will
project under π either onto a facet of $\operatorname{conv}(A)$ or onto an n-dimensional subpolytope of $\operatorname{conv}(A)$. The latter facets form the roof A_{φ} of W. (If $A=L_{P}$, then we write P_{φ} for A_{φ}.) Clearly, the vertices of the subpolytopes thus obtained will belong to A, but in general not all elements of A will appear as such vertices.

Using the general observations above we conclude that the subpolytopes of conv (A) which are n-dimensional π-images of the facets of W constitute a regular polyhedral subdivision of $\operatorname{conv}(A)($ see $[15])$. Thus any height function $\varphi: A \rightarrow \mathbb{R}_{+}$defines a regular subdivision of $\operatorname{conv}(A)$. The piecewise linear function $F: \operatorname{conv}(A) \rightarrow \mathbb{R}_{+}$ naturally determined by the facets of A_{φ} is convex and, moreover, is a realizing function of the regular subdivision of $\operatorname{conv}(A)$ defermined by φ (in the way described above). We say that F is spanned by φ. We see that for arbitrary real numbers $C_{1}>0$ and $C_{2} \geq 0$ the two height functions φ and $C_{1} \varphi+C_{2}$ determine the same regular subdivision of $\operatorname{conv}(A)$.

If A and φ are as above and d is a facet or, more generally, an arbitrary face of $\operatorname{conv}(A)$ then $\varphi \mid A \cap d$ is a height function for $A \cap d$ and, thus, defines a regular polyhedral subdivision of d with vertices in $A \cap d$. Strictly speaking, we should first identify $\operatorname{Aff}(d)$ (the affine hull of d) with $\mathbb{R}^{\operatorname{dim}(d)}$, but in this situation the identification will be tacitly understood (if no confusion arises). It is obvious that this regular subdivision of d is nothing but the subdivision induced in a natural way by the regular subdivision of $\operatorname{conv}(A)$ determined by φ. Therefore we arrive at the following conclusion: if $\varphi, \varphi^{\prime}: A \rightarrow \mathbb{R}_{+}$are two height functions which agree on $A \cap d$ for some face d of $\operatorname{conv}(A)$, then both of the subdivisions of $\operatorname{conv}(A)$, determined by φ and φ^{\prime} respectively, induce the same regular polyhedral subdivision of d.

The importance of regular triangulations for polytopal semigroup rings stems from their connection with Gröbner bases. For the convenience of the reader we briefly review this connection; see Sturmfels [24] for a detailed treatment. Let $m=$ $\sharp L_{P}$. As discussed in the proof of Proposition 1.1.3, the semigroup ring $k\left[S_{P}\right]$ has a presentation

$$
k\left[S_{P}\right]=k\left[X_{1}, \ldots, X_{m}\right] / I_{P},
$$

where X_{1}, \ldots, X_{m} correspond bijectively to the lattice points x_{1}, \ldots, x_{m} of P, and I_{P} is an ideal generated by binomials. For any term order \prec on $K\left[X_{1}, \ldots, X_{m}\right]$ there exists a weight function φ on $\left\{X_{1}, \ldots, X_{m}\right\}$ such that the initial ideal of I_{P} with respect to \prec equals the initial ideal $\mathrm{in}_{\varphi}\left(I_{P}\right)$ of I_{P} with respect to the partial term order determined by φ. In this case we say that φ determines a Gröbner basis of I_{P}. Considered as a height function on $\left\{x_{1}, \ldots, x_{m}\right\}, \varphi$ determines a regular subdivision Δ_{φ} of P, which in this case is actually a triangulation. This triangulation represents a simplicial complex on the set $\left\{x_{1}, \ldots, x_{m}\right\}$ which we also denote by Δ_{φ} (in general not every x_{i} is a vertex of Δ_{φ}). The squarefree monomials $X_{i_{1}} \ldots X_{i_{r}}$ for which $\left\{x_{i_{1}}, \ldots, x_{i_{r}}\right\}$ is a non-face of Δ_{φ} generate the Stanley-Reisner ideal $I_{\Delta_{\varphi}}$; as its generators are squarefree, it is a radical ideal. The quotient $K\left[X_{1}, \ldots, X_{m}\right] / I_{\Delta_{\varphi}}$ is the Stanley-Reisner ring of Δ_{φ}. The connection between $\mathrm{in}_{\varphi}\left(I_{P}\right)$ and $I_{\Delta_{\varphi}}$ is given by the following theorem of Sturmfels (see [23] and [24], 8.3 and 8.8).

Theorem 2.1.2. (a) Let φ be a weight function on $\left\{X_{1}, \ldots, X_{m}\right\}$ that determines a Gröbner basis. Then $\operatorname{Radin}_{\varphi}\left(I_{P}\right)=I_{\Delta_{\varphi}}$.
(b) Conversely, given a regular triangulation Δ of P, there exists a weight function φ on $\left\{X_{1}, \ldots, X_{m}\right\}$ with $\Delta_{\varphi}=\Delta$ that determines a Gröbner basis.
(c) Δ_{φ} is unimodular if and only if $\mathrm{in}_{\varphi}\left(I_{P}\right)=I_{\Delta_{\varphi}}$.

Part (c) explains the special interest in unimodular triangulations. (In general the Gröbner basis associated with a regular triangulation is not uniquely determined.)
Corollary 2.1.3. If P has a regular unimodular triangulation Δ whose minimal non-faces are edges (i. e. of dimension 1), then P is Koszul.
Proof. If the minimal non-faces of Δ are edges, then I_{Δ} is generated by monomials of degree 2, and if, in addition, Δ is unimodular, then 2.1.2(c) implies that I_{P} has a Gröbner basis of degree 2. Algebras defined by a Gröbner basis of degree 2 are Koszul according to [9].
2.2. Perturbation and patching of regular triangulations. In this subsection we prove three lemmas (on perturbation, patching and direct products) which will be useful in the construction of regular triangulations.

In the following a representation of $x \in \mathbb{R}^{n}$ as a linear combination $x=\sum_{i=1}^{m} \lambda_{i} x_{i}$ will be called barycentric if $\sum_{i=1}^{m} \lambda_{i}=1$, and convex if additionally $\lambda_{i} \geq 0$ for all i.
Lemma 2.2.1. (Perturbation Lemma) Let $A \subset \mathbb{R}^{n}$ be a finite subset, $\varphi: A \rightarrow \mathbb{R}_{+}$ a height function and $a \in A$. Suppose further that $\left(Q_{\alpha}\right)$ is the regular polyhedral subdivision of $\operatorname{conv}(A)$ determined by φ. Then there exists $\delta \in \mathbb{R}, \delta>0$, such that for any height function $\varphi^{\prime}: A \rightarrow \mathbb{R}_{+}$with

$$
\text { (i) } \varphi^{\prime}(b)=\varphi(b) \text { for } b \in A \backslash\{a\}, \quad \text { and } \quad \text { (ii) }\left|\varphi^{\prime}(a)-\varphi(a)\right|<\delta
$$

a polytope Q from $\left(Q_{\alpha}\right)$ survives in (i. e. is an element of) the regular polyhedral subdivision of $\operatorname{conv}(A)$ determined by φ^{\prime} whenever
(a) $a \notin Q$, or
(b) Q is a simplex and $Q \cap A$ is the vertex set of Q.

Proof. Let π be as above. If $a \notin Q$, then $\varphi(a)<h_{Q}(a)$, where $h_{Q}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ is the affine linear function corresponding to the facet of A_{φ} which is mapped isomorphically to Q by π. So $\varphi^{\prime}(a)<h_{Q}(a)$ for δ sufficiently small. Since

$$
\varphi^{\prime}|A \backslash\{a\}=\varphi| A \backslash\{a\},
$$

we automatically have $\varphi^{\prime}(b)<h_{Q}(b)$ for any element $b \in A \backslash(Q \cup\{a\})$. Every $x \in \operatorname{conv}(A) \backslash Q$ has a convex presentation $x=\sum_{i=1}^{k} \lambda_{i} a_{i}$ with $\lambda_{1}, \ldots, \lambda_{k}>0$, $F^{\prime}(x)=\sum_{i=1}^{k} \lambda_{i} \varphi^{\prime}\left(a_{i}\right)$, and $a_{1}, \ldots, a_{k} \in A$ not all belonging to Q. Let F^{\prime} be the piece-wise linear convex function spanned by φ^{\prime}. Then every element $x \in \operatorname{conv}(A) \backslash Q$ has a convex presentation $x=\sum_{i=1}^{k} \lambda_{i} a_{i}$ with $\lambda_{1}, \ldots, \lambda_{k}>0$ and $a_{1}, \ldots a_{k} \in A$ not all belonging to Q, but belonging to some domain linearity of F^{\prime}. It follows that

$$
F^{\prime}(x)=\sum_{i=1}^{k} \lambda_{i} \varphi^{\prime}\left(a_{i}\right)<\sum_{i=1}^{k} \lambda_{i} h_{Q}\left(a_{i}\right)=h_{Q}(x)
$$

(note that h_{Q} preserves barycentric representations). As we have observed, this inequality presisely means Q is involved in the regular subdivision of $\operatorname{conv}(A)$ determined by φ^{\prime}.

Now assume Q is a simplex and $Q \cap A$ is the vertex set of Q. Let $a_{1}, \ldots, a_{n+1} \in A$ be the vertices of Q. Then there exists a unique affine hyperplane H_{Q} in \mathbb{R}^{n+1} passing through all the points $\left(a_{i}, \varphi\left(a_{i}\right)\right) \in \mathbb{R}^{n+1}$. Similarly, there exists a unique affine hyperplane H_{Q}^{\prime} passing through the points $\left(a_{i}, \varphi^{\prime}\left(a_{i}\right)\right)$. Let h_{Q} and h_{Q}^{\prime} denote the corresponding affine linear functions. Assume

$$
\begin{aligned}
& h_{Q}\left(x_{1}, \ldots, x_{n}\right)=C_{1} x_{1}+\cdots+C_{n} x_{n}+C \\
& h_{Q}^{\prime}\left(x_{1}, \ldots, x_{n}\right)=C_{1}^{\prime} x_{1}+\cdots+C_{n}^{\prime} x_{n}+C^{\prime}
\end{aligned}
$$

Clearly, $C_{1}^{\prime} \rightarrow C_{1}, \ldots, C_{n}^{\prime} \rightarrow C_{n}$ and $C^{\prime} \rightarrow C$ when $\delta \rightarrow 0$. On the other hand $\varphi(a)<h_{Q}(a)$ for any $a \in A \backslash Q$. Therefore $\varphi^{\prime}(a)<h_{Q}^{\prime}(a)$ for $a \in A \backslash Q$ whenever δ is sufficiently small. As above, this means Q is involved in the regular subdivision of $\operatorname{conv}(A)$ corresponding to φ^{\prime}.

It follows immediately from Lemma 2.2.1(b) that if $\left(Q_{\alpha}\right)$ is a regular triangulation of $\operatorname{conv}(A)$ (notation as in the lemma), which is determined by the height function

$$
\varphi: A \rightarrow \mathbb{R}_{+}
$$

and satisfies the condition that any element of A is a vertex of some Q_{α}, then for any sufficiently small perturbation ψ of the height function φ (at all points of $A)$ the corresponding regular polyhedral subdivision of $\operatorname{conv}(A)$ will be the same triangulation $\left(Q_{\alpha}\right)$. This observation is frequently used in the literature dealing with regular polyhedral subdivisions ([15], [23], [24]).

The next lemma is equivalent to [19], p. 115, Corollary 1.12. In view of the different terminology and for the convenience of the reader, we include a proof.

Lemma 2.2.2. (Patching Lemma) Let $P \subset \mathbb{R}^{n}$ be a finite convex n-dimensional polyhedron, $\left(Q_{\alpha}\right)$ a regular polyhedral subdivision, and $\left(Q_{\alpha \beta}\right)$ be a regular polyhedral subdivision of Q_{α} for each α. If there exist realizing functions

$$
F_{\alpha}: Q_{\alpha} \rightarrow \mathbb{R}_{+}
$$

of the regular subdivisions $\left(Q_{\alpha \beta}\right)$ (of Q_{α}) such that

$$
F_{\alpha}\left|Q_{\alpha} \cap Q_{\alpha^{\prime}}=F_{\alpha^{\prime}}\right| Q_{\alpha} \cap Q_{\alpha^{\prime}}
$$

for all indices α and α^{\prime}, then $\left(Q_{\alpha \beta}\right)_{\alpha, \beta}$ is a regular polyhedral subdivision of P.
Proof. Consider the function $F: P \rightarrow \mathbb{R}_{+}$defined by $F(x)=F_{\alpha}(x)$ for $x \in Q_{\alpha}$. By our hypothesis F is well defined. Let $G: P \rightarrow \mathbb{R}_{+}$be any realizing function of the regular subdivision $\left(Q_{\alpha}\right)$. For any $t>0$ we consider the function

$$
\Phi_{t}=G+(1 / t) F
$$

We claim that $\left(Q_{\alpha \beta}\right)_{\alpha, \beta}$ is a regular polyhedral subdivision of P and that Φ_{t} is its realizing function for all sufficiently large t.

We know that Φ_{t} is convex on each of Q_{α} and that for all α, β the restriction $\Phi_{t} \mid Q_{\alpha \beta}$ is affine for all natural $t \in \mathbb{N}$. To prove our claim it suffices to show that for t sufficiently large the following inequality holds:

$$
\Phi_{t}(x)<H_{t \alpha \beta}(x) \text { for all } \alpha, \beta \text { and } x \in P \backslash Q_{\alpha \beta}
$$

where $H_{t \alpha \beta}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ denotes the unique affine continuation of $\Phi_{t} \mid Q_{\alpha \beta}$.

Let us introduce some more notation. For any α we denote by g_{α} the affine continuation of $G \mid Q_{\alpha}$ to \mathbb{R}^{n}, and that of $F_{\alpha} \mid Q_{\alpha \beta}\left(=F \mid Q_{\alpha \beta}\right)$ by $f_{\alpha \beta}: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Thus $H_{t \alpha \beta}=g_{\alpha}+(1 / t) f_{\alpha \beta}$.

Let V denote the union of the vertex sets of all the $Q_{\alpha \beta}$. Then $g_{\alpha}(v)>G(v)$ whenever $v \in V$ is not a vertex of Q_{α}. Clearly for all $x \in P$ and all α, β we have

$$
\Phi_{t}(x) \rightarrow G(x) \quad \text { and } \quad H_{t \alpha \beta}(x) \rightarrow g_{\alpha}(x)
$$

when $t \rightarrow \infty$. Since V is a finite set, there exists t_{0} for which

$$
\Phi_{t}(v)<H_{t \alpha \beta}(v)
$$

whenever $t>t_{0}, v \in V \backslash Q_{\alpha}$. Now suppose $v \in\left(V \cap Q_{\alpha}\right) \backslash Q_{\alpha \beta}$. Then

$$
\Phi_{t}(v)=G(v)+(1 / t) F(v)=g_{\alpha}(v)+(1 / t) F_{\alpha}(v)<g_{\alpha}(v)+(1 / t) f_{\alpha \beta}(v)=H_{t \alpha \beta}(v) .
$$

From now on we assume $t>t_{0}$.
Choose an arbitrary point $x \in P \backslash Q_{\alpha \beta}$. Then there exists a pair $\left(\alpha^{\prime}, \beta^{\prime}\right) \neq(\alpha, \beta)$ such that $x \in Q_{\alpha^{\prime} \beta^{\prime}}$. Therefore $x=\sum_{i=1}^{k} \lambda_{i} v_{i}$ has a convex representation with $v_{i} \in V \cap Q_{\alpha^{\prime} \beta^{\prime}}$ and $v_{j} \notin Q_{\alpha \beta}$ for at least one j. Note that Φ_{t} and $H_{t \alpha \beta}$ preserve barycentric coordinates on $Q_{\alpha^{\prime} \beta^{\prime}}$. In view of the fact that $v_{j} \notin Q_{\alpha \beta}$ for at least one j, the inequalities above yield

$$
\Phi_{t}(x)=\sum_{i=1}^{k} \lambda_{i} \Phi_{t}\left(v_{i}\right)<\sum_{i=1}^{k} \lambda_{i} H_{t \alpha \beta}\left(v_{i}\right)=H_{t \alpha \beta}\left(\sum_{i=1}^{k} \lambda_{i} v_{i}\right)=H_{t \alpha \beta}(x) .
$$

Remark 2.2.3. In order to patch regular polyhedral subdivisions in the way described in Lemma 2.2.2 it is necessary that $\left(Q_{\alpha \beta}\right)_{\beta}$ and $\left(Q_{\alpha^{\prime} \beta^{\prime}}\right)_{\beta^{\prime}}$ induce the same polyhedral subdivisions on $Q_{\alpha} \cap Q_{\alpha^{\prime}}$ (notation as in the lemma). However this condition is not sufficient, not even in the planar case $(n=2)$. We consider the following triangulation Δ :

One can obtain Δ from the regular triangulation of the triangle in the first quadrant by two successive patchings. (The triangulation of the triangle in the first quadrant corresponds to a lexicographic term order; see 3.2 .4 below.) However, it has the same characteristic function as its mirror image Δ^{\prime} with respect to the x-axis. (The characteristic function assigns to each vertex v the sum of the volumes of the facets adjacent to v.) Since $\Delta \neq \Delta^{\prime}$, it is not regular (see [15], Chapter 7, Theorem 1.7).
Lemma 2.2.4. (Direct Product Lemma) Let $P_{1} \subset \mathbb{R}^{n_{1}}, \ldots, P_{k} \subset \mathbb{R}_{k}^{n}$ be polytopes of dimensions n_{1}, \ldots, n_{k} respectively. Suppose further $\left(Q_{\alpha}^{(1)}\right), \ldots,\left(Q_{\alpha}^{(k)}\right)$ are regular polyhedral subdivisions of P_{1}, \ldots, P_{k} respectively. Then

$$
\left\{Q_{1} \times \cdots \times Q_{k}: Q_{i} \in\left(Q_{\alpha}^{(i)}\right), i=1 \ldots, k\right\}
$$

is a regular polyhedral subdivision of $P_{1} \times \cdots \times P_{k}$.

Proof. By induction on k (which is used only for simplicity of the notation) we can asume $k=2$. Let $F_{1}: P_{1} \rightarrow \mathbb{R}_{+}$and $F_{2}: P_{2} \rightarrow \mathbb{R}_{+}$be realizing functions of the subdivisions $\left(Q_{\alpha}^{(1)}\right)$ and $\left(Q_{\alpha}^{(2)}\right)$ respectively. Consider the function

$$
F: P_{1} \times P_{2} \rightarrow \mathbb{R}_{+}, \quad F(x, y)=F_{1}(x)+F_{2}(y)
$$

It is now easy to show that F is convex and that its domains of linearity are precisely the products $Q_{1} \times Q_{2}, Q_{1} \in\left(Q_{\alpha}^{(1)}\right), Q_{2} \in\left(Q_{\alpha}^{(2)}\right)$ (use barycentric coordinates).
2.3. Polytopes related to rectangular parallelepipeds. A standard n-dimensional rectangular parallelepiped Λ is a polytope given by

$$
\left\{x \in \mathbb{R}^{n}: 0 \leq x_{i} \leq a_{i}\right\}
$$

for real numbers $a_{1}, \ldots, a_{n}>0$. Thus the points $\alpha_{i}=\left(0, \ldots, 0, a_{i},, 0, \ldots, 0\right)$ are vertices of Q, and the vertex set $\operatorname{vert}(\Lambda)$ of Λ is given by

$$
\left\{\sum_{i \in S} \alpha_{i}: S \subset\{1, \ldots, n\}\right\}
$$

where $\sum_{i \in \emptyset} \alpha_{i}=0$. If all the a_{i} are equal to 1 , then Λ will be called the standard unit cube (of dimension n). A unit cube in \mathbb{R}^{n} is defined as a subset of the type $x+\Lambda$ for some $x \in \mathbb{R}^{n}$ where Λ is the standard unit cube. Later on we shall use the notation Λ_{n} for the n-dimensional standard unit cube.

We fix the partial order on \mathbb{R}^{n} under which $\left(a_{1}, \ldots, a_{n}\right) \leq\left(b_{1}, \ldots, b_{n}\right)$ if $a_{i} \leq b_{i}$ for all $i=1, \ldots n$.

We have the following obvious
Lemma 2.3.1. Suppose $n \geq 2$. Then for any $i=1, \ldots, n$ the i-th coordinate embedding

$$
C_{i}: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n}, \quad C_{i}\left(a_{1}, \ldots, a_{n-1}\right)=\left(a_{1}, \ldots, a_{i-1}, 0, a_{i}, \ldots, a_{n-1}\right)
$$

respects the order structures of \mathbb{R}^{n-1} and \mathbb{R}^{n}.
The results of this subsection are based on a unimodular triangulation of the unit cube that we are going to construct now. Presumably this triangulation is well-known, but we have no reference covering the details needed below.

The system T_{n} of n-dimensional simplices with vertices from $\operatorname{vert}\left(\Lambda_{n}\right)$ is inductively defined as follows. For $n=1$ put $T_{1}=\left\{\Lambda_{1}\right\}$. Assume $n>1$. Then T_{n} is defined as the system of simplices each of which is the convex hull of some $\delta \in C_{i}\left(T_{n-1}\right)$ and the vertex $(1, \ldots, 1) \in \Lambda_{n}$ where i runs over $1, \ldots, n$.

By induction on n one sees easily that $\operatorname{dim}(\Delta)=n$ and $\operatorname{vol}(\Delta)=1 / n$! for all $\Delta \in T_{n}$. So T_{n} consists of unimodular lattice simplices (see subsection 1.1).

Here is an alternative description of T_{n}.
Lemma 2.3.2. T_{n} consists precisely of those simplices whose vertex set is a maximal chain (i. e. linearly ordered subset) of $\operatorname{vert}\left(\Lambda_{n}\right)$.

We leave the easy proof of the lemma to the reader; in conjunction with induction, the essential point is that $(1, \ldots, 1)$ is the unique maximal element of $\operatorname{vert}\left(\Lambda_{n}\right)$.

Now we define the system \mathcal{D}_{n} of ($n-1$)-dimensional hyperplanes in $\mathbb{R}^{n}, n \geq 2$, inductively as follows. For $n=2$ set $\mathcal{D}_{2}=\{\mathbb{R}(1,1)\}$, i. e. \mathcal{D}_{2} consists of the single
line passing through the diagonal $[(0,0),(1,1)]$ of Λ_{2}. Let $n \geq 3$. Then \mathcal{D}_{n} is defined as the system of $(n-1)$-dimensional \mathbb{R}-subspaces of \mathbb{R}^{n} spanned by $C_{i}(D)$ and $e_{i}=(0,0, \ldots, 0,1,0, \ldots, 0)$ for each $i=1 \ldots, n$ and $D \in \mathcal{D}_{n-1}$. (For $n=1$ we set $\mathcal{D}_{1}=\emptyset$.) Observe that in the definition of \mathcal{D}_{n} we could equivalently consider affine hulls; they are actually vector subspaces. Straightforward arguments show
Lemma 2.3.3. The system \mathcal{D}_{n} consists of the ($n-1$)-dimensional hyperplanes in \mathbb{R}^{n} determined by all the linear equations $X_{i}=X_{j}, i, j=1, \ldots, n, i \neq j$. In particular $\sharp \mathcal{D}_{n}=\binom{n}{2}$.

A facet F of a simplex $\Delta \in T_{n}$ is called non-coordinate if it is not parallel to $C_{i}\left(\mathbb{R}^{n-1}\right)$ for any $i=1, \ldots, n$.
Lemma 2.3.4. (a) The non-coordinate facets of the simplices belonging to T_{n} coincide with the simplices (of dimension $n-1$) spanned by the vertex sets $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $(0,0, \ldots, 0)=v_{1}<v_{2}<\cdots<v_{n}=(1,1, \ldots, 1) \in \Lambda_{n}$.
(b) \mathcal{D}_{n} coincides with the set of affine hulls of the non-coordinate facets of simplices from T_{n}.
Proof. It follows from 2.3.2 that the facets of the simplices in T_{n} correspond bijectively to the chains $v_{1}<\cdots<v_{n}$ of vertices of Λ_{n}. If $(0, \ldots, 0) \neq v_{1}$, then all the v_{i} lie in a hyperplane given by the equation $X_{j}=1$ where j is the unique index such that $v_{1 j}=1$. If $(1, \ldots, 1) \neq v_{n}$, then all the v_{i} lie in a hyperplane with the equation $X_{j}=0$ where j is the unique index such that $v_{n j}=0$.

Conversely suppose that $(0,0, \ldots, 0)=v_{1}<v_{2}<\cdots<v_{n}=(1,1, \ldots, 1)$. Then there exist uniquely determined indices i, j, k such that $v_{i+1}=v_{i}+e_{j}+e_{k}$. Therefore the corresponding facet is contained in the hyperplane given by $X_{j}=X_{k}$, and it even spans this hyperplane as a vector space since v_{2}, \ldots, v_{n} are linearly independent. This shows the first claim and part of the second.

Finally, if we are given a hyperplane with equation $X_{j}=X_{k}$, then we can of course find a chain of vertices with exactly the data of the previous paragraph.
Lemma 2.3.5. (a) For all $\Delta \in T_{n}$ and all $D \in \mathcal{D}_{n}$ the intersection $D \cap \Delta$ is a face (not necessarily a facet) of Δ,
(b) For $D \in \mathcal{D}_{n}$ and $x \in \mathbb{Z}^{n}$ the intersection $(x+D) \cap \Lambda_{n}$ contains an interior point of Λ_{n} if and only if $x+D=D$ (i. e. $x \in D$).
Proof. (a) We use induction on n. For $n=2$ the claim is clear. Suppose $n>2$, and let D be the affine hull of $C_{i}(\partial)$ and e_{i} for some $i=1 \ldots, n$ and $\partial \in \mathcal{D}_{n-1}$. That $D \cap \Delta$ is not a face of Δ means precisely that $D \cap \Delta$ contains an internal point of Δ. Consider the projection

$$
\pi_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}, \quad \pi_{i}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, \check{a}_{i}, \ldots, a_{n}\right) .
$$

We have $\pi_{i} \circ C_{i}=\operatorname{id}_{\mathbb{R}^{n-1}}$. So $\pi_{i} \circ C_{i}(D)=\partial$. By Lemma 2.3.2, $\delta=\pi_{i}(\Delta) \in T_{n-1}$. Since internal points of Δ project into internal points of δ we see that ∂ meets the interior of δ whenever D meets that of Δ. Hence the induction hypothesis applies.
(b) Since D is given by an equation $X_{j}-X_{k}=0$, the translate $x+D$ has the equation $X_{j}-X_{k}=x_{j}-x_{k}$. If $x_{j}-x_{k} \neq 0$, then $\left|x_{j}-x_{k}\right| \geq 1$, but we have $\left|y_{j}-y_{k}\right|<1$ for all interior points y of Λ_{n}.

Let \mathcal{F}_{n} denote the system of coordinate hyperplanes in \mathbb{R}^{n}. These hyperplanes correspond to the equations $X_{i}=0, i=1 \ldots, n$.

Definition 2.3.6. A finite convex polyhedron P in \mathbb{R}^{n} is called $F D$-bounded if any facet of P is parallel to some hyperplane from $\mathcal{F}_{n} \cup \mathcal{D}_{n}$.

Lemma 2.3.7. For any $n \geq 2$ the polyhedral subdivision of Λ_{n} determined by the system of hyperplanes \mathcal{D}_{n} is the triangulation T_{n}.

Moreover, for any pair of opposite facets of Λ_{n} the induced triangulations are the same modulo the corresponding unit coordinate parallel translation.

Proof. That T_{n} is the corresponding polyhedral subdivision follows directly from Lemma 2.3.4 and Lemma 2.3.5(a), and the assertion about the induced triangulations of opposite facets follows from the previous claim and Lemma 2.3.2.

Now let Λ be a lattice standard rectangular n-parallelepiped. For each unit lattice cube $\Lambda^{\prime} \subset \Lambda$ there exists a unique $x \in \mathbb{Z}_{+}^{n}$ such that $\Lambda^{\prime}=x+\Lambda_{n}$. For each such unit cube Λ^{\prime} we fix its triangulation $x+T_{n}$. (Recall that $T_{1}=\left\{\Lambda_{1}\right\}$ for $n=1$). It follows immediately from Lemma 2.3.7 that the fixed system of triangulations defines a global triangulation of Λ. This triangulation will be denoted by $T(\Lambda)$. In particular $T\left(\Lambda_{n}\right)=T_{n}$.

Now let P be any $F D$-bounded lattice n-polyhedron. There exists $x \in \mathbb{Z}^{n}$ and a standard rectangular lattice parallelepiped Λ such that $x+P \subset \Lambda$. By Lemma 2.3.5(b) and 2.3.7 the triangulation $T(\Lambda)$ induces a triangulation of $x+P$, say T^{\prime}. Thus T^{\prime} is a triangulation of $x+P$ consisting of those simplices from $T(\Lambda)$ which are included in $x+P$. One easily observes that this triangulation is independent of the choices of x and Λ. It will be denoted by $T(P)$. Clearly, all the lattice points of P are involved in $T(P)$, and $T(P)$ consists of unimodular lattice simplices.

Lemma 2.3.8. For P as above the minimal non-faces of the simplical complex associated with the triangulation $T(P)$ are edges.

Proof. As above we can assume $P \subset \Lambda$ for some standard rectangular lattice parallelepiped Λ. The minimal non-faces of our simplicial complex will be minimal non-faces of the simplicial complex associated with $T(\Lambda)$. So we can assume $P=\Lambda$. Let $z_{1}, \ldots, z_{k} \in \Lambda \cap \mathbb{Z}^{n}, k>2$, determine a minimal non-face. Then for each pair $i, j=1, \ldots, k$ the points z_{i} and z_{j} must be connected by an edge involved in $T(P)$. This is only possible if all the z_{i} belong to the same unit lattice cube in Λ (by the definition of $T(\Lambda)$). Without loss of generality we can assume $z_{1}, \ldots, z_{k} \in \Lambda_{n}$. By Lemma 2.3.2 the points z_{1}, \ldots, z_{k} determine a non-face if and only if they do not constitute a chain. Hence z_{i} and z_{j} are incomparable for some $i, j=1, \ldots, k$. This contradicts the minimality of our non-face.

Lemma 2.3.9. For all suffficiently large positive real numbers ω the polyhedral subdivision of Λ_{n}, determined by the height function

$$
\varphi_{\omega}: \Lambda_{n} \cap \mathbb{Z}^{n} \rightarrow \mathbb{R}_{+}, \quad \varphi_{\omega}\left(x_{1}, \ldots, x_{n}\right)=\omega^{x_{1}+\cdots+x_{n}}
$$

is the triangulation T_{n}.

Proof. We use induction on n. For $n=1$ there is nothing to show. Assume $n \geq 2$. For each $i=1, \ldots, n$ we let $\varphi_{\omega, i}$ denote the composite map

$$
\Lambda_{n-1} \cap \mathbb{Z}^{n-1} \xrightarrow{C_{i}} \Lambda_{n} \cap \mathbb{Z}^{n} \xrightarrow{\varphi_{\omega}} \mathbb{R}_{+} .
$$

By the induction hypothesis the polyhedral subdivisions of Λ_{n-1} determined by all the $\varphi_{\omega, i}$ are the same T_{n-1} for ω sufficiently large.

In view of the induction hypothesis, the opposite of the claim is clearly the following statement: there exist an infinite sequence $\left(\omega_{k}\right)_{k \in \mathbb{N}}$ and a polytope Γ spanned by some vertices of Λ_{n} different from $(1, \ldots, 1)$ such that $\omega_{k} \rightarrow \infty, \operatorname{dim} \Gamma=n$, and Γ is a polytope from the polyhedral subdivision of Λ_{n} determined by $\varphi_{k}=\varphi_{\omega_{k}}$. Let $\gamma_{1}, \ldots, \gamma_{n+1}$ be affinely independent vertices of Γ (i. e. $\left.\operatorname{conv}\left(\gamma_{1}, \ldots, \gamma_{n+1}\right)=\mathbb{R}^{n}\right)$. Thus we have a barycentric representation

$$
(1, \ldots, 1)=\lambda_{1} \gamma_{1}+\cdots+\lambda_{n+1} \gamma_{n+1} .
$$

Let Φ_{k} be the realizing function of the polyhedral subdivision of Λ_{n}, spanned by φ_{k}. So Γ is a domain of linearity for Φ_{k}. Let $L_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, be the affine continuation of $\Phi_{k} \mid \Gamma$. Then we know (see subsection 2.1) that for each point γ of Λ_{n} one has $\Phi_{k}(\gamma) \leq L_{k}(\gamma)$. Since affine functions preserve barycentric coordinates, we obtain

$$
\varphi_{k}(1, \ldots, 1)=\Phi_{k}(1, \ldots, 1) \leq L_{k}(1, \ldots, 1)=\sum_{i=1}^{n+1} \lambda_{i} L_{k}\left(\gamma_{i}\right)=\sum_{i=1}^{n+1} \lambda_{i} \varphi_{k}\left(\gamma_{i}\right),
$$

that is $\omega_{k}^{n} \leq \sum_{i=1}^{n+1} \lambda_{i} \omega_{k}^{\left|\gamma_{i}\right|}$, where for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}$ we put $|x|=x_{1}+\cdots+x_{n}$. But the last inequality is obviously violated for k sufficiently large.

Theorem 2.3.10. Any FD-bounded lattice polyhedron P (of arbitrary dimension) is Koszul.

Proof. Let P be such a polyhedron. We can assume $P \subset \Lambda$ for some standard rectangular lattice parallelepiped Λ. By Theorem 2.1.3 and Lemma 2.3.8 we only have to show the regularity of the triangulation $T(P)$. Since $T(P) \subset T(\Lambda)$ we can also assume $P=\Lambda$.

Let ω be a positive real number and consider the function

$$
\varphi_{\omega}: \Lambda \cap \mathbb{Z}^{n} \rightarrow \mathbb{R}_{+}, \quad \varphi_{\omega}(x)=\omega^{|x|}
$$

Any unit lattice cube in Λ has the form $z+\Lambda_{n}$ for some $z \in \mathbb{Z}^{n} \cap \Lambda$. We shall use the notation Λ_{n}^{z} for $z+\Lambda_{n}$. So $\Lambda_{n}^{0}=\Lambda_{n}$. For any unit lattice cube Λ_{n}^{z} in Λ we set

$$
\varphi_{\omega, z}=\varphi_{\omega} \mid \Lambda_{n}^{z} \cap \mathbb{Z}^{n}
$$

for any $z, z^{\prime} \in \mathbb{Z}^{n} \cap C$. We know that $\varphi_{\omega, z}$ and $\omega^{-|z|} \varphi_{\omega, z}$ define the same polyhedral subdivision of Λ_{n}^{z}. But the polyhedral subdivision of Λ_{n}^{z} determined by $\omega^{-|z|} \varphi_{\omega, z}$ is obtained by the polyhedral subdivision of Λ_{n} determined by $\varphi_{\omega, 0}$ shifted by the vector z. By Lemma 2.3.9 the latter is nothing else but T_{n} for ω sufficiently large. Thus for ω sufficiently large, the polyhedral subdivision of Λ_{n}^{z} determined by $\varphi_{\omega, z}$ is $z+T_{n}$. Now assume ω is sufficiently large, and $\Phi_{\omega, z}$ are the realizing functions of the triangulizations $z+T_{n}$, spanned by $\varphi_{\omega, z}$. Clearly

$$
\Phi_{\omega, z}\left|\Lambda_{n}^{z} \cap \Lambda_{n}^{z^{\prime}}=\Phi_{\omega, z^{\prime}}\right| \Lambda_{n}^{z} \cap \Lambda_{n}^{z^{\prime}} .
$$

Therefore the patching lemma will complete the proof once we know the regularity of the subdivision of Λ into unit lattice cubes. But the latter follows from the observation that $\{[0,1],[1,2], \ldots,[a-1, a]\}$ is a regular subdivision of the segment $[0, a]$ (with the realizing function corresponding to $k \mapsto \sin \frac{\pi k}{a}, k=0, \ldots, a$) and the direct product lemma.

Question 2.3.11. Let \mathcal{E}_{n} be the collection of hyperplanes given by the equations

$$
\sum_{i=1}^{n} \varepsilon_{i} X_{i}=0, \quad \varepsilon_{i} \in\{0, \pm 1\}
$$

Suppose P is an n-dimensional lattice polytope satisfying the following condition: if $P \cap \Lambda_{n}^{z}, z \in \mathbb{Z}^{n}$, has dimension n, then the facets of $P \cap \Lambda_{n}^{z}$, except at most one, are parallel to the coordinate hyperplanes, and the remaining one is parallel to some other member of \mathcal{E}_{n}. (In other words, up to reversing the directions of the basis vectors, $P \cap \Lambda_{n}^{z}$ has the form $\Delta \times \mathcal{I}$ where Δ is a rectangular 'unit' simplex spanned by k basis vectors and the origin and \mathcal{I} is an $(n-k)$-dimensional unit interval representing the remaining directions.) Is such a polytope Koszul? That the answer is positive in the case $n=2$, follows from Theorem 3.2.5 below. But more significantly, it can also be shown by a slight extension of the triangulation argument above.
In dimension 2 the condition above is equivalent to the weaker property that every facet of P is parallel to one of the hyperplanes in \mathcal{E}_{n}. In dimension $n \geq 3$ this weaker property is not sufficient for the Koszul property, as demonstrated by the polytope with vertices $(1,0,0),(0,1,0),(0,0,1),(0,0,0)$, and $(1,1,1)$ (the authors are grateful to B. Sturmfels for this example).

3. Degrees of triangulations and Koszul semigroup rings

3.1. The degree of a triangulation. Let Δ be a simplicial complex with vertex set V. Note that Δ has no non-face only if it is a simplex. If Δ is not a simplex, we set

$$
\operatorname{deg} \Delta:=\max \{\operatorname{dim} \sigma \mid \sigma \text { is a minimal non-face of } \Delta\}+1,
$$

and call it the degree of Δ.
This notion is closely related to the Stanley-Reisner ring $k[\Delta]=k\left[X_{1}, \ldots, X_{n}\right] / I_{\Delta}$ of Δ (see the discussion preceding Theorem 2.1.2). Since I_{Δ} is the ideal generated by the monomials $X_{i_{1}} \cdots X_{i_{r}}$ for which $\left\{X_{i_{1}}, \ldots, X_{i_{r}}\right\}$ is a non-face of Δ, $\operatorname{deg} \Delta$ is the maximal degree of the elements of a minimal system of generators of I_{Δ}. Thus $\operatorname{deg} \Delta \leq \operatorname{dim} \Delta+1$.

It follows that the degree of any triangulation of a lattice polytope P in \mathbb{R}^{n} is at most $n+1$. We shall characterize the lattice polytopes which have regular triangulations of degree $\leq n$.

In the following we will frequently use that every lattice polytope $P \subset \mathbb{R}^{n}$ has a regular full triangulation Δ (recall that for Δ to be full every lattice point of P must be a vertex of some simplex of Δ). We simply take the lexicographic order on \mathbb{Z}^{n}. It induces an order on the variables X_{1}, \ldots, X_{m} corresponding to the lattice points of P. The initial ideal of I_{P} with respect to the induced term order can not contain
a monomial X_{i}^{j} since in a binomial $X_{i}^{j}-X_{k_{1}}^{e_{1}} \ldots X_{k_{r}}^{e_{r}}$ the second term is the leading one. It follows from 2.1.2 that the regular triangulation associated with this term order is a full triangulation.
Lemma 3.1.1. A lattice n-simplex τ in P is a minimal non-face of a full triangulation Δ of P if and only if all facets of τ belong to Δ and τ has interior lattice points.

Proof. Let τ be a minimal non-face of Δ. By the minimality all facets of τ must belong to Δ. Suppose that τ has no lattice point in its interior. Fix any point x in the interior of τ. Since Δ is a triangulation of P, x must be covered by a simplex σ of Δ with $\operatorname{dim} \sigma=n$. Since $\sigma \neq \tau, \sigma$ must have a vertex y lying outside of τ. The line segment $[x, y]$ must meet a proper face ε of τ in the interior of $[x, y]$. Since $\varepsilon \in \Delta$ and $\varepsilon \cap \sigma \neq \emptyset, \varepsilon$ is a face of σ. On the other hand, $x, y \notin \varepsilon$, so that the hyperplane through ε separates the points x and y of σ. This is a contradiction.

The converse implication is obvious.
We note that the case $\sharp L_{P}=n+1$ is trivial because $k\left[S_{P}\right]=k\left[X_{1}, \ldots, X_{n+1}\right]$ in this case.

Theorem 3.1.2. Let P be a lattice polytope in \mathbb{R}^{n} with $\sharp L_{P} \geq n+2$. Then P has a regular full triangulation Δ with $\operatorname{deg} \Delta \leq n$ if and only if $\sharp L_{\partial P} \geq n+2$.

Proof. Assume that $\sharp L_{\partial P}=n+1$. Then P is an n-simplex whose facets have no lattice points in their interiors. For any full triangulation Δ of P, the facets of P must appear in Δ. Since $\sharp L_{P} \geq n+2, P$ has an interior lattice point. Therefore, P must be a minimal non-face of Δ, hence $\operatorname{deg} \Delta=n+1$.

Conversely, assume that $\sharp L_{\partial P} \geq n+2$. If P has no interior lattice points, we choose any regular full triangulation Δ of P. By Lemma 3.1.1, Δ has no minimal non-face of dimension n, hence $\operatorname{deg} \Delta \leq n$. If P has interior lattice points, we apply Theorem 3.3.1 below which is stronger than the 'if' part of 3.1.2.

In Subsection 3.2 we will prove a refinement of Theorem 3.1.2 in dimension 2. This case is significantly simpler than the general one, and its proof is independent from 3.1.2.

We say that a triangulation Δ is n-restricted if every minimal interior face has at most $n-1$ vertices. In the following figure the triangulation on the left is 2 -restricted, that on the right is not.

3.2. Lattice polygons. The case of lattice polygons is of particular interest because of its relationship to the Koszul property of semigroup rings. Furthermore one can refine Theorem 3.1.2 in the planar case by showing that there exists a degree 2 lexicographic unimodular triangulation for a lattice polygon P with at least 4 lattice points in its boundary.

Let $L_{P}=\left\{x_{1}, \ldots, x_{m}\right\}$. Given a total order $x_{1}>\ldots>x_{m}$ on L_{P}, the lexicographic term order induced by $>$ yields a regular triangulation $\Delta_{>\operatorname{lex}}(P)$ of P which
we call the lexicographic triangulation of P. In combinatorics this triangulation is known as the placing triangulation, see [23]. It can be described recursively as follows (see [24], Proposition 8.6).

Lemma 3.2.1.

$\Delta_{>\text {lex }}(P)=\Delta_{>\operatorname{lex}}\left(L_{P} \backslash\left\{x_{1}\right\}\right) \cup\left\{\left\{x_{1}\right\} \cup \varepsilon: \varepsilon \in \Delta_{>\operatorname{lex}}\left(L_{P} \backslash\left\{x_{1}\right\}\right)\right.$, ε visible from $\left.x_{1}\right\}$
Let P_{i} be the convex hull of the set $\left\{x_{i}, \ldots, x_{m}\right\}, i \geq 1$. We call the total order $>$ on L_{P} an exterior order if x_{i} is a vertex of the polytope P_{i} for all $i=1, \ldots, m$.

Lemma 3.2.2. Let $x_{1}>\ldots>x_{m}$ be an exterior order on L_{P}. Put $\Delta=\Delta_{>\operatorname{lex}}(P)$ and $\Gamma=\Delta_{>\operatorname{lex}}\left(P_{2}\right)$. Then $\operatorname{deg} \Delta \leq n$ if the following conditions are satisfied:
(i) $\operatorname{deg} \Gamma \leq n$,
(ii) Γ is n-restricted on $Q_{x_{1}}$.

Proof. Assume the contrary. Then Δ has a minimal non-face σ with $\operatorname{dim} \sigma=n+1$. By (i), σ is not a minimal non-face of Γ. Since x_{1} is a vertex of P, x_{1} lies outside of P_{2}. Hence every minimal non-face of Δ with vertices in P_{2} is also a minimal non-face of Γ. It follows that x_{1} is a vertex of σ. Let ε be the ($n-1$)-dimensional face of σ which does not contain x_{1}. Since σ is a minimal non-face of Δ, ε is a face of Δ and therefore of Γ.

All the other $(n-1)$-dimensional faces of σ are also faces of Δ, and therefore the $(n-2)$-dimensional faces of σ that do not contain x_{1} are visible from x_{1}. Hence they belong to $Q_{x_{1}}$. Since they constitute $\partial \varepsilon$ and since Γ is n-restricted on $Q_{x_{1}}$, it follows that $\varepsilon \subset Q_{x_{1}}$. Hence ε is visible from x_{1}, and Lemma 3.2.1 implies $\sigma \in \Delta$, which is a contradiction.

If P is a polygon in \mathbb{R}^{2}, condition (ii) of the previous lemma just means that no edge of Γ connects two non-neighbouring lattice points of $Q_{x_{1}}$. In the case of polygons we call a connected part of ∂P that starts and ends at vertices of P a path of ∂P. Notice that $Q_{x_{1}}$ is a path of ∂P. Two paths are said to be disjoint if they have at most one common point.

Theorem 3.2.3. Let P be a lattice polygon with $\sharp L_{\partial P} \geq 4$. Let $\partial P=C_{1} \cup \ldots \cup C_{r}$ be a decomposition of ∂P into $r \geq 3$ disjoint paths. Then there exists an exterior order $>$ on L_{P} such that $\Delta=\Delta_{>\operatorname{lex}}(P)$ is unimodular and satifies the following conditions:
(i) $\operatorname{deg} \Delta=2$,
(ii) every edge of Δ with vertices on C_{i} lies on $C_{i}, i=1, \ldots, r$,.

In particular, there exists an exterior order $>$ on L_{P} such that $\Delta_{>\operatorname{lex}}(P)$ is unimodular and of degree 2 .

Proof. The triangulation Δ will be constructed inductively as indicated by Lemma 3.2.1. It is easy to see that one obtains a full lattice triangulation by this construction, and in dimension 2 every full lattice triangulation is unimodular. Therefore it is not necessary to mention unimodularity any further.

Case 1: $\sharp L_{\partial P}=4$. Then ∂P is either a triangle $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ with a lattice point x_{4} on the edge $\left[x_{1}, x_{3}\right]$ or a quadrangle $\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$. Since the number of the paths C_{1}, \ldots, C_{r} is at least 3 , we may assume that x_{2}, x_{4} do not belong to the same path.

If $\sharp L_{P}=4$, i. e. P has no interior point, we obtain the lexicographic triangulation of P which corresponds to the exterior order $x_{1}>x_{2}>x_{3}>x_{4}$ by connecting x_{2}, x_{4}.

If $\sharp L_{P}>4$, then P has an interior lattice point. Without restriction we may assume that the triangle $\left\langle x_{1}, x_{2}, x_{4}\right\rangle$ contains an interior point of P. For $x=x_{1}$ we have $\sharp L_{Q_{x}} \geq 3$, hence $\sharp L_{\partial P_{x}} \geq 4$. Moreover, $Q_{x} \cup\left[x_{2}, x_{3}\right] \cup\left[x_{3}, x_{4}\right]$ is a decomposition of ∂P_{x} into 3 disjoint paths. By induction on the number $\sharp L_{P}$ we may assume that there is an exterior order $>$ on $L_{P_{x}}$ such that the corresponding lexicographic triangulation Γ of P_{x} satisfies the conditions:
(i) $\operatorname{deg} \Gamma=2$,
(ii) every edge of Γ with vertices on Q_{x} lies on Q_{x}.

By Lemma 3.2.2, the resulting exterior order $>$ on L_{P} with x_{1} as the maximal element induces a lexicographic triangulation Δ of P with $\operatorname{deg} \Delta=2$. Neither $\left[x_{2}, x_{4}\right]$ nor $\left[x_{1}, x_{3}\right]$ are faces of Δ so that condition (ii) of the theorem is trivially satisfied. In fact, x_{3} is not visible from x_{1}, and $\left[x_{2}, x_{4}\right]$ has both its vertices in Q_{x}.

Case 2: $\sharp L_{\partial P}>4$. Choose x_{1} to be the common vertex x of C_{1} and C_{r}. We have $\sharp L_{\partial P_{x}} \geq \sharp L_{\partial P}-1 \geq 4$. If $\sharp L_{C_{i}}=2$, i.e. C_{i} has no lattice points in its interior, for all $i=1, \ldots, r$, then $r=\sharp L_{\partial P}$ and ∂P_{x} has a decomposition into $r-1 \geq 3$ disjoint paths $D_{1} \cup \cdots \cup D_{r-1}$ with

$$
D_{i}= \begin{cases}Q_{x}, & i=1, \\ C_{i}, & i=2, \ldots, r-1\end{cases}
$$

If there exists a path C_{i} with $\sharp L_{C_{i}}>2$, we may assume that it is C_{1}. Set

$$
D_{i}= \begin{cases}C_{1} \cap \partial P_{x}, & i=1, \\ C_{i}, & i=2, \ldots, r-1 \\ C_{r} \cap \partial P_{x}, & i=r, \\ Q_{x}, & i=r+1 .\end{cases}
$$

If $\sharp L_{C_{r}}=2$, then ∂P_{x} has the decomposition $D_{1} \cup \ldots \cup D_{r-1} \cup D_{r+1}$ and, if $\sharp L_{C_{r}}>2$, the decomposition $D_{1} \cup \ldots \cup D_{r+1}$ into disjoint paths. In any case, by induction on the number $\sharp L_{P}$ we may assume that there is an exterior order $>$ on $L_{P_{x}}$ such that the corresponding lexicographic triangulation Γ of P_{x} satisfies the following conditions:
(i) $\operatorname{deg} \Gamma=2$,
(ii) any edge of Γ with vertices on a path D_{i} lies on D_{i}.

Note that Q_{x} is one of the paths D_{i}. By Lemma 3.2.2, the resulting exterior order $>$ on L_{P} with x_{1} as its maximal element induces a lexicographic triangulation Δ of P with $\operatorname{deg} \Delta=2$. Due to the definition of D_{i} and the hypothesis (ii), any edge of Δ with vertices on a path $C_{i}, i=2, \ldots, r-1$, must lie on C_{i}. For $i=1, r$, such an edge must have x_{1} as a vertex. The other vertex must be the only lattice point of C_{i} visible from x_{1}. Hence this edge lies on C_{i}.

Remark 3.2.4. For certain classes of lattice polygons one can explicitly describe term orders that yield unimodular lexicographic triangulations of degree 2. For example let P be a rectangular lattice triangle with the vertices $(0,0),\left(\lambda_{1}, 0\right)$, and $\left(0, \lambda_{2}\right)$. By symmetry we may assume $\lambda_{1} \geq \lambda_{2}$. Then we define the order \prec on \mathbb{R}^{2} by setting $\left(x_{1}, x_{2}\right) \prec\left(y_{1}, y_{2}\right)$ if $x_{1}>y_{1}$ or $x_{1}=y_{1}, x_{2}<y_{2}$. Then we extend \prec to a lexicographic term order. It can be shown that the associated triangulation is unimodular and of degree 2. For $\lambda_{1}=4$ and $\lambda_{2}=3$ it is given by the following figure:

We now draw the consequences of Theorem 3.1.2.
Corollary 3.2.5. Let P be a lattice polytope in \mathbb{R}^{2} with $\sharp L_{P} \geq 4$. Then the following are equivalent:
(a) $\sharp L_{\partial P} \geq 4$,
(b) P has a regular full, equivalently: unimodular, triangulation Δ with $\operatorname{deg} \Delta=2$,
(c) I_{P} has a Gröbner basis of elements of degree 2,
(d) P is Koszul,
(e) I_{P} is generated by elements of degree 2 .

Proof. (e) \Rightarrow (a) Let $m=\sharp L_{P}$. We use the presentation $K\left[S_{P}\right]=K\left[X_{1}, \ldots, X_{m}\right] / I_{P}$. Assume that $\sharp L_{\partial P}=3$, say $L_{\partial P}=\left\{x_{1}, x_{2}, x_{3}\right\}$. Then P is a triangle with vertices x_{1}, x_{2}, x_{3} and P has at least a lattice point in its interior, say x_{4}. There exist positive integers $\alpha, \alpha_{1}, \alpha_{2}, \alpha_{3}$ such that $\alpha x_{4}=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}$. Hence I_{P} contains a monomial of the form $X_{1}^{\alpha_{1}} X_{2}^{\alpha_{2}} X_{3}^{\alpha_{3}}-X_{4}^{\alpha}$. This monomial cannot be generated by forms of degree 2 of I_{P}. For, I_{P} must contain, by a permutation of X_{1}, X_{2}, X_{3}, a non-trivial monomial of the form $X_{1}^{2}-F$ or $X_{1} X_{2}-G$ for some monomials F or G in $K\left[X_{1}, \ldots, X_{m}\right]$. The variables of F or G must correspond to a lattice point on the segment $\left[x_{1}, x_{2}\right]$ by affine dependence. But this segment has only x_{1}, x_{2} as lattice points because $x_{1} x_{2} \in \partial P$ and $L_{\partial P}=\left\{x_{1}, x_{2}, x_{3}\right\}$. Therefore I_{P} can not be generated by forms of degree 2 .
(a) \Rightarrow (b) If $\sharp L_{\partial P} \geq 4$, then L_{P} has a regular full triangulation Δ with $\operatorname{deg} \Delta=2$ by Theorem 3.2.3. By Proposition 1.2.4(b) Δ is a unimodular triangulation.
(b) \Rightarrow (c) follows immediately from Theorem 2.1.2.
$(c) \Rightarrow(d)$ is a result of [9], which we have already used several times above.
$(\mathrm{d}) \Rightarrow(\mathrm{e})$ is trivial.
R. Koelman [20] has proved a weaker version of Corollary 3.2.5, namely, if P is a lattice polygon with $\sharp L_{\partial P} \geq 4$, then I_{P} can be generated by forms of degree 2 .
3.3. The general case. It remains to prove the following theorem.

Theorem 3.3.1. Let P be a lattice polytope in \mathbb{R}^{n} with $\sharp L_{\partial P} \geq n+2$. Suppose that P has interior lattice points. Then P has an n-restricted regular full triangulation Δ with $\operatorname{deg} \Delta \leq n$.

The proof of Theorem 3.3.1 uses induction on $\sharp L_{P}$. For this we need some preparation.

For any vertex x of P we denote by P_{x} the convex hull of the set $L_{P \backslash\{x\}}$ and by Q_{x} the part of ∂P_{x} which can be seen from x. We shall see that the n-restrictedness can be passed from P_{x} to P. Let U be a union of faces of P. A triangulation Δ of P is called n-restricted on U if $\varepsilon \subset U$ for every ($n-1$)-simplex ε of Δ with $\partial \varepsilon \subset U$.
Lemma 3.3.2. Let P be a lattice n-polytope in \mathbb{R}^{n} with $\sharp L_{P} \geq n+3$. Let U be a union of facets of P. Assume that U has an interior point x which is a vertex of P such that $\operatorname{dim} P_{x}=n$ and P_{x} has a regular full triangulation Γ with $\operatorname{deg} \Gamma \leq n$ which is n-restricted on $U \cap P_{x}$ and Q_{x}. Then P has a regular full triangulation Δ with $\operatorname{deg} \Delta \leq n$ which is n-restricted on U.
Proof. There are two cases.
Case 1: $\sharp L_{Q_{x}}=n$. Then Q_{x} is a lattice $(n-1)$-simplex which has no other lattice points than its vertices. Since Q_{x} is a facet of P_{x}, Q_{x} is a facet of an n-simplex of Γ, say σ. Let y be the vertex of σ not contained in Q_{x}. We denote by T the convex hull of x, y and Q_{x}. Let z be the intersection point of the segment $[x, y]$ with Q_{x}. If z is a vertex of Q_{x}, T is an n-simplex. The facets of T which contain x lie on facets of P. Since x is an interior point of U, these facets of P are also facets of U. Therefore, if ρ is the facet of T which does not contains x, then $\partial \rho \subset U$. Since ρ is also a facet of $\sigma, \rho \in \Gamma$. Using the n-restrictedness of Γ on $U \cap \partial P_{x}$ we get $\rho \subset U$. From this it follws that all facets of T are contained in ∂P. Hence $P=T$. So we get $\sharp L_{P}=n+2$, a contradiction. Thus, z is not a vertex of Q_{x}. Connecting x with y we obtain a triangulation of T into n-simplices which are spanned by x and the facets of σ containing y. Since z is not a vertex of Q_{x}, these simplices involve all lattice points T. Together with the simplices of Γ other than σ they compose a full triangulation Δ of P.

If Δ is not n-restricted on U, there exists an $(n-1)$-simplex ε of Δ such that $\varepsilon \not \subset U$ but $\partial \varepsilon \subset U$. If $\varepsilon \in \Gamma$, then $\partial \varepsilon \subset U \cap P_{x}$. Using the n-restrictedness of Γ on $U \cap \partial P_{x}$ we get $\varepsilon \subset U$, a contradiction. If $\varepsilon \notin \Gamma$, then x is a vertex of ε. If $y \notin \varepsilon, \varepsilon$ is spanned by x and a facet of Q_{x}. Hence ε is contained in a facet of P which contains x. Such a facet of P is also a facet of U because x is an interior point of U. Therefore we have $\varepsilon \subset U$, a contradiction. If $y \in \varepsilon$, then ε is spanned by x, y and $n-2$ vertices of Q_{x}, say z_{1}, \ldots, z_{n-2}. The facets of ε are the simplex $\left\langle y, z_{1}, \ldots, z_{n-2}\right\rangle$ spanned by $y, z_{1}, \ldots, z_{n-2}$ and the simplices spanned by x, y and $n-3$ elements of the set $\left\{z_{1}, \ldots, z_{n-2}\right\}$. Since $\partial \varepsilon \subset U$, they are all contained in U. As a consequence, every simplex spanned by y, z and $n-3$ elements of the set $\left\{z_{1}, \ldots, z_{n-2}\right\}$ is contained in U, too. Let z_{n-1}, z_{n} be the other vertices of Q_{x}.
Claim. z is contained in the edge $z_{n-1} z_{n}$.
Proof. Let $\left\langle z_{1}, \ldots, z_{n-1}\right\rangle$ denote the simplex spanned by the points z_{1}, \ldots, z_{n-1}. We have $z \notin\left\langle z_{1}, \ldots, z_{n-1}\right\rangle$ because otherwise ε is contained in the facet of P
which contains x and $\left\langle z_{1}, \ldots, z_{n-1}\right\rangle$, hence $\varepsilon \subset U$, a contradiction. Similarly we also have $z \notin\left\langle z_{1}, \ldots, z_{n-2}, z_{n}\right\rangle$. This means that in the barycentric representation $z=\lambda_{1} z_{1}+\cdots+\lambda_{n} z_{n}$ the coefficients λ_{n-1} and λ_{n} are positive. The claim amounts to the equations $\lambda_{i}=0$ for $i=1, \ldots, n-2$.

As stated just above the claim, the simplex $\left\langle z, z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{n-2}\right\rangle$ is contained in U. This means that every convex representation $w=\mu_{1} z_{1}+\cdots+\mu_{i-1} z_{i-1}+$ $\mu_{i+1} z_{i+1}+\ldots \mu_{n-2} z_{n-2}$ is a point of U. If we choose the μ_{j} strictly positive, then the segment $[w, z]$ contains an interior point of $Q_{x}=\left\langle z_{1}, \ldots, z_{n}\right\rangle$. Since $w, z \in U$, it follows that U contains an interior point of Q_{x}, which is impossible.

Now we continue the proof of Lemma 3.3.2. By the above claim, all facets of T which contain y, z_{n-1}, z_{n} also contain x, z_{n-1}, z_{n}. Hence they lie on the facets of U which contain x, z_{n-1}, z_{n}. In particular, all $(n-2)$-dimensional faces of σ which contain y and z_{n-1} are contained in U. Since the faces $\left\langle y, z_{1}, \ldots, z_{n-2}\right\rangle$ and $\left\langle z_{1}, \ldots, z_{n-1}\right\rangle$ are also contained in U, the boundary of the ($n-1$)-simplex $\left\langle y, z_{1}, \ldots, z_{n-1}\right\rangle$ is contained in U. Hence $\left\langle y, z_{1}, \ldots, z_{n-1}\right\rangle \subset U$ by the n-restrictedness of Γ on $U \cap P_{x}$. Similarly we can also show that $\left\langle z_{1}, \ldots, z_{n-3}, z_{n}\right\rangle \subset U$. From this it follows that all facets of T are contained in $U \subset \partial P$. Hence $P=T$. This implies $\sharp L_{P}=n+2$, a contradiction. So we have proved that Δ is n-restricted on U.

If $\operatorname{deg} \Delta=n+1$, there is a lattice n-simplex τ in P such that every facet of τ belongs to Δ and τ has an interior lattice point. Since $\operatorname{deg} \Gamma \leq n, \tau$ is not contained in P_{x} (in fact, otherwise τ would be contained in $P_{x} \backslash \sigma$). Hence x is a vertex of τ. From this it follows that τ is the n-simplex spanned by x and Q_{x}. By the definition of Q_{x}, this simplex has no interior lattice points. So we obtain a contradiction. Hence $\operatorname{deg} \Delta \leq n$.

Let φ be a height function on $L_{P_{x}}$ for Γ. By choosing $\varphi(x)$ such that $(x, \varphi(x))$ is above the hyperplane of \mathbb{R}^{n+1} containing the facet of $\left(P_{x}\right)_{\varphi}$ corresponding to σ but below the hyperplanes containing the other facets of $\left(P_{x}\right)_{\varphi}$ we obtain a height function φ on L_{P}. Clearly, P_{φ} coincides with $\left(P_{x}\right)_{\varphi}$ on all simplices of Γ other than σ. From this we can conclude that $\Delta=\Delta_{\varphi}$. Hence Δ is a regular triangulation of P.
Case 2: $\sharp L_{Q_{x}} \geq n+1$. Consider the full triangulation of Q_{x} into $(n-1)$-simplices induced by Γ. The n-simplices spanned by x and these ($n-1$)-simplices compose a triangulation of the convex hull of $P \backslash P_{x}$. This triangulation together with Γ forms a lattice triangulation Δ of P.

If Δ is not n-restricted on U, there exists an $(n-1)$-simplex ε of Δ such that $\varepsilon \not \subset U$ but $\partial \varepsilon \subset U$. If $\varepsilon \in \Gamma$, then $\partial \varepsilon \subset U \cap P_{x}$. Hence we have $\varepsilon \subset U$, a contradiction. If $\varepsilon \notin \Gamma$, then ε is spanned by x and an $(n-2)$-simplex of Γ on Q_{x}. Since this ($n-2$)-simplex of Γ is contained in U, it lies on the boundary of Q_{x}. Therefore ε lies on a facet of P which contains x. Since x is an interior point of U, this facet of P is a facet of U. Hence we have $\varepsilon \subset U$, a contradiction.

If $\operatorname{deg} \Delta=n+1$, there is a lattice n-simplex τ in P such that every facet of τ belongs to Δ and τ has an interior lattice point. Since $\operatorname{deg} \Gamma \leq n, \tau$ is not contained in P_{x}. Hence x is a vertex of τ. Let ε be the facet of τ not containing x. Then
$\partial \varepsilon \subset Q_{x}$. Hence $\varepsilon \subset Q_{x}$ by the n-restrictedness of Γ on Q_{x}. Since there is no lattice point inbetween x and Q_{x}, τ would have no interior lattice points, a contradiction. Therefore, we have $\operatorname{deg} \Delta \leq n$.

It remains to show that Δ is a regular triangulation of P. If we choose $\varphi(x)$ small enough, the height function on L_{P} which extends the height function of Γ will keep $\left(P_{x}\right)_{\varphi}$. Hence Δ_{φ} coincides with Γ on P_{x}. From this it follows that $\Delta=\Delta_{\varphi}$. The proof of Lemma 3.3.2 is now complete.

A special case of Lemma 3.3.2 is the case $U=\partial P$.
Corollary 3.3.3. Let P be a lattice n-polytope in \mathbb{R}^{n} with $\sharp L_{P} \geq n+3$. Let x be a vertex of P such that $\operatorname{dim} P_{x}=n$ and P_{x} has a regular full triangulation Γ with $\operatorname{deg} \Gamma \leq n$ which is n-restricted on $\partial P \cap P_{x}$ and Q_{x}. Then P has an n-restricted regular full triangulation Δ with $\operatorname{deg} \Delta \leq n$.

We shall need the following lemma for the existence of a regular triangulation Γ of P_{x} with the above properties.

Lemma 3.3.4. Let P be a lattice polytope in \mathbb{R}^{n} with $\sharp L_{P} \geq n+2$ which has no interior lattice point. Let U be a union of facets of P which is homeomorphic to an ($n-1$)-dimensional ball. Assume that $\sharp L_{U^{c}} \geq n+1$, where U^{c} is the closure of the complement of U on ∂P. Then P has a regular full triangulation Δ with $\operatorname{deg} \Delta \leq n$ which is n-restricted on U.

Proof. By Lemma 3.1.1 every regular full triangulation Δ of P has $\operatorname{deg} \Delta \leq n$. Hence we only need to find such a triangulation Δ of P which is n-restricted on U.

We first consider the case in which U contains no interior lattice point which is a vertex of P. Choose any regular triangulation Δ of P. If Δ is not n-restricted on U, there exists an $(n-1)$-simplex $\varepsilon \not \subset U$ of Δ such that $\partial \varepsilon \subset U$. Since U is homeomorphic to an $(n-1)$-dimensional ball, $\partial \varepsilon$ divides ∂P into two parts one of which is contained in U. This part has an interior lattice point of U which is a vertex of P, a contradiction.

Now assume that U contains an interior lattice point x which is a vertex of P. There are two cases.
Case 1: $\operatorname{dim} P_{x}=n-1$. Then $P_{x}=Q_{x}$ and it is a facet of P. Therefore, U must be the union of the facets of P which contain x, and $U^{c}=Q_{x}$. Choose any regular full triangulation Δ of P. If Δ is not n-restricted on U, there exists an $(n-1)$-simplex ε of Δ such that $\varepsilon \not \subset U$ but $\partial \varepsilon \subset U$. If ε is contained in Q_{x}, then $\partial \varepsilon \subset U \cap Q_{x}=\partial Q_{x}$. Since $\partial \varepsilon$ and ∂Q_{x} are both homeomorphic to the $(n-1)$-dimensional sphere, we must have $\varepsilon=Q_{x}=U^{c}$, a contradiction to the assumption that $\sharp L_{U^{c}} \geq n+1$. If ε is not contained in Q_{x}, ε is spanned by x and an $(n-2)$-simplex of Δ on Q_{x}. This ($n-2$)-simplex of Δ is contained in $U \cap Q_{x}=\partial Q_{x}$. Hence ε is a facet of U, a contradiction.
Case 2: $\operatorname{dim} P_{x}=n$. We distinguish two subcases.
Subcase 1: $\sharp L_{P}=n+2$. Then the assumption $\sharp U^{c} \geq n+1$ implies that U has only one interior lattice point, namely x. We have $\sharp L_{P_{x}}=n+1$. Together with the assumption $\operatorname{dim} P_{x}=n$ this implies that P_{x} is an n-simplex.

If $\sharp Q_{x}=n$, let y be the vertex of P_{x} not contained in Q_{x}. Let z be the intersection point of the segment $[x, y]$ with Q_{x}. Then z is not a vertex of Q_{x} because otherwise $y \in U$ and all facets of P containing $[x, y]$ are facets of U, hence z would be an interior lattice point of U. Connecting x and y we obtain a full triangulation Δ of P each of whose simplices is spanned by x, y and a facet of Q_{x}. If Δ is not n-restricted on U, there is an $(n-1)$-simplex ε of Δ such that $\varepsilon \not \subset U$ but $\partial \varepsilon \subset U$. Since U is homeomorphic to an $(n-1)$-dimensional ball, $\partial \varepsilon$ divides ∂P into two parts one of which is contained in U. If ε is a face of P, we have $U^{c}=\varepsilon$ and therefore $\sharp L_{U^{c}}=n$, a contradiction. So ε is not a face of P. The two lattice points of P which are not contained in ε must lie on different sides of ε. One of these two points must be an interior point of U, hence it is x. From this it follows that $Q_{x}=\varepsilon$. So we get $Q_{x} \in \Delta$, a contradiction. By choosing a sufficiently general height function φ on L_{P} with $\varphi(x), \varphi(y)$ greater than the other values of φ, we will obtain $\Delta_{\varphi}=\Delta$. Hence Δ is a regular triangulation of P which is n-restricted on U.

If $\sharp Q_{x}=n+1$, choose any regular triangulation Δ of P which contains the n simplex P_{x}. (The existence of such a triangulation is easy to show.) If Δ is not n-restricted on U, there is an $(n-1)$-simplex ε of Δ such that $\varepsilon \not \subset U$ but $\partial \varepsilon \subset U$. As in the case $\sharp Q_{x}=n$, we can show that $Q_{x}=\varepsilon$. From this it follows that $\sharp Q_{x}=n$, a contradiction.
Subcase 2: $\sharp L_{P} \geq n+3$. We have $\sharp L_{P_{x}} \geq n+2$. Put $U_{x}=\left(U \cap P_{x}\right) \cup Q_{x}$. Then U_{x} is a union of facets of P_{x} which is homeomorphic to an $(n-1)$-dimensional ball and $\left(U_{x}\right)^{c}=U^{c}$. Using induction we may assume that P_{x} has a regular full triangulation Γ with $\operatorname{deg} \Gamma \leq n$ such that Γ is n-restricted on U_{x}. By Lemma 3.3.2, P has a regular full triangulation Δ which is n-restricted on U. The proof of Lemma 3.3.4 is now complete.
Proof of Theorem 3.3.1. There are two cases.
Case 1: $\sharp L_{\partial P}=n+2$. We will first show that there exists a vertex x of P such that $\sharp L_{\partial P_{x}} \geq n+2$.

If P is not an n-simplex, then all $n+2$ lattice points of ∂P are vertices of P. Thus P is the union of $n+2$ simplices σ_{j} each of which is spanned by $n+1$ vertices of P. Let y be an interior lattice point of P (which exists by hypothesis). Elementary arguments show that there exists k such that y is not contained in the interior of σ_{k}. Now we choose x to be the vertex not involved in σ_{k}.

If P is an n-simplex, let y be the remaining point of $L_{\partial P}$ and ρ the facet of P which contains y. Let x be the vertex of P not contained in ρ. Since P has interior lattice points, P_{x} has a vertex not contained in ρ. Hence $\sharp L_{\partial P_{x}} \geq n+2$.

Let x be a vertex of P such that $\sharp L_{\partial P_{x}} \geq n+2$. If P_{x} has interior lattice points, using induction we may asssume that P_{x} has an n-restricted regular full triangulation Γ with $\operatorname{deg} \Gamma \leq n$. Then so does P by Corollary 3.3.3. Now assume that P_{x} has no interior lattice points. We put $U=Q_{x}$. Then U is a union of facets of P_{x} which is homeomorphic to an ($n-1$)-dimensional ball. Moreover, $U^{c}=\partial P \cap P_{x}$. Hence $\sharp L_{U^{c}}=\sharp L_{\partial P}-1=n+1$. By Lemma 3.3.4 there is a regular full triangulation Γ of P_{x} with $\operatorname{deg} \Gamma \leq n$ which is n-restricted on Q_{x}. By Corollary 3.3.3, P has an n-restricted regular full triangulation Δ with $\operatorname{deg} \Delta \leq n$ if Γ is n-restricted on
$\partial P \cap P_{x}$. If the latter condition is not satisfied, there exists an $(n-1)$-simplex ε of Γ such that $\varepsilon \not \subset \partial P \cap P_{x}$ but $\partial \varepsilon \subset \partial P \cap P_{x}$. Then we can find a vertex y of P on the other side of ε than that of x. Since $\sharp L_{\partial P}=n+2, x, y$ and the vertices of ε fill out $L_{\partial P}$. Therefore, there is no lattice point inbetween x and $\partial \varepsilon$. This implies $\partial \varepsilon=\partial Q_{x}$. Hence $\varepsilon \subset Q_{x}$ by the n-restrictedness of Γ on Q_{x}. From this it follows that $\varepsilon=Q_{x}$, which is impossible because Q_{x} must contain interior lattice points of P.
Case 2: $\sharp L_{\partial P} \geq n+3$. For any vertex x of P we have $\sharp L_{\partial P_{x}} \geq n+2$. If P_{x} has interior lattice points, using induction we may asssume that P_{x} has an n-restricted full regular triangulation Γ with $\operatorname{deg} \Gamma \leq n$. Then so does P by Corollary 3.3.3. Now assume that there is no vertex x such that P_{x} has interior lattice points. Fix any vertex x of P. Put $U=Q_{x}$. Then U is a union of facets of P which is homeomorphic to an ($n-1$)-dimensional ball. Moreover, $U^{c}=\partial P \cap P_{x}$. Hence $\sharp L_{U^{c}}=\sharp L_{\partial P}-1 \geq n+2$. By Lemma 3.3.4 there is a regular triangulation Γ of P_{x} with $\operatorname{deg} \Gamma \leq n$ which is n-restricted on Q_{x}. By Corollary 3.3.3, P has an n restricted regular triangulation Δ with deg $\Delta \leq n$ if Γ is n-restricted on $\partial P \cap P_{x}$. If the latter condition is not satisfied, there exists an $(n-1)$-simplex ε of Γ such that $\varepsilon \not \subset \partial P$ but $\partial \varepsilon \subset \partial P$. Then we can find a vertex y of P on the other side of ε relative to $x . P_{y}$ contains the convex hull of all lattice points of P on the side of ε that contains x. But this convex hull contains Q_{x}. Since Q_{x} contains interior lattice points of P, P_{y} has interior lattice points, a contradiction. The proof of Theorem 3.3.1 is now complete.

References

[1] D. Bayer and M. Stillman. A theorem on refining division orders by the reverse lexicographic order. Duke J. Math. 55 (1987), 321-328.
[2] D. Bayer and M. Stillman. A criterion for detecting m-regularity. Invent. Math. 87 (1987), 1-11.
[3] J. Backelin and R. Fröberg. Koszul algebras, Veronese subrings, and rings with linear resolutions. Rev. Roumaine Math. Pures Appl. 30 (1985), 85-97.
[4] N. Bourbaki. Algèbre commutative. Hermann, 1967.
[5] C. Bouvier and G. Gonzalez-Sprinberg. G-desingularisations de variétés toriques. C. R. Acad. Sci. Paris, Ser. I 315 (1992), 817-820.
[6] W. Bruns and J. Gubeladze. Rectangular simplicial semigroups. Preprint.
[7] W. Bruns and J. Herzog. Cohen-Macaulay rings. Cambridge University Press, 1993.
[8] W. Bruns and J. Herzog. Semigroup rings and simplicial complexes. J. Pure Appl. Algebra, to appear.
[9] W. Bruns, J. Herzog, and U. Vetter. Syzygies and walks. In A. Simis, N. V. Trung, and G. Valla (eds.), Commutative algebra. World Scientific, 1994, pp. 36-57.
[10] V. I. Danilov. The geometry of toric varieties. Russian Math. Surveys 33 (1978), 97-154.
[11] D. Eisenbud. Commutative algebra with a view towards algebraic geometry. Springer, 1995.
[12] D. Eisenbud, A. Reeves, and B. Totaro. Initial ideals, Veronese subrings, and rates of algebras. Adv. in Math. 109 (1994), 168-187.
[13] G. Ewald and U. Wessels. On the ampleness of invertible sheaves in complete projective toric varieties. Results in Mathematics 19 (1991), 275-278.
[14] W. Fulton. Introduction to toric varieties. Princeton University Press, 1993.
[15] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, resultants, and multidimensional determinants. Birkhäuser, 1994.
[16] R. Gilmer. Commutative semigroup rings. The University of Chicago Press, 1984.
[17] Le Tuan Hoa. A note on projective monomial surfaces. Math. Nachr. 154 (1991), 183-188.
[18] M. Hochster. Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes. Ann. Math. 96 (1972), 318-337.
[19] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat. Toroidal Embeddings I. Lecture Notes in Math. 339, Springer, 1973.
[20] R. Koelman. A criterion for the ideal of a projectively embedded toric surface to be generated by quadrics. Beiträge Algebra und Geom. 34 (1993), 57-62.
[21] J. Liu, L. E. Trotter and G. M. Ziegler. On the height of the minimal Hilbert basis. Results in Mathematics 23 (1993), 374-376.
[22] R. P. Stanley. Hilbert functions of graded algebras. Adv. in Math. 28 (1978), 57-83.
[23] B. Sturmfels. Gröbner bases of toric varieties, Tohoku Math. J. 43 (1991), 249-261.
[24] B. Sturmfels. Gröbner bases and convex polytopes. American Math. Soc. 1996.
[25] Ngo Viet Trung and Le Tuan Hoa. Affine semigroup rings and Cohen-Macaulay rings generated by monomials. Trans. Amer. Math. Soc. 298 (1986), 145-167.

Universität Osnabrück, FB Mathematik/Informatik, 49069 Osnabrück, Germany
E-mail address: Winfried.Bruns@mathematik.uni-osnabrueck.de
A. Razmadze Mathematical Institute, Alexidze St. 1, 380093 Tbilisi, Georgia

E-mail address: gubel@imath.acnet.ge
Institute of Mathematics, Vien Toan Hoc, P. O. Box 631, Bo Ho, Hanoi, Vietnam

