
Master's thesis in the Department of Computer Science at

Freie Universität Berlin

Game Balancing Using Game

Descriptions and Arti�cial Intelligence

Spielebalancing mit Hilfe von Spielbeschreibungen und Künstlicher

Intelligenz

Armin Feistenauer

August 2012

Supervisor: Prof. Dr. Marco Block-Berlitz

Second Supervisor: Prof. Dr. Elfriede Fehr

Abstract

In this paper methods of general game playing, the process of playing previously unknown

games without human intervention, are applied to social games in order to predict human

playing behavior and use these �ndings to guide game balancing decisions. To achieve this

goal a new game description language for social building simulation games, called Wooga

Game Description Language (WGDL), has been introduced in this thesis and a prototype

of a balancing tool playing these game descriptions has been implemented. To improve

the results of the automatic game play several enhancements to the established search

algorithm, called Monte Carlo Tree Search (MCTS), have been proposed and evaluated.

The division of a game into several sub-games played consecutively improved the quality

of the results by 35%, while the introduction of human knowledge about game moves by

categorizing them increases the results by 23%. A comparison with human player data

shows that the prototype is in some cases in the region of human players but does not yet

consistently outperform most of them. Therefore, the approach analyzed in this thesis is

promising, but has yet to be optimized for application in game development.

i

Abstract (German)

In dieser Arbeit werden Methoden des General Game Playing, das ist das automatisierte

Spielen vorher unbekannter Spiele ohne menschliche Hilfe, auf das Spielen von Social Ga-

mes angewandt um menschliches Spielverhalten vorherzusagen und diese Erkenntnisse für

das Balancing der Spiele zu verwenden. Um dieses Ziel zu erreichen wurde im Rahmen

dieser Masterarbeit eine neue Spielbeschreibungssprache, die Wooga Game Descripti-

on Language (WGDL), entwickelt. Ein Prototyp eines Spielebalancing-Tools, welcher in

WGDL beschriebene Spiele automatisiert spielen kann, wurde implementiert. Um die Er-

gebnisse des automatisierten Spielens zu verbessern wurden mehrere Erweiterungen für

den etablierten Suchalgorithmus, die Monte Carlo Baumsuche (MCTS), entworfen und

evaluiert. Die Aufteilung eines Spiels in mehrere Teilspiele, welche nacheinander gespielt

werden, hat die Qualität der Ergebnisse um 35% verbessert. Das Einfügen menschlichen

Wissens über Spielzüge, durch die Aufteilung derer in verschiedene Kategorien, bewirkte

eine Verbesserung um 23%. Der Vergleich der Prototypergebnisse mit Spieldaten von

menschlichen Spielern zeigt, dass er unter gewissen Bedingungen auf einem Niveau mit

diesen ist aber sie noch nicht kontinuierlich übertrumpfen kann. Der hier analysierte

Ansatz ist daher vielversprechend, muss vor der praktischen Anwendung für das Spiele-

balancing aber noch verbessert werden.

iii

Acknowledgements

Before continuing with my thesis I want to thank some people that helped me write it

during the last six month.

First of all I want to thank my supervisor Prof. Dr. Marco Block-Berlitz for his support

and feedback and especially for getting me started with a clear structure early on. That

helped a lot.

For her continuous support with a product managers perspective and for proof reading

this thesis I would like to thank Alena Delacruz. Also at Wooga I want to thank Jesper

Richter-Reichhelm for his engineering and game industry perspective, the feedback on

my thesis and for supervising me at Wooga for the last months. This thesis would not

have been possible without both their encouragement and support.

I am grateful to my fellow colleagues at Wooga, the thesis writing students as well as my

team, the game eight team, and the people at the magic land team.

For bringing Wooga to my attention and bringing me on board I would like to thank

Anne Seebach.

Last but not least I owe my deepest gratitude to my girlfriend Isabel who supported me

while I was occupied with this thesis.

Armin Feistenauer

v

Eidesstattliche Erklärung

Ich versichere hiermit an Eides statt, dass diese Arbeit von niemand anderem als meiner

Person verfasst worden ist. Alle verwendeten Hilfsmittel wie Berichte, Bücher, Internet-

seiten oder ähnliches sind im Literaturverzeichnis angegeben, Zitate aus fremden Arbeiten

sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form

keiner anderen Prüfungskommission vorgelegt und auch nicht veröentlicht.

Berlin, den 09.08.2012

Armin Feistenauer

vii

Contents

Abstract . i

Abstract (German) . iii

Acknowledgements . v

List of All Experiments . xi

Nomenclature . xv

1. Motivation and Introduction 1

1.1. About Wooga . 3

1.2. Scope of the Thesis . 3

1.2.1. Arti�cial Intelligence . 3

1.2.2. Social Games . 4

1.2.3. Game Balancing . 4

1.3. Structure of the Work . 5

2. Theory and Related Works 7

2.1. Game Descriptions . 7

2.1.1. Classes of Games . 8

2.1.2. Game Description Language . 10

2.1.3. Strategy Game Description Language 12

2.2. Search Algorithms for Games . 13

2.2.1. Minimax and Alpha Beta Search 16

2.2.2. Monte Carlo Tree Search . 20

2.2.3. Nested Monte Carlo Search . 24

2.3. Software Engineering . 25

2.3.1. Design Pattern: Abstract Factory 25

2.3.2. Design Pattern: Composite . 25

2.3.3. Design Pattern: Proxy . 25

2.3.4. Design Pattern: Template Method 26

2.3.5. Performance Analysis with VisualVM 26

3. Project Goals and Structure of the Software 29

3.1. Goals of the Project . 29

3.1.1. Test Validity of this Approach . 29

3.1.2. Supporting Game Balancing . 29

ix

Contents

3.1.3. Reusability of the Game Description Language 30

3.1.4. Ease of Use . 30

3.1.5. Performance of the Analysis . 30

3.2. Use Cases . 31

3.3. Software Structure . 32

4. Design of a new Game Description Language 35

4.1. Overview . 35

4.1.1. Goals and Requirements . 35

4.1.2. Social Building Simulation Games 36

4.1.3. Other Game Description Languages 38

4.2. The Wooga Game Description Language 38

4.2.1. Language Features . 39

4.2.2. Syntax Example Applications . 44

4.3. Implementation . 51

4.4. Results and Limitations . 54

5. Playing with Arti�cial Intelligence 57

5.1. Overview . 57

5.1.1. Requirements and Goals . 57

5.1.2. Analyzing a Social Game . 57

5.1.3. Setting Goals . 58

5.2. Customizing the Playing Algorithm . 59

5.2.1. General . 59

5.2.2. Selection . 61

5.2.3. Expansion . 63

5.2.4. Simulation . 66

5.2.5. Backpropagation . 67

5.2.6. Parallelization and Consecutiveness 68

5.3. Implementation . 69

5.4. Results and Limitations . 71

6. Experiments and Evaluation 73

6.1. The Environment . 73

6.1.1. The Games . 73

6.1.2. The Benchmarking System . 75

6.2. Experiments . 76

6.2.1. General . 76

6.2.2. Selection . 80

6.2.3. Expansion . 83

6.2.4. Simulation . 87

x

Contents

6.2.5. Parallelization and Consecutiveness 90

6.2.6. Testing Nested Monte Carlo Search 94

6.3. Evaluation . 95

6.3.1. Comparison with Human Players 95

6.3.2. Performance Analysis . 98

7. Summary and Outlook 99

7.1. Summary . 99

7.2. List Of Own Contributions . 100

7.2.1. Contributions to the Field of Game Description Languages 100

7.2.2. Modi�cations to the Monte Carlo Tree Search 100

7.3. Outlook . 101

A. Magic Land 103

B. Wooga Game Description Language De�nition 107

C. Experimental Results 111

D. Game Description Example: Simple Coins 113

E. Attached DVD - Content 115

Bibliography 117

xi

List of All Experiments

Experiment 1: Result Formula Limits 76

Experiment 2: Factors in Result Formulas 77

Experiment 3: Using Subgoals to Improve Results 79

Experiment 4: Comparing UCB Algorithms 80

Experiment 5: How Well Performs UCB for SP? 81

Experiment 6: Testing the Non Tree Policy 82

Experiment 7: Searching Multiple Game States 83

Experiment 8: Testing the Branching Factor 85

Experiment 9: Testing the Node Limit per Level 86

Experiment 10: Adding the Best Game State's Path to the Tree 87

Experiment 11: Using Action Groups 88

Experiment 12: Should Hopeless Games Be Aborted? 89

Experiment 13: How Do the Parallelization Schemes Scale? 90

Experiment 14: How Do the Parallelization Schemes Perform? 91

Experiment 15: Combining Parallelization Schemes 92

Experiment 16: Multiple Consecutive Search Runs 93

Experiment 17: Comparing NMCS and MCTS Results 94

xiii

Nomenclature

Project Nomenclature

Balancing Tool The prototype of a balancing tool has been implemented for this

thesis. It is referred to as tool, balancing tool and prototype.

When referenced as balancing tool the sentence does not only

apply to the current implementation but to the idea behind it as

well.

Goal When the last goal is reached the game state is considered termi-

nal. All previous goals are called subgoal.

Magic Land Magic Land is a SBSG developed by Wooga. The player takes over

control of a small kingdom and starts to expand it. This game is

used as a reference for SBSGs in this thesis.

ML See Magic Land.

Prototype See Balancing Tool.

SBSG A Social Building Simulation Game is a social game with focus

on the building aspect of a game. Gardens, towns, kingdoms and

many other things are built and expanded by the player.

SC See Simple Coins.

Simple Coins Simple Coins is an example game used to demonstrate the value of

some search algorithm modi�cations. It allows to compare search

results with the optimal solution because the optimal solution can

be calculated.

Tool See Balancing Tool.

Wooga Wooga GmbH is the social and mobile game development com-

pany this thesis has been written at. It is currently the worlds

fourth largest social gaming company on facebook.

XP Short term for experience points, a common meassure for game

progression.

xv

Nomenclature

Game Description Nomenclature

EBNF The Extended Backus-Naur Form is a metasyntax for context-free

grammars, used to de�ne WGDL.

GDL A Game Description Language invented in Stanford. Most com-

monly used to date.

SGDL The Strategy Game Description Language is currently under de-

velopment and the inspiration for WGDL.

WGDL The Wooga Game Description Language is introduced in this the-

sis to describe social building simulation games.

Search Algorithm Nomenclature

Alpha-Beta Pruning Alpha-Beta Pruning is an extension optimizing Minimax by cut-

ting down the tree size that has to be searched.

GGP General Game Playing is the process of playing games previously

unknown to the program. It is the name of a project of the Stan-

ford Logic Group.

MCTS Monte Carlo Tree Search is an algorithm building up a search tree

and evaluating the game states nodes with Monte Carlo methods.

Minimax Minimax is the standard search algorithm for two player games

with perfect information.

Monte Carlo Methods A mathematical method to approximate values with many ran-

dom experiments.

NMCS Nested Monte Carlo Search uses a nested search algorithm with

Monte Carlo methods instead of building up a search tree. It is

therefore very economic regarding memory consumption.

Playout A playout is the process of playing a game from a start game state

until a terminal state is reached.

SP-MCTS SP-MCTS is an UCB formula speci�cally designed to do well in

single-player games.

UCB Upper Con�dence Bound is an algorithm balancing exploration

of new path in the tree with exploiting the currently best options.

It aims to maximize the result of the plays but promises to even-

tually �nd the best possible solution. Other algorithms with the

same goal are listed under this term as well.

xvi

1. Motivation and Introduction

Few developments have transformed our daily life over the last few years as much as the

success story of social networks. Three quarters of Germany's internet users are active

on a social network, tendency rising. Most of them are registered with Facebook [6].

Since Facebook opened its platform to external vendors in 2007, other companies like

games developers have been pro�ting from its rapid success as well. Their Social Games

can reach tremendous player numbers in a short amount of time [8]. Social Games are

de�ned as games that access data provided from a social graph, optimize their games'

designs on short play sessions and monetize with virtual goods. A prominent example,

CityVille1, was played by over 100 million players in January 2011 and remains the biggest

Facebook game to this day [49]. The Social Games development cycle is characterized by

their early release and the addition of content and features over a longer period of time

afterward. This provides new challenges for traditional game balancing:

• How long will the �new� content occupy its players?

• How will the new content a�ect the balance of the existing game?

Figure 1.1.: Garry Kasparov vs Deep Blue
Copyright Adam Nadel, AP

A small revolution has taken place in

the �eld of Arti�cial Intelligence (AI) in

the past ten years as well. This thesis will

explore whether AI can be a tool to solve

these new challenges. Since the invention

of the computer, ever better algorithms

have been developed for playing games un-

der the heading of Arti�cial Intelligence

[46]. The game of chess received special

attention because it could, amongst other

things, not be solved with a brute force

approach alone. In the year 1997 IBM suc-

ceeded at beating the acting chess world champion Garry Kasparov with their chess com-

puter Deep Blue [35]. This huge success could not conceal the fact that this algorithmic

approach mainly pursued in AI until then had two fundamental problems. Firstly, these

speci�cally constructed AIs only showed good results in one type of game and could

1CityVille can be played at: http://apps.facebook.com/cityville/

1

1. Motivation and Introduction

not play any others. This made it very di�cult to generalize or transfer any �ndings.

Secondly, the AIs needed heuristics to evaluate game situations and these heuristics are

not known or available for all games. This was abundantly clear in the game of Go, for

which no heuristic is known. While the chess world champion was already beaten, Go

programs could not even win against amateurs.

The Stanford Logic Group faced the problem of overspecialization by creating a new

language for describing games, the Game Description Language (GDL) [20]. GDL allows

the development of programs that can play all games described in this language. Since

2005, a yearly tournament2 has been held in which programs have to compete in di�erent

games, described with GDL. The tournament was soon dominated by programs using

Monte Carlo Methods instead of heuristics to evaluate game situations. These Monte

Carlo Methods, which where �rst used in AI in 2006, have since improved the performance

of Go playing programs considerably.

This master's thesis will bring both developments together and answer the following

questions:

• How can Social Games, particularly building simulations, be described in a general

way?

• Are Monte Carlo methods suited to play these games successfully?

• What adaptions have to be made to current Monte Carlo Search Algorithms to

ful�ll the demands of this new task?

At last the thesis should allow an assessment of whether this approach is viable to simulate

human playing behavior and gain useful insights for social game balancing.

2Website of the AAAI Tournament: http://games.stanford.edu/

2

1.1. About Wooga

1.1. About Wooga

Figure 1.2.: Wooga Logo

This master's thesis was written throughout an internship

at Wooga GmbH3, where the result of this work will be used

in the development of new games. Wooga was, at the time of

this writing, the world's fourth largest Social Games devel-

oper and was founded in 2009 by Jens Begemann, Philipp

Moeser and Patrick Paulisch in Berlin. Since 2009, Wooga

has released six titles and focused on the Facebook and iOS

platforms. All currently released titles may be divided into

two categories:

1. Arcade Games: Brain Buddies, Bubble Island and Di-

amond Dash. These are fast-paced mini-games where

the goal is to reach a highscore in a given amount of

time.

2. Building Simulation Games: Monster World, Happy

Hospital and Magic Land. These are games where the

player regularly returns to his previous game and con-

tinues building-up his virtual property.

The tool described in this thesis is meant to be used for balancing this second kind of

game. For a more detailed description of the game types see chapter 4.1.2.

1.2. Scope of the Thesis

This master's thesis deals with the intersection between Arti�cial Intelligence, Social

Games and Game Balancing. Before the theoretical background of the topics covered in

this paper are analyzed in more depth, the scope of this thesis regarding the main topics

will be narrowed down.

1.2.1. Arti�cial Intelligence

John McCarthy, who coined the term Arti�cial Intelligence in 1956, describes AI as �[...]

the science and engineering of making intelligent machines, especially intelligent com-

puter programs.� [51]. Intelligence in turn is de�ned as �[...] the computational part of

the ability to achieve goals in the world.� [51]. Therefore AIs are computer programs

that have the ability to achieve goals. As the question of whether something is intelligent

becomes one of degree, AI research tries to move programs into the direction of intelli-

gence on di�erent branches of the �eld. Some branches of AI deal with neural networks

3Website of Wooga: http://www.wooga.com

3

1. Motivation and Introduction

and machine learning, others with visual recognition, the ability to understand language,

logical inferences and many more.

This thesis will mainly cover the AI �eld of �search� that deals with e�ciently searching

a large possibility space. As a prerequisite for searching it will also touch on some concepts

of �representation�, a �eld that deals with how to represent facts about the world. Methods

from these �elds are applied on the task of playing di�erent games with one program.

This speci�c research area has recently become its own active �eld of study under the

term General Game Playing (GGP), coined by the General Game Playing Project of the

Stanford Logic Group of Stanford University[20].

1.2.2. Social Games

Social Games are a fairly new phenomenon in the games market. Even at the moment

there remains no dominant de�nition of what is and what isn't a Social Game. The

main discussion at the moment being, what kind of interaction a game has to o�er to

be classi�ed as social. For the purpose of this thesis it will be enough to settle on a very

broad de�nition of the term.

In chapter 4.1.2 a subclass of Social Games that shall be describable by the new Game

Description Language is de�ned.

In �Inside Virtual Goods - The Future of Social Gaming 2011� [8] the following three

core elements of Social Games are extracted:

Use Of Social Graph Data It has to use relationships in a social network to connect

players, to play together, send and receive items or get new players to play a

game. This feature introduces a new quality of virality, allowing games to spread

enormously fast through the social graph.

Game Play Designed For Short Session Length Most Social Games are designed to be

played in many small sessions, which �t into breaks or visits to a social network.

Free To Play Games Monetized Largely By Virtual Goods Social Games are not pur-

chased, but played for free. This lowers the entrance barrier dramatically but has

the e�ect that games have to be fun from the start, because the user has no invest-

ment in the game and might stop playing anytime. These games then monetize by

smaller transactions over the whole lifetime of the player.

1.2.3. Game Balancing

Game Balancing is the process of �ne-tuning a game's rules and settings. There are

di�erent balancing goals for various game types but in general, game balancing tries to

achieve the goals listed below [50]:

4

1.3. Structure of the Work

Balance Game Features Human players have the ability to optimize their game play

habits, i. e. learn how to best play a game. Poor balancing encourages players to

optimize around the wrong features. Weak features won't be used whereas strong

features will have disproportionate in�uence.

Progression Balancing in�uences the speed with which players advance to new levels,

territories, weapons, and other possibilities. This is used to a�ect player motivation

and game duration.

Fairness In multi-player games the di�erent players should have an equal likelihood, or

likelihood depending on their skill level, to win.

Game Balancing is a task every team faces during game development. This thesis shows

how General Game Playing, henceforth referred to as GGP, can help to estimate player

progression and maybe even balance game features .

1.3. Structure of the Work

In chapter 2 the current state of research in the �eld of Game Descriptions (2.1) and

Search Algorithms (2.2) is shown and methods used in this thesis are explained. The

concepts of Software Engineering (2.3) that were applied during implementation are

listed as well.

Chapter 3 states the goals of the prototype that was created during the course of this

internship. These goals were a major factor when decisions, concerning features and their

implementation, had to be made. This chapter also includes a section on the structure

of the prototype.

Chapter 4 is the �rst of two major parts of this work. It introduces a new Game

Description Language suited to describe a subclass of Social Games and discusses the

fortitude and limitations of its expressiveness.

The second major part is discussed in Chapter 5. Social games are played using Monte

Carlo Tree Search Algorithms. The adaptions made to this algorithm in order for it to

play successfully are shown and di�erent alternatives are considered.

In the next chapter on Experiments and Evaluation (Chapter 6) several variants of the

algorithm are put to the test.

Finally the summary in Chapter 7 shows what has been achieved and what advance-

ments have been made. This chapter also features an outlook where future research

projects could continue this work.

5

2. Theory and Related Works

The research in GGP is currently focused on game descriptions and search algorithms.

In this chapter the methods this work builds upon are explained and the current state

of the research is shown.

2.1. Game Descriptions

Game descriptions are formal languages to describe classes of games. These languages are

a prerequisite for GGP, because they allow the construction of programs that are able to

interpret and then play all games described with them. The game description therefore

acts like a common interface, playing and searching algorithms can adhere to.

First attempts on GGP had been made as early as 1968, when Jacques Pitrat proposed

his �Realization of a general game-playing program� [43]. But the idea did not take o� and

was revived only in 1992 by Barney Pell. He named the idea, that programs play games

which are given to them as an input in a given language, Metagame [42, 41] and argued

that this would force game analysis to be made by programs rather than programmers.

The concept is explained in �gure 2.1.

His implementation calledMetagamer [40] was able to play symmetric chess-like games

and played reasonably well against specialized programs in checkers and chess, while

clearly loosing against the best of these programs.

Since then a string of new proposals of how to represent games have been made [37, 20,

4, 13, 7, 10, 28]. With Zillions of Games1 even a commercial �universal gaming engine�

was published in 1998. The main di�erence between these proposals being the class of

games that can be expressed with them. Before the two most in�uential game description

languages to this thesis (GDL see 2.1.2 and SGDL see 2.1.3) are presented, some basic

terms for classes of games are explained.

1Zillions of Games can be found on the Website: http://www.zillions-of-games.com/

7

2. Theory and Related Works

(a) Programming AIs for speci�c games(b) Programming a meta gamer for a
class of games

Figure 2.1.: In Figure 2.1a the programmer (black smiley) uses knowledge about a spe-
ci�c game to create an AI playing this game.
The Figure 2.1b illustrates the programming of a meta gamer. The program-
mer can no longer introduce his knowledge directly into the player, but has
to create a �Metagamer� able to play games described in game rules, which
are created by a game generator.
Figure recreated after Pell [40].

2.1.1. Classes of Games

There is no single language or framework for classifying di�erent types of games. But we

need some common understanding of terms to discuss di�erences in descriptive power

between game description languages. The terms used to describe game classes in this

paper are therefore de�ned as follows:

Finite Vs. In�nite Finite games have a beginning and an end, whereas in�nite games

need not have either of these.

e. g. Connect Four vs. Conway's Game of Life

Discrete Vs. Continuous Discrete games have a �nite and countable number of moves

and possibilities. Continuous games allow to choose from a continuous �eld of pos-

sibilities.

e. g. Connect Four vs. Counter-Strike2

Deterministic Vs. Non-deterministic In deterministic games, the outcome of any event

is predetermined, whereas non-deterministic games allow for random events.

e. g. Chess vs. Poker

2Counter-Strike is a �rst-person shooter, where terrorists and counter-terrorists compete against each
other. Website: http://www.counter-strike.net/

8

2.1. Game Descriptions

Multi-player Vs. Single-player In multi-player games several players play together, ei-

ther cooperating or competing. In single-player games there is only one player

e. g. Counter-Strike vs. Pinball

Complete Information Vs. Incomplete Information In games of complete information

every player knows everything about the current game state. In games of incomplete

information the knowledge of di�erent players may vary.

e. g. Chess vs. Poker

Zero Sum Vs. Non-zero-sum In zero sum games gains of one player are equal to the

loses of the other player(s) [47]. Therefore players compete for the same resources

and none are created or destroyed.

e. g. Liquid War3 vs. FarmVille

Symmetric Vs. Asymmetric Symmetric games give the same possibilities to every player,

whereas asymmetric games may treat players di�erently.

e. g. Go vs. StarCraft4

Game Type

Chess �nite, discrete, deterministic, symmetric, zero-sum,
multi-player game with complete information

Poker �nite, discrete, non-deterministic, symmetric, zero-sum,
multi-player game with incomplete information

StarCraft �nite, discrete, deterministic, asymmetric, non-zero-sum,
multi-player game with incomplete information

Counter-Strike �nite, continuous, deterministic, asymmetric, non-zero-sum,
multi-player game with incomplete information

Table 2.1.: Game examples listed with their classes

3Liquid War is a popular multi-player linux game, where the player has to surround the enemies liquid
with his own. Surrounded liquid changes its allegiance to the surrounding player. The overall amount
of liquid stays the same, what makes it a zero sum game.

4StarCraft is a real-time strategy game in a science �ction setting. Three di�erent races �ght each
other. Website: http://eu.blizzard.com/de-de/games/sc/

9

2. Theory and Related Works

2.1.2. Game Description Language

Figure 2.2.: From an initial state various intermediate states can be reached by applying
di�erent moves. After various moves the game reaches a terminal state. Ini-
tial state, terminal states and possible moves have to be de�ned in a game
description.

The Game Description Language (GDL) is a logical language able to describe ��nite,

discrete, deterministic multi-player games of complete information� [20]. It allows rea-

soning by giving a number of facts that are either true or false in a given state. A set of

true facts therefore describes the world of the game at any time. The initial state of the

game and the terminal state(s) are especially marked. A game description does not have

to contain all possible states, because the state space is de�ned by the initial state, the

possible moves and the terminal conditions. From these all intermediate states can be

calculated, by applying consecutive player moves on the state. A move is a relation, that

has preconditions, which need to be true before it can be made and it describes what

the next state looks like in relation to the current state. By applying a move the initial

state is therefore transformed to an intermediate state. When a terminal state has been

reached by any player the goal relations are executed and return a score for every player

of the game. This is explained in Figure 2.2.

GDL is based on the programming language Datalog and has some game related rela-

tions prede�ned, listed in Table 2.2.

Name of Relation Description

(role r) r is a player in the game

true(fact) the fact holds true in this state

init(fact) the fact holds true in the initial state

next(fact) the fact will hold true in the next state

legal(role, move) when the conditions behind this legal relation are met the
player role is allowed to play the move move

does(role, move) indicates which move a player actually performs

goal(role, score) When the conditions for the goal relation hold the player
role has achieved a goal value of score

terminal when the conditions of this relation are true the game ends

Table 2.2.: List of GDL-relations and their purpose

10

2.1. Game Descriptions

The Game Description Language is the standard by default of game description lan-

guages at the moment. Most research on General Game Playing uses or extends it5. This

may in part be because of the infrastructure provided for it by the scienti�c community.

In addition to the language itself, its' inventors designed a Game Master service that de-

�nes an interface these programs must conform to and allows di�erent players to compete

against each other. The Computational Logic Group at TU-Dresden has implemented

a General Game Playing Server (GGP Server) as an Open Source Project6 and hosts a

public instance where anyone can test his players7.

On the servers of the University of Stanford or TU-Dresden programmers can prepare

for the yearly GGP Tournament that features a prize of $10,000 for the winner.

Extending the Game Description Language

Several attempts have been made to extend GDL to allow non-deterministic games and

games of non-complete information. This would increase the range of games, describable

with GDL signi�cantly. Random events are crucial to dice games, most card games and

many complex systems. Hiding the result of random events to other players creates a

new challenge for general game players. They then have to model the view of the game

from their opponents perspective as well as their own.

A �rst approach by Kulick at FU-Berlin in 2009 added random events, non-complete

information, real-time capability in contrast to the turn based system used in GDL and

a library system allowing for easy reuse of game description parts [13, 14]. This language

was called World Description Language (WDL). WDL kept backwards compatibility to

GDL and provided a World Controller based on the GGP Server of TU-Dresden8.

In 2010 Thielscher published similar but less ambitious research and proposed a new

dialect of GDL called Game Description Language with Incomplete Information (GDL-II)

[7]. It kept backwards compatibility to GDL and introduced two new relations. One is

called random and acts like an independent player that chooses random moves. This

relation can be used to simulate non-deterministic events like dice rolling. The second

one is called sees and controls the visibility of information. All information is unknown

to the players until it is revealed to them with a sees relation. These additions su�ce to

describe �nite, discrete, non-deterministic multi-player games of incomplete information.

The GGP Server is able to hold matches in GDL-II and the language has therefore already

been used in competitions9.

5This literature list is a good starting point when searching for research on General Game Playing:
http://www.general-game-playing.de/literature.html

6The project can be found on sourceforge: http://sourceforge.net/projects/ggpserver/
7A public instance of GGP Server from the TU-Dresden: http://ggpserver.general-game-playing.de/
8Executable and source code of the World Controller are available under: http://gameai.mi.fu-
berlin.de/ggp/resources.html

9The GDL-II track of the German open in GGP 2011 is available here:
http://www.tzi.de/~kissmann/ggp/go-ggp/gdl-ii/

11

2. Theory and Related Works

It is too early to tell which extension will spread more widely but GDL-II de�nitely

has the head start.

2.1.3. Strategy Game Description Language

In contrast to the GDL the Strategy Game Description Language (SGDL) is not aimed at

being as general as possible, but concentrates on the speci�c needs in describing strategy

games. It was invented by Mahlmann, Togelius and Yannakakis at the IT University

of Copenhagen in 2011 and is still under active development [4, 1, 5]. Their goal was

not to create sophisticated AIs for existing games, but to allow procedural creation of

new strategy games through evolutionary algorithms. This has a�ected the design of

SGDL, to use tree based representations for describing game mechanics because tree

representations are widely used in evolutionary algorithms.

Figure 2.3.: In SGDL object classes consist of attributes and actions.

The elements of a SGDL game are called object classes. Every object class de�nes

some attributes and actions, which belong to every object of this class (see �gure 2.3).

The di�erent classes, like units, map and buildings can therefore have di�erent properties

and abilities. Attributes themselves have a name and a value. Actions are more complex,

having conditions which have to be ful�lled for their consequences to happen. This cor-

responds to relatively simple if ... then ... statements. Conditions and consequences alike

are again represented in a tree structure composed of di�erent kinds of nodes: Actions,

comparators, operators and constants:

Action Checks all conditions for their value. When all return true the consequences are

applied.

Comparator A boolean logic term that returns a boolean value.

Operator Either assigns a value or performs a mathematical operation on its child nodes.

Constant Is a leaf node that contains a single value.

The SGDL is not yet fully documented and no implementation is publicly available.

But the inventors have already added more functionality to allow object creation, non-

deterministic events and di�erentiation between the global game state and the player

12

2.2. Search Algorithms for Games

(a) A condition (b) A condition combined with a consequence

Figure 2.4.: A condition tree and an action tree with one condition on the left and a
consequence on the right.

game state [3]. SGDL is not nearly as mature as GDL and it remains to be seen what

can be learned from this new game description language.

2.2. Search Algorithms for Games

While game descriptions are necessary to de�ne a games' rules and objects GGP addi-

tionally needs agents playing these games. Playing a game can be described as making a

series of decisions until the game ends. GGP is therefore the art of making good decisions

in very di�erent games. This leads to the question of how programs decide which move

to take next. There are only two viable options.

On the one hand the program can analyze the current game state and decide based on

rules, like an opening book [19], or completely at random.

On the other hand programs may try to analyze future game states, by trying out

di�erent moves in their memory and then deciding which of these is best.

Both strategies are applied by humans when playing. In a chess game a human player

might conform to the rule to open with pawn to e4 every time he has white and is

therefore �rst to move. But when reacting on situations that the player can not look up

in an opening book, he will most likely think about di�erent moves, some steps ahead,

and then play the move that seems to lead him into the best situation even if his opponent

plays his optimal moves.

Chess or Go programs combine these strategies most of the time. A set of rules, pro-

vided by human experts or by learning from previous games and moves, is the foundation

for all of their decisions. To this information, a search strategy that plays several steps

ahead or even to the end of the game, is added. The combination of searching by rules

and looking into future steps is called a search algorithm for games.

13

2. Theory and Related Works

Why brute force might not be enough

When regarding AIs performance in games one can identify two largely di�erent groups,

depending on their so called tree space. As di�erent choices of moves starting from an

initial position can be represented as a tree, we call the number of nodes in this game

tree: the tree space of a game. One group of games has relatively few di�erent moves and

paths to the end. Tic-Tac-Toe or Connect Four are good examples for these games. They

can be extensively searched by AIs and may therefore be considered solved. Creating

an AI for these games is a straightforward task. Play all possible moves and calculate

the terminal states of the games. Then play the move that will most certainly lead to a

win for your side. This is no challenge to AI any more. The other group of games still

presents a challenge to AI. These games have a huge tree space and can therefore not

be extensively searched in a reasonable amount of time. AIs can therefore explore only

parts of his tree space's possibilities and then choose which to explore. Chess and Go are

the pre-emminent examples for these kind of games.

How large the tree space for a game is can be calculated with very little information

about the game. It depends on m, the number of moves available to the player at every

turn and l, the number of moves a game may last. An upper limit for the tree space is

then:

limit = ml

This term gets obviously very large for long games with high m or games with many

di�erent moves l.

Figure 2.5.: Examples of Tic-tac-toe situations
First row: possible �rst moves of player X
Second row: the same draw end state in four symmetric versions

In Tic-tac-toe there are never more than nine possible moves and the game only

lasts up to nine turns. The upper limit for the tree space of Tic-tac-toe is therefore

99 = 387, 420, 489 which is deceptive. While 9 is the number of moves in the �rst turn

this possibility then decreases by one for every following move. When calculating the pos-

sibilities for every move this leads from 99 = 9×9×9×9×9×9×9×9×9 = 387, 420, 489

14

2.2. Search Algorithms for Games

to 9! = 9× 8× 7× 6× 5× 4× 3× 2× 1 = 362, 880. This number, though a lot smaller,

is still to high, because Tic-tac-toe uses a symmetric board. The �rst mark may be set

in a corner (4 similar moves), in the middle of a side line (4 similar moves) or in the

center (1 move). As it doesn't matter in which order moves are made and there are dif-

ferent move combinations leading to the same game situation later on, the state space is

reduced even further. The state space is de�ned as the number of di�erent game states

or game positions that might occur in a game. When reasoning about game AIs it might

be reasonable to add some simple rules players will apply. One common rule is to play a

terminal move if the player is able to do so, because these are relatively easy to spot. In

his analysis of Tic-tac-toe's state and tree space in 2002 Schaefer [52] added these and

some more considerations and found a reasonable state space of 230 positions, leading

to 138 terminal positions with a tree space of 1,145 di�erent paths to these terminal

positions. Tic-tac-toe can therefore easily be searched extensively.

For chess it's a whole di�erent story. On the �rst move white has 20 possible moves

to choose from. Pawns one step ahead (8 moves), two steps ahead (8 moves) and four

positions for the Horses to go to (4 moves). The possibilities increase rather than decrease

when the game moves on and there is no relevant symmetry. The average number of valid

moves was calculated by De Groote in 1946 to be around 30 [48]. This calculation was

used by Shannon in 1950 to estimate the game tree complexity of chess to be around

10120. In 1994 Allis based his game tree complexity evaluation of 10123 on an average of

35 valid moves and 80 moves per game, 40 for white and 40 for black. When calculating

with the speed of Deep Blue, the chess playing computer that on average calculated 126

million moves in a second [35], it would need ≈ 8×10114 seconds or ≈ 2.5×10107 years. In

comparison the age of the universe is estimated to be approximately 4.32×1017 seconds,

which is only 1.37× 1010 years10. A brute force attempt for the whole game is therefore

out of the question and an analysis of all steps has to limit itself to a very shallow depth.

10The age of the universe has been obtained from Wolfram Alpha: http://www.wolframalpha.com/in-
put/?i=age+of+the+universe

15

2. Theory and Related Works

Tree Based Search Algorithms

Figure 2.6.: Example of a game tree

To �nd the best moves, programs have to create a game tree with a node for each state and

edges for moves leading to these states. While doing this every game playing algorithm

has to face two problems.

Deciding Which Move To Take The algorithm has to decide which nodes to expand

and which moves to explore until it reaches some limit. This limit can be a time

constraint or a depth limit of how far the algorithm is supposed to look ahead. This

depth limit is measured in plies, where a ply is one move of one player.

Evaluating The Game State Besides deciding which nodes to expand, these nodes, which

represent game states, have to be evaluated. This evaluation is easy for extensively

searched games, because it can be calculated backwards from the terminal nodes.

When stopping the search before a terminal node is reached the game state must

either be evaluated based on a heuristic (see 2.2.1) or based on statistical playouts

(see 2.2.2).

2.2.1. Minimax and Alpha Beta Search

In deterministic single player games the AI may choose a move from the current node

that promises the highest reward. This is di�erent in competitive two player games,

where both players will try to achieve the best possible result for themselves. In zero

sum games, where players compete for the same result, the opponents choices have to be

considered. Simply taking the move with the highest possible result at the end might lead

to situations where the opponents move will stop the player from achieving this result.

Minimax

Minimax is the standard algorithm for two player games with perfect information [32]. It

maximizes the minimal result the player will reach. Hence it is called Minimax. Figure

16

2.2. Search Algorithms for Games

2.7 shows an example. A short description of the algorithm:

1. The search tree is explored until the maximum number of plies search is reached.

2. A value is assigned to the leaf nodes. Wins for player A get +∞, wins for player B

−∞ and the rest are evaluated by a heuristic.

3. The values are now back-propagated through the tree: Whenever it is player A's

move to choose he chooses the move leading to the node with the higher value.

Player A is maximizing his result. Whenever it is player B's move he chooses the

move with minimal value for player A. Player B is minimizing player A's result.

4. Player A makes the move leading to the node with the highest value previously

calculated.

Figure 2.7.: An example of a simple Minimax search with 4-plies depth. Player A, green,
chooses the highest value moves in row 0 and 2, whereas player B, orange,
chooses the minimal value moves in row 1 and 3. The chosen move is marked
blue.

17

2. Theory and Related Works

Alpha-Beta Pruning

Figure 2.8.: An example of alpha-beta pruning. Game state nodes contain alpha, value
and beta. Blue lines show which values or moves a player would choose in
this situation. Blue arrows show how alpha and beta values are updated.
Red values show values leading to alpha or beta cutting. Black nodes do not
have to be searched thanks to alpha-beta pruning.
The maximizing player would choose the middle move �rst, the minimizing
player then chooses the left move, because this returns a lower value of 12
instead of 13 for his opponent.

Minimax is a very expensive search algorithm because it needs expansion of the whole

(sub)tree and has to look at every node in order to decide which move to take. Alpha-Beta

Pruning is an extension optimizing Minimax. It was independently discovered several

times and published in detail by Edwards and Hart in 1963 [45].

The basic idea is to avoid searching branches that will certainly never be played. To

make the decision, that a branch will never be played, the results from previous branches

can be used. To save this information two additional values are introduced. The highest

value that player A is sure to achieve from a given node, α, and the smallest value that

player B can force from a node, β. Alpha is initialized with negative in�nity, beta with

positive in�nity. Based on these values two cut-o� conditions are set. When the α-value

of a node, where player A is allowed to choose the next move is higher or equal to the

β-value of the parent node the branch does not need to be searched any more. This is

due to the fact that player B would never choose the move leading to this node, when

he can play a move that sets the maximum result of player A to β. When the β-value

of a node, where player B is allowed to choose the next move, is smaller or equal to the

a-value of the parent node the branch can also be cut. Player A would not choose a move

that allows player B to force a lower result than player A is sure to get when taking a

di�erent move.

The savings from cutting branches depend on the ordering of the moves. When the

best moves are searched �rst good α and β values allow the cutting of branches very

quickly. In the worst case Alpha-Beta Pruning is not faster than Minimax, but in the

18

2.2. Search Algorithms for Games

best case the branching factor can be reduced to its square root, allowing to search two

times the depth than Minimax. In an average case the branching factor can be reduced

by 25% percent [34].

Alpha-Beta Pruning has long been the prime algorithm used in game playing, especially

chess. But it has one precondition that made it perform quite poorly in GGP. To start a

search the leaf nodes have to be evaluated. In Chess and other games this is done based

on heuristics composed through expert knowledge and experimentation. For other games

like Go no heuristic is know or can be known in the case of games describes with a game

description language. In these cases Alpha-Beta Pruning might cut o� the best path if

the evaluation of the result is wrong.

19

2. Theory and Related Works

2.2.2. Monte Carlo Tree Search

The problem of estimating a value, which can not be calculated deterministically, is not

unique to game playing. To solve this problem Monte Carlo methods have been used in

many di�erent �elds of mathematics or physics since the 1940s [44]. The idea behind

the Monte Carlo method is quite simple. With randomly created inputs a huge number

of deterministic computations are performed and their results aggregated. The result of

these computations will converge to the real result. When applied to games this means,

that a large number of games are played randomly to the end and the results are then used

to evaluate the starting state. A formula for the expected result is then δ = t
n , where

δ is the expected result, t is the sum of all results and n is the number of playouts11

performed.

Monte Carlo methods had already been applied to games like Poker and Scrabble when

the Monte Carlo Tree Search (MCTS) was proposed in 2006. MCTS was then able to

decisively improve the AIs performance in the game of Go against human players [29, 21].

Since then it has been used to advance AIs for several other games as well [18, 31, 11].

MCTS is a four step algorithm adapting Monte Carlo methods to tree based game search

algorithms.

Figure 2.9.: The four steps of Monte Carlo Tree Search explained.
Illustration like Brown et al. [2]

11A playout is the process of playing a game from any game state to a terminal one.

20

2.2. Search Algorithms for Games

The four steps are:

Selection Starting from the root node the game tree is traversed and one node selected

for expansion. This is done by recursively comparing the estimated values of the

current node, starting from the root, and its children and choosing the highest one.

The value is the expected result when choosing the action leading to the node. It

is calculated by using knowledge from previous playouts.

Expansion An unexpanded action is chosen from the selected node and a new node

created for the resulting state.

Simulation From the newly created game state node a playout is started. The game is

played using the default policy, explained below, until a terminal state is reached.

Backpropagation The value of the terminal state is propagated to all nodes on the

game path. This result is used to update the statistics of the nodes and re�ne the

estimate of the real value. In the simplest version the estimate would be the average

of all values. How the estimates are calculated de�nes the selection strategy. Some

strategies are explained below.

The �rst two steps are called the tree policy, the third step uses the default policy.

The tree policy therefore de�nes how the game tree is traversed until a node that is

still expandable, i. e. has actions not previously expanded and is not terminal, has been

reached. The method whereby actions are chosen during playouts is determined by the

default policy. The standard default policy randomly selects an action to play. This is

what Monte Carlo simulations for games have been doing before.

MCTS's great improvement lies therefore in the introduction of the tree policy, which

is informed by previous playouts. The tree policy has in�uence on two oppositional goals

one wants to achieve while searching.

Exploration Exploration is the goal to look at every possible move and �nd the best one.

Exploitation Exploitation is the goal to concentrate on promising moves and improve

them.

Upper Con�dence Bound

The problem of trying to balance taking the current best possible action, exploitation,

and trying out new options, exploration, is called the multi-armed bandit problem. It

is named after traditional slot machines called one-armed bandits, because the problem

resembles a slot machine with di�erent levers that have di�erent but yet unknown re-

ward distributions. The goal of any strategy and the solution to this dilemma, would be

to �nd the action with highest reward while achieving the lowest possible regret due to

21

2. Theory and Related Works

exploration. Auer et. al. showed in 2002 that there exists a strategy that achieves loga-

rithmic regret without any prior knowledge about the actions reward distributions [36].

They called this algorithm Upper Con�dence Bound 1 (UCB1). Play the action j with

the highest value in

xj +

√
2 lnn

nj

where xj is the average reward for an action j, n is the total number of plays done

and nj is the number of times action j has been taken. The value xj is the exploitation

part, getting larger the better the results from this action become. The equation
√

2 ln n
nj

is responsible for exploration. It grows with the number of plays that do not take this

action, so that every action will eventually be chosen.

In 2006 Levente Kocsis and Csaba Szepesvári applied UCB1 to MCTS and called that

UCB applied to Trees (UCT) [30]. They showed, that UCB1 is viable for tree based

search and UCT is able to signi�cantly improve search results compared to Alpha-Beta

Pruning, plain Monte Carlo and other algorithms, in some domains.

There has been further research in what strategy is best suited for tree search and

several improvements, mostly for the exploitation part, have been proposed [27, 16].

Table 2.3 shows some strategies important for this master's thesis.

Name Formula

UCB1 xj + C
√

D ln n
nj

with di�erent constant values for C and D [36]

UCB-Tuned 1 xj + C
√
Vj

ln n
nj

with Vj = max (D,xj(1− xj))for small D [23]

UCB-Tuned 2 xj + C
√
Vj

ln n
nj

+
(
ln n
nj

)
[23]

SP-MCTS xj + C
√

D ln n
nj

+

√∑
r2−njx2

j+D

nj
, where

∑
r2 is the sum of the

squared results previously achieved, corrected by the expected
results. D is set high to stress the uncertainty of rarely explored
moves. This Formula has been proposed for Single-Player
Monte-Carlo Tree Search (SP-MCTS) [25, 26].

Table 2.3.: Several UCB strategies used in Monte Carlo Tree Search.

Besides various tree policies another focus of MCTS research have been parallelization

schemes, to improve MCTS performance in competitions.

Parallelization Schemes

In recent years multi-core systems have become common, even in personal computers.

Parallelization of algorithms has therefore become more of an issue. For MCTS several

parallelization schemes have been proposed and tested [9, 17]. A short summary of them

can be viewed in Figure 2.10.

22

2.2. Search Algorithms for Games

Figure 2.10.: MCTS Parallelization Schemes

In leaf parallelization the simulation step is parallelized and multiple simulations are

run for the newly expanded node. The disadvantages of this approach are, that the

selection, expansion and backpropagation phase are not parallelized and the search has

to wait for all simulations to terminate before it can continue.

In the root parallelization scheme every process builds its own search tree and searches

independently. This is especially suited if the di�erent processes don't share memory,

e. g. in a distributed network.

At last two tree parallelization schemes have been proposed. The less aggressive one

uses a global mutex, to limit access to the tree, so that only one process at a time can

select and expand a node. While the process is running its simulation, other processes

are allowed to access the tree. This approach performs well, if the tree search costs little

time, when compared with the simulations. Instead of a global mutex, local ones can be

used. When every node can be locked independently, processes can access the tree at the

same time. This creates overhead for mutexes and locking of every node. In both tree

parallelization schemes a problem has to be solved: Di�erent processes would select the

same node to expand, but this might not be a good idea. For this scenario a virtual loss

has been proposed by Chaslot et. al. in 2008 [22]. The UCB values of the nodes on the

selection path are decreased until the simulation has �nished, prompting other processes

to take di�erent routes and expand di�erent nodes.

23

2. Theory and Related Works

2.2.3. Nested Monte Carlo Search

Nested Monte Carlo Search (NMCS) has been proposed by Tristan Cazenave as an alter-

native to the memory consuming MCTS in 2009 [12]. The algorithm does not build up a

tree, but improves upon simple Monte Carlo search from the initial state, when a nested

search is made for every possible action. Their results are compared, the action with the

best result is chosen and the path to the best result is saved. From the state reached

by taking this action every possible action undergoes a nested search. Their results are

compared as well. The action with the best result is chosen this time only, if it is better

than the best result from all previous searches. If it is worse the next action is taken

from the path to the best result. The next state is created by playing the action and

this process continues until a terminal state is reached. The nested search itself is limited

to a level depth after which the algorithm changes from a nested playout policy to one

playout with random moves. A pseudo-code version of NMCS is shown in Algorithm 2.1.

Algorithm 2.1 Pseudo-code of Nested Monte Carlo Search

i n t nestedMCS (p o s i t i o n , l e v e l) {
i n t b e s tS co r e = −1;
wh i l e (s t a t e i s not t e rm i n a l) {

i f (l e v e l == 1) {
// s top ne s t ed s e a r c h and p l a y to the end
move = max(p layGameForEveryPoss ib l eMove (p o s i t i o n)) ;

} e l s e {
move = max(nestedMCS (everyMove , l e v e l −1)) ;

}

i f (s c o r e o f move > be s tS co r e) {
b e s tS co r e = s c o r e o f move ;
bes tPath = path o f move ;

}
p o s i t i o n = p l a y (p o s i t i o n , bestMove) ;

}
r e t u r n s c o r e ;

}

Nested Monte Carlo Search seems to be especially useful in single-player games and has

been combined with MCTS to improve overall search results. The winner of the General

Game Playing World Championship in 2009 and 2010 was a program called Ary12. In

2010 Ary split computing time between MCTS and NMCS and took the best move of

both search runs [15]. NMCS therefore seems to be a useful strategy that can, due to its

low memory usage, be run parallel to MCTS.

12For a list of all GGP World Champions since 2005 see: http://www.general-game-playing.de/activi-
ties.html

24

2.3. Software Engineering

2.3. Software Engineering

In order to allow the reader a deeper understanding of implementation decisions that

may or may not have had an e�ect on the experiments conducted, some parts of the

implementation are explained in a section of each chapter. Because this is a master's

thesis in computer science most techniques will be familiar to the reader. As this thesis

does not propose new ideas to software engineering this chapter will only explain some

methods used during implementation.

2.3.1. Design Pattern: Abstract Factory

Used in Monte Carlo Node Factory

An Abstract Factory provides an interface to create objects. Its intent is to �provide

an interface for creating families of related or dependent objects without specifying their

concrete classes� [38]. The object using the factory, therefore, does not have to know the

speci�c class of the object that is created. He only accesses a prede�ned interface. As the

factory class is abstract itself, di�erent concrete factories can be given to the object to

create new objects. This pattern is often used in graphical user interfaces, when the same

abstract objects, e. g. window or button, are created and behave di�erently depending

on the platform the program is currently running on. An Abstract Factory encapsulates

the knowledge of how to create and the decision of what kind of object to create.

2.3.2. Design Pattern: Composite

Used in Expression (see 4.3)

The Composite Pattern is used, when objects are stored in a tree-like structure and

the handling of tree-parts and the whole tree should be the same [53, 38]. For all tree

object classes, the leaves and compositions, a common abstract interface is de�ned. This

interface is then used to access objects in the tree and to perform operations on it. The

operations de�ned in the common interface are either implemented in a standard version

in the interface or by the leaves and compositions themselves. The Composite Pattern

allows to add and change what kind of objects may be part of the tree, without changes

to the methods using it.

2.3.3. Design Pattern: Proxy

Used in Attribute Reference (dynamic one)

The Proxy Pattern describes how an object is accessed. A proxy is an object that

grants access to another object, acting as a placeholder for it [33, 38]. This is useful for

example, when the real object is large and should only be loaded when needed or the

object is in a remote place. The proxy has to conform to the same interface as the object

25

2. Theory and Related Works

it represents, so that it can be used on the object's stead. It encapsulates the knowledge

on how to directly access the object.

2.3.4. Design Pattern: Template Method

Used in Search Algorithm search()

A Template Method is a method that de�nes the structure of an algorithm by calling

other methods [38]. These other methods do not have to be implemented by the class

itself, but may rather be used to de�ne access points for subclasses. A subclass can in-

�uence the algorithm by changing these methods, without changing the overall structure

of the algorithm. The Template Method Pattern allows to encapsulate which parts of

an algorithm should be changeable and which not and promotes code reuse in di�erent

algorithms through de�ning the common parts in their parent class.

2.3.5. Performance Analysis with VisualVM

While algorithms and data structures with good performance are important and have

to be considered in the design stages of software development already, there always is

a tradeo� between performance and readability and/or e�ort. Over-optimizing for per-

formance during design and in early development phase may therefore be hurtful to the

progress of the project as a whole. When it is not sure whether performance is a major

issue for a module or class the general rule might be to create a solution, which is as fast

as possible without having a major negative impact on e�ort or readability.

Especially in complex systems with unknown run-time properties, benchmarks can give

valuable feedback on the performance and a performance analysis can help in �nding

bottlenecks. VisualVM13 is a visual pro�ling tool for java programs. It consists of several

scripts, accessing the java virtual machine while the program is running, and shows their

results in a meaningful way. It can be used to analyze where the program spends its time,

how much memory the objects consume and in which states the threads of the program

are in. This information can then be used to �nd the most promising candidates to

improve in re-factoring.

13The VisualVM tool can be downloaded for free at: http://visualvm.java.net/

26

2.3. Software Engineering

Figure 2.11.: A Java VisualVM CPU pro�ling example. The running applications are
listed in the left column. On the right di�erent pro�ling, sampling or mon-
itoring options can be selected and their results viewed below.

27

3. Project Goals and Structure of the

Software

As previously mentioned this master's thesis is about the prototype of a software tool

meant to be applied in the development process of simulation style social games at

Wooga. Because it is not for academic purposes only, the decisions made during design

and implementation re�ect the goals of this project. To make the reasoning process as

transparent as possible this chapter discusses the most important goals for the prototype,

derived in part from the use cases in Chapter 3.2. In Chapter 3.3 the overall structure of

the prototype will be presented.

3.1. Goals of the Project

The tool will be used by Product Managers responsible for game balancing. They mostly

don not have a computer science background or any deeper knowledge of programming

languages. It is meant to be used in the pre-release phase of development, because at

this point in time no real user data is available. After the game's release, statistical user

data is used to improve the balancing of the social game.

3.1.1. Test Validity of this Approach

Creating an easy to use but still powerful tool with a game description language accom-

panying it is the task of this master's thesis. More important than actually implementing

this tool is to evaluate if this approach is viable for game balancing. This evaluation can

then be used to decide, whether or not to dedicate more resources to creating such a

tool. The tool developed for this thesis is therefore a prototype to con�rm or dismiss the

approach.

3.1.2. Supporting Game Balancing

The purpose of this tool is to support the process of game balancing. Game balancing is a

mainly mathematical task at the moment. The relationships between di�erent values are

expressed in formulas and graphs are charted to visualize them. Visualizations of the game

mechanics in game loops are used to analyze the economy and �nd self-reinforcing loops

or faucets and sinks of the games' currencies. Prototypes in the early development phase

29

3. Project Goals and Structure of the Software

and later Alpha and Beta versions can be used for user testing. Due to the low number of

users this feedback will be qualitative rather than quantitative. With a description of the

game and some con�guration �les the tool is supposed to return meaningful information

to the Product Manager. The most general of which is how fast users of various play

styles, e. g. power, mid-range and novice, will progress through the game. Additionally,

information about the usage of di�erent features and trends of some values could be

displayed. This is schematically displayed in Figure 3.1.

Figure 3.1.: A graphical representation of the input-output relation of the balancing tool.
Input is a game description, with con�guration �les, and a player pro�le,
describing a playing style.
The output is the best terminal state of a game and the path to this state,
as well as some additional statistics on how di�erent features of the game
have been used.

3.1.3. Reusability of the Game Description Language

The tool is only useful, if the Game Description Language it includes is able to describe

di�erent games without needing any modi�cation by a programmer. Generality in its

limited �eld of social building simulation games is therefore a key requirement.

3.1.4. Ease of Use

One of the goals is to make using the tool as easy as possible. The intended user may not

be able to write programs on his own. The syntax of game descriptions should be no more

complex than SQL. After the game itself is described small changes to the con�guration,

e. g. reaching level two needs 100 instead of 50 experience points, must be simple and

fast. The program has to be runnable with few parameters, allowing good results without

sophisticated tuning by the user.

3.1.5. Performance of the Analysis

How the tool can be used depends to a great extent on the performance of the analysis. If

it needs hours to get results, it would not be helpful in �ne-tuning values iteratively. For

a �rst steady result of the search a target was set at no more than 60 seconds. This would

allow an easy perusal of huge changes and an opportunity to look deeper into promising

30

3.2. Use Cases

settings. For a more complete analysis of di�erent user pro�les, time is not a major issue.

An in depth analysis may need 24 hours to produce results and will therefore only be

used to con�rm what has previously been iteratively created.

3.2. Use Cases

De�ning how the software is going to be used is a vital part of the software develop-

ment process. Use cases help discover the key players and their needs. Because this is an

exploratory thesis, trying to show the possibility of using AI for game balancing, success-

fully describing and playing games is more important than the software to use it. The

use cases for the tool are therefore on a high level, detailing what features the underlying

software must allow but not specifying how it is going to be used in full detail.

Disclaimer: These use cases are not fully supported in the prototype of the balancing

tool right now.

Create Game Description

Actor: Product Manager

1. Create game con�guration (favorably with Excel)

2. Describe game mechanics

a) Combine game con�guration with game description

b) Describe possible actions

c) Describe initial condition of the game

d) Describe terminal conditions

e. g. 7 days passed, reached level 20, �nished 5 sessions, . . .

Change Game Con�guration

Precondition: Game description ready (Create Game Description)

Actor: Product Manager

1. Change con�guration values (favorably within Excel)

2. Calculate result and di�erent metrics (if possible with one button-click)

3. Analyze result and change game con�guration again if necessary

31

3. Project Goals and Structure of the Software

Analyze Result

Precondition: Result calculated

Actor: Product Manger

1. Compare values to previous results

2. (optional) Analyze di�erent game features

a) How did a value change over time?

e. g. progress of credits, experience in chart

b) Which actions did the player take and which not?

e. g. he built seven schools, zero churches

3.3. Software Structure

The project is split into two distinct modules. The �rst module contains everything

related to the game descriptions. This module is used by the second module containing the

search algorithms. This division allows the usage of di�erent search algorithms without

the need to change any game description speci�c features.

Figure 3.2 and the description beneath give an overview of the tasks of the modules

and connections between them, whereas the next two chapters explain their features and

details.

Figure 3.2.: Overview of the software structure: From game description to the search
result

32

3.3. Software Structure

Module 1: Game Descriptions

The game description module consists of three parts. Its input is a game description �le

that is parsed by the Description File Parser. When the �le has been parsed a Game

Factory is created, with descriptions for all features of the game. From this factory the

initial Game State is created. This state is used by the second module.

Module 2: Search Algorithms

The search algorithm module de�nes a search interface and currently has two di�erent

implementations for it. Monte Carlo Tree Search or Nested Monte Carlo are used to

search from the initial game state to a terminal state. Both try to �nd the best possible

result in a given amount of time. When the search has �nished the result is returned.

33

4. Design of a new Game Description

Language

In this chapter a new Game Description Language for social building simulation games

is introduced and its features are explained.

The Overview in Chapter 4.1 states the problem addressed by the new game descrip-

tion language and shows why no currently existing game description language is suitable

for the problem domain. Chapter 4.2 informs about the language features and its expres-

siveness, before the next chapter lays out some implementation details.

4.1. Overview

4.1.1. Goals and Requirements

Derived in part from the global project goals (see Chapter 3.1) some requirements for

the game description language are set here. They have a major in�uence on the design

of the new language.

Human Readable Because it was not clear at the beginning of this thesis, whether there

would be a graphical user interface with which to create game descriptions, it was

an important goal to create a human readable and writable description language.

Short Pragmatism acknowledges that the time it takes to describe a game will in�uence

the likelihood of this tool being used. Short game descriptions, avoiding unnecessary

repetitions, are therefore a goal in and of itself.

Easily Create New Content It has to require few or no changes within the game de-

scription to add new game content. In the optimal case an additional line in Excel

translates to new content in the game.

Easily Change Content While it has to be be easy to create new content, changing the

existing content has to be even simpler. Changing content is at the core of game

balancing as described in the use case �Change Game Con�guration� in Chapter

3.2.

Reusable This goal has two meanings. The description language has to be reusable,

without changes to the language itself, for di�erent games. That is simply what

35

4. Design of a new Game Description Language

a game description language is all about. Additionally, it is helpful to be able to

reuse parts of game descriptions. As most social games today include some kind

of leveling and energy mechanic, reusing them for di�erent games makes game

descriptions more understandable and faster to create.

Describe Social Building Simulation Games The new game description language has

to describe social building simulation games. Their peculiarities are explained in

the next section.

4.1.2. Social Building Simulation Games

As there is no common de�nition of social building simulation games (SBSG), this section

will de�ne the term and create a common understanding.

For a �rst game theoretic description the terminology from Chapter 2.1.1 is used to

delimit the game family. Social building simulations are:

In�nite But Finite They start, when the player �rst logs in and gets his initial state,

but are not supposed to end. The goal is to get ever bigger, climb up the ranking or

stay on top, or just to play on. Players might stop playing, when there is no more

new content for them to explore, but social games developers try to avoid that by

constantly adding new content. For the purpose of game balancing we can de�ne

terminal conditions and create a �nite game.

Discrete Players can only play one action at a time and the number of actions is limited.

Actions are time based, but even time can be counted in discrete seconds.

Deterministic The result of player actions is often in�uenced to a small degree by chance.

When a player does something there is always a small chance of him getting an

unexpected reward. Some actions only yield the desired result with a likelihood,

which is frequently unknown to the player. As non-determinism is not at the heart

of these games they can be approximated as deterministic games for the purpose

of simplicity. This simpli�cation has of course an e�ect on the results for game

balancing. The extreme cases of chance, very lucky or very unlucky players, will

not be in the simulation, but when a game is played by millions of players very

unlikely cases are bound to happen.

Single-player It might sound paradoxical, but to date social building simulations are

mostly single-player games. They play like the single-player campaigns, known from

traditional games, with a limited number of ways to interact with other players.

There are two di�erent kinds of interactions between players.

Visits Players are able to visit each others properties and perform some tasks

therein. The visiting player gains some small rewards for his actions. The

visited player pro�ts as well, because the actions from the visiting player are

36

4.1. Overview

performed on his property as if he would have done them himself. Only in

some battle games with a building simulation part may the e�ects of these

actions be detrimental to the visited player.

Gifts And Requests Players can send each other di�erent items, or request that

items should be sent to them. The sending player either gets and looses nothing

or even gains a reward as well. Gifting and requesting is therefore a win-win

situation for both players. It is limited in most of the games, to avoid gifting

fatigue and maintain the impression of scarcity of resources, moving players

towards purchasing the needed resources.

Actions by other players can be seen as random events in�uenced by the player's

total number of friends. The interaction with others initiated by the player himself

can be modeled as actions with a non-deterministic result. As the other players

game state is unimportant for most of the interactions and interactions are asyn-

chronous, the games are modeled as single-player games.

Complete Information The player knows everything about the current game state, but

there may be uncertainty regarding the future due to non-deterministic events.

Non-zero-sum Players do not compete for the same resources and these resources in-

crease over time.

Symmetric Every player has the same possibilities and starts with identical game states.

But the number of friends, their activity and the money the player spends on the

game are di�erent for each player. Therefore the rules are the same for every player

and the game is symmetric, once the number of friends, their activity and the

money available is de�ned.

Most notable Features

Social building simulation games have some notable features, which pose a challenge to

game descriptions. The number of objects in the game is dynamic and its upper limit is

unknown at the start. A contract mechanic plays an important role in keeping players

coming back to a game. Contracts are actions selectable by the player that have delayed

e�ects. The contract reward can only be selected and restarted after some time has

passed. The main source of content are missions. They are used to tell the story, show

di�erent game features to the player and give him tasks and rewards for achieving them.

A major limiting factor is the energy system that has been introduced to social games.

The player needs energy to perform actions and this energy regenerates over time. This

is a strong force in limiting a players progression through the game. Another important

game mechanic used in these games is experience. Players gain experience points (XP)

for actions and once the users XP has reached some threshold he gains a new level.

Leveling-up is therefore a consequence to gaining XP and not to any speci�c action.

37

4. Design of a new Game Description Language

The new game description language is designed to describe �nite, discrete,

deterministic, non-zero-sum, symmetric, single-player games with complete

information, that dynamically create objects, use a contract mechanic and

missions as content, may limit player progression through energy and have

an experience system.

4.1.3. Other Game Description Languages

Prior to creating a new game description language, the question of whether the currently

available languages are capable of ful�lling the requirements mentioned in the previous

chapters has to be answered. The two most likely candidates, the widely used and general

GDL (or GDL II) and the newly created SGDL, are considered.

Using the Game Description Language

While the GDL (described earlier in Chapter 2.1.2) is supposed to be general in purpose

it seems to be especially suited to describe board or card games. There is no class system,

which would allow the possibility to easily reuse some functionality, as is used most of

the time when creating computer games. This would make it very di�cult to add new

content without major changes to the game description itself. The GDL is also not well

prepared to handle newly created objects in the game. In the GDL all e�ects of an action

have to be explicitly stated for every action. This would make a leveling up system as a

side e�ect to gaining XP very di�cult, as it would have to be the e�ect of every action

that increases XP. It might be possible to describe social building simulation games with

the GDL, but these descriptions would neither be short nor understandable nor easy to

change. GDL and its expansion GDL II are therefore not suitable for describing SBSGs.

Using the Strategy Game Description Language

The biggest hurdle in using the SGDL is its status as a work in progress and that

therefore, no implementation or full documentation has yet1 been published. It is designed

to describe all kinds of computer strategy games and might therefore be well suited to

allow classes, dynamic object creation and maybe even leveling-up through its world's

meta mechanics. Due to this lack of information, SGDL can't be used yet, but because

it has tackled some of the same problems, some of its ideas are used as the basis for the

new game description language.

4.2. The Wooga Game Description Language

The Wooga Game Description Language (WGDL) is designed to allow the description

of social building simulation games as de�ned above. In WGDL, like in SGDL, the main

1As of July 2012 no comprehensive documentation of SGDL is available.

38

4.2. The Wooga Game Description Language

components of a game are objects (called Game Objects) and actions (called Game Ac-

tions). The objects contain the state of the game and the actions are the game mechanics,

changing the games state. A game is described through descriptions of its objects, its

possible actions, an initial game state and one or more terminal game states. Playing the

game involves choosing one of its actions, being available at that point in the game. The

action may then change the current game state and the game ends when a terminal state

is reached.

4.2.1. Language Features

Next, the language features, available to describe games in WGDL, are summarized.

The syntax of the feature follows below, because the representation can be looked at and

changed separately from the semantics of the description language. The listing starts with

the outermost feature, encapsulating all the others, the Game State. The other features

are then also sorted from higher to lower level ones where such an order exists.

Game State

The container for a game, containing all game mechanics and the current state, is called

the Game State. It consists of all currently existing objects, all currently available actions,

independent of their legality in this state, a set of rules, that are actions that enforce

game mechanics and are executed after every player action. The Game State also keeps

track of time, gaming sessions and the history of actions, leading from the initial state to

now. As a special global object, used to store counters, it provides a Game Value Store.

Game Object

Game Objects are a central part of every game. They consist of Game Attributes con-

taining values, Game Actions that are available for this object or that are executed on

its creation. Examples in games are buildings and units. To facilitate reusability and

dynamic object creation, objects belong to a Game Object Description de�ning its initial

values and capabilities. A game objects composition is shown in Figure 4.1a.

39

4. Design of a new Game Description Language

(a) An Object (b) An Action

Figure 4.1.: The left �gure shows that an object consists of attributes, actions and on-
create-actions which are executed when the object is �rst created.
In the right �gure an action with its conditions and consequences is displayed.

Game Object Descriptions and Game Classes

A Game Object Description de�nes initial values of objects and belongs to one Game

Class. A Game Class de�nes Game Attributes and their standard values for objects of

that class. Classes inherit attributes and actions from their parent class, if they have any.

This allows to encapsulate functionality or state that is shared by objects in a class and

expand upon this base class with di�erent child classes. The relationship between classes,

object descriptions and objects is shown in Figure 4.2.

Figure 4.2.: The class Building is parent class of House and Business. Two di�erent house
types and two di�erent business type have been described. Of these descrip-
tions di�erent amounts of object instances, in green, exist in a game state.

Game Attribute

All state de�ning values are contained in the attributes of the objects. Values are iden-

ti�ed by name which is unique per object. Attributes may have individually changeable

40

4.2. The Wooga Game Description Language

values for every object or they can be shared among all objects of the same object de-

scription. These values are stored in an Expression.

Game Action

Game Actions are the link with which players interact with the game. Any action consists

of conditions and consequences. All conditions have to be true for the action to be playable

in this state. Once the action is played its consequences are applied one after another. All

actions that the player may choose to play belong to an object and they may be referring

to another object as well. Actions in the game are executed without any parameters,

because this allows a universal interface for action selection. An action can be seen in

Figure 4.1b and an example of actions referring to other objects is shown in Figure 4.3.

Figure 4.3.: The dark blue rectangles symbolize classes, the light blue object descriptions
and the green object instances. This �gure illustrates the di�erence between
three actions.
The purple action is de�ned for class farm and every plot object has one
plant action associated with it (symbolized with purple line to itself).
The red action is de�ned for class plot but associated with game object
descriptions of class seed. Every plot object has one action for each light
blue seed object description.
The black action is also de�ned for class but associated with instances of class
seed. Therefore every plot object has one action for every green instance of
seed. This could be more than one per game object description.
This system ensures that actions do not need arguments, because for every
possible combination an individual action is created.

Rule

Game Actions can be used as rules. A rule is an action that can't be chosen by the player

but is applied after every move, if its conditions are met. Rules are amongst other things

41

4. Design of a new Game Description Language

used to level up the player, when his experience points have reached the necessary value.

Condition

Conditions are logical terms returning a boolean value, i. e. true or false, when they are

evaluated. They are used to restrict the applicability of actions. The logical terms are

stored as an Expression.

Expression

Expressions are built in a tree structure, where every expression has a meaning by itself

and up to two child nodes, a left and a right. There are di�erent kinds of Expressions:

Comparators are used to compare values and return a boolean result and Operators

are used to combine and change values. Examples are addition (+) or assignment (=).

Atoms are the leaves of the tree that contain a value. The available Atom types are

Long, Double, Boolean and String. Special Expressions are Object Reference or Attribute

Reference, used to point to other objects or their attributes and Game Value, used solely

to access the global Game Value Store. All expressions types along with their use cases

are listed in Table 4.1.

Expression Types Used for

Atom storing the basic values: Boolean, Double, Long and String

Comparator comparing their left and right side: ==, ! =, <, >, <=,
>= or implementing boolean logic: and, or, xor

Operator mathematical operations and assignment: =, +, −, ×, ÷
Attribute Reference accessing a game objects attribute during a game

Game Object Reference accessing a game object during a game

Game Value accessing the values stored in the Game Value Store

Table 4.1.: The Expression types explained

Consequence

Consequences are used to de�ne e�ects of Actions. They are named to allow their reuse

in di�erent actions. Direct Consequences change an attributes value with an Expression.

Conditional Consequences apply another consequence when their condition is met. This

corresponds to an if clause in programming. Timed Consequences apply another conse-

quence when some time has passed. This is used to create timers, e. g. this action can be

executed again after 5 minutes. Create Consequences are used for dynamic object cre-

ation, creating a new object when they are applied. Create And Assign Consequences also

create a new object and additionally assign a reference to it, that can later be accessed.

Game Consequences alter the global Game Value Store. All consequence types are listed

in Table 4.2.

42

4.2. The Wooga Game Description Language

Consequence Type Used for

direct changing the attributes of game objects

conditional applying consequences only when their condition is met

timed applying consequences when some time has passed

create creating new game objects

create and assign creating new game objects and assigning a reference to access it

game changing the global Game Value Store

Table 4.2.: The Consequence types explained

Game Value Store

Many missions in social games are of the type �collect this thing �ve times�, or �build that

thing �ve times�, or more general �do this action �ve times�. There are di�erent options

on how to track progress and completion of these missions:

An observer pattern could be used, where missions would register to be informed about

any actions performed, that increase the progress towards their goals. Because this ap-

proach is di�cult to formalize concisely for game descriptions and it would complicate

the �ow of information, another approach was used. Mission relevant actions are tracked

by counters and their data is then used by the mission goals. Counters can already be

described with the available game features, but they have to be manually created for

every action and are are quite in�exible. The Game Value Store is therefore designed to

allow more sophisticated counters.

It is a tree based structure, storing number values by name. Values of di�erent depths

can be accessed by their name and mathematical operations on sub-trees can be imple-

mented. Currently a sum operation is used to sum up the values of all child nodes. The

usage of the Game Value Store is explained in Figure 4.4.

Figure 4.4.: An example of a Game Value Store. Every rectangle is a node, accessible
through its name. It contains sub-nodes and a value, shown in a circle, of
its own. Values for collect, house and build are not displayed. Some usage
examples:
store.getValue(collect.house.poorhouse) = 2
store.getValue(collect.house.sum) = 3

43

4. Design of a new Game Description Language

Helper Features

The following features build upon the features already explained and provide additional

information important for playing the game. They mark the start and end of the game

and in�uence the way it is played.

Initial Game State The initial game state is de�ned by all the objects present at the

time. In WGDL objects can be declared to be in the initial game state.

Terminal Game States/Goals Terminal game states de�ne, when the game is over. In

WGDL they consist of a condition, which has to be met for the game to �nish. It

is allowed to set more than one goal. Goals are then pursuit in order until the last

goal is ful�lled.

Action Groups Actions that may be chosen as a move by the player are categorized in

action groups, which have a name and a likelihood. When selecting random actions

to play, a group is selected based on its probability and, of this group, one action

is then chosen at random. This concept is explained in detail in Section 5.2.4.

4.2.2. Syntax Example Applications

Beside the question of what features have to be available to successfully describe social

building simulation games, a decision on how to syntactically represent these features in

the WGDL had to be made. The most logical choice was to build upon GDL, which is

based on Datalog and uses KIF, a knowledge interchange format. While being very pow-

erful and expressive, KIF is designed to allow machine readable knowledge interchange

between computers, and therefore not designed to be easily human readable.

Another alternative is to use an XML notation, as XML is already widely used for

con�guration �les and other web related content. There are also many XML-parsers

available that would make implementing a game description parser much easier. But

again XML is hard to read.

Until a graphical user interface, to describe games, is created and the game description

language no longer exposed to the describing user, a human readable format has been

chosen. This provided a challenge in writing a description �le parser, which is able to

parse these �les.

In order to facilitate understanding the concepts and features mentioned above, this

chapter contains some examples of WGDL's current syntax along with a de�nition in Ex-

tended Backus-Naur Form (EBNF). EBNF is a metasyntax designed to express context-

free grammars. A full and continuous EBNF-de�nition of WGDL can be found in Ap-

pendix B.

44

4.2. The Wooga Game Description Language

Classes and Objects

The �rst example shows how game classes, objects and attributes are de�ned.

Syntax :

/∗ C l a s s e s have a name and may have ano the r c l a s s as i t s pa r en t . ∗/
C l a s s = " c l a s s " , name , [" : " , c lassName] ;

/∗ Object D e s c r i p t i o n s a r e named and be long to a c l a s s . ∗/
Object = " ob j e c t " , name , " i s " , c lassName ;

/∗ C l a s s a t t r i b u t e s a r e the same a c r o s s a l l i n s t a n c e s o f one d e s c r i p t i o n .

They may not be mod i f i e d du r i ng the game .

Th i s c o r r e s pond s to c on s t a n t s i n t r a d i t i o n a l programing l anguage s . ∗/
A t t r i b u t e = " a t t r i b u t e " , ((" c l a s s " , c lassName | c lassName) , name ,

At t r i bu teTypeWithVa lue | objectName , name , v a l u e) ;

At t r i bu teTypeWithVa lue = Type , Value ;

Type = " long " | " doub l e " | " boo l ean " | " s t r i n g " | " o b j e c t : " , c lassName ;

Value = S t r i n g ;

Algorithm 4.1 shows how two di�erent kinds of buildings can be described. They

use two kinds of contract mechanics. From one building type, the house, coins can be

collected in regular intervals. In businesses, the second kind of building type, coins can

also be collected, but the business has to be supplied with food, before the interval

towards recollection is started. The game mechanics to use the information stored in

these objects is not described in the example.

45

4. Design of a new Game Description Language

Algorithm 4.1 Class Examples
Building is the parent class for house and business, which inherit the attributes de�ned for
building. For businesses two additional attributes (isFed and foodCost) are de�ned. Below
that three objects of class house and business are described, their attributes initialized
to some values, where the standard, set in the classes, is not supposed to be used.

c l a s s b u i l d i n g

// b u i l d i n g s have a co i n v a l u e and a r e c o l l e c t i o n t ime tha t i s the same
f o r e v e r y o b j e c t o f t ha t c l a s s

a t t r i b u t e c l a s s b u i l d i n g co i nVa l u e l ong 0
a t t r i b u t e c l a s s b u i l d i n g r e c o l l e c t A f t e r S e c o n d s l ong 0

// e v e r y b u i l d i n g o b j e c t may be e i t h e r c o l l e c t a b l e o r not
a t t r i b u t e b u i l d i n g i s C o l l e c t a b l e boo l ean t r u e

// t h e r e a r e two t ype s o f b u i l d i n g s , houses and b u s i n e s s e s
c l a s s house : b u i l d i n g
c l a s s b u s i n e s s : b u i l d i n g

// b u s i n e s s e s have a d d i t i o n a l a t t r i b u t e s
a t t r i b u t e b u s i n e s s i s F ed boo l ean t r u e
a t t r i b u t e b u s i n e s s foodCost l ong 0

// t h e r e a r e t h r e e b u i l d i n g ob j e c t s , two houses and one b u s i n e s s
o b j e c t poor_house i s house
a t t r i b u t e poor_house co i nVa l u e 50
a t t r i b u t e poor_house r e c o l l e c t A f t e r S e c o n d s 3600

ob j e c t v i l l a g e r s_h o u s e i s house
a t t r i b u t e v i l l a g e r s_h o u s e co i nVa l u e 15
a t t r i b u t e v i l l a g e r s_h o u s e r e c o l l e c t A f t e r S e c o n d s 300

ob j e c t market i s b u s i n e s s
a t t r i b u t e market co i nVa l u e 40
a t t r i b u t e market r e c o l l e c t A f t e r S e c o n d s 46
a t t r i b u t e market foodCost 20

46

4.2. The Wooga Game Description Language

Actions and More

The second example shows actions with their conditions and consequences.

Syntax :

/∗ Act i on s can be long to a c l a s s o r not .

I f they do not be long to a c l a s s they a r e game r u l e s the p l a y e r con not

s e l e c t h im s e l f .

The t h i r d k ind o f a c t i o n s i s c r e a t e a c t i o n s , which a r e execu ted once a new

ob j e c t i s c r e a t e d .

Ac t i on s can r e f e r to o th e r c l a s s e s w i th the keywords f o r E v e r y I n s t a n c e and

forEveryGOD (GOD = Game Object D e s c r i p t i o n) . Then they e i t h e r a r e

c r e a t e d f o r e v e r y i n s t a n c e o f the o th e r c l a s s o r f o r e v e r y o b j e c t

d e s c r i p t i o n . ∗/
Act ion = " a c t i o n " , (name | className , name , [(" f o r E v e r y I n s t a n c e " |

" forEveryGOD ") , c lassName] | | " c r e a t e : " , className , name) ;

/∗ Cond i t i o n s a r e d i r e c t l y a s s o c i a t e d wi th t h e i r a c t i o n and have a boo l ean

e x p r e s s i o n tha t t e s t s whether the a c t i o n i s p e r f o rmab l e . ∗/
Cond i t i on = " c o n d i t i o n " , actionName , E xp r e s s i o n ;

/∗ Consequences a r e f i r s t c r e a t e d and l a t e r a s s i g n e d to one or more

a c t i o n s .

D i f f e r e n t consequence t yp e s need d i f f e r e n t pa ramete r s . ∗/
Consequence = " consequence " , name , ((" d i r e c t " | " c r e a t e ") , E xp r e s s i o n |

" c r ea t eAndAss i gn " , Exp r e s s i on , E xp r e s s i o n | (" c o n d i t i o n a l " | " t imed ") ,

Exp r e s s i on , consequenceName | "game" , " i n c r e a s e " , E xp r e s s i o n) ;

ConsequenceAss ignment = "hasConsequence " , actionName , consequenceName ;

The example in Algorithm 4.2 shows two actions with their conditions and conse-

quences. With whackTree the player can increase his wood stock but has to spend energy

on the task. The second action plant is available for every farm in the game. It is used

to plant di�erent types of seeds, resulting in di�erent cost, food returns and time until

it can be harvested.

47

4. Design of a new Game Description Language

Algorithm 4.2 Actions Examples
The action whackTree can only be applied when the player has energy left. If applied one
wood is added to the wood stock in the global object and one energy removed from the
player.
The action plant is only available when the player has enough money, is in a high enough
level and the farm is free. As a consequence the seeds produced food is stored in the farm,
the seed has to be payed, the farm is marked as occupied and a counter is started to
mark the farm as harvestable after the grow time de�ned in the seed object has passed.

// The whackTree a c t i o n has one c o n d i t i o n and two consequence s
a c t i o n g l o b a l C l a s s whackTree
c o n d i t i o n whackTree g l o b a l . ene rgy > long 0
consequence addWood d i r e c t g l o b a l . wood = g l o b a l . wood + long 1
consequence removeOneEnergy d i r e c t g l o b a l . ene rgy = g l o b a l . ene rgy − l ong 1
hasConsequence whackTree addWood
hasConsequence whackTree removeOneEnergy

// f o r e v e r y game ob j e c t d e s c r i p t o n o f a seed , i . e . e v e r y seed type , a
p l an tSeed a c t i o n i s c r e a t e d f o r e v e r y farm

a c t i o n farm p l an tSeed forEveryGOD seed
c o n d i t i o n p l an tSeed g l o b a l . c o i n s >= seed . co i nCo s t
c o n d i t i o n p l an tSeed seed . u n l o c kL e v e l <= g l o b a l . l e v e l
// t h i s r e f e r s to the farm t h i s a c t i o n be l ong s to
c o n d i t i o n p l an tSeed t h i s . i s F r e e
consequence addFood d i r e c t t h i s . food = seed . foodProduced
consequence paySeed d i r e c t g l o b a l . c o i n s = g l o b a l . c o i n s − seed . co i nCo s t
consequence f a rmI sOccup i ed d i r e c t t h i s . i s F r e e = boo l ean f a l s e
consequence farmMayBeHarvested d i r e c t t h i s . i s H a r v e s t a b l e = boo l ean t r u e
// a f t e r the t ime d e f i n e d i n seed . growTime has pas sed the

farmMayBeHarvested−consequence i s a p p l i e d
consequence farmMayBeHarvestedInTime t imed seed . growTime farmMayBeHarvested
hasConsequence p l an tSeed addFood
hasConsequence p l an tSeed paySeed
hasConsequence p l an tSeed fa rmI sOccup i ed
hasConsequence p l an tSeed farmMayBeHarvestedInTime

48

4.2. The Wooga Game Description Language

Accessing Attributes and Objects

With WGDL references to objects can be kept as attributes and accessed during the

game. The example Algorithm 4.3 shows how this is used in the game description.

Syntax :

/∗ To ac c e s s a t t r i b u t e s o f o b j e c t s the o b j e c t i s r e f e r r e d to .

Th i s p o i n t s to the o b j e c t the a c t i o n be l ong s to , objectName d i r e c t l y

a c c e s s e s a g l o b a l o b j e c t and className i s used when an a c t i o n i s

d e f i n e d f o r a l l i n s t a n c e s o f a c l a s s o r f o r mu l t i p l e game ob j e c t

d e s c r i p t i o n s .

A t t r i b u t e a c c e s s can be s t a cked mu l t i p l e l e v e l s . ∗/
A t t r i b u t eA c c e s s = (" t h i s " | objectName | c lassName) , " . " , a t t r ibuteName ,

{ " . " . a t t r i bu teName } ;

Algorithm 4.3 Accessing Attributes and Objects Example:
The tree has a fruit attached to it, that can be collected by using the collectFood action
of the tree.

// o b j e c t s o f c l a s s t r e e have a f r u i t o b j e c t a s s o c i a t e d wi th them
c l a s s t r e e
a t t r i b u t e t r e e f r u i t o b j e c t : f r u i t n u l l

c l a s s f r u i t
a t t r i b u t e f r u i t foodVa lue l ong 5
a t t r i b u t e f r u i t i s C o l l e c t a b l e boo l ean t r u e

a c t i o n t r e e c o l l e c t F o o d
// t e s t s i f the a s s o c i a t e d f r u i t ' s s t a t u s i s c o l l e c t a b l e
c o n d i t i o n c o l l e c t F o o d t h i s . f r u i t . i s C o l l e c t a b l e
// adds the food va l u e o f the food to the g l o b a l food s t o r e
consequence addFood d i r e c t g l o b a l . food = g l o b a l . food + t h i s . f r u i t . f oodVa lue
hasConsequence c o l l e c t F o o d addFood
// r e s e t s the food va l u e o f the t r e e s food to z e r o
consequence setFoodValueToZero t h i s . f r u i t . f oodVa lue = long 0
hasConsequence c o l l e c t F o o d setFoodValueToZero

Creating Objects

The next example shows the dynamic features of WGDL. There are consequences to

create objects during a game and actions that are performed whenever an object is

created. See Algorithm 4.4 for the example.

Syntax :

/∗ An a c t i o n which i s on l y a p p l i e d when a new ob j e c t i s c r e a t e d . ∗/
OnCreateAct ion = " a c t i o n " , " c r e a t e : " , className , name ;

/∗ Two consequence t yp e s d e a l w i th c r e a t i n g o b j e c t s .

C rea te consequence j u s t c r e a t e s a new ob j e c t whereas the c r e a t e and a s s i g n

consequence s a v e s a r e f e r e n c e to the new ob j e c t i n an a t t r i b u t e . ∗/
CreateConsequence = " consequence " , name , (" c r e a t e " , E xp r e s s i o n |

" c r ea t eAndAss i gn " , Exp r e s s i on , E xp r e s s i o n) ;

49

4. Design of a new Game Description Language

Algorithm 4.4 Creating Objects Example:
The build action is available for every building description that has been put in the game
description. It needs coins to create a new building. When the createBuilding action
is applied a new object is created from the description in building. The counterUpdate
action is called whenever a building is created. Here it just increases the a counter in the
GameValueStore. The counter is named �building, built, objectName�.

// one b u i l d a c t i o n f o r e v e r y game ob j e c t d e s c r i p t i o n o f a b u i l d i n g , o r
i t s s u b c l a s s e s b u s i n e s s and house , i s c r e a t e d .

a c t i o n g l o b a l C l a s s b u i l d forEveryGOD b u i l d i n g
c o n d i t i o n b u i l d g l o b a l . c o i n s > b u i l d i n g . c o i n sCo s t

// The c l a s s name b u i l d i n g i s r e p l a c e d by the name o f the game ob j e c t
d e s c r i p t i o n t h i s a c t i o n i s supposed to c r e a t e .

consequence c r e a t eB u i l d i n g c r e a t e b u i l d i n g
hasConsequence b u i l d c r e a t eB u i l d i n g

// Whenever a b u i l d i n g i s c r e a t e d the coun t e r i s i n c r e a s e d
a c t i o n c r e a t e : b u i l d i n g counte rUpdate
consequence i n c r e a s eBu i l d i n gC r e a t e dCoun t e r game i n c r e a s e S t r i n g b u i l d i n g ,

S t r i n g b u i l t , t h i s . name
hasConsequence counte rUpdate i n c r e a s eBu i l d i n gC r e a t e dCoun t e r

Start and End

In addition to the game mechanics initial and terminal states have to be de�ned to create

a �nite game. The usage is shown in the example Algorithm 4.5.

Syntax :

/∗ I n i t i a l s a r e o b j e c t s t ha t e x i s t i n the i n i t i a l game s t a t e . Mu l t i p l e

i n s t a n c e s o f the same ob j e c t d e s c r i p t i o n may be c r e a t e d . ∗/
I n i t i a l = " i n i t i a l " , objectName

/∗ Goa l s a r e t e rm i n a l c o n d i t i o n s f o r the game or subgames . The a l g o r i t hm

s t a r t s w i th goa l one and f i n i s h s w i th goa l maxNumber . ∗/
Goal = " goa l " , Pos i t i v eNatu ra lNumber , Boo l e anExp r e s s i on

50

4.3. Implementation

Algorithm 4.5 Start and End Example:
Poor_house is de�ned as an object of the class house. In the initial game state the player
will have two poor houses.
The game has two goals. First the player has to reach more than 1000 coins and then he
has to gain another 1000 for a total of more than 2000 coins to end the game.

c l a s s house
a t t r i b u t e house name S t r i n g none
o b j e c t poor_house i s house
a t t r i b u t e poor_house name poor_house

// two poor houses a r e c r e a t e d f o r the i n i t i a l game s t a t e
i n i t i a l poor_house
i n i t i a l poor_house

// two subgoa l s have to be reached b e f o r e the game i s t e rm ina t ed
goa l 1 g l o b a l . c o i n s > 1000
goa l 2 g l o b a l . c o i n s > 2000

4.3. Implementation

While implementing the �rst WGDL system several design decisions had to be made. To

improve the understanding of the implications of using WGDL to describe games, some

important implementation features are described here.

The whole project has been implemented in Java, because the tool is supposed to be

used on several platforms, the author is familiar with the language and Java provides the

capability of writing the core system in the same language as the graphical user interface.

The game description module consists of several parts.

The Description The parser responsible to parse the game descriptions and the classes

for descriptions of objects, actions and consequences are part of the description.

The Expressions It consists of the expressions, operators, comparators, references and

atoms. They hold or provide access to values during a game.

The Game The main and high level features, like the game state, actions and objects

belong to the game part.

Description File Parser

The Description File Parser has the task to create a Game Factory from a game descrip-

tion �le. This Game Factory can then be used to create the initial game state and new

objects throughout the game. The descriptions of di�erent game features, e. g. conditions,

consequences, actions, are read in sequentially and their representations in the system

created based on a set of conditions, de�ned directly in the �le parser. For a pseudo-code

example see Algorithm 4.6. While parsing is a straightforward task for most features, the

51

4. Design of a new Game Description Language

parsing of expressions is more complex. In expressions brackets have to be observed and

operators and comparators have to be applied in order.

long 2 + long 5 ∗ long 7 evaluates to long 37 while (long 2 + long 5) ∗ long 7 evaluates

to long 49

Nested brackets are allowed as well and mathematical and logical operations are sup-

ported.

The order of operators and comparators is de�ned, from lowest to highest priority, as

follows: =, ==, ! =, &&, ||, xor, >, ≥, <, ≤, +, −, ×, ÷

Algorithm 4.6 The �le parsing algorithm in the Description File Parser.
First the �le is read into memory, then the game features are created sequentially and
the resulting Game Factory, initialized with these features, is returned.

GameFactory p a r s e F i l e () {
createNewGameFactory () ;
r e a d I n F i l e () ;

// c r e a t e the game f e a t u r e s s e q u e n t i a l l y
c r e a t e C l a s s e s () ;
c r e a t e A t t r i b u t e s F o r C l a s s e s () ;
c r e a t eOb j e c t s () ;
c r e a t eA t t r i b u t e s F o rOb j e c t s () ;
c r e a t eAc t i o nG roup s () ;
c r e a t eA c t i o n s () ;
read InGameValues () ;
c r e a t eC o n d i t i o n s () ;
c r e a t eCon sequence s () ;
addConsequencesToAct ions () ;
addAct ionsToGroups () ;
c r e a t e I n i t i a l s () ;
c r e a t eGo a l s () ;

r e t u r n GameFactory ;
}

Everything is an Expression

As previously mentioned an expression may consist of objects with di�erent expression

types. All objects of these types conform to the same interface as the expression itself.

From an outside perspective there is therefore no di�erence between a part of an expres-

sion and a whole expression. This design pattern is known as Composite (see Chapter

2.3.2).

The common expression interface is minimal. All expressions allow access to a left

and a right child, creating a tree structure of expressions. Expressions can be cloned,

52

4.3. Implementation

hashed and compared for equality. And most importantly for playing games, they can

be evaluated, returning an Atom which itself is an expression again. Some examples are

listed in Figure 4.5.

Expressions are meant to be used during game play, storing and changing the games

state. But attribute and object references have to be part of expressions before they are

bound to in game instances of the attributes and objects they point to. To tackle this

problem, description objects for these references have been introduced, which do conform

to the expression interface as well, allowing them to be part of expressions. Before starting

a game these descriptions have to be resolved to real instances.

Figure 4.5.: This �gure shows three expressions in a tree representation.
The left one uses a comparator to compare the attribute value of global.coins
to the sum of this.cost and ten. This expression returns true or false once
evaluated.
The second expression assigns the value 100 to the attribute global coins.
The third is an atom with the boolean value true.

From Description to Instance

In the Game Factory, descriptions of actions and objects are stored. While creating the

initial game state and whenever a new game object is created, these descriptions are

used as a blue-print for the object. As both game objects and game actions may contain

expressions, in their attributes or their consequences and conditions, description expres-

sions have to be resolved to in-game expressions. In these resolving step descriptions, like

this, object of class x or the name of a global object, are replaced with the in-game name

of the object they refer to. Attribute and game object references then act like proxies

(explained in Chapter 2.3.3) throughout the game. When these expressions are evaluated,

they access the other object and return the referenced value.

53

4. Design of a new Game Description Language

4.4. Results and Limitations

The WGDL in its current version is able to describe �nite, discrete, deterministic, non-

zero-sum, symmetric, single-player games with complete information. As shown in Chap-

ter 4.1.2 this allows the description of simpli�ed SBSGs. Before the limitations of WGDL

are shown the results are compared against the goals and requirements de�ned in Chapter

4.1.1.

Results

Every goal is reviewed separately.

Human Readable The syntax is human readable, as it was supposed to be. But due

to the large size of a game description the overview is easily lost. This could be

improved by introducing a library system, allowing the inclusion of di�erent �les

into one game description. Di�erent parts of a game could then be more easily

separated and the structure would improve understandability.

Short Some steps have been undertaken to limit game description size. Consequences can

be reused and an inheritance system for classes avoids description duplication. But

conditions can not yet be reused. The reuse of consequences comes at the cost of

linking existing consequences to the actions and the initialization of attributes takes

up quite a lot of space. It has to be further explored how shortness of descriptions

can be improved without negative impact on readability. A logical consequence

would be to introduce brackets or indentations to describe relations between game

features.

Easily Create New Content As long as additional content can not be imported from

Excel or an XML �le, but has to be manually added, this goal can not be consid-

ered achieved. But the class and object description system creates the foundation,

making this a mere technical task.

Easily Change Content This goal is tightly coupled with the one above. Changing con-

tent in Excel is not yet supported, but the changing of values in the game description

itself is straight forward.

Reusable AsWGDL is able to describe SBSGs the �rst part of this goal has been reached.

The reusability of parts of game descriptions is more complex. Without a library

system descriptions have to be copied and pasted to reuse them.

Describe Social Building Simulation Games As described at the beginning of this chap-

ter, this goal is considered achieved with the limitations mentioned in the next

chapter.

54

4.4. Results and Limitations

Limitations

While the overall goal of describing SBSGs has been achieved the expressiveness of WGDL

has several limitations worth mentioning.

The biggest limitation to the use of WGDL is its focus on single-player games. This

makes the comparison with other description languages more di�cult and limits the

number of games that can be described with WGDL. Because multi-player has been

considered to be of low importance for SBSGs this will not be an issue when describing

games.

Another limitation is that WGDL is at the moment of this writing not suited to describe

non-deterministic e�ects. The in�uence of chance is di�erent from game to game, but in

general not that strong. For the purpose of simpli�cation the e�ects of chance have to

be modeled with the expected value, rather than real chance values. Actions returning

a bonus of ten coins with the likelihood of 20 percent must therefore be describes as

actions returning a bonus of two coins every time they are applied. When one wants to

analyze lucky or unlucky players and their progress, the game description has therefore

to be changed, re�ecting higher or lower expectancies.

Figure 4.6.: Part of the game map in Magic Land. The tooltip shows that the decoration
sun�ower adds a bonus of 1% to the coins returned from the tavern next to
it. The total coin bonus for the tavern from all decorations add up to 45%.

Because WGDL uses only comparatively simple data structures, where no kind of list

or array is allowed, it is not suited to describe maps. When a map is only used to limit the

number of objects in the game it can easily be replaced with a counter. But in addition

to the limitation of space maps are also used to create area e�ects. Area e�ects are

changes to one or more objects based on their location. In Magic Land a Wooga SBSG

title described in appendix A, these area e�ects are used to give bonuses to the return

of buildings and farm plots2. Decorations can be bought, increasing the return in their

2A screenshot of a part of the map in Magic Land can be seen in Figure 4.6.

55

4. Design of a new Game Description Language

vicinity by some percentage points. The e�ect of these area e�ects on the balancing can

therefore not be analyzed with WGDL and if they are useful to the player, a simulated

player who is not able to use them has a disadvantage. Especially in later stages these

area e�ects become quite dominant in Magic Land, because it is possible to increase the

return of a single building and therefore the return of using one energy point by some

hundred percentage points.

To limit the complexity of game descriptions and because it has not proved to be

essential in describing SBSGs, WGDL does not allow for loops or recursion. These features

could be added, if they are required in the future.

The same holds true for the deletion of objects. Currently objects can never be deleted,

but this could be implemented by de�ning a delete consequence similar to the create

consequences currently available.

Conclusion

In this chapter WGDL, a language for describing SBSGs, has been introduced. It is based

on the GDL and SGDL, improving on GDL with its human readability, dynamic object

creation and the possibility to more easily add new content and improving on SGDL with

its focus on single-player social games. It supports the description of contract mechanics,

game rules and provides all the tools necessary for a mission system. With the Wooga

Game Description Language the foundation for General Game Playing in Social Building

Simulation Games has been set.

The next chapter explores how well Monte Carlo search algorithms are suited to play

these games and gain valuable insights for game balancing.

56

5. Playing with Arti�cial Intelligence

In this chapter some modi�cations to the Monte Carlo Tree Search are discussed. The

goal of these modi�cations is to more successfully play games described with the WGDL.

5.1. Overview

5.1.1. Requirements and Goals

The goal of every General Game Playing Agent is to play as well as possible. To be

helpful for game balancing the algorithm and its results have to meet some additional

requirements. The standard MCTS algorithm has been modi�ed to meet these require-

ments and where several options already existed the ones being most promising to further

the goals the most have been chosen.

Be Fast The performance of the analysis has been de�ned as one of the main project

goals. A fast analysis allows fast feedback to con�guration changes and this enables

iterative con�guration development.

Be Human Like As this tool is meant to predict human behavior and progress in the

game, the AIs play should be as human-like as possible.

Be As Good As Humans This is closely linked to the last goal. In order for the results

to be useful, the AI has to perform as well or better than humans. If this is not the

case, it can not be used to predict how fast players progress or may only be helpful

as a lower bound. But the goal is to predict the progress for users of various play

styles.

Player Pro�les These various play styles have to be supported in some kind of player

pro�le. How long and often players play each day, as well as what game features

they concentrate on, should be con�gurable.

5.1.2. Analyzing a Social Game

To be able to successfully play and analyze social games their peculiarities have to be

known and addressed. Therefore some key features in�uencing the search algorithm are

listed here.

57

5. Playing with Arti�cial Intelligence

As social games are designed to be played inde�nitely a game will have many moves.

In Magic Land, the game which is used as the basis for this thesis, there can be around

one hundred actions, e. g. collect coins from a building, in the �rst session. Every other

session then has around 30 to 60 actions. As the average player plays around three to

four sessions a day, this adds up to approximately one thousand actions in the �rst week.

In comparison, an average chess game ends after 80 moves. The search therefore has to

be prepared for considerable longer games.

In the prototype's description of Magic Land the player has to choose between roughly

20 actions on every move. This increases over time as money and player level, as a measure

for experience, allow the purchase of more buildings and decorations and, therefore, more

existing buildings to interact with.

It is also worth noticing, that there will not be disproportionately better moves that

would make games considerable shorter. This is di�erent to chess and other two player

games, where there might be wins in one move and game length may vary a lot. When

user progression is measured in experience points the player's decision can only a�ect

this in a small way. Most actions reward the player with one experience point.

But players can destroy what they have built in Magic Land and many other games.

This decision is rarely a wise one. It might only make sense to destroy buildings when

there is no more space or the building will never be used again but returns some coins

upon being destroyed. So there clearly are very bad moves in social games.

Another noticeable feature of SBSGs are investments. Building an expensive building

or buying anything expensive might seriously decrease the players coins which might

be part of the �nal score evaluation. But these buildings increase his earning capacity

and will return more than the investment, sometimes only after being used more than a

hundred times. This way seemingly bad decisions might turn out to be good ones after

playing many moves.

5.1.3. Setting Goals

Every search needs a goal it is looking for. As social games can't be won, this goal or

terminal condition has to be set arti�cially. The goal is therefore set according to the

needs of the user of the tool.

In Chapter 1.2.3 the core goals for balancing social games have been de�ned. They are:

Progression It is important to estimate the players progression, to set rewards where

they create the most motivation or in order to know how much content has to be

produced. One question could be: Where is the player, playing four �ve minute

long sessions per day, after one week? Time or played sessions will therefore be a

standard search parameter. The question could also be asked the other way around:

How long does the player have to play, to achieve level twenty?

Balance Game Features Another important question is, how well the di�erent game

58

5.2. Customizing the Playing Algorithm

features are balanced against each other. Human players will optimize their game

play habits using only the features, that help them the most. These features are

called strong, whereas clearly worse features are called, weak. To analyze which

features are strong or weak the actions the player took to reach his goal have to be

included in the search output.

Summarized, the product manager wants to know how far a player can progress in a

given amount of time and which actions he will choose to reach this goal. The search

algorithm's task is to produce a result that helps in answering this question.

5.2. Customizing the Playing Algorithm

Over the last few years MCTS has been an active �eld of study and many di�erent

expansions have been proposed. The most promising of these have been adapted for this

thesis. This section will describe which methods are used and why they have been chosen.

In the next chapter the run-time performance and their impact will be evaluated. For an

easier understanding the methods have been split according to the step of the algorithm

they in�uence the most.

5.2.1. General

The methods listed here a�ect the algorithm as a whole and can not be allocated to one

speci�c step.

Winning and Loosing

At the end of each simulation the game state has to be evaluated. For SBSGs a win or

loose evaluation is not very helpful. This is because a game is never really lost, but people

di�er in their progress.

The evaluation function is in�uenced by the terminal condition itself. If the terminal

condition is a time, e. g. one day, that time period is a measure of player progression

which would be interesting from a balancing perspective. Progress might be measured in

experience points, coins earned, buildings bought, missions �nished or anything else. If

the terminal condition is a resource, e. g. reach 1000 coins, it might be of interest how

fast this can be done. The result should then be higher, the less time is elapsed.

As MCTS aims to maximize the result and to gain balancing insights, the evaluation

function has to return higher values for better game states according to speci�cally asked

questions. The standard question this tool is supposed to answer is, how far can a player

progress in a given amount of time. The terminal condition is therefore time based and

the evaluation function has to reward progress. This is done by a con�gurable result

calculator, which calculates the result with a given formula. Di�erent game attributes

59

5. Playing with Arti�cial Intelligence

can be used as input and their impact on the result is set in percentage points. An

example might be:

result = 50%× xp+ 30%× coins+ 20%×missionsF inished

Most MCTS policies are optimized for result values between zero and one. One could

change this, but would have to recalibrate the values for di�erent orders of magnitude in

the result. The decision was therefore made to normalize all results to a value between zero

and one. This is also important for every part of the formula. Else a higher value would

have greater in�uence on the end result and the de�ned percentages would be overruled.

The in�uence of every factor is determined by the limits used to normalize, wider limits

decreasing the in�uence of a value, and by the percentage points the normalized result

is weighted with.

The result calculator can now also be used to make the AIs behavior more human like

and to de�ne the concentration of a player on a speci�c game feature.

Divide and Conquer

One of the exceptional qualities of SBSGs are their enormous game play length as was

discussed in Chapter 5.1.2. Playing long games creates a huge tree space, which is ex-

ponential to the length of a game. This prolongs the simulations because they have to

play to the end. Selecting a node in a deep tree is also more expensive. Long games are

therefore bad for the performance and make �nding good results much less likely. To

tackle this problem subgoals have been introduced to WGDL, e�ectively lowering the

length of each search to reach a subgoal. Playing the game is then no longer done in one

search run, but rather one MCTS is performed for every subgoal, using the result of the

previous search as the input for the next run. The concept is depicted in Figure 5.1. It

has some drawbacks worth mentioning:

Miss Best Result When a previous MCTS run for a subgoal does not return the best

possible game state, the next run can not �nd the overall best possible result. It

has e�ectively been cut from the search space. MCTS's promise to always �nd the

best possible result, given enough time, is therefore no longer true for later search

steps. When there is enough time within every step this problem does not exist.

Investments Are Di�cult A subgoal is a point in the game when states are evaluated

and a decision has to be made to determine which state is good and which is bad.

It is sometimes quite di�cult to decide if some investment made by the player will

be useful in the long run. Maybe he bought an expensive item or object, which will

grant him huge returns in the future and improve the result that is achieved after the

last subgoal has been reached. Using subgoals to search might therefore encourage

short term gains rather then long term planning. This could be counteracted by

60

5.2. Customizing the Playing Algorithm

introducing a value for economic power, i. e. the ability to generate coins, experience

points and to �nish missions, into the result formula.

Figure 5.1.: This �gure shows how the divide and conquer strategy of using subgoals
changes MCTS by creating a new search tree from an intermediate result.
The depth of every search tree is then less than with the standard MCTS
approach.

Next the modi�cations to the four steps of MCTS, node selection, action expansion,

game simulation and result value backpropagation are presented.

5.2.2. Selection

In the selection step a node of the existing tree, that needs further exploration, is selected.

Di�erent selection policies try to balance exploration and exploitation. They mostly di�er

only in the formula used to calculate a node's rank. Because of that it is easy to implement

di�erent algorithms and compare their results to �nd the one most suited for this problem.

Single Player Selection Algorithms

For comparison purposes di�erent tree selection policies, all explained in Chapter 2.2.2,

have been implemented. Standard UCB, UCB-Tuned 1, UCB-Tuned 2, SP-MCTS and

UCB for SP, which is a new proposal for single player games. In single player games,

results from games don't depend on good or bad play from the opponent, as there is

none. This means that a good result can't be counteracted with a better move by the

opponent, which has not yet been discovered. It therefore seems prudent to give the good

results more weight on the selection. With UCB for SP a new formula, using the squared

61

5. Playing with Arti�cial Intelligence

results, is introduced to achieve this goal. It builds upon the UCB-Tuned 1 algorithm,

which has been the most promising during development and changes the winrate to partly

use the best result instead of the average. The formula is therefore:

yj + C

√
Vj

lnn

nj

with Vj = max (D,xj(1− xj)) and

yj =
tj
nj

(1− w) + w ∗ bj

with tjbeing the total value of all results for this action, bj being the best result for

this action and w being a constant between one and zero. While the exploration part to

the right remains the same as in UCB Tuned 1, the exploration part (yj) balances the

average result against the best result with constant w.

Non-Tree Tree Policy

The standard MCTS approach is to start at the root node and select it for expansion, if

it is not yet fully expanded. If it is fully expanded the child node with the highest value

from an UCB formula is chosen and the test for full expansion applied to this node. This

process repeats until a node is selected for expansion or all nodes are fully expanded.

Due to this exploration the current best path is not always chosen chosen but another

path is explored. If a good result is then found from this path, the backpropagation

ensures that the whole path is more likely to be exploited in the future. But even if the

simulation found a new best path the changes to the tree structure would be quite slow.

In an attempt to improve the reaction time on emerging new best paths, i. e. �nding

a surprisingly good result in an otherwise badly evaluated part of the tree, a non-tree

tree policy has been introduced as an alternative. Instead of a tree search for the best

unexpanded node, all nodes are considered with their UCB value. The policy is depicted

in Figure 5.2. As all nodes, instead of only the nodes on the path and all the children

on this path that must be considered, this approach takes considerably longer. For the

�rst runs it may however be viable because the advantage of choosing the current best

node instead of choosing the current best path outweighs the performance issues. The

evaluation in Chapter 6.2.2 proves that this approach is successful.

62

5.2. Customizing the Playing Algorithm

Figure 5.2.: A comparison between two selection policies.
The tree selection policy starts add the root node, looks at all children and
continues this process on the node with the highest UCB value. Several nodes
will not be looked at during one selection process.
In the non tree selection policy all nodes are looked at, no matter their
position in the tree.

5.2.3. Expansion

In the expansion step one or more di�erent moves are selected for expansion from the

node returned in the previous step. For every expanded action a new node is created

and added to the tree. To improve the performance and the quality of the results some

adjustments have been made.

Many Paths, One Goal

Although games are represented in a game tree, this representation is somewhat �awed.

It does not account for di�erent paths leading to the same game situation. This can

just be ignored, but using this information could be bene�cial to the search. Combining

di�erent paths that lead to the same game state can save memory, when one node is

used to represent the game state that is reached in two ways. This can also be used to

evaluate this game state with the results of the random playouts from both paths. To

avoid the introduction of a graph rather then a tree, the algorithm tests if the new game

state is already in the tree. If a similar game state is already is found no new node is

created and no playout performed. This avoids a considerable number of multiple game

states, resulting in more e�cient memory usage.

Start Small, Increase Steadily

Due to the tree policy, selecting every node on the path, which is not already fully

expanded, the tree widens very early. If the branching factor is not very small the wide

tree prevents the tree expansion into deeper regions. As a result a wide and shallow

search tree is built. But as the player in a single player game wants to search one time

63

5. Playing with Arti�cial Intelligence

before his �rst move and then play to the end, without further searching, the whole path

to the terminal state should be in the game tree. One way to improve the depth of a

search is to arti�cially limit the branching factor, as is shown in Figure 6.8. Out of all

possible actions at one point only a small amount may be expanded. When a su�ciently

deep game tree is built with this limited branching factor, the limit may be gradually

increased. This technique is called progressive widening. The prototype has the option to

start with a branching factor limit, which is expanded whenever the tree is fully searched

with this limit.

Figure 5.3.: The two trees both consist of thirteen nodes, but due to its smaller branching
factor the left one is one level deeper.

Narrow Trees Grow Higher

When playing games with high branching factor (bf) for a short time, progressive widen-

ing may not be enough to allow tree growth to the terminal node. While it would be

possible to start with a bf of one, the resulting path would hardly be a search tree. Then

the bf would have to be increased to two. But even with this small value the number

of nodes in depth n could be up to 2n. The tree could therefore have 1048576 nodes in

depth 20. When the program is only searching for a short time and expanding the tree

evenly this would produce low and wide trees. To improve growth towards the height

this thesis proposes an additional limit to the number of nodes on one level. When this

limit is reached, nodes on the level below may no longer be expanded. This leads to more

narrow and high trees as illustrated in Figure 5.4.

64

5.2. Customizing the Playing Algorithm

Figure 5.4.: Both trees have a branching factor limit of two, but the right one is addi-
tionally limited to three nodes per level. With the same amount of nodes the
tree is two levels deeper.

The limit is set dynamically based on the total number of nodes the algorithm expects

to be in the tree when the search has �nished and the length of the games.

limit =
estimatedNodes

gameLength
× x

The length of a game is taken from the current best result and the factor x may be used

to soften or harden this rule.

Another approach would have been to use di�erent branching factors for nodes on odd

and even levels. This has not been implemented and tested.

Do Not Forget The Best Path

As previously explained, AIs playing single player games have a great advantage over

AIs playing multi-player games. Once a single player AI has found a good path to the

terminal state there is no opponent that can prevent the AI from taking this path. This

leads to the comfortable position of every result achieved via one path being possible,

without any outside help like a badly playing opponent. It is therefore only natural to

save the best path found so far, even if not all the nodes on this way are yet in the tree.

This grants the additional bonus of a fast reply from the algorithm. If the algorithm is

asked to return the sequence of moves it wants to play, before the search tree reaches a

terminal state, it normally can not replay any path to the end. When the best path is

saved, this is no longer true. The prototype has the option to save the current best path,

by adding all intermediate states with nodes to the tree.

65

5. Playing with Arti�cial Intelligence

5.2.4. Simulation

In the simulation step, the game is played from the newly expanded game state to the

end. Which moves are chosen until the end of the game is decided by the simulation

policy. The most basic simulation policy is to always choose a random move.

Action Groups

Randomly choosing between all moves has some serious disadvantages. The number of

moves of one kind de�ne how likely the player is to choose a move of this kind. If, for

example, there are forty di�erent things to buy and only ten other actions, like collecting

coins from buildings, the likelihood of choosing a buy action is 80 %. If there are some bad

moves, or moves the player should only do in some exceptional cases, this may become a

major problem. In SBSGs buying a new building is one such expensive action. When the

likelihood of choosing a bad or expensive move is too high the chance of �nding a good

path fast is very low.

To solve these problems the concept of action groups has been introduced to WGDL.

See Figure 5.5 for an illustration. All actions are sorted into groups and these groups

each have a likelihood to be chosen. Inside the action group the actions are then chosen

randomly with equal likelihood. Thus the number of actions in one group has no e�ect

on the likelihoods of actions in other groups being chosen. This concept is also helpful in

creating player pro�les. This has been identi�ed as a goal in Chapter 5.1.1. By changing

the likelihoods of the action groups preferences of players in choosing their actions can be

modeled. The drawback of this approach is however, that it introduces human knowledge

about the di�erent actions into the game. If none is available all actions have to belong

to the same group, creating the same result as if there was only random action picking.

66

5.2. Customizing the Playing Algorithm

Figure 5.5.: This illustration shows the four action groups used in the Magic Land game
description with some example actions in them.

Forfeiting Hopeless Games

Most of the processing time of the algorithm is spent during the playouts. Avoiding

unnecessary steps can therefore be helpful in increasing performance. To abort games,

that can not return a good result, before a terminal state has been reached, a method

for evaluating the the current state must be implemented. Evaluating a game state via a

heuristic is not possible in GGP and this is why MCTS is used for this kind of problem.

The only time a game state is evaluated is when it is terminal. Then the scoring function

returns a result, that has been normalized to be between zero and one. In some cases

the potential of a game state to return a certain result can be analyzed. If the result is

calculated by the amount of game time needed to reach a goal, and needing less time

is better, the time already spent in this game state is the best result that can possibly

be reached. When the value(s) used to calculate the score are continuously increasing

or continuously decreasing the best possible result of a game state can be calculated.

During the simulation this value can be tracked and the simulation stopped, when the

value reaches a lower bound. When a game's best possible result, multiplied with a

constant set to two in the prototype, is lower than the best result currently found, the

game is considered lost, stopped and evaluated to zero. This evaluation to zero, even

if the real result might still have been 0.2, is an aggressive approach undervaluing bad

moves.

5.2.5. Backpropagation

During the backpropagation step the result obtained from the simulation is propagated

to all nodes on the path to the newly created node. To this straightforward step no

67

5. Playing with Arti�cial Intelligence

signi�cant modi�cations have been made.

5.2.6. Parallelization and Consecutiveness

One of the major goals of the search was to return results very fast. Parallelization is a

comparatively easy way to improve performance.

Root Parallelization and Tree Parallelization

For testing purposes and to accommodate the best results in di�erent computing envi-

ronments, two parallelization schemes have been implemented in the prototype. They

were both already explained in Figure 2.10. In the Combined Search Algorithm, multiple

Monte Carlo instances can be run in parallel. This approach is called root parallelization.

In addition to that, every Monte Carlo instance can also have multiple worker threads.

These threads access the tree, using a global mutex and run their independent simula-

tions. This is called tree parallelization.

Both approaches combined allow to focus on a single tree, if time is of the essence,

but when the locking approach no longer scales to new threads or multiple attempts are

more important, several search trees can be built independently.

Divide the Time

Especially due to progressive widening, which limits the branching factor by not expand-

ing all possible actions, some search attempts may be doomed to a bad result quite early.

If the �rst actions chosen prohibit a good result even a long search might not be able

to overcome this. When using short search times, progressive widening does not happen

very often, because the tree does not get fully expanded. To approach this problem the

idea was born to increase the number of searches in the given time, rather then search for

a longer time. So instead of using the sixty seconds dedicated to a search run, two search

runs of thirty seconds or three of twenty seconds could be performed. This approach of

consecutive search runs has been implemented in the prototype as well. The hope is to

decrease deviation in the results producing more stable ones.

68

5.3. Implementation

5.3. Implementation

The search algorithm's implementation consist of two major parts. They are the algorithm

itself and the de�nition of the tree structure, which is used during the search.

As the Monte Carlo Search Tree algorithm has been heavily researched over the last

years, many modi�cations have been proposed. Most of the time it can not be determined

how well they perform in a speci�c domain they have not yet been tested for. To get

the best possible result for searching SBSGs, di�erent modi�cations had to be tested

against each other. To support this, the algorithm has been implemented in an easily

con�gurable way.

With Search Algorithm, an interface to access the search algorithm has been created.

As the main part, a MCTS algorithm has been implemented and for testing purposes

an NMCS algorithm has been created too. A meta algorithm called Combined Algorithm

has been implemented as well, combining multiple MCTS and NMCS in one algorithm.

The Search Method

The di�erent search algorithms can all be started with the same search method already

de�ned in Search Algorithm. It is marked with the key word, ��nal�, to disallow overriding

it. It de�nes the basic setup for all search algorithms, how they start and what is done

with their result. But it does not know how to search for the best way to play the game.

For this, the search method then calls a template method (see Chapter 2.3.4), which has

to be implemented by the subclasses.

In fact there are two template methods, called searchTimes and searchMilliseconds.

They di�er in their termination condition. SearchTimes stops after a given amount of

search runs has been performed, whereas searchMilliseconds stops after a given amount

of time has passed.

Detecting Multiple Game States

As described in Chapter 5.2.3 sometimes di�erent paths lead to the same game state. To

avoid creating a graph rather then a tree, these di�erent paths are not joined together

to reach the same node which holds their common game state. But as multiple game

states may �ll up the search tree, a way to detect and avoid them had to be introduced.

Because game states get quite big a full comparison is not e�cient.

This problem can be solved with the introduction of a hash function, converting the

state into one single value, which is the same, when the state is the same. To create this

game state hash, all changeable parts, e. g. object attributes, have to be included. These

hashes are then stored in a hash map that grants constant access times with the hash as

a key, and are currently compared on a per level basis. Only game states reached with

the same amount of actions in a di�erent order are therefore compared.

69

5. Playing with Arti�cial Intelligence

Creating Nodes

The tree nodes are used to store search related information about the game state they

represent. How often has it been visited, what results have been obtained from playing

through this nodes game state, how many children does it have and what is its parent.

This information may then be used to calculate the upper con�dence bound, a value

representing a combination of the result, that is expected to be obtained from playing

the action leading to this game state and an exploitation value that favors unexplored

nodes to broaden the search. There are many di�erent formulas for calculating this value.

To allow the usage of di�erent calculation methods that can be accessed with the same

interface, therefore making the rest of the algorithm ignorant of what kind of formula

is used, the abstract factory pattern has been used. For every formula a speci�c node

factory has been written, implementing the abstract factory interface. The algorithm

itself uses the abstract factories interface to create nodes. By changing the factory object

the algorithm creates di�erent kinds of nodes, using di�erent upper con�dence bound

calculations.

Improving Node Size

Early tests showed, that the search tree took up too much memory. Because every single

node was too big, the maximum amount of nodes and runs was very low. An analysis of

the memory consumption with VirtualVM showed, that the biggest object inside the tree

node was the game state. To solve this problem the game state was no longer stored in the

node. When expanding a node and playing from the state that has been reached before

the game state is now recalculated from the initial game state following the actions

on the path through the tree. This decision has decreased search speed and memory

consumption, thus allowing for larger trees but needing more time to build them. Tree

nodes without stored game states are two to three orders of magnitude smaller than

nodes with stored game states.

Store Upper Con�dence Bound Values

As the upper con�dence bound values of a node, calculated with UCB, SP-MCTS or

any other UCB formula shown in Chapter 2.2.2, may depend on its parent and visits

to itself, the value may change whenever the parent node or the node itself is visited.

This dynamic value could therefore just be calculated whenever it is requested during the

selection phase. But most formulas use square roots, logarithms or other computationally

expensive methods. To increase the performance, the value is therefore not computed on

request but stored and recalculated whenever it might change, due to visits to the parent

node or the node itself. This approach can not be used when a random value is added

to avoid tie situations, which has been proposed and used in implementations before.

70

5.4. Results and Limitations

These approaches could be combined by dynamically adding a random value to the

precalculated upper con�dence bound value.

5.4. Results and Limitations

The modi�cations described in this chapter are supposed to improve the usefulness of

MCTS in the problem domain. Before the performance of these modi�cations will be

evaluated in the next chapter - measured in search speed and the quality of the results

they produce - the results and limitations of MCTS with these settings and changes are

weighed.

Results

The results are again mainly measured by how well the goals set in Chapter 5.1.1 have

been met.

Be Fast The evaluation in the next chapter will show that MCTS in this implementation

performs fast enough to be used iteratively.

Be Human Like What kind of actions the player takes, and therefore whether he plays

human-like or not depends mainly on the result formula that is set. It was possible

to steer the prototype towards �nishing missions, what is believed to be human-like

playing behavior. But analysis of real user data has also shown that there is not one

human-like playing style, but that humans play games rather di�erently. Without

a baseline de�ning human game play this goal can not accurately be evaluated.

Be As Good As Humans When the measure for playing as well as humans is progression

with experience, the AI is able to play well as as humans and better than most

for short game length. For long games it is not yet on level with human players. A

detailed analysis of the AIs performance, regarding its results, can be found in the

next chapter.

Player Pro�les With di�erent session durations and pauses between these sessions, spe-

ci�c player pro�les can be modeled. The playing styles, meaning what kind of

features a player concentrates on, can be described by changing the likeliness of ac-

tion groups and more strongly by con�guring the result formula to reward whatever

the player should concentrate on.

71

5. Playing with Arti�cial Intelligence

Limitations

To improve the performance of MCTS some concepts have been introduced that are

domain speci�c and may even violate GGP principles.

One such modi�cation is the inclusion of action groups. While combining di�erent

actions in one group and increasing or decreasing their likelihood to be chosen increases

the algorithms performance, it also introduces human knowledge. These assumptions

about what actions are helpful to the player and how often they should be tried out

might not be available or worse, even be wrong. Action groups do change the probability

of individual actions. But because all of them will eventually be chosen, this does not

change MCTS fundamentally. All actions combinations are still tried out and the best

result will be found, given in�nite time and memory.

Another strong force in guiding the MCTS and e�ectively changing the end result is the

result formula. While it is necessary to de�ne how to evaluate a terminal state returning

a score, sophisticated result formulas can exceed this goal by rewarding actions the user

deems bene�cial to achieve a good result. For example the formula could incorporate

coins, food and �nished missions, in addition to the experience points which would be

enough to track progression on one axis. The main disadvantage may be that this feature

might allow the user to incorporate wrong assumptions about user behavior, skewing the

results.

The third limitation worth mentioning is the introduction of subgoals to divide the

game into several smaller games, e�ectively decreasing the tree space one search has to

cope with. This approach makes result formulas that reward more than plain progression

mandatory, because these formulas now have to evaluate game states that are not termi-

nal when looking at the whole game. If the division of a game is possible and appropriate

evaluation functions can be found subgoals are worth the e�ort as the next chapter will

show.

Conclusion

This chapter has shown that MCTS is suitable to play social games, given some modi�-

cations and enhancements. With the result formula a new feature to calculate a games

score has been introduced. To successfully play SBSGs the game length can be cut down

into several sessions, the path to the best result can be added to the tree and tree height

growth can be forced by arti�cially limiting the branching factor and the maximum tree

width. Human behavior and di�erent play styles can be modeled, thereby losing some

generality. The next chapter will evaluate the performance and the results, using di�erent

modi�cations and settings.

72

6. Experiments and Evaluation

In this chapter the search algorithms are evaluated in di�erent environments and with

di�erent settings. The measuring results can be used to propose which settings should

be used to achieve the best and/or fastest results. They will also show, if the approach

of playing social games with MCTS is viable for game balancing and where further

improvements should be considered.

6.1. The Environment

For testing purposes two games have been described. With Magic Land (ML) the proto-

type can be tested on a real social game, while Simple Coins may help to evaluate the

algorithms performance in a fully calculable test environment. All test runs have been

made on standard personal computer hardware, that is at approximately the power game

balancers have at their disposal.

6.1.1. The Games

With Magic Land, Wooga's most popular energy based SBSG has been used as a test

case. But the number of actions possible and their combinations and timed e�ects make

it nearly impossible to calculate, how well the game can be played. If this would not be

the case a balancing tool would not be needed. The results in Magic Land are therefore

compared against data gathered from real users. To compare search results against the-

oretical maximums a second game description, with actions that clearly di�er in their

value but can be calculated has been created.

Magic Land

Wooga's Magic Land (ML) is, mechanics wise, a typical example of modern social games.

The game play is paced with an energy system, the player can start contracts on farm

plots and buildings and a soft as well as a hard currency is used. The soft currency (coins)

is used to buy buildings, contracts and decorations, while the hard currency (diamonds)

may be used to speed up the game by ful�lling tasks, unlocking items prematurely or

buying special items. The story is told through missions, which are the main drivers for

players actions. A more detailed description can be found in appendix A.

Because the prototypes performance on ML has been tested against real user data it

is especially important to clarify where game description and the actual game are the

73

6. Experiments and Evaluation

same and where not. Some simpli�cations for the ML description had to be made due

to the lack of expressive power of WGDL, others have been made to ease description or

even improve playing performance.

Comparing Magic Land Against the Description Features, that are in the game

description:

• Buildings: Businesses and Houses

• Farms: With di�erent contracts

• Some Decorations

• Non Player Characters (npcs): Trolls and Unicorns

• Missions: Several mission lines, 22 missions in all

• Coins, food, stones, trees and basic materials

• XP and leveling up

Features, that are not in the game description or di�erent to the game:

• Area e�ects based on map positions and other map consequences, like limiting the

number of buildings

• Hard currency (diamonds)

• Most advanced materials, which can be obtained from buildings and are only needed

in later missions

• Friends, gifts and requests

• Chance events are either left out (random dropping of energy) or implemented with

their expectancy (return of basic materials from houses)

• More missions missing

• Food cap that can be raised by buying special buildings

• Whacking npcs, stones and trees does normally take several actions but is modeled

as one action consuming several energy points and returning several materials

The ML description currently consists of 598 lines describing game mechanics and 579

lines describing content. The descriptions of classes and actions with their conditions and

consequences are counted as game mechanics, while object descriptions, their attribute

initializations and the terminal conditions are counted as content. A more detailed listing

of the line distribution is available in table 6.1.

74

6.1. The Environment

Game Mechanics Game Content

class 24 object 127

attribute 111 attribute 431

action 50 initial 17

condition 69 goal 4

consequence 153
hasConsequence 162

isInGroup 25

Table 6.1.: This table lists the number of lines dedicated to di�erent game features in
the game description.

Simple Coins

In Simple Coins (SC) the player has to choose between twenty-one di�erent actions,

twenty of which return between one and twenty coins while the twenty-oneth ends the

session. The coin getting actions need one energy and the end session action re�lls the

energy to its initial value of 30.

The best result of one session is obtained by choosing the best action, get twenty coins,

every time and ending the session only after the energy is depleted. This would result

in a best result for one session of 30 × 20 = 600 coins, while the worst result would be

zero, when the �rst action chosen is to end the session prematurely. This game does not

use any timed e�ects, game rules or other social game speci�c features, but its optimal

results can easily be calculated. Its game description can be viewed in Appendix D.

6.1.2. The Benchmarking System

All benchmarks mentioned in this chapter were performed on an up-to-date personal

computer with the following speci�cations:

CPU Intel Core i5-3450 - 4 × 3,100 MHz

Memory 8 GB DDR3 RAM, 1,333MHz, CL9

Hard Disk Samsung 830 Solid State Drive, 128 GB

Operating System Microsoft Windows 7 Professional, 64 Bit

Editor Eclipse IDE Indigo

Java Version JRE 7, JDK 1.7.0_03

75

6. Experiments and Evaluation

6.2. Experiments

The di�erent settings and modi�cations are evaluated separately. They are assessed based

on their speed, measured in runs per second, and the quality of the results they produce.

Speed is only a secondary metric, based on the assumption that faster search speed will

provide better results. The quality of the results is measured in the absolute value of the

results, higher being better.

All the modi�cations are explained shortly but can be found in full detail and same

order in the previous chapter.

6.2.1. General

Result Formula

The result formula used to evaluate terminal game state with a value between zero and

one is the main force determining how the AI plays a game. It is therefore important to

understand how di�erent result formulas in�uence the result of a search.

To map all parts of the formula linearly to a value between zero and one a minimum

and maximum value is set for every part. The value can then be calculated with the

expression realV alue−min
max−min , if a bigger real value is better, or realV alue−min

max−min × (−1) + 1, if

a smaller value is better. The minimum and maximum value have to be manually set

and may be estimated or tuned wit a trial and error approach. The �rst experiment (E1)

tests if it is important to set these values as narrow as possible.

Experiment 1: Result Formula Limits In E1 four di�erent result formulas are compared

against each other. The minimum values are always the same, zero, but the maximum

values are doubled for every new formula, making the limits less and less accurate. The

standard formula n is xp−0
500−0

×0.5+ missionsF inished−0
22−0

×0.3+ coins−0
15000−0

×0.2. The maximum

value for xp is 500, 22 for �nished missions and 15000 for the number of coins collected.

The formulas are tested on ML playing the �rst four sessions, one session at a time.

The results in Figure 6.1 show, that matching result formula limits are of importance

to the end result. The best �tting result formula n returns the best result, and results get

worse the more widely the limits are o� the mark. The data supports the claim that n is

better than 2n with 95% con�dence and better than 4n and 8n with 99,5% con�dence1.

1The signi�cance levels of the experiments are calculated by comparing the two samples using the
Student's t-test with a one-tailed distribution. This approach is used by Wooga to evaluate A/B
tests of new game features.

76

6.2. Experiments

Figure 6.1.: The left chart shows the average result achieved using the four di�erent
result formulas. To allow comparison all results have been recalculated from
the xp, missions and coins values using the standard result formula. To
make di�erences more visible the lower limit of the graph has been set to
0.46 instead of zero.
Averages:
n = 0.479328206
2n = 0.471085758
4n = 0.467560861
8n = 0.467253782

The right chart shows the distribution around the means for n and
4n. The signi�cance of the result is the highest value of the bars of one color
which do not overlap. Green is 99% signi�cance, yellow 95% and red 90%.
In this case both bars do not overlap and therefore n is better than 4n with
a signi�cance level of at least 99%.

It is now clear that the result limits do matter. Currently the same formula is used

for all subgoals and has therefore to be initialized with values viable for all subgoals.

These results suggest, that results could be improved further by using better �tted result

formulas for each subgoal individually. So the xp limit could be set to 150 for the �rst

session (�rst subgoal), be increased to 200 for the next and so on.

Experiment 2: Factors in Result Formulas Experiment 2 (E2) tests how the compo-

sition of result formulas a�ects the game result. Result formulas can be comprised of

di�erent game values, which may be limited individually and their in�uence weighed

against each other. To measure the in�uence of weighing factors, two di�erent weighing

schemes are compared. In xpMain the main focus, 50%, is on gathering experience point,

while in coinsMain, collecting coins is the main target, 50% as well. To evaluate the

importance of combining di�erent values in one result formula the combined formulas

compete with three single value ones. XpOnly, missionsOnly and coinsOnly only take

the corresponding value into account, completely ignoring everything else.

The results are shown in Figure 6.2. When comparing xpMain against coinsMain their

77

6. Experiments and Evaluation

di�erent focuses are clearly visible. XpMain returns the most XP while coinsMain returns

nearly as much coins as coinsOnly. Although the weight and limit for missions is the same

in xpMain and coinsMain, xpMain performs a lot better on this. This can be explained by

the nature of the missions. Completing missions often costs coins, e. g. buying decorations

or �at-out consuming coins, and is sometimes rewarded with XP.

More can be learned from looking at the single value formulas. XpOnly performs worse

than both combined formulas on its prime focus. MissionsOnly performs a lot worse than

xpMain on its focus, missions, as well. This shows, that concentrating on one value only

may not always be the best strategy, when one is trying to optimize this value. The

most likely explanation for these results is, that both strategies waste their coins early

on, and this a�ects their ability to improve their results by �nishing missions. Their

exceptionally low values in coins supports this thesis. CoinsOnly di�ers from the other

single value formulas in that it actually succeeds in optimizing its value more than the

combined formulas do.

This experiment has shown, that di�erent result formulas lead to di�erent playing

styles and that a wise combination of values can, but must not, be more e�ective in

optimizing even a single value.

78

6.2. Experiments

(a) (b)

(c)

Figure 6.2.: These graphs show the average values for xp, �nished missions and coins,
using �ve di�erent result formulas:
xpMain = 50% xp + 30% missions + 20% coins
coinsMain = 20% xp + 30% missions + 50% coins
xpOnly = 100% xp
missionsOnly = 100% missions
coinsOnly = 100% coins

Divide and Conquer

One of the main modi�cations, while adjusting MCTS to succeed in playing SBSGs, is

the introduction of multiple subgoals to limit the depth of a search tree. The e�ects of

this decision are tested in Experiment 3.

Experiment 3: Using Subgoals to Improve Results Three di�erent settings are tested

against each other. Completing the four sessions directly (1× 4 sessions), with two goals

(2× 2 sessions) and with four goals (4× 1 session).

The results of E3 are abundantly clear. Using one subgoal for every session, rather then

playing four sessions in one run, improves the results considerably. The average result

increases from one goal, ≈ 0.35, over using two goals, ≈ 0.44, to ≈ 0.48, when using

four goals. The results from two goals are 25% better than from one goal, and four goals

increase by another 8% making it 35% higher in total.

79

6. Experiments and Evaluation

Figure 6.3.: This graph shows the average result for playing the �rst four sessions of
ML using one goal, two goals or four goals. Using more (sub)goals clearly
improves performance.

Using subgoals seems to be a huge improvement, despite the disadvantages anticipated.

These were mentioned in Chapter 5.2.1. One issue was, that subgoals would inhibit invest-

ments. This might not be a problem, because investments might not be that important

in ML or because only using one goal does not �nd good investments as well. The second

expected issue was that cutting the search tree would prevent the ai to �nd the best

solution later on. But the AI is currently to far away from �nding the optimal path, at

least under the tested time constraints, that this would become a problem.

6.2.2. Selection

To the selection step two modi�cations have been proposed. With UCB for SP a new

single player UCB algorithm has been proposed. The non-tree policy, which selects the

most promising node without searching the tree, is a radically di�erent approach to node

selection. Both algorithms will be experimentally tested.

UCB algorithms

Before UCB for SP is evaluated, the other UCB algorithms are calibrated2, by testing

the results for a variety of di�erent variable settings, and compared against each other.

Experiment 4: Comparing UCB Algorithms In Experiment 4 each UCB algorithm

is tested with its best settings against the others, to see how well they perform. The

results show, that UCB and UCB Tuned 1 perform alike, UCB Tuned 2 clearly worse

and SP-MCTS, the singe player variant, seems to be slightly better. All algorithms being

at least 0.0149 results points better than UCB Tuned 2 is statistically signi�cant with

a con�dence of at least 99.5%. SP-MCTS being better than UCB and UCB Tuned 1 is

2The calibration results can be viewed in Chapter C of the Appendix.

80

6.2. Experiments

only true with 90%, respectively 95%, con�dence. The improvement is only marginal, if

any at all. These results can be viewed in Figure 6.4.

(a) The results of known UCB algorithms (b) Signi�cance comparison between the best two algo-
rithms

Figure 6.4.: Figure 6.4a shows the average results for four di�erent UCB algorithms.
UCB Tuned 2 is clearly inferior to the other three. SP-MCTS might be
slightly better than the middle group of UCB and UCB Tuned 1.
UCB = 0.5083371
UCB Tuned 1 = 0.5061597
UCB Tuned 2 = 0.4802266
SP −MCTS = 0.5141475

Figure 6.4b shows a comparison of the results from UCB and SP-MCTS.
While the results of SP-MCTS seem slightly better, the distributions
represented by bars of di�erent color, overlap partly. Only the red bars do
not overlap. Therefore the signi�cance of SP-MCTS being better than UCB
is only 90%. Yellow bars represent 95% and green ones 99%.

Experiment 5: How Well Performs UCB for SP? The newly proposed single player

UCB algorithm called UCB for SP is built upon UCB Tuned 1. It replaces the average

result of all search runs through a node, with the best result. This replacement can be

linearly regulated from zero, only average result, to 1, only best result. With a best result

weight of zero UCB for SP is equal to UCB Tuned. In E5 several best result weights are

tested to see if UCB for SP can increase its results upon UCB Tuned 1.

The Results in the Chart 6.5 show a negative trend, when increasing the best result

weight. The peak at 0.2 is not statistically signi�cant, but the results deteriorate strongly

above 0.6. E5 shows, that UCB for SP is, at least in this scenario, no improvement upon

UCB Tuned 1.

81

6. Experiments and Evaluation

Figure 6.5.: Development of average results for di�erent best result weights

Non Tree Policy

In order to explore promising nodes faster, although they are not on the most promising

path, a non tree selection policy has been proposed in this thesis. Instead of traversing

the tree from the root, searching for an unexpanded node, all nodes are included in the

search.

Experiment 6: Testing the Non Tree Policy The non tree policy is tested on two

di�erent settings. One time the option to add the path to every newly found best game

state is activated, the next time it is not. This option is evaluated further down, under

the heading �Do Not Forget The Best Path�. E6 tests the performance for many di�erent

search times, because the expectation is, that non tree search is good for short search

times, but will decrease when the tree grows large and its selection process is a lot slower

than the tree approach.

The results from E6 con�rm these expectations. The non tree search policy, in com-

bination with adding the path to the best node, returns the best results up to circa

�ve seconds search time. With longer search times it is clearly outperformed by the tree

search policy. The non tree policy without adding the path to the best node can not

improve on the tree policy for short search times and also performs worse above circa

�ve seconds search time.

When looking at the search speed, measured in MCTS search runs per second, the non

tree policy is slower as has been expected, but the drop is not as high as expected. This

is most likely due to the search speed being low for ML which results in a relatively small

number of nodes to search. From the comparison between the non tree policy with and

without adding the best path it seems like the non tree policy spends a lot of time on

adding newly found best paths. The results show, that this time is well spent.

Summing up it can be said, that the non tree policy performs better for low search

times or maybe the �rst 10,000 nodes. After this time the algorithm should however

switch to a tree policy, thereby combing the best of both.

82

6.2. Experiments

(a) Result comparison between tree and no tree
policy

(b) Speed Comparison of the same

Figure 6.6.: The speed and results shown for di�erent search times. Beware, the horizon-
tal axis does not scale linearly!
Signi�cance of non tree policy with adding the best path, noTree addBest,
being better than using the tree policy and adding the best path, tree ad-
dBest:
0.5 seconds >= 99.5%
1 seconds >= 95%
2 seconds >= 90%
3 seconds >= 90%
4 seconds >= 99%
5 seconds >= 90%
Non tree policy performs better for search times of �ve or less seconds.

6.2.3. Expansion

Many Paths, One Goal

In a game tree di�erent path can lead to the same game situation later on. This does not

�t well with a tree representation. To avoid multiple nodes representing the same game

state a search for game states on the same level of the tree can be performed. When a

node for the new game state already exists it is not added to the tree and the search run

is aborted, the search restarting by selecting a new node.

Experiment 7: Searching Multiple Game States In E7 the e�ects of this search are

tested by turning it on and o� with all other settings being stable. When comparing the

settings with thirty second searches on ML no di�erences in the results, speed and tree

size could be detected. The number of multiple game states found was to low to have

any impact. To see if this is ML speci�c and might be di�erent for bigger search trees or

games with less di�erent actions E7 is performed on Simple Coins.

When looking at the results from E7, in Figure 6.7, a positive e�ect of the search is

obvious. With search the results improve from 2188 to 2369 when using �ve instead of

one second to search. When not using multiple game state search results only improve

83

6. Experiments and Evaluation

from 1921 to 1956. Results are therefore overall higher and improve faster with more

time given. With search enabled the theoretical maximum for Simple Coins with four

sessions, which is 2400, is nearly reached. A look at the tree sizes can help explain

these di�erences in results. The tree growth when search for multiple game states is

slowed down considerably, thereby avoiding a lot of unnecessary nodes. The comparison

of search speeds is no longer unexpected. Search speed with searching for multiple game

states is faster, because although the search run is aborted when a multiple game state is

found, this still counts towards the search runs performed. The time saved for playing out

the game to estimate the value of the new node can then be used for a new search run.

Search speed alone does not account for the better results. If this were the case searching

two seconds without multiple game state search would have to return better results than

searching one second with searching for them. The absolute number of search runs is

higher for the �rst one, but the latter one returns the better results.

The multiple game state search seems to work for games with comparatively few di�er-

ent actions. The implementation currently does not recognize the same action on di�erent

objects to lead to an equal game state, also this might sometimes be the case. Allowing

this without �nding false positives would require a deeper analysis of paths to a game

state. Maybe this is a worthwhile topic to optimize, because the search certainly helps

in the more synthetic Simple Coins.

84

6.2. Experiments

(a) The average results when (not) using multiple
game state search

(b) Development of tree size

(c) Search speed comparison

Figure 6.7.: These �gures show the advantage of activating the search for multiple game
states when playing Simple Coins for four sessions.

Start Small, Increase Steadily

A technique called progressive widening has also been implemented. It limits the branch-

ing factor of the tree to enforce deep search trees instead of wide and shallow ones. Does

this approach improve the results as it has done for other implementations?

Experiment 8: Testing the Branching Factor In E8 branching factors ranging from 1

to 10 were tested on ML with 30 seconds search time. The results �uctuate a little bit,

but there is no clearly better or worse setting and no trend whatsoever. The same is true

for four sessions of Simple Coins with 0.5 to 3 seconds search time. The ML results can

be viewed in Figure 5.3.

The branching factor has no noticeable impact on the overall performance of the algo-

rithm.

85

6. Experiments and Evaluation

(a) Results for di�erent branching factors (b) Results for di�erent node limits

Figure 6.8.: Both �gures do not show the full bar length in the vertical axis to allow the
reader to see the small �uctuations.
In Figure 6.8a no discernible trend can be seen. The branching factor seems
not to a�ect the results.
In Figure 6.8b several limiting factors for the level based node limit are
tested. They do not improve or deteriorate the results.

Narrow Trees Grow Higher

To force tree growth towards deeper levels a limit for the number of nodes per tree level

has been proposed in this thesis.

Experiment 9: Testing the Node Limit per Level In E9 the node limit is tested with

several options. The lower the limit factor, the less nodes are allowed per level. A small

example can explain this further:

In the example a best result has been found after 10 moves and the algorithm has one

second time to search, with a search speed of 1000 search runs per second.

If divided evenly this would allow for 100 nodes on every tree level. This number is

then multiplied with the limiting factor.

The results in Figure 5.3 show that di�erent limiting factors as well as turning the node

limit o� do not have a measurable impact on the results. It therefore seems prudent to

remove this feature with the overhead it produces.

Do not Forget the Best Path

There are two di�erent ways to deal with a playout �nding a new best game state. The

result can just be backpropagated from the new node and the best game state saved,

to return it if no better is found in the future. In single player games forgetting a once

found best path is of no use. Another option is to not only backpropagate the result, but

to add all game states on the path to the best game state to the tree. The e�ects of using

86

6.2. Experiments

this setting are explored in Experiment 10.

Experiment 10: Adding the Best Game State's Path to the Tree How does adding

the best path to the tree perform for di�erent search times? This question is addressed

in E10.

The results in Figure 6.9 show that adding the best path consistently improves the

average results when the search time is a second or more. The average result di�erences

and the signi�cance of the results vary a little bit, but they are consistent enough to

state that adding the best path is an improvement. An explanation for why not adding

is most likely better when the search time is only half a second could be, that the time

spent for adding several nodes to the tree is not well spent at the start. In addition to

that most improvements on the best result, leading to new paths to add, are quite early

in the search process.

Figure 6.9.: Adding the best path to the tree instead of only saving the best game state
performs better for search times of one second and above.
Signi�cances of the statetments:
addBest worse than notAddbest:
0.5 seconds time >= 90%

addBest better than notAddbest:
1 seconds time >= 99%
2 seconds time >= 60%
3 seconds time >= 90%
4 seconds time >= 99,5%
5 seconds time >= 80%
10 seconds time >= 90%
20 seconds time >= 99.5%
30 seconds time >= 99,5%

6.2.4. Simulation

After it became abundantly clear during development, that a simple random playout

approach would not return satisfactory results, modi�cations to the simulation strategy

had to be made. They are tested in this chapter.

87

6. Experiments and Evaluation

Action Groups

Action groups have been invented to transfer human knowledge about actions and their

usage frequency into the search. This approach does con�ict with general game playing

but it might be a valid one for the purpose of balancing.

Experiment 11: Using Action Groups In E11 the e�ects of using action groups with

di�erent likelihoods are studied. In all experiments up until now the actions were cate-

gorized in four groups. They are:

Build Actions for building businesses and houses as well as buying decorations. Standard

likelihood is 9%.

FinishSubgoal Actions with the soul purpose is to �nish a part of a mission. E. g. con-

sume an amount of gold as a payment. Standard likelihood is 10%.

Wait Actions that do nothing except to increase the game time. Standard likelihood is

1%.

Play All other actions in the game, like interacting with trees, stones and buildings.

Standard likelihood is 80%.

To test action groups the standard likelihoods are changed. In missions (for �nishSub-

goal), building and waiting the likelihood of either group is raised by 10% which is

deducted from the play group. In playing 5% are deducted from build and �nishSubgoal

and added to the playing group. In groups equal, all the groups have an equal likeli-

hood of 25%. To test the e�ect of using no action groups there is one setting, called �1

group�, where all actions belong to the same group with likelihood of 100%. This setting

corresponds to a total random simulation policy.

The results of the standard, missions and playing con�guration are very similar. In-

creasing the likelihood to wait and thereby �nish the session early decreases the average

result a little bit. Even more hurting is to increase the building, respectively spend-

ing, probability. The comparatively bad results from using one group show, that using

action groups provided huge bene�ts. In groupsEqual the less populated categories of

waiting and building are weighted equal, leading to higher likelihoods for these actions.

The results are even worse than with one action group. This shows that action groups

likelihoods need to be set carefully to improve rather than deteriorate the performance.

88

6.2. Experiments

Figure 6.10.: The comparison of di�erent action groups settings shows that using action
groups is able to improve results considerably. Standard setting is ≈ 23%
better than 1 group setting. Di�erent settings also show that �ne-tuning
the groups probabilities is needed to get the best possible results.

Forfeiting Hopeless Games

Once a terminal state has been while playing the game a base line for the expected

results exists. With every new best game state the expectations increase. With forfeiting

games the ideas was to end a playout before a terminal state is reached if a new best

game state is can no longer be reached. The upside of this approach is that time can

be saved on unpromising playout, but aborting a playout leads to a result of zero being

backpropagated. This will undervalue game states a lot.

Experiment 12: Should Hopeless Games Be Aborted? The best possible result from

a game currently played is multiplied with a value that is used to de�ne how strict the

algorithm is. With a setting of one every game that can no longer reach a new best game

state is aborted. This is lessened for values higher than 1 because they increase the best

possible result, before comparing to the currently best value. For E12 eleven di�erent

settings have been tested. From the hardest, 1, to the softest, 2, in steps of 0.1.

Figure 6.11 shows the average results for three settings. The results from 1.1 to 1.8

are nearly equal, as well as 1.9 and 2. They are therefore represented by one value for

reasons of clarity. Using a strict factor of 1 outperforms a less strict factor of 1.1 and

2, especially after 10 or more seconds. When looking at the search speed the factor of

1 is actually faster than the other settings, but this turns around when searching for 30

seconds. The di�erence in results after 30 seconds has therefore to be due to evaluating

hopeless games to zero, rather than just faster search speed.

89

6. Experiments and Evaluation

(a) Result Comparison (b) Speed Comparison

Figure 6.11.: The result comparison shows the strict forfeiting setting of 1 consistently
returning the best results, while the speed comparison shows that up to 30
seconds this might be at least in part due to its superior search speed.

6.2.5. Parallelization and Consecutiveness

Root Parallelization and Tree Parallelization

In the Combined Search Algorithm two di�erent parallelization schemes have been imple-

mented. Creating several independent trees, root parallelization (rp), and using several

workers on a single tree, by locking access to the tree before accessing it, called tree

parallelization (tp). The next experiments compare these approaches.

Experiment 13: How Do the Parallelization Schemes Scale? First the two approaches

are compared in how they scale, when the number of threads used for the program is

increased. On the test system up to four threads can be processed in parallel.

The results in Figure 6.12 show that both approaches can pro�t from more cores,

but the root parallelization approach scales better. For rp with �ve seconds search time a

second thread adds 558 runs per second to the 579 from 1 thread. The third adds another

568 and the fourth only 468. This last drop might be due to the fact, that the algorithm

gets slower for bigger trees or that there are IDE and system threads con�icting with the

search when all cores are meant to be used. For tp the second thread add 527, the third

428 and the fourth only 329. With four threads rp is about 18% faster than tp when

searching for �ve seconds. This gap increases with longer search times, because tp slows

down faster. This can be explained by the growing search tree resulting in longer locking

selection and backpropagation operations with tp.

90

6.2. Experiments

(a) Root Parallelization (rp) (b) Tree Parallelization (tp)

Figure 6.12.

Experiment 14: How Do the Parallelization Schemes Perform? In E14 the results

of both schemes are compared, to see how and if the di�erences in speed translate to

di�erences in results.

The comparison graphs in Figure 6.13 show that there are no signi�cant di�erences in

results between the two approaches for up to four threads and 60 seconds search time.

For search times above 60 seconds (only shown for 4 Threads) the tree parallelization

approaches returns better results.

For lower search times the speed advantage of rp over tp is to small or compensated

by the advantage of building up one tree with the knowledge of multiple threads.

91

6. Experiments and Evaluation

(a) Using 2 Threads (b) Using 3 Threads

(c) Using 4 Threads

Figure 6.13.: Caution: Improvement is not linear over search time. It does only look this
way due to the non linear horizontal axis.

Experiment 15: Combining Parallelization Schemes Up to now the parallelization

schemes were compared against each other. In E15 both schemes are combined to �nd

out which combination of trees and workers returns the best results. The only sensible

combination using four threads is building up two search trees with two workers each.

This setting has therefore to compete against only scaling the number of trees and only

scaling the number of workers.

Figure 6.14 shows the results and a speed comparison between all three settings. The

speed comparison is now also continued to search times up to 240 seconds. While all

three settings continuously decrease in search speed the drop-o� when using 4 workers is

considerably higher. The combined setting can compete with rp but is still outperformed

at 120 and 240 seconds search time.

These results suggest that search speed is of more importance to the result than creat-

ing bigger and thus more well informed search trees. For projecting the performance in

more parallelized multi-core systems this is a favorable conclusion, because the number

of trees can easily be increased without negative impact on the search speed.

92

6.2. Experiments

(a) (b)

Figure 6.14.: The result comparison shows results of all three parallelization settings
being similar up to search times of sixty seconds. Then the improvement of
4 Workers can no longer keep pace with 2 Workers, 2 Trees and especially
4 Trees, which returns the best results for long search times.
The search speed comparison suggests a relationship between speed and
results. The 4 Workers setting always being slowest and decreasing faster
than the two other settings.

Divide the Time

A new parallelization approach introduced in this thesis is to split the time available to

search and run multiple shorter search runs.

Experiment 16: Multiple Consecutive Search Runs In E16 the setting of one single run

is tested against two consecutive runs for search times from one second to four minutes.

The results in Figure 6.15a show that consecutive search runs have negative impact

on the quality of the results, when the search time exceeds �ve seconds.. This could be

acceptable if the goal to decrease the deviation of the results would have been achieved.

But Figure 6.15b shows that lower deviation is not consistently achieved. Using multiple

consecutive search runs is therefore considered to be a failure.

(a) (b)

Figure 6.15.

93

6. Experiments and Evaluation

6.2.6. Testing Nested Monte Carlo Search

As a second algorithm NMCS has been implemented as well. It can be used separately

and in conjunction with MCTS searches. Earlier research showed that NMCS is well

suited for single-player games [12], what made it an especially promising candidate.

Experiment 17: Comparing NMCS and MCTS Results For E17 both algorithms have

been executed four times in parallel using the combined search algorithm implemented

in the prototype. Because both algorithms use every core of the benchmark system this

is a fair comparison of their power.

The results in Figure 6.16a are very clear. For search times lower than sixty seconds

four NMCS algorithms outperform four MCTS algorithms considerably when playing

Magic Land. For larger search times MCTS seems close this gap although it is not sure

if this would continue for search times above four minutes.

(a) Magic Lang comparison (b) Simple Coins comparison

Figure 6.16.: These �gures show, that NMCS outperforms MCTS in Magic Land for
search times below one minute. In Simple Coins MCTS performs better
and improves faster than NMCS.

As this result shows that all improvements to MCTS were not able to improve results

over a fairly standard NMCS search this needs explaining. Two possible explanations are

listed here:

• The most successful modi�cations, Action Groups and Subgoals, are used by NMCS

and MCTS alike. The advancements to MCTS for social games are transformable

to advancements to NMCS.

• Searching Magic Land is very slow. Therefore there is no huge tree after less than

one minute, the time being again divided between four sessions. Without a huge

tree to store information on good paths raw search speed is more important. This

claim is supported by the results for searching Simple Coins in Figure 6.16b, where

search speeds are orders of magnitude faster and trees therefore a lot bigger.

94

6.3. Evaluation

All the settings have now been tested and their in�uence on the result evaluated. Because

this thesis want to answer the question whether it is possible to gain insights for game

balancing from automatically playing these games, the prototype has to compete against

human players in the next chapter.

6.3. Evaluation

6.3.1. Comparison with Human Players

How good are Human Magic Land Players

In order to evaluate the performance of the prototype its results have to be compared to

real players. The target is to be better than most, about 90%, of the real players.

For the analysis of real user data �fteen days of game logs have been analyzed. In this

time span around 750,000 new users started playing. The session log �les contain the

duration of a session, its date and time, and the experience points of the user at the end

of every session. Tracking missions per player is to problematic, so the comparison has to

be based on experience points. Several problems surfaced while analyzing the user data:

Log Data Does Not Match Game Play The session logs used for the comparison ended

a session, whenever 60 seconds without any action had passed. This rule is very

strict, because these timeouts happen a lot and players might continue shortly

after. The session count is therefore to high for at least some players. This problem

has been tackled for by comparing duration of game play rather than number of

sessions or by combining sessions with lower than thirty minutes pause in between

to one session. Another approach is to decrease the number of sessions the prototype

may play when competing against real players by a factor of two. This factor has

been computed by the di�erence of sessions logged with 60 seconds timeout against

sessions logged from newly loading the website.

Human Players Behave Unsteady The prototype was built with the presumption, that

player styles can be described by the number of sessions per day and the length of

their sessions. A view on real user data has shown, that hardly any players behave

regularly in this sense. The number of sessions they play varies daily, many players

do not play every day, and sessions last from some seconds to over an hour in

extreme cases. Fortunately the data sample was large enough to allow to �nd at

least some players with regular playing behavior.

Short Term Comparison

For the short term comparison four sessions are played in one day. This comparison is

just, because there are enough missions to play four sessions. The di�erences between

ML and real Magic Land are therefore smaller than for the long term comparison.

95

6. Experiments and Evaluation

The real user data is collected from all new players who play four sessions on their

�rst day, playing between 1065 and 1935 seconds in total and have at least 100 XP.

The duration limits have been set to ensure that they had about as much time as the

prototype, the XP limit ensures that the players actually played the game. Data has

also been analyzed for every player reaching the fourth session or playing three sessions

per day. The results are very similar to the ones from the 4 sessions per day, regarding

median but they have more extremes due to missing limits.

Results for the balancing tools prototype are obtained for playing four sessions on

one day, each session lasting for 300 seconds to a total of 1200 seconds. The progress

distribution of human ML players is shown in Figure 6.17. With a median XP value 242

after 60 seconds search the prototype beats 92% of all players. This result is directly to

the right of the third spike in the human players chart. When factoring in, that human

players were allowed to play longer than the prototype, but some of the players may not

be in their fourth gaming session due to logging di�erences, the prototypes performance

is at least in the region of human players.

Figure 6.17.: Human player data for few gaming sessions.

Long Term Comparison

For the long term comparison di�erent scenarios were used. The human players were

selected by the number of sessions they played per day. Another condition was that

they �nish a session roughly (+/- 500 seconds) at the duration speci�ed. From all users

ful�lling these requirements the median days needed to play that far as well as the median

session durations and the median sessions count were calculated. The session duration

the prototype had to play to compete with them was then calculated by dividing the

total duration by the median sessions count. The prototype had the median sessions

count as his number of sessions or, in the stricter of the two settings, only half of this,

with doubled session time, to compensate for logging errors. These sessions then were

equally divided between the median days a human player took to reach the duration.

96

6.3. Evaluation

An example:

Users with 15-25 sessions per day that reached the total play time of 12500 seconds

took 4 days in the median, had a median session duration of 196 seconds and a median

session count of 64.

The prototype had therefore 64 sessions in four days, that makes 16 sessions a day.

Each session has 12500
64 ≈ 195 seconds. In the stricter setting the prototype has only 32

session with a session length of 390 seconds.

Duration

Logged

Sessions

per Day

Days

Prototype

Sessions

per Day

Median

XP
Prototype XP

10000 s 4-8 6 3 | 6 1148 706 | 1206

10000 s 8-12 4 4 | 8
1012

90% = 1432
710 | 1383

12500 s 15-25 4 8 | 16
1073

90% = 1554
1318 | 1578

Table 6.2.: This table shows a comparison of the prototype with human players.
The duration users compared to have played is shown in the �rst column.
The second states how many sessions they had to play per day to be in the
dataset. The second is the median number of days the human players took
to play the duration. For the prototype a strict and a losse setting of days
are calculated. In �Median XP� the human results of the median, and where
needed the 90th percentile are shown. The prototypes results are shown again
for the strict and loose setting.

In Table 6.2 three long term comparisons are shown. The �rst scenario with few sessions

(4-8) over 6 days is devastating for the prototype. With the strict, and most likely more

accurate, setting it achieves a score around 706 XP whereas the median result of human

players is 1148 XP. With the loose setting allowing for more sessions the prototype

overtakes the median by a small margin.

In the second and third scenario the prototype manages to beat around 90% of the

human players, when the loose setting is applied. In the second scenario the strict version

is again dismal, while the strict setting in the third scenario is a little below the region

of beating 75%.

Remark on the Comparison When looking at the comparison data this still shows

huge variation. The comparison would have been fairer if more strict rules could have

been applied. But the data set was to small to allow su�ciently signi�cant numbers with

stronger limits. The median session duration was calculated from the number of sessions

of a player and the total duration when the XP were measured. This can skew the results

because long and short sessions of one player are mixed together.

Another problem is that there is not enough content in the ML game descriptions.

Missions do not last for as long as they should and the rewards of the missions a player

97

6. Experiments and Evaluation

normally �nishes when reaching the levels they have after the duration of 10000 or 12500

seconds add up to around 200 XP. This is a handicap for the prototype.

All together the data set and the game description were not good, or large, enough

to allow for a de�nite assessment of the prototypes performance. As there is at least

doubt about the performance compared to humans it is not yet ready for use in game

development.

6.3.2. Performance Analysis

In this section the tool VisualVM is used the analyze where the prototype spends his

calculation time while searching with MCTS. The �ndings can then be used to optimize

implementations in the future. The sampling result can be seen in Figure 6.18.

Figure 6.18.: VisualVM sampling results for a MCTS search with the prototype.

By far the most time is spent for evaluating comparators (ca. 32%), an expression type

mainly used in actions conditions, and attribute references (ca. 27%). Attribute references

are used to access attribute values in expressions as well. Other expression types like game

object description reference (ca. 7%) and game value (ca. 3.5%), to access the game value

store, follow.

Approximately another 3% are spent for selecting a random action.

Over 70% of the computing time is spent dealing with Expressions. This is were most

performance can be won in the future. This could be for example by caching values

instead of evaluating them all over again.

98

7. Summary and Outlook

7.1. Summary

With the Wooga Game Description Language (WGDL) this thesis has introduced a new

game description language for social building simulation games. Its feature set is designed

to allow the description of game and contract mechanics, object creation and missions

systems while enabling users to easily add new content through its class system.

Although WGDL currently misses a chance and a map system it is suitable to de-

scribe the aforementioned games. This has been demonstrated with an implementation

of Wooga's social game Magic Land.

To play games described in WGDL a prototype of a balancing tool has been imple-

mented in the course of this thesis. It uses Monte Carlo Tree Search (MCTS) to �nd ever

better solutions. To optimize the results several new modi�cations to MCTS have been

implemented and evaluated. The most successful of these were the introduction of action

groups categorized by human knowledge to guide game play towards favorable moves,

increasing the results by nearly 25%, and splitting games into several sub games, which

increases the results by 35%. A necessary prerequisite was to introduce result formulas

evaluating the results and stressing the importance of several important game values,

like experience points, coins and �nished missions.

Small result improvements have been obtained by adding all nodes on the way to a

best game state to the tree, by forfeiting games when they can no longer lead to a new

best game state and by using a non tree policy for short search times.

Unsuccessful were the attempts to introduce a new UCB formula called UCB for SP

and a limit for nodes on every level of the tree. Both approaches have not been able to

improve search results.

The performance of the prototype was improved by implementing several paralleliza-

tion schemes, most of which have previously been implemented in other projects.

The comparison between results from MCTS and NMCS suggest, that the low search

speed in ML prevents MCTS from pro�ting from its built up search tree. Speed improve-

ments are a main concern for future research.

A comparison of the results with real user data of Magic Land players shows that it is

better than more than 90% of the players for the short time of four sessions but its long

time performance can not yet keep up with human players. This limits the applicability

of this approach for game balancing but the performance is overall promising enough to

99

7. Summary and Outlook

encourage further research in this area.

7.2. List Of Own Contributions

In this chapter the new contributions of this thesis to the research �eld are listed brie�y.

This thesis has built and expanded upon on research in two di�erent areas. Several known

and new enhancements have been evaluated. The �eld of game description languages and

the �eld of playing (general) games with Monte Carlo search methods.

7.2.1. Contributions to the Field of Game Description Languages

• The creation of a new game description language called Wooga Game Description

Language (WGDL) with the following new features:

� timed consequences allow for contract mechanics

� dynamic object creation

� game mechanics through rules

� class and object-description system to support the description of content

� support for missions through advanced counters in the game value store

• WGDL is the �rst language designed and able to describe social building simulation

games

7.2.2. Modi�cations to the Monte Carlo Tree Search

To adapt MCTS for games described in WGDL several modi�cations have been proposed

and tested in this thesis. Some were very successful, others did not provide any bene�t.

• Result formulas are introduced to evaluate terminal game states as well as lead the

search towards optimal solutions

• Dividing the game and search in several smaller tasks through subgoals has been

especially successful

• Modi�cations of the selection step:

� A new single player selection policy called UCB for SP

� A new non tree policy to improve results in short searches

• Modi�cations of the expansion step:

� Limiting the nodes per level to increase tree depth

� Adding the path to the best game state to the tree

100

7.3. Outlook

• Enhancement of the simulation policy:

� Grouping actions and assigning the groups a probability to make good moves

more likely

• Parallelization schemes:

� Consecutive searches allow multiple short search runs instead of one long run

7.3. Outlook

The summary has shown, that the approach described in this thesis has great potential

even if it has not yet been fully realized. This section will show some points worth of

being pursued in future research.

Improve Action Selection Improving the simulation step is one of the best ways to

improve search results for MCTS. Currently the actions are grouped manually. This

improves the search results in ML by nearly 25%. The selection of actions based on their

frequency in the path to good results or even based on an analysis of their consequences

might be worth further research. Is it possible to analyze the game mechanics from

the result formula backwards? In ML this could look like this: Good results need high

experience points, experience points are added by almost every play action and sometimes

a lot more by �nishing missions. Therefore it might be a wise idea to �nish missions. To

�nish missions the player has to do.... This process mimics human behavior.

Performance Improvements To improve the performance of the prototype two ap-

proaches seem obvious. The scaling could be further improved by optimizing locking and

parallel execution. A distributed search with multiple systems has been proposed for

MCTS as well. When looking at where the search currently spends most of its processing

time the execution and creation of expressions stands out. A caching mechanism for con-

dition results and more lightweight expressions that are shared between objects promise

huge performance improvements.

Analyze Human Game Play In spite of many di�erent analysis methods there is still

no clear picture how human players play social building simulation games. This makes

assessing the value of insights from the tool very di�cult. Are there discernible patterns

in playing behavior and can di�erent playing styles be distinguished? A game description

with more content that is even more similar to the real game could help this. Implement-

ing an automatic system to transfer game con�gurations from Excel to game descriptions

would ease this a lot.

101

7. Summary and Outlook

Other Use Cases The methods tested in this thesis could be applied to other �elds than

game balancing. One prominent idea was to use it as a cheat detection tool for mobile

games. In these mobile building simulation games the user can play extensive sessions

o�ine and then send his game state to the server to save it. While the backend server

validates every action performed in a SBSG and forces the client to reset if an action is

out of order, resetting half an hour of o�ine play because one command is not correctly

recognized when the game state should be saved is di�cult to convey to the player. If the

search tool would be able to play better than most human players its results of playing

could be compared to the players supposed game states. If the player changes his coins

to a million but the tool only achieves 1000 coins in the same time this could be detected

and the game state revoked.

The application of GGP for game development hast just started and there is plenty of

room for improvement.

102

A. Magic Land

Wooga's SBSG Magic Land (ML) has been launched on Facebook in 2011. In ML the

player assumes the character of a prince or princess and builds up his own kingdom. All

actions of the player are guided towards increasing the wealth and size of his kingdom.

There are �ve resources and many more materials in the game. The resources are:

Diamonds This is the hard currency, i. e. it has to be bought or is only very seldom

gifted to the user, of the game. It can be used to �nish missions, speed up tasks,

unlock new items and buy special items.

Coins The soft currency of the game can be collected through normal game play and is

used to buy contracts, buildings and decorations.

Food Businesses, a special type of building, need food before coins can be collected from

them. There is only limited space for this resource, but it can be increased by

buying special buildings.

Energy Nearly every action costs the player one energy. Every �ve minutes one energy

is re�lled. This limits the amount of actions the player can perform. There is an

upper limit to the amount of energy that can be saved. This limit goes up to 40.

Experience Points (XP) Every action that takes energy also returns one XP. Finishing

missions is sometimes rewarded with a considerable amount XP as well. Whenever

the XP values climbs over a threshold the player reaches a new level. This re�lls

his energy, might increase the energy limit, and is sometimes rewarded with coins

and a diamond as well. XP is the measure for progress in the game. With higher

level new game features are unlocked.

The materials are wood, stone and many items that can be gathered from non person

characters (npcs) and buildings, like swords and books. Materials are needed to �nish

mission goals and for constructing buildings. They are stored in an inventory.

103

A. Magic Land

Figure A.1.: A closeup look on Magic Land. On the top the di�erent resources are shown.
The friends are listed at the bottom. In the picture is a female chracter as
well as the main castle, a tavern, a villagers and a knights house and some
decorations. This is a very early kingdom.
Copyright Wooga GmbH

What does the player actually do in Magic Land? He does ...

Fight NPCs Trolls, gnomes, giants and toads as well as unicorns, the nice npcs, can

be whacked. They return special materials once beaten and another npc shows up

after some time.

Build Buildings A town is only as good as its buildings. Businesses and Houses can be

constructed by the player. They can be used to obtain materials and coins. To

return anything they have to be connected with the main castle or another special

building via a street. This is where the map comes into play.

Remove Trees, Grass And Stones Trees, grass and stones can be removed by the player.

From trees wood and from stones stone is obtained.

Decorate The Town Decorations can be bought for coins to increase the beauty of the

town, subjectively, and to gain bonuses to the returns of farms and buildings.

Plant Crops On his farm plots, a special building type, a player can plant seeds which

grow to a harvestable state in a speci�ed amount of time. The more expensive and

long growing the plant, the more food the player gets from harvesting them.

104

Finish Missions Several stories about the kingdom and its characters are told in missions,

that consist of up to three tasks the player has to �nish before the mission is

completed. Missions grant big rewards of XP and coins, but can be very time and

coins expensive to solve.

Interact With His Friends The friends kingdoms can be visited and small favors can be

done. A gifting and requesting system allows the player to send gifts to his friends

and ask for special items or help in completing a task.

Expand His Kingdom Every so often a new part of the map is revealed and covered in

fog. The fog has to be removed by the player, before he can use the land to expand

his town.

There is more to do in Magic Land, but the concept should be clear now.

105

B. Wooga Game Description Language

De�nition

GameDesc r ip t ion = Goal , newLine , I n i t i a l , newLine , {(Goal | I n i t i a l |

C l a s s | Object | A t t r i b u t e | Act i on | Cond i t i o n | Consequence |

ConsequenceAss ignment | GameVa lueDe f i n i t i on | Act ionGroup |

Act ionGroupAss ignment) newLine } ;

newLine = "\n " ;

// C l a s s e s and Ob j ec t s

C l a s s = " c l a s s " , name , [" : " , c lassName] ; Object = " ob j e c t " , name , " i s " ,

c lassName ;

// A t t r i b u t e s be long to o b j e c t s o r c l a s s e s

A t t r i b u t e = " a t t r i b u t e " , ((" c l a s s " , c lassName | c lassName) , name ,

At t r i bu teTypeWithVa lue | objectName , name , v a l u e) ;

// A t t r i b u t e s /Atoms have d i f f e r e n t t yp e s

At t r i bu teTypeWithVa lue = Type , Value ; Type = " long " | " doub l e " | " boo l ean "

| " s t r i n g " | " o b j e c t : " , c lassName ; Value = S t r i n g ;

objectName = name ;

c lassName = name ; name = S t r i n g ;

// Ac t i on s a r e the moves a p l a y e r can take

// Ac t i on s b e l o ng i n g to no c l a s s (a s s o c i a t e d c lassName) a r e r u l e s , the

p l a y e r can NOT app l y

// Ru l e s a r e a p p l i e d a u t oma t i c a l l y once t h e i r c o n d i t i o n i s met or when an

ob j e c t i s c r e a t e d (" c r e a t e : " Ru l e s)

Act ion = " a c t i o n " , (name | className , name , [(" f o r E v e r y I n s t a n c e " |

" forEveryGOD ") , c lassName] | | " c r e a t e : " , className , name) ;

// Ac t i on s have c o n d i t i o n s which have to be met f o r i t to be a p p l i c a b l e

Cond i t i on = " c o n d i t i o n " , actionName , E xp r e s s i o n ;

// Consequences s t o r e the e f f e c t s o f an a c t i o n

Consequence = " consequence " , name , ((" d i r e c t " | " c r e a t e ") , E xp r e s s i o n |

" c r ea t eAndAss i gn " , Exp r e s s i on , E xp r e s s i o n | (" c o n d i t i o n a l " | " t imed ") ,

Exp r e s s i on , consequenceName | "game" , " i n c r e a s e " , E xp r e s s i o n) ;

// Ass ignments d e f i n e which a c t i o n has wich consequence

107

B. Wooga Game Description Language De�nition

ConsequenceAss ignment = "hasConsequence " , actionName , consequenceName ;

actionName = name ;

consequenceName = name ;

// Object A t t r i b u t e s can be a c c e s s ed i n d i f f e r e n t ways

// 1 . the o b j e c t o f the c l a s s t h i s b e l ong s to = t h i s

// 2 . a named g l o b a l o b j e c t s

// 3 . o b j e c t o f a s p e c i f i c c l a s s

A t t r i b u t eA c c e s s = (" t h i s " | objectName | c lassName) , " . " , a t t r ibuteName ,

{ " . " . a t t r i bu teName } ;

// I n i t i a l s a r e o b j e c t t ha t e x i s t i n the i n i t i a l game s t a t e

// mu l t i p l e c r e a t i o n o f the same ob j e c t i s a l l owed

I n i t i a l = " i n i t i a l " , objectName

// go a l s a r e t e rm i n a l c o n d i t i o n s f o r the game or subgames . S t a r t s from

goa l 1 to goa l maxNumber .

Goal = " goa l " , Pos i t i v eNatu ra lNumber , Boo l e anExp r e s s i on

// E xp r e s s i o n s a r e t r e e based and used to change va l u e s , compare them and

a c c e s s a t t r i b u t e s .

E xp r e s s i o n = Atom | A t t r i b u t eR e f e r e n c e | Ob j e c tRe f e r en c e |

Boo l e anExp r e s s i on | MathExpress ion | GameValue ;

// Atoms a r e the b a s i c u n i t

Atom = Type , Value ;

// A l r eady d e f i n e d e a r l i e r

A t t r i b u t eR e f e r e n c e = A t t r i b u t eA c c e s s ;

// o b j e c t s a r e r e f e r e n c e d t h i s way . No wh i t e spac e between : and i t s name

Ob j e c tRe f e r en c e = " ob j e c t : " , name ;

Boo l e anExp r e s s i on = Boolean | (Exp r e s s i on , [Boo leanOperator , E xp r e s s i o n]) ;

Boolean = "TRUE" | "FALSE" ; Boo leanOperato r = "==" | "!=" | "<" | ">"

| "<=" | ">=" | "and" | " or " | " xo r " ;

MathExpress ion = Exp r e s s i on , MathOperator , E xp r e s s i o n ; MathOperator = "="

| "+" | "−" | "∗" | "/" ;

// Acc e s s i n g Game Value S to r e // Game v a l u e s a r e d e f i n e d and than ac c e s s ed

by t h e i r name i n c o n d i t i o n s

GameValue = "game . " , name ; GameVa lueDe f i n i t i on = "game" , name , Exp r e s s i on ,

{" ," , E xp r e s s i o n } ;

// Act ion Groups c a t e g o r i z e a c t i o n s

Act ionGroup = " act i onGroup " , name , Pos i t i veNumber ;

Act ionGroupAss ignment = " i s I nG r oup " , groupName , actionName ; groupName =

108

name ;

// p o s i t i v e and n e g a t i v e numbers , doub l e s

Number = [−] , Pos i t i veNumber ; Pos i t i veNumber = Dig i t , { D i g i t } , [" . "

D i g i t] , { D i g i t } ;

// a l l c h a r a c t e r s a r e a l l owed excep t wh i t eSpace s

Cha rac t e r = "A" | "a" | "B" | "b" | . . . | " z" | ? s p e c i a l C h a r a c t e r s ? ;

D i g i t = "0" | P o s i t i v e D i g i t ;

P o s i t i v e D i g i t = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

S t r i n g = (Number | Cha r a c t e r) , {Number | Cha r a c t e r } ;

Pos i t i v eNatu ra lNumbe r = Po s i t i v eD i g i t , { P o s i t i v e D i g i t } ;

109

C. Experimental Results

Calibration Results of UCB Formulas

111

C. Experimental Results

112

D. Game Description Example: Simple

Coins

// De f i n e the g l o b a l c l a s s to ho ld the p l a y e r s impo r tan t v a l u e s

c l a s s g l o b a l C l a s s

a t t r i b u t e g l o b a l C l a s s t ime long 0

a t t r i b u t e g l o b a l C l a s s s e s s i o n s F i n i s h e d l ong 0 a t t r i b u t e

g l o b a l C l a s s c o i n s l ong 0 a t t r i b u t e

g l o b a l C l a s s ene rgy l ong 30

// c r e a t e a game ob j e c t d e s c r i p t i o n from tha t c l a s s

o b j e c t g l o b a l i s g l o b a l C l a s s

// c r e a t e one o b j e c t o f type g l o b a l

i n i t i a l g l o b a l

// The co i n g e n e r a t o r s r e t u r n c o i n s when t h e i r g e tCo i n s a c t i o n i s a p p l i e d

c l a s s c o i nGen e r a t o r

a t t r i b u t e c o i nGen e r a t o r co i nVa l u e l ong 0

ob j e c t co i n1 i s c o i nGen e r a t o r

a t t r i b u t e co i n1 co i nVa l u e 1

i n i t i a l c o i n1

o b j e c t co i n2 i s c o i nGen e r a t o r

a t t r i b u t e co i n2 co i nVa l u e 2

i n i t i a l c o i n2

// . . . up to twenty , t h i s con t en t s t ep has to be automated i n the f u t u r e !

o b j e c t co in20 i s c o i nGen e r a t o r

a t t r i b u t e co in20 co i nVa l u e 20

i n i t i a l co i n20

// i n c r e a s e the g l o b a l c o i n s v a l u e and d e c r e a s e the ene rgy

a c t i o n co i nGen e r a t o r g e tCo i n s

c o n d i t i o n ge tCo i n s g l o b a l . ene rgy > long 0

consequence addCoins d i r e c t g l o b a l . c o i n s = g l o b a l . c o i n s + t h i s . c o i nVa l u e

consequence removeEnergy d i r e c t g l o b a l . ene rgy = g l o b a l . ene rgy − l ong 1

hasConsequence ge tCo i n s addCoins

hasConsequence ge tCo i n s removeEnergy

// f n i s h the s e s s i o n and r e f i l l the ene rgy

113

D. Game Description Example: Simple Coins

a c t i o n g l o b a l C l a s s endSe s s i on

consequence r e f i l l E n e r g y d i r e c t g l o b a l . ene rgy = long 30

consequence changeTime d i r e c t g l o b a l . s e s s i o n s F i n i s h e d =

g l o b a l . s e s s i o n s F i n i s h e d + long 1

hasConsequence endSe s s i on r e f i l l E n e r g y

hasConsequence endSe s s i on changeTime

// two a c t i o n groups

ac t i onGroup wa i t 0 . 1

ac t i onGroup getMoney 0 .9

i s I nG r oup getMoney ge tCo i n s

i s I nG r oup wa i t endSe s s i on

// f o u r s e s s i o n s each i t s own subgoa l

goa l 1 g l o b a l . s e s s i o n s F i n i s h e d == long 1

goa l 2 g l o b a l . s e s s i o n s F i n i s h e d == long 2

goa l 3 g l o b a l . s e s s i o n s F i n i s h e d == long 3

goa l 4 g l o b a l . s e s s i o n s F i n i s h e d == long 4

114

E. Attached DVD - Content

The DVD attached to the back of this thesis contains the following content:

Source Code The java source code of the prototype implemented for and tested in this

thesis.

Code Documentation The code documentation has been generated using Javadoc. A

documentation of the public interfaces, as well as a documentation of all interfaces,

including private and protected ones is available in HTML. The prototype is not

extensively documented, but packages and classes are. The important search classes

are covered in more detail.

Executable An executable java archive has been created with some prede�ned settings.

It can be used to test the prototype on the readers own PC. Currently no arguments

are supported, so the prede�ned settings have to be used. It has been created using

maven.

Game Descriptions All game descriptions used for evaluation, especially Magic Land

with several di�erent goals, are supplied.

Experiment Data The data generated while performing the experiments to evaluate the

prototype is contained in separate folders on the DVD.

Thesis This thesis is available as a PDF.

Pictures The pictures and �gures used in this thesis are on the DVD as well.

115

Bibliography

[1] Mahlmann T., �The Strategy Games Description Language (SGDL)�, Center For

Computer Games Research ITU Copenhagen, April 2012

[2] Brown C. et al., �A Survey of Monte Carlo Tree Search Methods�, IEEE Transactions

on Computational Intelligence and AI in Games, Vol. 4, No. 1, March 2012

[3] Mahlmann T., Togelius J., Yannakakis G. N., �Modelling and evaluation of com-

plex scenarios with the Strategy Game Description Language�, IEEE Conference on

Computational Intelligence and Games (CIG), 2011

[4] Mahlmann T., Togelius J., Yannakakis G. N., �Towards Procedural Strategy Game

Generation: Evolving Complementary Unit Types�, IT University of Copenhagen,

2011

[5] Jensen B., Nielson J., �Arti�cial Agents for the Strategy Game Description Lan-

guage�, Study, IT University of Copenhagen, August 2011

[6] Budde L., Huth N., �Soziale Netzwerke: Eine repräsentative Untersuchung zur

Nutzung sozialer Netzwerke im Internet�, Representative Study, Bitkom, p. 6�., 2011

[7] Thielscher M., �A General Game Description Language for Incomplete Information

Games�, School of Computer Science and Engineering, University of New South

Wales, 2010

[8] Smith J., Hudson C. �Inside Virtual Goods: The Future of Social Gaming 2011�,

Report, Version 2.0, Inside Network Inc., p. 14f., 2010

[9] Bourki A. et al., �Scalability and Parallelization of Monte-Carlo Tree Search�, The

International Conference on Computers and Games, 2010

[10] Browne C., F. Maire, �Evolutionary game design�, IEEE Transactions on Computa-

tional Intelligence and AI in Games, 2(1), p. 1-16, 2010

[11] Winands M., Björnsson Y., �Evaluation Function Based Monte-Carlo LOA�, Ad-

vances in Computer Games, Lecture Notes in Computer Science, Volume 6048, ISBN

978-3-642-12992-6, Springer-Verlag Berlin Heidelberg, p. 33�, 2010

[12] Cazenave T., �Nested Monte-Carlo Search�, International Joint Conference on Arti-

�cial Intelligence 2009, p. 456-461, Pasadena, July 2009

117

Bibliography

[13] Kulick J., �World Description Language - A logical Language for agent-based Systems

and Games�, Bachelor's Thesis, Freie Universität Berlin, 2009

[14] Kulick J., Block M., Rojas R., �General Game Playing mit stochastischen Spielen�,

Technical Report, Freie Universität Berlin, 2009

[15] Jean Méhat and Tristan Cazenave, �Combining UCT and Nested Monte-Carlo Search

for Single-Player General Game Playing�, IEEE Transactions on Computational

Intelligence and AI in Games, 2009

[16] Björnsson Y., Finnsson H., �Cadia Player: A Simulation-Based General Game

Player�, IEEE Transactions on Computational Intelligence and AI in Games, Vol.

1, No. 1, 2009

[17] Cazenave T., �Parallel Nested Monte-Carlo Search�, Proceedings of the 2009 IEEE

International Parallel & Distributed Processing Symposium, 2009

[18] Teytaud F., Teytaud O., �Creating an Upper-Con�dence-Tree program for Havan-

nah�, Advances in Computer Games Conference 12, Pamplona, 2009

[19] Chaslot G. et al., �Meta Monte-Carlo Tree Search for Automatic Opening Book Gen-

eration�, Proceedings of the IJCAI'09 Workshop on General Intelligence in Game

Playing Agents. p. 7-12, 2009

[20] Love N. et al., �General Game Playing: Game Description Language Speci�cation�,

Standord Logic Group, Computer Science Department, Stanford University, Tech-

nischer Report LG-2006-01, 2008

[21] Chaslot G. et al., �Monte-Carlo Tree Search: A New Framework for Game AI�, Pro-

ceedings of the Fourth Arti�cial Intelligence and Interactive Digital Entertainment

Conference, pages 216-217, Stanford Univ., California, 2008

[22] Chaslot G., Winands M., van den Herik H. J., �Parallel Monte-Carlo Tree Search�,

in Proc. Comput. and Games, LNCS 5131, Beijing, China, p. 60�71, 2008

[23] Chaslot G. et. al., �Combining expert, o�ine, transient and online knowledge in

Monte-Carlo exploration�, 2008

[24] C. Browne, �Automatic generation and evaluation of recombination games,� Ph.D.

dissertation, Queensland University of Technology, 2008.

[25] Schadd M. et. al. �Addressing NP-Complete Puzzles with Monte-Carlo Methods�, Pro-

ceedings of the AISB 2008 Symposium on Logic and the Simulation of Interaction

and Reasoning, Volume 9, p. 55-61, Brighton, UK, 2008

[26] Schadd M. et al., �Single-Player Monte-Carlo Tree Search�, Computers and Games:

6th International Conference, Beijing, China, 2008

118

Bibliography

[27] Coquelin P., Munos R., �Bandit Algorithms for Tree Search�, Uncertainty in Arti�cial

Intelligence, Vancourver, Canada, 2007

[28] Kaiser D., �The Structure of Games�, Florida International University Electronic

Theses and Dissertations, 2007

[29] Coulom R., �E�cient Selectivity and Backup Operators in Monte-Carlo Tree Search�,

Proc. 5th Int. Conf. Comput. and Games, Turin, Italy, p. 72�83, 2006

[30] Kocsis L., Szepesvári C., �Bandit based Monte-Carlo Planning�, Computer and Au-

tomation Research Institute of the Hungarian Academy of Sciences, Budapest, 2006

[31] Schäfer J., �Monte Carlo Simulation im Skat�, Otto-von-Guericke-University Magde-

burg, 2005

[32] Osborne M. J., Rubinstein A., �A Course in Game Theory�, Massachusetts Institute

of Technology, ISBN 0-262-65040-1, 2004

[33] Freeman E. et al., �Head First Design Patterns�, ISBN 0-596-00712-4, O'Reilly Me-

dia, 2004

[34] Russell S. J, Norvig P., �Arti�cial Intelligence: A Modern Approach�, 2. Edition,

Upper Saddle River, New Jersey, ISBN 0-13-790395-2, 2003

[35] Campbell M., Hoane A. J., Hsu F., �Deep Blue�, Arti�cial Intelligence, Edition 134,

p. 59, 2002

[36] Auer P. et al., �Finite-time Analysis of the Multiarmed Bandit Problem�, Machine

Learning, Kluwer Academic Publishers, The Netherlands, 2002

[37] Romein J. W., Bal H. E., Grune D., �The Multigame Reference Manual�, Faculty of

Sciences Dept. of Mathematics and Computer Science Free University Amsterdam,

The Netherlands, 2000

[38] Gamma E. et al., �Design Patterns - Elements of Reusable Object-Oriented Software�,

professional computing series, ISBN 0-201-63361-2, Addison-Wesley, 1995

[39] Allis L., �Searching for Solutions in Games and Arti�cial Intelligence�, Thesis, Uni-

versity of Maastricht, 1994

[40] Pell B., �A Strategic Metagame Player for General Chess-Like Games�, AAAI Tech-

nical Report FS-93-02, 1993

[41] Pell B., �Strategy Generation and Evaluation for Meta-Game Playing�, Dissertation,

University of Cambridge, 1993

119

Bibliography

[42] Pell B., �Metagame: A New Challenge for Games and Learning�, Heuristic Program-

ming in Arti�cial Intelligence 3 � The Third Computer Olympiad, 1992

[43] Pitrat J., �Realization of a general game-playing program�, IFIP Congress (2), p.

1570-1574, 1968

[44] Hammersley J. M., Handscomb D.C., �Monte Carlo Methods�, Methuen & Co Ltd.,

London, 1964

[45] Edwards D. J. , Hart T. P. , �The alpha-beta heuristic�, Massachusetts Institute of

Technology, 1963

[46] Newell A., Shaw G., Simon H., �Chess-Playing Programs and the Problem of Com-

plexity�, IBM Journal of Research and Development, p. 320-335, 1958

[47] von Neumann J., Morgenstern O., �Theory of games and economic behavior�, Prince-

ton University Press, p 46f, 1953

[48] Shannon C. E., �Programming a Computer for Playing Chess�, Philosophical Mag-

azine, Series 7, Volume 41, No. 314, 1950

[49] Morrison C., �CityVille Edges Past 100 Million MAU � Over Half Are Interna-

tional Users�, http://www.insidesocialgames.com/2011/01/12/cityville-edges-past-

100-million-mau-over-half-are-international-users/, 2011, visited at 31.07.2012

[50] Schreiber I., �Game Balance Concepts�, Series of 10 Articles/Lectures, http://game-

balanceconcepts.wordpress.com/2010/07/07/level-1-intro-to-game-balance/, visited

at 01.08.2012

[51] McCarthy J., �What is Arti�cial Intelligence¾`, Computer Science Department, Stan-

ford University, Article, 2007, http://www-formal.stanford.edu/jmc/whatisai/n-

ode1.html, visited at 31.07.2012

[52] Schaefer S., �Tic-Tac-Toe (Naughts and Crosses, Cheese and Crackers, etc.)�,

http://www.mathrec.org/old/2002jan/solutions.html, 2002, visited at 31.7.2012

[53] Geary D., �A look at the Composite design pattern�, http://www.java-

world.com/javaworld/jw-09-2002/jw-0913-designpatterns.html, visited at

01.08.2012

120

