
UNIVERSITY OF APPLIED SCIENCES, DRESDEN

——–

Semantic Lane Segmentation
of LiDAR Point Clouds using

Convolutional Neural Networks

MASTER THESIS

A THESIS SUBMITTED FOR THE DEGREE OF
MASTER OF SCIENCE

BY
CARL SCHWEDES

——

supervised by
Prof. Dr. Marco Block-Berlitz
Prof. Dr. Marco Hamann

June 17, 2020

Abstract
This approach focused to characterize the model for semantic lane segmentation of LiDAR
point clouds by using convolutional neural networks. An introducing research shows state-
of-the-art developments in semantic segmentation and outlines most recent developments
by targeting demands of autonomous driving industry. Perception algorithms of the mod-
ern self-driving vehicle requires high reliability to system functionality. The use of modern
multimodal datasets (such as nuScenes) enabled a detailed investigation for ground-plane
segmentation. Under the use of extended map layers, semantic classes have been derived to
specifically render road semantics and lane traffic-direction to point cloud information. For
efficiently and effectively processing point cloud information, sensor data has been converted
in multi-channel range-image representation (x,y,z,i,r,�), by using convolutional neural net-
work U-Net (showing state-of-the-art performance in semantic segmentation). Hereby, seg-
mentation performance has been investigated within a detailed qualitative and quantitative
study. The provided approach showed to be in the position to well distinguish between the
defined semantic classes. Segmentation performance indicated, the neural network had been
able to derive descriptive features from training data to correctly decode road semantics in
predefined point labels. The suggested metric demonstrated to have the potential to provide
real-time validation and integration in sensor-fusion application to further improve robust-
ness of autonomous driving.

iii

Acknowledgement
Firstly, special thanks goes to my professor Dr. Marco Block-Berlitz who enabled the pos-
sibility to write a master thesis with focus in the automotive industry in collaboration with
HELLA Aglaia Mobile Vision GmbH.

Further, I like to thank my colleagues and supervisors from HELLA Aglaia, which sup-
ported me in plenty of ways throughout the time of this thesis. Further, special thanks goes
to Dr. Hans-Arne Driescher, Philipp von Radziewsky, Eduard Feicho and Dennis Kroen-
ninger from the deep learning group as well as to Matthias Wissing and all others. Thank
you very much for all of your help and support throughout this time, and plenty of advices,
which were mainly responsible to create and consistently improve this work.

v

Contents

1 Motivation and Introduction 1

2 Related Work 3

3 Theory 6
3.1 Artificial Neural Networks - ANN . 6

3.1.1 Perceptron . 6
3.1.2 Multilayer Perceptron - MLP . 7
3.1.3 Backpropagation . 8
3.1.4 Loss Functions . 10
3.1.5 Optimization Algorithms . 11

3.2 Convolutional Neural Networks - CNN . 14
3.2.1 Convolution and Deconvolution 14
3.2.2 Pooling and Unpooling . 15
3.2.3 Fully-Connected . 16
3.2.4 1x1 Convolution . 17
3.2.5 Identity Skip-Connection . 17

3.3 LiDAR - Theory and Practice . 19
3.4 Metrics . 25

4 LiDAR Semantic Segmentation 28
4.1 Fully Convolutional Networks - FCN . 28
4.2 U-Net . 29
4.3 Point Cloud Segmentation . 30
4.4 LU-Net . 35

5 Methodology 37
5.1 Datasets . 38

5.1.1 NuScenes . 40
5.1.2 Parallel Computing Complexity 47

5.2 Range-Image Generation . 49
5.3 Training . 50
5.4 Semantic Lane Segmentation . 51
5.5 Model Evaluation . 53

6 Experiments and Results 54
6.1 NuScenes Dataloading . 54

6.1.1 Implementation Details . 54
6.1.2 Parallel Computing Complexity 55
6.1.3 Results and Evaluation . 56

6.2 Range Image Generation . 59
6.2.1 Implementation Details . 59
6.2.2 Results and Evaluation . 60

6.3 Training - Results . 61
6.4 Semantic Lane Segmentation Results . 62

6.5 Qualitative Evaluation . 65
6.6 Quantitative Evaluation . 67

6.6.1 Classwise Performance . 67
6.6.2 Environmental Conditions . 68
6.6.3 Performance by Number of Class Samples 69
6.6.4 Performance by Radial Distance 70
6.6.5 Distribution of Local Errors . 71

7 Conclusion and Future Work 75

8 Bibliography 78

A Qualitative Evaluation 83

B Quantitative Evaluation 101

List of Figures

3.1 Perceptron model . 6
3.2 Model of Multilayer-Perceptron. 7
3.3 Multilayer-Perceptron . 8
3.4 Backpropagation - computational graph 8
3.5 Principle: gradient descent. 11
3.6 Convolution operation. 14
3.7 Convolutional layer in CNN . 15
3.8 Deconvolution example. 15
3.9 Principle of pooling operation. 16
3.10 Principle of unpooling operation. 17
3.11 Fully connected layers. 17
3.12 1x1 convolution. 18
3.13 Residual block, identity skip-connection. 18
3.14 LiDAR, mechanical specifications, HDL-32E. 19
3.15 Behaviour of signal reflection and beam divergence. 20
3.16 LiDAR, waveforms from signals. 21
3.17 LiDAR, beam divergence, HDL-32E. 22
3.18 LiDAR, intensity degradation. 22
3.19 LiDAR, range measurement, intensity peak. 23
3.20 LiDAR, horizontal and vertical offsets, HDL-32E. 24
3.21 Demonstrating five-number summary plots. 25
3.22 Multilabel confusion matrix. 26
4.1 Fully Convolutional Network. 28
4.2 Transforming fully connected layers to convolutional layers. 29
4.3 U-Net architecture with encoder-decoder structure. 30
4.4 SEGCloud architecture integrating 3DFCNN. 31
4.5 Static grid vs. dynamic grid structure. 31
4.6 Applying convolution to unprocessed point clouds. 32
4.7 PointNet . 33
4.8 PointNet++ . 33
4.9 PointCNN, applying convolution to unordered sets. 34
4.10 Spherical projection of point clouds. 34
4.11 Architecture of proposed LU-Net as backbone architecture. 35
4.12 LU-Net, overall pipeline. 36
5.1 Abstract model architecture, in multisensor application. 37
5.2 NuScenes data format, relational database. 41
5.3 NuScenes, sensor synchronisation. 41
5.4 NuScenes, global to local coordinate transformation. 42
5.5 NuScenes, distribution of ground-truth samples. 44
5.6 Conceptualizing semantic lane segmentation. 44
5.7 NuScenes, semantic map layers. 45
5.8 Road intersections, demonstrating varying level of complexity. 46

List of Figures ix

5.9 Crossing number algorithm, conceptual visualization. 47
5.10 Big O Notation, runtime complexity for parallel computing. 48
5.11 Range-image feature stack. 49
5.12 Converting cartesian to spherical coordinates. 50
6.1 NuScenes, pre-processing traffic-direction. 54
6.2 Orientation of road-segment computed by identity vector. 55
6.3 Defined semantic map layers from nuscenes dataset. 56
6.4 Generated ground-truth sample, different views. 57
6.5 NuScenes scene sample: scene-0103. 57
6.6 NuScenes scene samples: scene-0061. 58
6.7 Perspective disorientation due to 360° surround view. 59
6.8 Range-image, feature channels. 60
6.9 Binary map mask example. 60
6.10 Training results LU-Net, nuScenes dataset. 61
6.11 Classification performance in samplewise IoU scores. 62
6.12 Validation results, normalized confusion matrix. 63
6.13 Validation results, confusion matrix. 64
6.14 Projection, point cloud in camera image, sample selection. 65
6.15 Results: Semantic lane segmentation (scene-0103), camera image. 65
6.16 Results: Semantic lane segmentation (scene-1070), camera image. 66
6.17 Results: Semantic lane segmentation (scene-0269), camera image. 66
6.18 TPR, FDR range measurements. 68
6.19 TPR, FDR wrt sensor distance, environmental conditions. 69
6.20 TPR wrt sensor distance. 71
6.21 Neighbourhood size of local errors (TPR/ FDR). 72
6.22 TPR, FDR range measurements, intersections samples. 73
6.23 Neighbourhood size of local errors, ego-/ opposite-lane. 74
A.1 Results: Semantic lane segmentation (scene-0039), range-image. 83
A.2 Results: Semantic lane segmentation (scene-0269), range-image. 84
A.3 Results: Semantic lane segmentation (scene-0273), range-image. 85
A.4 Results: Semantic lane segmentation (scene-0103), range-image. 86
A.5 Results: Semantic lane segmentation (scene-0554), range-image. 87
A.6 Results: Semantic lane segmentation (scene-0771), range-image. 88
A.7 Results: Semantic lane segmentation (scene-0963), range-image. 89
A.8 Results: Semantic lane segmentation (scene-0012), range-image. 90
A.9 Results: Semantic lane segmentation (scene-0905), range-image. 91
A.10 Results: Semantic lane segmentation (scene-0907), range-image. 92
A.11 Results: Semantic lane segmentation (scene-0911), range-image. 93
A.12 Results: Semantic lane segmentation (scene-0914), range-image. 94
A.13 Results: Semantic lane segmentation (scene-1062), range-image. 95
A.14 Results: Semantic lane segmentation (scene-1067), range-image. 96
A.15 Results: Semantic lane segmentation (scene-1070), range-image. 97
A.16 Results: Semantic lane segmentation (scene-1073), range-image. 98
A.17 Projection, point cloud in camera image (scene-0269), sample selection. . . 99
A.18 Projection, point cloud in camera image (scene-0269), sample selection. . . 100
B.1 Distribution of TP, FN, FP illustrated in log scaled polar plot. 101
B.2 Detection scores, number of LiDAR pings, class ego-lane. 102

List of Figures x

B.3 Detection scores, number of LiDAR pings, class opposite-lane. 103
B.4 Detection scores, number of LiDAR pings, class walkway. 104
B.5 Detection scores, range intervals, class ego-lane. 105
B.6 Detection scores, range intervals, class opposite-lane. 106
B.7 Detection scores, range intervals, class walkway. 107
B.8 TPR ego-lane wrt radial distance and sample size. 108
B.9 FDR ego-lane wrt radial distance and sample size. 109
B.10 TPR opposite-lane wrt radial distance and sample size. 110
B.11 FDR opposite-lane wrt radial distance and sample size. 111
B.12 TPR walkway wrt radial distance and sample size. 112
B.13 FDR walkway wrt radial distance and sample size. 113
B.14 TPR, group LiDAR pings wrt local neighbourhood size, 5000-9000. 114
B.15 FDR, group LiDAR pings wrt local neighbourhood size, 5000-9000. 115
B.16 TPR, group LiDAR pings wrt local neighbourhood size, 9000-16000. . . . 116
B.17 FDR, group LiDAR pings wrt local neighbourhood size, 9000-16000. . . . 117
B.18 TPR, group LiDAR pings wrt local neighbourhood size, 5000-9000. 118
B.19 FDR, group LiDAR pings wrt local neighbourhood size, 5000-9000. 119
B.20 TPR, group LiDAR pings wrt local neighbourhood size, 9000-16000. . . . 120
B.21 FDR, group LiDAR pings wrt local neighbourhood size, 9000-16000. . . . 121

List of Figures xi

List of Tables
3.1 Specifications: Velodyne LiDAR HDL-32E 19
5.1 Benchmarks . 38
6.1 Results: GPU accelerated polygon query. 58
6.2 Results: LU-Net classification performance. 64
6.3 Results: LU-Net classification performance front-/ rear-view. 67
6.4 TPR by groups of class samples. 70
6.5 Distribution of sample frames containing road junctions. 73

List of Algorithms
1 Forward Propagation. 9
2 Backward Propagation. 9
3 Gradient Descent . 11
4 Stochastic Gradient Descent. 12
5 Adam - Adaptive Moments. 13
6 Crossing Number Algorithm. 55

List of Figures xiii

Acronyms
BRDF Bidirectional Reflectance Distributive Function.
CE Cross Entropy.
CNN Convolutional Neural Network.
FC Fully Connected Layer.
FCN Fully Convolutional Network.
FDR False Discovery Rate.
FN False Negative.
FOV Field of View.
FP False Positive.
GD Gradient Descent.
GPS Global Positioning System.
ILSVRC ImageNet Large Scale Visual Recognition Challenge.
IMU Inertial Measurement Unit.
IoU Intersection over Union.
IQR Inter Quartile Range.
kNN k-Nearest-Neighbour.
LiDAR Light Detection and Ranging.
MLP Multilayer-Perceptron.
PDF Probability Density Function.
R-CNN Region-CNN.
ROI Region of Interest.
RPN Region Proposal Network.
SGD Stochastic Gradient Descent.
TN True Negative.
TP True Positive.
TPR True Positive Rate.

Acronyms xv

1 Motivation and Introduction
Translating perception of environment into meaningful representations is a fundamental
milestone of autonomous driving, where data from multiple of sensors need to be analysed
in real-time. A system which does not depend on global data (maps, car2x, etc.) requires a
complex sensor setup and high-level understanding of the surroundings to accurately navi-
gate in urban scenarios [17, 1].

One of the key properties of modern imaging sensors is the fact that most of the desired
information for environmental perception is not directly measured. Instead, complex algo-
rithms are used to derive these data from raw representations (e.g. camera image or 3D point
cloud). This introduces a new level of complexity at the sensor fusion stage where simple
sensor characteristics (e.g. resolution, dynamic range, accuracy) do not directly translate to
more complex perception data (e.g. existence probability of cars, pedestrians or reliability
of free-space estimation). This is especially true for machine learning based algorithms,
where it is currently not possible to derive these sensor characteristics from first principles.
Therefore, the need for defining appropriate metrics to characterise the perception result
arises.

Finding an appropriate metric to validate the performance of a perception system is a
hard challenge. In context of vision-based semantic segmentation, small variations in envi-
ronmental conditions can have crucial impact to classification performance [20]. The model
needs to be proven to achieve acceptable performance under a variety of environmental con-
ditions before it can be used in real-world applications [20]. For appropriately describing
model performance, many approaches focus to use measures such as intersection over union
(IoU) or other commonly used metrics, which are directly related to the labelled training
data [17, 1]. In [20] a detailed evaluation of the model performance is seen under a va-
riety of environmental conditions, where also the use of different network architectures is
underlined. Several attempts describe applications for path proposals [13] and ego-lane seg-
mentation, using camera [30, 11] and Light Detection and Ranging (LiDAR) [21] sensors
but not addressing other aspects of ground layers in detail. Undertaking segmentation, other
approaches focus to spatial relationships but not consider temporal or semantic information.
[17] used consecutive frames as well as semantic information, such as occurrence of traffic
signs or driving direction of vehicles, to perform semantic lane segmentation and showed
that including temporal and semantic aspects could improve the decision making process,
which is indicating that lane semantics are not only encapsulated in road parts.

Autonomous driving highly depends on analysis of multimodal data, the fusion of mul-
tiple sensor outputs. A single sensor has not the capabilities to be aware of all possible
scenarios from diverse environments (e.g. urban scenarios or broad spectrum of varying
environmental conditions).

Hereby, sensor fusion needs a more detailed description of the perception performance.
A typical example is the performance degradation over distance for many perception algo-
rithms. While the performance can be very good and reliable at close distance with many
measurements (e.g. hundreds of LiDAR pings) on the object, it is obvious, that this is not
the case at larger distances with only a few measurements on the object of interest. In sensor
fusion algorithms, this is typically called the a-priory information about the sensor (or more
specific on the overall setup of sensor and algorithm) and is used in the fusion step to weight
the results of the different sensors according to their overall probability.

Chapter 1. Motivation and Introduction 1

The purpose of this thesis is to characterise the approach for semantic lane segmentation
under the use of a 360° LiDAR scanner and convolutional neural networks.

In (2), an introducing research in the field of deep learning and development of convolu-
tional neural networks, by using camera as well as LiDAR sensor data, outlines substantial
achievements defining the state-of-the-art and contemporary technologies. The self-driving
car industry is mostly inspired by recent developments in applying machine learning appli-
cations to autonomous vehicles.

Fundamental building blocks of neural network architectures are shown in (3). Where
further, in (3.3) theoretical aspects of LiDAR technology are discussed in detail, which is
used to help to develop appropriate metrics for evaluating semantic ground-plane segmen-
tation. Moreover, a discussion of the impact of different environmental parameters as well
as the availability of certain information in the training data will support the choice of ap-
propriate metrics and motivate their use in sensor fusion applications.

In (4), state-of-the-art approaches are highlighted to mark the most recent developments
in the field of semantic segmentation. Herein, the applicability of machine learning algo-
rithms is pointed out tomeet requirements from the autonomous driving task. Further, U-Net
as the chosen backbone network to perform semantic lane segmentation is motivated to be
used as architecture for point cloud processing.

The generation of ground truth data to provide semantic classes is shown in (5), which
is based on the well-known nuScenes dataset. Further, point cloud information gets pre-
processed and projected to range-image representation which defines the input data for the
chosen state-of-the-art deep learning network.

Previously introduced metrics will be applied to show the applicability of the suggested
metrics with a discussion and detailed evaluation in (6).

Lastly, (7), discusses the overall results with respect to sensor-fusion applications and
summarizes this thesis.

Chapter 1. Motivation and Introduction 2

2 Related Work
During the past decade plenty of research papers from the deep learning community have
been published to address the issues of classification, object detection as well as semantic
segmentation. The competition has been introduced by the: ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [42] which addresses several tasks from the field of com-
puter vision. Hereby, the ImageNet dataset contains more than 20,000 different category
classes, where a set of well-chosen samples from 1,000 classes is used to train and evaluate
learning algorithms from submitted approaches. In processing sensory data (e.g. image-
sensor), the use of Convolutional Neural Networks (CNNs) gained a lot of attention due to
significant improvements in the object detection task.
The pionieering project AlexNet (2012) [48] drew attention towards the use of deep CNN
by exceeding state-of-the-art accuracy (26.2%) of more than 10.8 percent (15.4%). It was
tried to stack multiple convolutional layers on top of each other to form a hierarchically deep
structure of connected neurons. Performing convolution, AlexNet used 3x3 kernels as well
as large kernel sizes of 7x7, which have not been seen very often in following approaches.
The Oxford research group started to only use small kernel sizes of 3x3 in their VGGNet
architecture (2014) [43]. A total number of 19 convolutional layers have been stacked on top
of each other, where it had firstly been possible to break the 10% error mark (7.3%). This
finally drew attention to the use of deep CNN architectures in the field of visual recognition.

In the following years a lot of research work along convolutional neural networks had
been undertaken to better perform in object-detection and classification challenge. Further,
pushing the state-of-the-art, several developments and modifications in changing network
structure had achieved significant improvements, which could also outperform human per-
formance.
GoogLeNet (2015) [44] introduced the inception module, a fundamental building block for
convolutional neural networks. The overall network structure with 22 deep convolutional
layers has carefully been designed, which allowed to increase depth andwidth of the network
while keeping computational cost constant. The convolutional block, arranges locally sparse
units from dense components (stacked next to each other, rather than on top of each other).
Inception Module: Working with very deep neural networks is computational expensive and
comes along with several drawbacks, such as overfitting or effect of vanishing gradient. In
processing features with varying sizes, different kernel-sizes are useful to extract more rel-
evant information, rather than just using one single kernel size. The inception module has
been designed in such a way to increase depth and width of the network, while keeping
computational cost constant. It was to find out, if an optimal local sparse structure can be
approximated by the use of dense components [44]. Hereby, rather than executing several
filter operations sequentially (3x3, 5x5, max-pooling, ...) the inception module considers
executing kernels in parallel. To reduce dimensionality of features, 1x1 convolution is intro-
duced, which renders the feature-blocks of local activations to a dense representation. This
enables the network to provide a robust pipeline for appropriate handling larger numbers of
activation layers and an efficient implementation to intuitively process visual information at
various scales simultaneously [44].

By participating the ILSVRC, a new state-of-the-art performance could be achieved by
pushing error rate to 6.7%.

Chapter 2. Related Work 3

ResNet (2015) [37] introduced one of the most fundamental logical building blocks for CNN
architectures. By increasing depth of network, accuracy has been seen to saturate and is then
rapidly degrading, which causes higher training errors. ResNet addresses vanishing gradient
problem by implementing residual learning, which had mainly been responsible for pushing
new state-of-the-art among the ILSVRC. An error rate of 3.57% could be achieved, which is
even better than human performance (super human performance) [37]. The overall shape of
the network includes about 150 convolutional layers by exclusively using 3x3 convolutions in
combination of residual skip-connections. The principle of residual learning andmechanism
of identity skip-connection is explained in (3.2.5) in detail.
NASNet (2018) [29] literally fundamentally changed the way of building convolutional neu-
ral networks for image classification models, where the underlying architecture is directly
learned rather than engineered. The main contribution of NASNet is to enable transfer-
ability, this is done by searching for the: "best architectural building block". Herein, the
convolutional layer is firstly trained on a small dataset and then transferred to a larger one.
It is tried to build a new convolutional architecture with multiple of copies of the original
cell. The new architecture enabled to further push error rate below 3% mark (2.13%) and
had been applied on the ImageNet dataset [29].

The early developments in building deep neural networks, basically addressed issues
of the classification and object detection task, which has primarily been pushed within the
ImageNet Large Scale Visual Recognition Challenge [42]. After significant improvements
could be achieved by the deep learning community it was tried to transfer the knowledge from
detection to the segmentation task. Here, element-wise classification is focused, rather than
to identify individual objects in size and position. Fusing global features with fine grained
information from local spatial relationships, enables semantic segmentation to perform a
pixelwise classification.

Further, CNN architectures have been developed to address those issues by targeting
the image domain. Meanwhile, several landmark papers have been published to investigate
semantic segmentation as well as instance segmentation. Fully Convolutional Networks
(FCNs) [35] as well as U-Net [41] and Mask-RCNN [22] are well known architectures
which also introduced new concepts of a network design. Semantic segmentation reqiures
detailed local knowledge to perform a pixel- or pointwise classification. Therefore, it is
important to provide architectures which are in the position to handle global as well as local
features. In [39] the very commonly seen encoder-decoder architecture is outlined which
is often used as segmentation standard. Hereby, the encoder network gets extended by a
decoder network (called deconvolutional network), which acts as the so called segmentation
head. Replacing fully connected layers by convolutional layers, at the end of the encoder
network, enables CNN architectures to output a heatmap. By adding further layers, the
decoder network is in the position to provide accurate pixelwise classification (see (4.1) for
more details about fully convolutional networks addressing semantic segmentation).

Single stage approaches mainly predominated development of neural architectures in
image domain. Hereby, processing of information takes place within a single encoding
pipeline, as it is the case for previously mentioned approaches. Region-CNN (R-CNN)
series [45, 36, 40, 7, 22] adopted detection networks towards two stage approaches by in-
cluding first stage processing as Region Proposal Network (RPN) with following second
stage as refinement layer of the identified important regions from first stage. This treat-
ment has the advantage of isolating Region of Interest (ROI) from background noise, which
is usually seen to be most of the information by processing natural data. Further, training

Chapter 2. Related Work 4

can be focused to important regions which are more likely to contain the actual information
of defined category classes. Mask R-CNN [22] further adopted the two stage architecture
by adding additional layer for binary mask with the purpose to perform instance segmenta-
tion. After applying first stage RPN, the second stage outputs class and box labels with an
additional binary map mask for each ROI individually.

To better handle problem of background noise, RetinaNet [24] motivated the use of
focal-loss under the use of single stage detectors which claims to resolve problems have
been addressed in two stage architectures as single stage pipeline. Here, the cross-entropy
function is modified in such a way that class imbalance is addressed by weighted loss, where
the optimization algorithm is forced to give attention to foreground samples. Combining
two stage pipelines in a single stage architecture potentially enables the network to perform
faster by using a more simple procedure [24].

Processing 3d point cloud information introduces a new level of complexity to the clas-
sification task. Applying common mechanisms such as convolution to unordered sets of
points is not possible in the first place and requires substantially different training routines.
Furthermore, the loss of spatial structure (predefined pixel-grid) does not include context
from local neighbourhood, which is especially important for the task of semantic segmen-
tation. Several approaches which address the domain of 3d LiDAR point clouds have been
summarized in (4.3) to give a detailed overview of the most recent developments.

Several treatments of processing point cloud data have been developed throughout the
past years. Voxelization introduces the concept of 3d convolution which renders data vo-
luminous in a 3d grid, such as in [26, 34]. In general, voxelization is seen to be computa-
tional expensive and infeasible to provide fast encoding. Further, [15] showed to transform
voxel grid into a set of 3d cylindrical pillars which enabled fast encoding under the use of a
conversion from 3d point cloud to pseudo 3d multi-channel image. By exceeding the state-
of-the-art by a large margin, achieving runtime frequencies of up to 105Hz, [15] seems to
provide an appropriate encoder for point cloud domain. In [33] and [25] a series of seminal
papers introduced analyses of unprocessed point cloud data which benefits from fast execu-
tion and shows state-of-the-art performance, but suffers from loss of spatial structure. Other
approaches focus to projection of point cloud to the image domain, such as in [15, 27, 19, 18,
10, 4, 3]. The developments from 2d image detection networks are reused and transferred
to the segmentation task, by integrating the activation path of a decoding network, which
enables the new architecture to perform point-wise classification.

Pointing out semantic understanding, previous works such as [17] could show that spa-
tial relationships are not the only source of information a network uses for classification.
Here, semantic lane segmentation is processed with additional and self-annotated classes
from CityScapes dataset [31], where the actual lane semantics have been identified for urban
scenarios. Information such as driving-direction of vehicles and occurrence of traffic-signs
could improve the segmentation results, where it seems that lane semantics are not only
encapsulated in road parts.

There are several papers where path proposals [13] and ego lane segmentation [30, 11]
has been performed on camera sensors as well as laser scanners such as in [21] but is not
addressing other aspects of ground layers. Further, the approach to classify lane semantics
has not been undertaken very much in detail, mostly due to the loss of suitable datasets
which could provide rich annotations for lane level geometry. Datasets which also provide
highly detailed semantic classes are urgently needed to further push development towards a
full scene understanding.

Chapter 2. Related Work 5

3 Theory
Modern machine learning originates from the middle of the 20th century and occurred in
several waves of scientific interest. During the past decades, machine learning experienced
large changes in the use of practical applications for many learning algorithms. Limitations
to computational power as well as the loss of the existence of appropriate data made the
use of machine learning and especially which is called deep learning these days, infeasible.
Modern deep learning has the potential to fundamentally change many aspects in the field
of computer vision. The following chapter outlines the most significant components in the
development of neural networks to make data processing, in terms of modern deep learning,
feasible and more efficient. Further, outlining the processing of sensory data from LiDAR
laser scanners, theoretical as well as practical aspects on the quality of range measurements
are investigated by considering the application of autonomous driving.

3.1 Artificial Neural Networks - ANN
3.1.1 Perceptron
The perceptron model was firstly implemented by Frank Rosenblatt [57] after mathemati-
cians Warren McCulloch and Walter Pitts [58] introduced the neuron as logical building
block which mainly marks the cybernetic wave (1940s-1960s) in very early years of devel-
opments of learning mechanisms [32]. McCulloch, Pitts [58] as well as Hebb [52] were
working on theories about biological learning, where later Rosenblatt actually implemented
the first artificial neuron, the perceptron Figure (3.1), which allowed to train a single neuron
[32].

..
.

x1

ω1

ω2

ω3

ωn

b=ω0

x2

x3

xn

1

inputs

bias

sum-
mation

activation
function

output

yΣi f

Figure 3.1: Interpretation of the perceptron model [57].

The perceptron defines a linear model where n input values (x1,⋯ , xn) are associated with
a defined category output y. The early implementation allowed to find the corresponding

Chapter 3. Theory 6

3.1. Artificial Neural Networks - ANN

weights (w1,⋯ , wn) by training, to predict the correct category output y from input exam-
ples - f (x⃗, w⃗) = yj = x1w1 +⋯ + xnwn [32].
Linear models come along with a couple of disadvantages, e.g. they are not in the position
to learn the XOR function. It is easy to show that a linear system is not descriptive enough to
separate the sample space of an XOR unit into well-defined category regions [32]. Finding
solutions for more complex problems, which are beyond linear space, the model’s complex-
ity simply had to be increased. As the second wave, connectionism wave (1980s-1995s), in
developing learning mechanisms, [55] introduced the back-propagation mechanism to train
more complex neural networks which are consisting out of one or more hidden layers. Until
today, this is one of the most widely used learning algorithm applied in deep learning [32].

3.1.2 Multilayer Perceptron - MLP
Feedforward neural networks, also called Multilayer-Perceptron (MLP), define one of the
most widely used network architectures in machine learning applications. Convolutional
neural networks are mainly used in image processing is one very well-known application of
this type of network.

The structure of a MLP can simply be explained as concatenating multiple of perceptron
models to one larger network, which now contains multiple of layers. Figure (3.2) illustrates
the shape of a standard feedforward neural network, which contains an input layer, one or
more hidden layers and an output layer.

..
.

..
.

x1

ωij

x2

x3

xn

x1

x2

x3

xn

output

yl

inputs

forward-inference

backward-learning

zj fj(zj)

Σ xi ωij fj

zk fk

zl fl

ωjkxj

ωklxk

xi

Figure 3.2: Model of Multilayer-Perceptron.

Where the previously introduced model of the perceptron, (3.1.1) is limited to linear space,
a MLP composes a chain of functions, by putting more hidden layers in between the two
known input and output layers, y = f (x) = f (3)(f (2)(f (1)(x))) [32], see Figure (3.3). The
depth of the network is defined by the length of the chain. The first layer is the input layer,

Chapter 3. Theory 7

3.1. Artificial Neural Networks - ANN

yl = fl (bl + Σ k fk (bk + Σ j fj (bj + Σ i xi ωij) ωjk) ωkl)}} zj

xj

Figure 3.3: Multilayer-Perceptron - concatenated functions from layers.

where data gets fed into the network. The last layer is the output layer. The name hidden
layer is used because the output of the hidden units is not directly seen in the network, as it
is not the case for the input and output layer [32].
Within supervised learning, labels from training data, simply determine how the output of
the last layer (prediction) need to look like. During training, plenty of samples are presented
to the network, where the predicted output f ∗(x) gets consequently compared to the actual
true value of f (x). The difference of f (x) and f ∗(x) is called the error, which needs to
be minimized during training. The training of a feedforward neural network is basically
guaranteed by applying the well-known back-propagation algorithm which can efficiently
calculate the partial derivatives of f . Performing the actual training step, an optimization
algorithm (e.g. gradient-descent) tries to minimize the error value through weight adjust-
ments, by feeding the error backwards through the network.
Lastly, it is about the optimization algorithm to find the best parameters to match y = f (x)
with ŷ = f ∗(x) [32]. Today’s deep learning mechanism can differentiate between at least
a thousand categories simultaneously, where early linear models could only handle binary
classification problems (0/1) [32]. In [32] it is stated that a neural network, which is trained
with at least 5,000 labelled examples per category class, can achieve acceptable perfor-
mance. Human performance is exceeded with training sets containing at least 10 million
labelled samples. Such large quantities are very rare and training would require massive
computing power. Therefore, an important area of research is to achieve appropriate re-
sults with datasets which are much smaller than this, to finally gain from large quantities in
unsupervised learning [32].

3.1.3 Backpropagation
The backpropagation algorithm has been introduced by [55] and is basically computing the
partial derivatives of a chain of concatenated functions. Figure (3.4) shows a directed acyclic
graph which basically represents the structure of a feedforward neural network.

f f fi j k l

Figure 3.4: A directed acyclic graph illustrates a chain of concatenated
functions: j = f (i), k = f (j), l = f (k) [32]. To compute the partial
derivatives,)l

)i
, the chain rule is applied to obtain Equation (3.1) [32].

)l
)i
=)l
)k
)k
)j
)j
)i

(3.1)

The flow of information is forwards, from left to right and cannot go backwards at any point
in the network. Network structures with backward connections, which allow a recurrent flow

Chapter 3. Theory 8

3.1. Artificial Neural Networks - ANN

of information - means to also give the possibility to re-enter neurons from previous layers,
in a loop wise manner; are called recurrent neural networks. Algorithm (1) illustrates the
forwardpass (here: written in pseudocode), which is the commonly used algorithm to pro-
cess inference for a feedforward neural network. For inference, data is fed into the network
to calculate bias and weight values, which getting used to lastly update a corresponding loss
function L(ŷ, y)with the predicted value ŷ = f ∗(x) and the actual true value from label data
y = f (x).
Algorithm 1: Forward propagation in pseudocode representation. Information
gets fed into the network where bias and weight values are updated accordingly.
The corresponding loss value is calculated by function L(ŷ, y) [32]. Accordingly,
the loss value is used by an optimization algorithm to perform the actual step of
learning with the help of backpropagation algorithm, Algorithm (2).
Data:Number of layers: l
weight matrices: W (i), i ∈ 1,… , l
bias parameters: b(i), i ∈ 1,… , l
input: x

Result: output y
ℎ(0) = x
for k = 1,… , l do

z(k) = b(k) +W (k)ℎ(k−1)
ℎ(k) = f (z(k))

end
ŷ = ℎ(l)
J = L(ŷ, y)

At this point it is also worth to notice that the backpropagation algorithm is only responsible
for calculating the gradients, where another optimization algorithm, such as gradient-descent
or adam-optimizer, is using these gradients to perform the actual learning task through
weight adjustments.
An illustration of the backpropagation algorithm in Algorithm (2) is showing an example
written in pseudocode, which is outlining the most relevant procedures to accordingly back-
propagate calculated gradients.
Algorithm 2: Backward propagation, pseudocode example [32].
gradient calculation at output layer with loss J from forward propagation
g←∇ŷJ
for k = l, l − 1,… , 1 do

gradient calculation at a layer’s output, of prenonlinear activations f
g←∇z(k)J = g ̇f ′(z(k))
gradient calculation for weights and biases
∇b(k)J = g + ∇b(k)
∇w(k)J = gℎ(k−1)T + ∇w(k)
backpropagate gradients to next lower-level layer (hidden layer’s activations)
g←∇ℎk−1J

end

Chapter 3. Theory 9

3.1. Artificial Neural Networks - ANN

3.1.4 Loss Functions
Cross Entropy Loss
The loss-function, also often called error- or cost-function, J = Loss(ŷ, y), computes the
loss value between the predicted output ŷ and the true label value y from training data [32].
In general, Cross Entropy (CE) is used in binary classification, the equation for discrete
probability distributions is shown in Equation (3.3):

H(p, y) = − 1
N

N
∑

i=1
yi log p(yi) + (1 − yi) log(1 − p(yi)). (3.2)

In training a neural network with N number of samples, with probability 1
N
, yi repre-

sents the actual true values from training labels, where p(yi) are the predictions. Without
considering size of sample space, cross-entropy can be noted as follows [24]:

H(p, y) = H(pt) = − log pt. (3.3)
Respectively, log(p) determines if the sample belongs to some category class, on the

other hand log(1 − p) determines the probability of not being part of it [24]:

pt =

{

p if y = 1
1 − p otherwise. (3.4)

Focal Loss
Using cross entropy directly, comes with some drawbacks. That is because of imbalance of
positive and negative samples in natural data. The data which gets collected by some sensor
(e.g. camera or LiDAR) usually contains much fewer positive samples than negative ones.
This is because desired objects cover only a small area in the entire frame, where the rest is
dominated by negative background noise. Classification is mainly affected by this imbalance
where it is problematic to classify the real positive samples. An approach to better handle
imbalance of examples is the focal loss function, Equation (3.5). Herein, the loss function is
down-weighting negative examples (easy samples) to focus training on positive ones (hard
samples). In general, focal loss is the weighted cross-entropy loss with > 0.

FL(pt) = −(1 − pt) log pt (3.5)
The modulating factor (1−pt) is near 1 if the predicted value for pt is small (close to 0),

the computed loss will be unaffected. Whereas, if pt is close to 1, the factor will be almost
0. Therefore, the loss for correct classified examples is down weighted. Furthermore, �
is added as an additional factor to the equation of focal loss, which is also handling class
imbalance of datasets, see Equation (3.6). It could be seen that there was an improvement
in detection accuracy compared to the equation without � [24]:

�t =

{

� if y = 1
1 − � otherwise

FL(pt) = −�t(1 − pt) log pt

(3.6)

Chapter 3. Theory 10

3.1. Artificial Neural Networks - ANN

3.1.5 Optimization Algorithms
Gradient Descent
Training a Deep Learning Algorithm comes along with an optimization task, (e.g. to op-
timize some function y = f (x)). Function y is also called loss-, error-, or cost-function.
Herein, optimization describes the procedure of minimizing or maximizing f (x). Minimiz-
ing often refers to finding the global minimum of f (x), which can be achieved by computing
the derivative f ′(x) =)y

)x
[32]. The basic principle is illustrated bellow, Figure (3.5).

Figure 3.5: Illustrating principle of gradient descent algorithm. [32]

The derivative f ′(x) describes the slope of f (x) at every point x and therefore implies
how to scale changes in the input x to get the corresponding change in the output: f (x+�) =
f (x) + �f ′(x) [32]. Herein, � is the learning rate, which is a scalar value and describes a
factor to scale step size. The negative gradient just tells the direction of how to change
value x to come closer to the global minimum given from y. This algorithm of iteratively
computing and updating f (x) is called Gradient Descent (GD). Due to its iterative nature,
the procedure stops if the computed change in loss is below a certain threshold [32].
An example of how GD is finding a functions global minimum is shown in pseudocode in
Algorithm (3), herein x is the parameter vector.
Algorithm 3: Gradient Descent [32]
Data:Learning rate: �
Initial parameters: x

while step_size > threshold do
compute gradient with parameters: f̂ ← ∇xf
update parameters: x̂← x − �f̂

end

By increasing complexity of the objective function, complexity of optimization increases
respectively. Generally, there are plenty of critical points, which makes it difficult to find an
appropriate solution. Arbitrary numbers of local minima and maxima, saddle points, local
minimawhich perform just as good as global ones, etc. are common situations in solving real
world problems [32]. In Deep Learning, optimization just involves such complex functions,
which can also be multidimensional, depending on type of input data. This is making the
field of optimization to a broad area of research.

Chapter 3. Theory 11

3.1. Artificial Neural Networks - ANN

Stochastic Gradient Descent
The Stochastic Gradient Descent (SGD) algorithm is an extension to gradient descent and is
one of the most widely used optimization algorithms among Deep Learning Applications.
Whereas gradient descent uses the entire set of samples to perform an update iteration and
therefore to minimize the objective function, SGD performs on a randomly sampled subset
of m examples from the training set. An example in pseudocode, in Algorithm (4), is illus-
trating the algorithm. SGD massively reduces the required number of computational steps
for updating parameters compared to standard gradient descent.
Algorithm 4: Stochastic Gradient Descent [32]
Data:Learning rate: �
Initial parameters: �

while step_size > threshold do
randomly sample m examples from training set {x1,⋯ , xm}
compute gradients: f̂ ← ∇f = 1

m
∇�

∑m
i=1L(ŷ

(i), y(i))
update parameters: � ← � − �f̂

end

Further, due to very large training sets with up to millions of samples, gradient descent
needs to iterate through the entire sample space to perform a single update to come closer
to the global minimum. SGD is not always finding the optimal solution, but in general the
approximation is as good as optimal, with a fraction of computational steps.

Adam Optimization
There are plenty of optimization algorithms available to be used in machine learning appli-
cation. Common optimization algorithms used in today’s learning applications are: SGD
w/w/o momentum, RMSProp w/w/o momentum, AdaDelta and Adam [32]. It is hard to
say if there is one algorithm which performs better than all others. The choice of which
optimization algorithm to choose, mainly depends on the learning task or the objective of
the user [32]. Algorithm (5) outlines the most relevant procedures the Adam algorithm uses
for optimization. "Adam" is the short version for "adaptive moments", where the algorithm
updates with exponential moving averages (�m + (1 − �)∇f) of estimates of the first and
second order momentum (mean, variance) of the gradient, ∇f , of the objective function
[38]. The parameters �1, �2 ∈ [0, 1) controlling the exponential decay rates of the moving
averages [38]. Momentum helps the gradient to move faster into the "right" direction to find
global minimum, where SGD w/o momentum has problems to find the optimal solution and
tends to end up in local minima.

Chapter 3. Theory 12

3.1. Artificial Neural Networks - ANN

Algorithm 5:Adam - AdaptiveMoments [38, 32]. The suggested default value for
learning rate is 0.001 with decay rates of �1 = 0.9 and �2 = 0.999. ⊙ defines the
elementwise multiplication and � = 10−8 is a constant for numerical stabilization.
Required:
Learning rate: �
Exponential decay rates: �1, �2 ∈ [1, 0)
Stochastic objective function: f (�)
Initial parameter vector: �0

Init:Initialize first moment estimate vector: m0 = 0
Initialize second moment estimate vector: v0 = 0
Initialize timestep t = 0

while step_size > threshold do
randomly sample m examples from training set {x1,⋯ , xm}
t← t + 1
compute gradients: f̂t ← ∇�ft(�t−1)
update biased first moment estimate: mt ← �1mt−1 + (1 − �1)f̂t
update biased second moment estimate: vt ← �2vt−1 + (1 − �2)f̂t ⊙ f̂t
compute unbiased first moment estimate: m̂t ← mt

1−�t1compute unbiased second moment estimate: v̂t ← vt
1−�t2

update parameter: �t ← �t−1 − �
m̂t

√

v̂t+�
end

Chapter 3. Theory 13

3.2. Convolutional Neural Networks - CNN

3.2 Convolutional Neural Networks - CNN
3.2.1 Convolution and Deconvolution
Convolution
The convolution operation is widely used in the field of computer science. In vision-based
applications it turned out to be one of the most important mathematical operation to pro-
cess images. By applying convolution, the input signal(a discrete set of values), is getting
convolved with a kernel function, which usually is an approximation of another function.
In general, the convolution operator describes an elementwise multiplication of the input
function f with a kernel function k, see Figure (3.6) for illustration.

k00 k01 k02

k10 k11 k12

. . .

.

.

.

.
 .
 .

image
p00 p01 p02 p03 p04 p05

p10 p11 p12 p13 p14 p15

r00 r01 r02 r03 r04 r05

r10 r12 r13 r14 r15

p20 p21 p22 p23 p24 p25

p30 p31 p32 p33 p34 p35

p40 p41 p42 p43 p44 p45

k20 k21 k22

convolution
kernel 3x3

result

r11

r20 r21 r22 r23 r24 r25

r30 r32 r33 r34 r35r31

r40 r41 r42 r43 r44 r45

r50 r52 r53 r54 r55r51

p00k00 + p01k01 + p02k02 +

p10k10 + p11k11 + p12k12 +

p20k20 + p21k21 + p22k22 = r11

f * k = gPrinciple:

Figure 3.6: Convolution operation g(x, y) = (f ∗ k)[x, y].

The result is a new function g, the convolved input from f . Equation (3.7) demonstrates
convolution g(x, y) = (f ∗ k)[x, y], where filter-size n is an odd number:

g(x, y) =
⌊n∕2⌋
∑

i=⌊−n∕2⌋

⌊n∕2⌋
∑

j=⌊−n∕2⌋
f (x + i, y + j)k(i, j). (3.7)

In convolutional neural networks, the specific look of the produced feature-maps is de-
termined by the kernel coefficients. Where in classic computer vision predefined filters (e.g.
edge- or corner-filters) are used to compute corresponding feature maps, a neural network
first learns filter coefficients to produce complex features. In literature, the kernel-size is
often seen as a 3x3 array of discrete values, which turned out to achieve sufficient results for
the most of applications.

The input image of a convolutional layer is in the size of HixWixDi. Hi,Wi defines
the spatial dimension and Di is the dimensionality in channels of the input data. A set of
N (nxn) filters is applied to the input to produce the corresponding stack of feature maps
in dimensionalityN ,HxW xN . Convolutional layer and filter stack is illustrated in Figure
(3.7).

Chapter 3. Theory 14

3.2. Convolutional Neural Networks - CNN

D

D

*

W

H

W

H

n

n
=

outputinputs
N-filter

nxn

N

Figure 3.7: Convolutional layer in CNN, illustration shows stack
of filters and feature maps in convolutional layer.

Deconvolution
Deconvolution (often referred as transposed convolution) describes the exact inverse process
of convolution operation, f = g ∗ k. Where convolution naturally shrinks the size of the
input image, the purpose of deconvolution is to restore the original image size, demonstrated
in Figure (3.8). Convolution comes with a loss of information which makes it impossible to
restore the distorted image back to the original. In a convolutional neural network, decon-
volution is usually applied after unpooling operation, see (3.2.2). Unpooling enlarges the
activation map of a previous layer, which is yet a sparse map of activations. Unpooling is a
non-learnable operation without filter, where it is tried to restore the spatial resolution of the
original map before pooling will be applied (see Figure (3.9) and Figure (3.10) for illustra-
tions of pooling and unpooling operations). After unpooling has been applied, transposed
convolution is densifying the sparse map of activations with a stack of learnable filters, sim-
ilar to convolutional layer [39]. Convolution compromises multiple of activations within a
filter window into a single activation (many to one relationship), deconvolution on the other
hand associates single activation with multiple outputs (one to many relationship), where
deconvolution produces an enlarged but dense activation map.

Figure 3.8: Deconvolution example, illustrates the principle of deconvo-
lution operation. A single activation gets enlarged to multiple of outputs.
Deconvolution is densifying the sparse map of activations after unpool-
ing.

3.2.2 Pooling and Unpooling
Pooling
Pooling comes in two different types which are very common in use, average- and max-
pooling. In general, applying pooling operation to a map of activations, comes with a loss

Chapter 3. Theory 15

3.2. Convolutional Neural Networks - CNN

of spatial information. Herein, pooling helps to filter noisy map of activations, which results
in a down sampled version of the original feature map. The number of activations inside of
a receptive field (sliding window of a filter), is abstracted to a single representative value.
Therefore, pooling obtains only the most robust activations in higher layers [39]. Figure
(3.9) is illustrating the pooling operation. In applying max-pooling the maximum activa-
tion is chosen from a kxk kernel which is sliding over the entire feature map, similarly to
convolution. Herein, a new feature map of activations is formed, only containing the maxi-
mum values where all the rest of information is discarded. Next to the maximum activation,
pooling is also storing the grid position of the value. This is helpful information which sup-
ports unpooling operation in later layers, to place the value back again to the same position
it originally came from.

switch-variable

value record

53
4 1

1 2

3 4
02

6 3

1 2

3 4

43
2 0

1 2

3 4
02

1 0

1 2

3 4

5 6
2 4

2 3

21

Figure 3.9: Principle of pooling operation. Max-Pooling and Average-
Pooling are commonly used method to process pooling. The illustration
demonstrates max-pooling, where the maximum value within a 2x2 filter
grid is selected and stored in the pooled- and down sampled-layer. To bet-
ter reconstruct the original map with unpooling, the location coordinates
of pooled layers are stored as switch-variables.

Unpooling
Unpooling defines the reverse operation of pooling, which is basically used to reconstruct
the original spatial resolution of the activation map, before pooling had been applied. Per-
forming unpooling, the stored location coordinates of the pooled activation map are used
to place each of the activations back to its original location [39]. The principle of unpool-
ing is illustrated in Figure (3.10). Performing unpooling this way, allows a parameter free
operation without the need of learning filters [39].

3.2.3 Fully-Connected
After a series of convolution and pooling operations a CNN often uses Fully Connected
Layers (FCs) for classification, at the last layers of a network. The FC layer, at position k
in a convolutional network, is summarizing all activations from the previous layer k − 1.
Herein, FC means that every neuron from layer k − 1 is connected to each other in layer k,
the FC layer. The size of the FC layer is often related to the actual number of classes the
network model tries to distinguish (One-Hot-Encoding), see Figure (3.11). Using FC layers
comes with the loss of spatial information, therefore, pixelwise classification is not possible
anymore, which is not desirable in semantic segmentation.

Chapter 3. Theory 16

3.2. Convolutional Neural Networks - CNN

switch-variable

value record

50
0 0

1 2

3 4
00

6 0

1 2

3 4

40
0 0

1 2

3 4
02

0 0

1 2

3 4

2 3

21

5 6
2 4

Figure 3.10: Principle of unpooling operation. Reverse procedure of
pooling. The down sampled layer from pooling is tried to get rebuild by
up sampling and filling the gaps with 0 values.

C1

C2

C3

FC
softmax
(normalized
probability distr.)

Figure 3.11: Illustration shows structure of fully connected layers
(FC). The last FC layer is downsized to the actual number of classes.
Applying normalization operation by softmax function provides a
probability distribution for the output neurons (One-Hot-Encoding).

3.2.4 1x1 Convolution
The general purpose of introducing 1x1 convolution or dimensionality reduction is to reduce
the effort of computational cost. Instead of using larger kernel sizes to process a stack ofN
channels of feature maps, 1x1 convolution is used in a similar way such as pooling. Certain
channels become less relevant during training and contribute only a small amount of value
to the overall process of classification. Herein, a channel-wise pooling is provided. The
number of channels is reduced in a more compact representation of features, while the most
robust activations getting retained.

The example illustration, Figure (3.12), shows the principle operation of applying 1x1
convolution to an input stack of features withN channels. Depending on the number of 1x1
filters, the stack-size of the resulting number of channels can also be increased.

3.2.5 Identity Skip-Connection
The principle of identity skip-connection has been introduced as logical building block of
the ResNet architecture [37]. The general purpose was to construct very deep network archi-
tectures while prohibiting problems such as vanishing gradients through residual learning.

Chapter 3. Theory 17

3.2. Convolutional Neural Networks - CNN

28x28x64 28x28x321x1x32

Figure 3.12: Principle of dimensionality reduction. 1x1 convolution is
applied to a stack of features-maps withN channels.

With increasing depth of network, learning saturates and accuracy degrades rapidly
which causes higher training errors. The logic behind skip-connections is to learn a residual
mapping, (x) = (x) − x, by a stack of nonlinear layers, instead of learning the origi-
nal mapping (x) directly. Therefore, the desired mapping is denoted as (x), which can
further be recast into (x) + x [37].

The reason behind this is the fact that it is easier to optimize a residual mapping and
to minimize the residual to zero rather than to fit the original identity mapping for each
stack of nonlinear layers directly. The new defined mapping (x) + x can be implemented
in feedforward neural networks as skip-connection or shortcut connection. Further, identity
skip-connection is an easy to understand mechanism where simply the raw information from
a lower layer in the network hierarchy is passed to a deeper layer. This mapping can be under-
stood as information forwarding, which showed to be useful to handle degradation problem
of deep architectures. Herein, neither computational complexity nor extra parameters are
needed and the network is still trainable in an end-to-end manner.

+
relu

reluF (x)

F (x) + x

weight layer

weight layer

x

x
identity

Figure 3.13: Residual block, identity skip-connection [37].

Chapter 3. Theory 18

3.3. LiDAR - Theory and Practice

3.3 LiDAR - Theory and Practice
General Specifications - LiDAR Range Measurement
Light Detection and Ranging (LiDAR), provides accurate range measurements of the envi-
ronment, mostly as a map of 3-dimensional coordinates and intensity values (x,y,z,i). Fo-
cusing recent developments addressing autonomous driving, there are basically two types of
LiDAR systems used in practice, traditional LiDAR (rotating mechanics with mirror) and
solid state LiDAR (MEMS mirror or flash lidar). In the scope of this thesis, only traditional
LiDAR systems are considered.

Within the scope of this work, the Velodyne LiDAR HDL-32E scanner [49] has been
used to undertake range measurements. A short summary of several system specifications
of the scanner is given in Table (3.1) [49].

Table 3.1: Specifications: Velodyne LiDAR HDL-32E [49]

Model: HDL-32E
Channels: 32
Range: 100m (effective range, about 1m - 70m)
Rate: 5Hz-20Hz
Accuracy: ±2cm
V-FOV: 41.33°(+10.67°to -30.67°)
H-FOV: 360°
Resolution (V/ inclination): 1.33°
Resolution (H/ azimuth): 0.08°-0.33°
Points/Sec.: 695,000 (single), 1,390,000 (dual)
Wavelength: 903nm
Beam divergence: 3.0mrad

The HDL-32E scanner provides a total number of 32 scanlines. Herein, vertical angular
offset between consecutive scanlines is linear and fixed to a value of 1.33° per channel. The
horizontal offset, basically depends on speed of rotation of the entire apparatus with a default
value of 0.166°. The horizontal and vertical field of view is tried to illustrate in Figure (3.14)
with the specifically integrated offset between consecutive lidar channels.

θ

41.33°

0<φ<360

+10.67°

-30.67°

z

y

x

Figure 3.14: Illustrating schematics of HDL-32E LiDAR. Horizontal angular resolution
depends on mechanical rotation of apparatus, vertical angular resolution is fixed by laser-
diods and lens.

Chapter 3. Theory 19

3.3. LiDAR - Theory and Practice

The general physical principle of LiDAR range measurements is explained in the follow-
ing. The LiDAR scanner is emitting light-pulses (laser-beams) to the environment, where a
part of the energy from the emitted pulse is backscattered to the receiver and registered as
incoming signal peak. The energy footprint of the transmitted signal pulse follows the pat-
tern of a non-uniform distribution and can be approximated by a two-dimensional gaussian
function, where the emitted energy is the highest at the centre of the pattern:

f (x, y, �x, �y) =
1

2��x�y
e
−(x

2

2�2x
+ y2

2�2y
) (3.8)

�x, �y indicating lateral distribution of signal profile. The schematics of range measure-
ment and signal footprint are illustrated in Figure (3.15).

Herein, the delta time, between emitting and receiving a signal, is called time-of-flight
(tof). herein, the emitted laser is assumed to travel at the speed of light c, where the radial
distance d between scan device and obstacle can easily be determined by:

d = c
2
Δttof (3.9)

The quality of measurement mainly depends on factors such as: calibration of scanner,
environmental influences, obstacle properties (geometrical shape, surface characteristics)
[50]. To theoretically describe scan characteristics, the quality of range measurements is
investigated with respect to physical and geometrical aspects of the scan device and target
surface as well as environmental influences.

lidar

ttof

nθ

Figure 3.15: Demonstrating reflection of light-pulse at a flat surface. Due to beam diver-
gence, the footprint of the signal appears in a circular shape within perpendicular reflections
and changes to an elongated shape if incidence angle differs from 0° [50].

Physical Aspects
The pulse of a lidar scanner can be considered as a gaussian beam. The footprint of a light
pulse appears in circular shape by hitting a perpendicular surface, 0°. At larger angles, the

Chapter 3. Theory 20

3.3. LiDAR - Theory and Practice

footprint is more elongated, weaker in magnitude and larger in time, which is demonstrated
by example in Figure (3.16) [14].

Herein, the emitted signal (red) and two received waveforms (blue and green) are shown,
which have been measured at same distance but varying incidence angle (green � = 0°,
blue � = 80°). The received waveforms are not just separated in time, with offset Δts, but
also appear in different shapes and strength of magnitude, due to varying incidence angle.
A bigger portion of the signal, which is hitting the oriented surface, returns sooner to the
receiver, as the one which is not oriented. This introduces a bias in range measurement,
where a different incidence angle leads to varying results in magnitude of the received signal,
by keeping the same distance [14]. Other effects of instrumental calibration or environmental
conditions are not considered here.

in
te

ns
it

y
(r

el
at

iv
e

va
lu

e)
 [W

/m
2]

time [s]

∆t
Pt

Pr(t|d, 0°)
Pr(t|d, 80°)

Figure 3.16: Experimental example, shows waveforms of LiDAR signals with vary-
ing incidence angles but constant distance [14]. Transmitted signal: red; Received
waveforms: green, perpendicular; blue, 80° incidence angle. Physical unit of laser
beam intensity mostly referred as power per square meter, [W ∕m2]. Here intensity
is given as value between 0…1, where 1 associate to full power of used scanning
device.

Considering the experimental setup of the nuScenes test vehicle, the LiDAR scanner is
roof-mounted, at a height of approximately 1.8m above ground. Further, ground is assumed
as a flat surface, where the emitted light pulses from a laser scanner will hit ground at varying
angles (illustrated in Figure (3.15)), which directly contributes to signal to noise ratio and
therefore to reliability of measurement.

Beam divergence describes effect of increasing beam radius with distance from scan
device. In Figure (3.17) the size of beam diameter is modelled with respect to distance,
herein, progressing in radial distance shows that size of beam footprint is proportional to
distance.

Chapter 3. Theory 21

3.3. LiDAR - Theory and Practice

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

radial distance [m]
bea

m
pro

file
rad

ius
[c
m
]

Figure 3.17: Modelling beam divergence (HDL-32E:
3mrad) relative to radial distance.

Without knowing the exact reflectance properties of the surface of an obstacle, it is tried
to theoretically model the influence of the incidence angle � (to normal vector n at target
surface) related to the signal to noise ratio of the received signal. A light pulse hits a target
surface. Herein, the backscattering is described by theBidirectional Reflectance Distributive
Function (BRDF) [53]. Furthermore, the emitted and received intensity of the signal can be
measured by the use of the laser range equation (radar equation), where the received signal
power Pr is formulated as:

Pr =
��Atar
4d2

Pt cos ��atm�sys (3.10)
� reflectance properties of material surface, Atar surface target area, d radial distance to

scan device, Pt transmitted signal power, � incidence angle at surface normal vector, �atm
environmental influences (e.g. atmospheric transmission), �sys system related parameters.

It can be seen that radial distance and cosine of angle � directly contributes to signal
deterioration, as range and incidence angle increases, see Figure (3.18) [50].

radial distance [m]

int
ens

ity

0 30 60 90
incidence angle [°]

Figure 3.18: Theoretically modelling intensity degradation with respect to radial distance
and incidence angle of laser beam located at surface normal vector. Physical unit of laser
beam intensity mostly referred as power per square meter, [W ∕m2]. Here intensity is given
as value between 0…1, where 1 associate to full power of used scanning device.

Chapter 3. Theory 22

3.3. LiDAR - Theory and Practice

Herein, the received signal intensity directly corresponds to distance and surface align-
ment as well as material properties, where signal quality decreases due to decreasing signal
to noise ratio.

Effect of beam divergence causes the radius of the signal footprint to increase with dis-
tance. Considering the experimental setup of the test vehicle the LiDAR scan device is in-
stalled at height ℎ = 1.8m above ground. As it was shown in Figure (3.18), SNR decreases
if incidence angle and distance increases. Herein, it can be demonstrated that the ability of
a scan device to detect a target mostly depends on signal to noise ratio, which can mainly be
determined by the ratio of emitted and received signal power, as mentioned before. Other
effects such as instrumental- or environmental influences are not considered in here.

In Figure (3.19), amplitudes of two possible range measurements are illustrated. Exam-
ple (a) demonstrates measurement of ground at a distance of 5m, whereas example (b) shows
the response of a measurement at about 20m. The effect of beam divergence and growing
incidence angle causes degradation of model performance. The signal response in (b) ap-
pears broader in time, separated from the actual true measurement position and smaller in
magnitude, compared to (a). Therefore, detection probability would decrease if radial dis-
tance increases. This characteristic behaviour suggests introducing an a-priori threshold for
removing unreliable measurements [50].

20 30 40 50
0

0,2

0,4

0,6

0,8

1

time [ns]

int
ens

ity
(re

lat
ive

val
ue)

(a) close measurement

90 120 150
0

0.25

0.5

time [ns]

(b) distant measurement

Figure 3.19: Example of two range measurements. Considering the experimental setup,
the LiDAR installation position is approximately 1.8m above ground. (a) measured at close
distance (small incidence angle and radius of beam footprint); (b) measured at far distance
(large incidence angle and radius of beam footprint). Physical unit of laser beam intensity
is referred as power per square meter, [W ∕m2]. Here intensity is given as value between
0…1, where 1 associate to the full power spectrum of the used scan-device.

Geometrical Aspects
Geometrical properties influencing range measurements are discussed in the following. In
Figure (3.20) offsets in horizontal and vertical direction of consecutive scan-points are seen.
The signal power footprint of a laser beam is assumed ot be non-uniform and can be approx-
imated by a two-dimensional gaussian function. Considering the HDL-32E lidar scanner,
beam profiles are partly overlapping in horizontal direction (beam divergence of 3mrad). The

Chapter 3. Theory 23

3.3. LiDAR - Theory and Practice

minimum geometrical size of an object which would be still detectable, does not depend on
physical size but more on properties of surface reflectivity. For simplicity, the footprint of
signal power is assumed to be uniform, where the area of the beam profile results in:

Abf =
�
4
(d)2 (3.11)

d is denoted as radial distance and as the beam divergence. Further the area of the
target object (Equation (3.12)) which gets hit by the laser beam is assumed to be equal to
Abf , Abf = Atar.

Atar = �r2 (3.12)
r defines the radius of the target object which is set to circular shape. Following, the

power density of the signal at the target surface is approximated by:

Φtar =
Pt
Abf

�atm (3.13)
Atmospheric transmission �atm mainly reduces signal power Pt, the amount of power of

the emitted signal. Further, the amount of reflected energy from target surface results in:

Pref = �ΦtarAtar�atm (3.14)
Without considering �atm, the amount of energy is getting reflected from target surface

is primarily limited by rℎo - material reflectivity and size of surface area Atar. Considering
an object with � = 5% and Abf = Atar. The minimum size of an object with � = 100%
would be still detectable is Abf

20 [51].

0 20 40 60 80 100
0

5 ⋅ 10−2

0,1

0,15

0,2

0,25

0,3

distance [m]

off
set

[m
]

(a) Horizontal Offset

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

distance [m]

(b) Vertical Offset

Figure 3.20: Horizontal and vertical resolution of the Velodyne HDL-32E scanner. Illus-
tration of offsets between consecutive measurement points in [m], with respect to angular
resolution. Horizontal angular resolution: 0.166°; Vertical angular resolution: 1.33°.

Chapter 3. Theory 24

3.4. Metrics

3.4 Metrics
Intersection over Union
In the deep learning community, it is seen very often to describe the accuracy of a classifier
in global metric. Accuracy describes the proportion of actually correctly predicted cases,
which is the number of True Positive (TP) (predicted as positive sample and actually true)
and True Negative (TN) (predicted as negative sample and actually labelled as such one)
divided by the total population of samples: Acc = (TP+TN) / total population.

This sort of a performance indicator is best used for binary classification, whereas within
multiclass classification, mostly an average accuracy is formed over the entire set of classes.
This treatment is not always optimal, if the numbers of per class samples is very unbalanced,
which is naturally seen in real data. In the sense of global measures, class imbalance is
considered only poorly. Therefore, it is necessary to preserve a more meaningful metric for
evaluating category classes which are easy and hard to predict.

In semantic segmentation, Intersection over Union (IoU) computes the overlap between
the boundaries of 2 patches (rectangular box or any segmentation mask). Therefore, area of
overlap is divided by area of union: A∩B

A∪B .

IoU = TP
TP + FP + FN

. (3.15)

Five-Number Summary
In terms of descriptive statistics, five-number summary provides compact representation to
plot statistical values and measures of a dataset. There are several standardized plots, such
as box-plot or violin-plot, see Figure (3.21). In general, information about the dataset is
summarized in 5 meaningful values:

minimum: lowest data point (except outliers)
maximum: highest data point (except outliers)
Q1 (25th percentile): median of lower half
Q2 (50th percentile): median of dataset
Q3 (75th percentile): median of upper half

medianlower quartile
25 percentile

upper quartile
75 percentile

minimum
lower whisker

maximum
upper whisker

outlier

Figure 3.21: Demonstrates box-plot elements with additional probability density distribu-
tion drawn as violin-plot (robust statistics, five-number summary).

The information presented by five-number summary is not limited to describe the dis-
tribution of data along the median value, such as in Equation (3.4) but can also represent

Chapter 3. Theory 25

3.4. Metrics

any other statistical measure (e.g. mean and standard deviation). Considering box-plot, the
inner-box (called inter quartile range (Inter Quartile Range (IQR))), represents the distribu-
tion of 50% of the dataset, where the thick line within the box can show median or mean
value of the distribution. Further, defined ranges between minimum and first quartile (Q1),
and maximum and third quartile (Q3) is described as whiskers. Herein, the second half of
the dataset is represented which shows to contain a larger range of dispersion from median.
Information such as dispersion, symmetry as well as skewness of distribution can be visual-
ized by using box-plot representation. Skewness necessarily requires information of mean
value to decide whether data is left- or right skewed (left skewed (negative skew) - mean
is less or located rightwards from median; right skewed (positive skew) - mean is larger or
located leftwards from median).

However, box-plot cannot visualize modality of distribution, which requires plotting of
Probability Density Function (PDF) of the corresponding data. Herein, violin-plot is in the
position to compare density functions from two categories directly. Modality of a distribu-
tion is shown by the number of local maxima. In terms of machine learning application,
the performance values of a trained classifier can be plotted as probability density function,
where the modality of the distribution is unimodal if the distribution reveals one distinct
peak. Bimodal or multimodal distributions show the inability of the classifier to well differ-
entiate between the defined category classes.

Multilabel-Confusion-Matrix
Rendering the prediction result in a multilabel confusion matrix offers class wise detection
scores of defined semantic classes. Several metrics to describe performance of the investi-
gated model can be calculated from the confusion matrix directly, where the distribution of
true positive, false positive, false negative and true negative is available in compact repre-
sentation. Hereby, Figure (3.22) shows the distribution of samples for class c1.

TPc1

c1

FP

c2

FP

c3

FNc2 TN TN

FNc2 TN TN

pr
ed

ict
ed

co
nd

iti
on

true condition

Figure 3.22: Multilabel confusion matrix, example: distribution of class
samples (c1): TP - true positive, FP - false positive (type I error), FN -
false negative (type II error), TN - true negative.

Furthermore, the confusion matrix can be plotted in normalized representation, where

Chapter 3. Theory 26

3.4. Metrics

the True Positive Rate (TPR) can directly be extracted as the score of TP of the corresponding
class. This normalization is helpful in case of imbalance of class samples to better visualize
rates of misclassifications. Considering a binary classification, TPR (sensitivity or recall)
measures the number of positively identified data samples which are also actually labelled
as being part of the positive class compared to the amount of TP and False Negative (FN)
samples (the samples which are labelled as being part of the positive class but which are
actually falsely identified as being negative (type II error)). On the other hand, False Dis-
covery Rate (FDR) determines the number of falsely identified class samples (type I error).
Applying FDR is especially helpful if comparison between multiple classes is undertaken.
FDR controlled procedures give more weight to the rate of False Positive (FP) compared to
other ones (e.g. false positive rate). Hereby, FDR compares the rate of FP against FP +TP ,
where a higher sensitivity in changes of FP samples is given (change in type I errors).

TPR = TP
TP + FN

(3.16)

FDR = FP
FP + TP

(3.17)

Multilabel confusion matrix directly shows if a classifier is in the position to well dis-
tinguish between the defined semantic classes, where the classification performance of the
model can be interpreted quantitatively. In normalized form, true positive scores close to
the value of 1.0, which are aligned along the main diagonal of the confusion matrix, shows
good performance of the model. This implicitly contains small rates of misclassifications
among the remaining row and column values.

Chapter 3. Theory 27

4 LiDAR Semantic Segmentation
Demands of semantic segmentation introduced new level of complexity to the classification
task. Whereas object detection primarily focused to predict type of category as well as
position and size of objects, semantic segmentation is targeting fine grained elementwise
classification. Pixel-to-pixel relationship associates pointwise information with a class label.
In the following chapter, basic principles of the development of fully convolutional networks
are introduced. Further milestone architectures mark the most recent developments for both
image (UNet) and point cloud domain (PointNet).

4.1 Fully Convolutional Networks - FCN
The principle architecture of a fully convolutional network (FCN) has firstly been intro-
duced in Fully Convolutional Networks for Semantic Segmentation [35]. Very common is
the encoder-decoder architecture which allows an end-to-end dense learning, see Figure (4.1)
for illustration [35].

Figure 4.1: Fully Convolutional Network [35]. Illustration demonstrates com-
mon encoder-decoder architecture. Pixelwise classification has been made
possible through conversion of fully connected layers into convolutional lay-
ers only.

CNNs from the object detection task usually end in fully connected layers. This allows
classifying the input in some category class with bounding-box regression. In semantic
segmentation, pixelwise classification is demanded, which cannot be achieved with the use
of fully connected layers, where any spatial information for pixelwise classification would be
lost. Therefore, transforming fully connected layers to convolutional layers enables a CNN
to output a heatmap, for illustration see Figure (4.2). By adding further layers this can be
used for up sampling with deconvolution operations to form class-specific activation maps,
which enables the network to an efficient way of pixelwise end-to-end dense learning [35].

In FCNs the encoder and decoder are transferring the input to convolved feature maps.
The activations (neurons) are connected throughout layers. That is because, convolution
leaves a path of locally connected neurons from one layer to another, which means that a
neuron from a specific layer li in the network, is connected to several neurons from previous
layers. These path-like connections are called the effective receptive field of a neuron. In
very low layers of the network (being closer to the input layer), convolution extracts very
fine-grained local information in feature map with a small receptive field. On the other hand,

Chapter 4. LiDAR Semantic Segmentation 28

4.2. U-Net

Figure 4.2: Transforming fully connected layers to convolutional layers. Con-
volutionalization enables the network to output a heatmap to efficiently per-
form end-to-end dense learning [35].

going down the effective receptive field (higher layers), there is less local information but the
meaning of those features increased, where convolution responses to a much more compact
representation (subsampled version) of the original input.

Applying convolution and pooling operations to activation maps, leads to new feature
maps. Those maps containing only the most robust activations in higher layers, also see
(3.2.2) [39].

In contrast to convolution, the reverse operation is defined as deconvolution or trans-
posed convolution. Similarly to convolution, there is also a feature hierarchy provided of
different shape level details. Features from lower layers are mainly used to describe the
general shape of objects, whereas in higher layers more class-specific and fine-details are
encoded in the activation map. Herein, class-specific information is directly integrated in
the decoder, which is useful for fine grained semantic segmentation [39].

4.2 U-Net
U-Net has been introduced in [41] as FCN for the purpose of semantic segmentation, tar-
geting the image domain. This approach focuses to the more efficient use of smaller sample
sets rather than to work with larger quantities, comprised within a simple and intuitive model
architecture, illustrated in Figure (4.3). The network is structured as encoder-decoder path,
which is commonly seen in semantic segmentation. Herein, the encoder captures high-level
spatial context to collect fine-grained and detailed information of the input data. On the
contrary, the decoder network provides an expanding, up-sampling network path to enable
precise localization [41]. The main idea behind U-Net is to extend the encoder network by
the use of a decoder structure. Herein, pooling layers are replaced by up sampling operators
(unpooling), which enables the expanding network path to restore the original resolution
from corresponding encoder level. The concept of transposed convolution is essential for
the task of semantic segmentation. Object detection networks are primarily used to find out
the specific type of an object, which is present in the input data. Hereby, it mostly cares
about "what" to find inside the data, whereas on the other hand, semantic segmentation is
also interested about "where" to find samples from specific classes (means the precise loca-
tion). Therefore, the use of transposed convolution helps to restore the location information
after encoding step. Further, rather than to rely on pure up sampling layers in the decoder
network, common convolution is applied to stacked feature maps, wherein learnable weights

Chapter 4. LiDAR Semantic Segmentation 29

4.3. Point Cloud Segmentation

getting introduced in the deconvolution path. Encoding uses fine-grained high-level features.
Decoding suffers from restoring such information in the up-sampling step. Therefore, iden-
tity skip-connections are used to enable information forwarding into lower layers. For more
details about skip-connections see (3.2.5) and reference to deep residual learning [37].

Figure 4.3: U-Net architecture, uses encoder-decoder path with identity skip-
connections to perform semantic segmentation on arbitrarily sized input images [41].

4.3 Point Cloud Segmentation
In comparison to an image where the information is well defined in a pixel-grid with spatial
neighbourhood, a point cloud is understood as an unordered set of points where no spatial
structure is given in the first place. Most often, image processing in deep learning is under-
taken by convolutional neural networks, where the spatial context is directly included to the
processing, due to the nature of convolutional operation. By processing unordered sets, such
as point clouds, applying convolutional operations directly is not possible due to the loss of
a well-defined structure such as a pixel-grid. Whereas convolution is very fast and efficient
in image processing, different ways of computing point clouds need to be investigated for
both performance and efficiency. During the past decade there have mainly been three pro-
cedures to analyse point cloud data fast and efficient: voxelization, unprocessed point cloud
and projections.

Therefore, an initial research in the field of semantic segmentation driven by deep learn-
ing is to highlight landmark papers showing the most recent developments and state-of-the-
art performance.

Voxelization: Rendering point clouds voluminous in a 3d voxel grid is adding spatial
structure. Quantization is generally coming with a loss of information, where basically the
voxel size is determining the level of compression and the granularity of the result. Process-
ing a point cloud in a voxel grid representation is computational expensive and results in a
runtime complexity of O(n3) [26], which is generally seen to lack in performance and is not
feasible for many applications.

Chapter 4. LiDAR Semantic Segmentation 30

4.3. Point Cloud Segmentation

SEGCloud [26] is a state-of-the-art paper which addresses voxelization and 3d convolu-
tion. It is showing voxelization in a dense gridwith an additional post processing to refine the
resulting segmentation in combination with a 3d fully convolutional neural network, Figure
(4.4).

Figure 4.4: Illustrating network architecture of SEGCloud approach, voxel-based
point cloud processing by using 3d convolutional operations [26].

The system accuracy basically depends on grid resolution. Excluding further post pro-
cessing, the segmentation result would be just as good as the grid resolution. Hereby, every
point in a voxel gets assigned the same label. Furthermore, a dense grid is not optimized for
the natural sparsity of point clouds, where most of the voxels remain empty (containing no
information).

Therefore, performance heavily suffers caused by runtime complexity ofO(n3) [26] (for
static grid structure), where only small voxel resolutions are feasible (643)[26], even with
the use of modern high performance computing power.

[34]motivates usingmore efficient ways of treating voxel grids in a different octree based
data structure and overcomes the sparsity problem of point clouds by introducing dynamic
grids Figure (4.5). Here, uniform regions getting combined to a single cell. The octree
only scales with the depth of the tree and therefore reduces runtime complexity to O(n2) in
both time and space. By using the introduced octree with a dynamic grid structure, much
higher resolutions are feasible (5123 on modern GPUs). Furthermore, the authors claim that
the conversion from a dense grid to a dynamic one could turn out in a new state-of-the-art
approach for point cloud segmentation.

dy
na

m
ic

 g
ri

d

st
at

ic
 g

ri
d

Figure 4.5: Illustrating static grid from traditional voxel-based approaches com-
pared to dynamic grid with a smaller number of empty voxels [26].

Unprocessed: Processing raw point cloud data has the advantage of no computational cost
of pre-processing, where the raw information (e.g. (x, y, z, i)) is used for further processing.

Chapter 4. LiDAR Semantic Segmentation 31

4.3. Point Cloud Segmentation

Point clouds can be understood as unordered sets, which are not structured into a predefined
pixel grid (a more profound study on sets and how order invariance is achieved can be found
in [33, 28]). Therefore, common convolution cannot be applied to point clouds in the first
place, caused by the loss of spatial structure. Nonetheless, by doing so, two major issues
need to be considered:

Problem 1: variance to ordering
Problem 2: desertion of shape

Figure (4.6) is illustrating a convolutional kernel (i) and three point clouds (ii) − (iv)
with varying order of indices as well as different shapes. As it is obvious, (iii) and (iv) sahre
the same geographical coordinates but varying in order, whereas (ii) and (iii) are quite the
opposite, ordering is equal but shape is different.

1
2

3
4

1 2

3
4

2 3

1
4

i ii iii iv

fa fb

fc fd

fa fb

fc

fd

fa fb

fc

fd

fa fb

fc

fd

Figure 4.6: Applying convolution to unprocessed point clouds [16].

Basically, a point cloud with n elements contains n! permutations for possible input
variations. When a function f is applied, every permutation need to give the same result.
Equation (4.1) is outlining the stated issues by applying f to point clouds (ii) − (iv), where
the equation fails to fulfil both requirements.

f (iii) ≠ f (iv)
f (ii) = f (iii)

(4.1)

Processing point clouds in a raw and unprocessed representation, a different approach
needs to be investigated, to fulfill Equation (4.2). Therefore, a short overview of the most
recent developments will be shown in the following.

f (iii) = f (iv)
f (ii) ≠ f (iii)

(4.2)

PointNet [33] is a seminal paper for analysing unprocessed point cloud data, see the
network architecture in Figure (4.7). The crude three-dimensional point cloud information
is used to perform a feature transformation with independently arranged multilayer percep-
tron’s, where every point gets transformed separately. Forming of a global feature-vector
is taking place, where the symmetric max-pooling operation is getting applied, to solve the
problem of permutation invariance. Besides the standard network for object detection and
bounding box regression a second sub-network is used to combine global- and local-features
which is improving the segmentation process.

Chapter 4. LiDAR Semantic Segmentation 32

4.3. Point Cloud Segmentation

Figure 4.7: PointNet [33]

Nonetheless, PointNet is not considering any spatial relationships to neighboured points,
as every point gets transformed individually. This outlines a major drawback for segmenta-
tion which lacks in considering local context.

PointNet++ [25] is the follow-up paper to [25], where local neighbourhood is getting
considered in a hierarchical manner, to improve accuracy of segmentation. As it is illus-
trated in Figure (4.8), the approach follows an encoder-decoder architecture including iden-
tity skip-connections for the segmentation branch. This is commonly seen among convolu-
tional neural networks.

A down sampling stream of grouped layers is used to perform segmentation hierarchi-
cally, which adaptively combines features from multiple scales. At first, a neighbourhood
search is started over the entire point cloud on previously identified centroid points. Fol-
lowed by a pointnet-layer where multiple of PointNet architectures getting used for indepen-
dent feature transformation for every centroid with the corresponding neighbourhood.

Figure 4.8: PointNet++ [25]

[25] shows an approach to capture local context and therewith addresses an issue of [33]
but also lies back in performance due to computationally expensive neighbourhood queries.

PointCNN [16], marks a remarkable paper in processing point clouds, where it is tried
to directly apply convolution to an unordered set of points.

As it is illustrated in Figure (4.9), the basic principle of PointCNN is to apply a learned
transformation to (ii) − (iv) to perform convolution correctly with arbitrary kernel grids.
Equation (4.3) shows how to handle the stated issues in Equation (4.1), with the loss of a
well-defined spatial grid.

fii = k ∗ (� × [fa, fb, fc , fd]T) (4.3)

Chapter 4. LiDAR Semantic Segmentation 33

4.3. Point Cloud Segmentation

ft+1 = k * (χ + f t
([a-d])) ft+2 = k * (χ + f t+1

([a-d]))

χ - Convχ - Conv

Figure 4.9: Applying convolution to point clouds with the use of a learned transformation
(�) [16]. Further, coordinates are encoded in features, layer wise, similar to [33, 25].

Herein, the learned � transformation would find the correct permutation for the convo-
lution operation and is lifting the coordinates into features, which is similar to [33], where
instead of applying a symmetric function the � transformation is used to solve for Equation
(4.2).

As stated from the authors, the fundamental understanding of the � transformation is far
from perfect and still an interesting research topic for further improvements [16]. Nonethe-
less, the approach has already been in the position to be on-par or even outperform state-of-
the-art architectures, such as PointNet [33].
Projections: Projecting 3d point cloud data to the image domain avoids computational over-
head and renders the data with spatial structure. Various attempts have been arisen during
the past years in object detection as well as semantic segmentation, where projections gained
attention by performing on-par or even better than state-of-the-art [15, 27, 19, 18, 10, 3].

Point cloudsmainly benefit from accurate distance information, which is not available, or
only partly, in the 2d image domain. However, projecting 3d point clouds to 2d images does
not need to come along with the loss of certain information. Similar to an image, with RGB
channels, all the information from the 3d space can be stored in multiple of feature channels,
where coordinates or other qualities from point clouds or sensor (x,y,z, intensity, radius, ...)
can be converted in to a top-view or spherical-projection. Conversion of three-dimensional
coordinates to flat 2d images is tried to illustrate in Figure (4.10).

θ

φ

(x,y,z)

(φ,θ)

φ

θ

Figure 4.10: Spherical projection of point cloud data into a 2d range-image rep-
resentation [18]. Points from xyz cartesian-coordinates are transformed to polar-
coordinates, angles � and � are used as information for pixel index.

Projecting a point cloud to image space has the advantage of using established 2d algo-
rithms as backbone network, which have been developed and optimized throughout the past
years. This allows fast inference speeds with the advantage of processing features from 3d

Chapter 4. LiDAR Semantic Segmentation 34

4.4. LU-Net

world in 2d space. In [15, 27, 19, 18, 10, 3] spherical projection has been used to render
the data compact and to overcome problems of sparsity. Discretisation into a 2d grid comes
with a loss of information, where basically the resolution must be chosen in such a way that
most points don’t occupy same pixel positions for multiple of times. On the other hand, due
to physical aspects of the used sensor, not every pixel position gets occupied by a measure-
ment ping. This phenomenon is called dropout-noise [27, 19], which is mainly caused by:
no reflection is registered by the sensor, angular resolution of laser beams (no consecutive
pixel positions can be covered) or influence of incidence angle. Improving performance on
these circumstances, a binary mask is applied to the feature-maps to simply exclude dead
points.

4.4 LU-Net
Within the scope of this thesis, U-Net [41] is chosen to be the backbone network to perform
semantic segmentation with. U-Net has been seen to be very fast and efficient in processing
camera images for the task of segmentation. A FCN is used to produce a segmentation
mask in the same size as the input image. [3] focused to process LiDAR point clouds in a
spherical projection under the use of U-Net architecture, see Figure (4.11). The approach
achieves state-of-the-art performance and forms the base of this thesis. Further, [3] included
cartesian coordinates (x, y, z), intensity as well as radius information as feature maps.

Moreover, it is shown that previous work considered 5-channel or even only 2-channel
range-images and could achieve results which are comparable to the state-of-the-art. The
number of used feature-channels seems to be empirical for the target application and needs
to be conducted by a larger set of experiments to find the best combination of channels [3].
Therefore, to not set focus to network engineering, an already optimized architecture has
been used to perform semantic segmentation on point cloud data.

Figure 4.11: Architecture of proposed LU-Net as backbone architecture containing
processed segmentation mask [3, 41].

For properly handling converted 3d data in range-image representation, a high-level 3d

Chapter 4. LiDAR Semantic Segmentation 35

4.4. LU-Net

feature extraction module has been introduced in [9, 3] (as mechanism of local point em-
bedder to prevent segmentation of point cloud from overfitting), which allows to efficiently
transform input data to N-dimensional feature vectors with the help of multi-layer percep-
tron’s and maxpool operations. The overall pipeline is illustrated in Figure (4.12).

(a) Overall pipeline LU-Net, with feature extraction module.

(b) Detailed view of 3D feature extraction module, out-
puts N-dimensional feature vector for each LiDAR point.

Figure 4.12: Overall pipeline of LU-Net (a) [3], 3D feature extraction module (b) [3].

Introducing the high-level 3D feature extraction module enables the network to directly
learn meaningful features for the task of semantic segmentation. Spatial context is intro-
duced to point cloud processing with an 8-connected neighbourhood. Herein, neighbour-
hood pixels are extracted from the range-image directly, which avoids computationally ex-
pensive pre-processing of point clouds, (e.g. k-Nearest-Neighbour (kNN) search in 3d space,
etc.). The set of N neighbouring pointsN(pi) of point pi are firstly processed by a MLP fol-
lowed by operations of ReLU and batch normalization. The resulting set of transformed
features is further processed by a max pooling operation where the resulting point feature
is concatenated with pi and ri (reflectivity value of point i). Then, the resulting vector is
processed by another MLP. This outputs an N-dimensional feature vector for every point pi
from range-image. The introduced module performs feature transforming on a multichan-
nel range-image which can be used as a matrix in shape H x W x N for further learning
procedures [3].

Addressing issues of drop-out noise, as it has been mentioned in [27, 19], a binary map
mask is applied to the image to exclude specific dead points from the training procedure,
which is excluding points don’t correspond to any return of a LiDAR pulse (marked as black
stains in range-image).

Chapter 4. LiDAR Semantic Segmentation 36

5 Methodology
The following chapter describes the proposed model for semantic lane segmentation in de-
tail. The application of autonomous driving demands high reliability on perception of sur-
roundings to appropriately perform motion control. The data from multimodal sensor-suite
need to be accessed and validated in real-time to correctly react within the fast-paced envi-
ronment. Autonomous driving mainly benefits from processing multimodal data, where a
single sensor cannot fulfil the capabilities to provide a full scene understanding.

Modelling the architecture of a sensor-fusion application, Figure (5.1) demonstrates
units for sensing, perception and decision making, which is illustrated within an abstract
flow chart.

CNN: LU-Net

analysis DL

semantic
segmenetation

masks

drivable area
found

localisation
/ object-
detection

range
image

convertion

fuse data in path
planning and motion
controll application

tracking

LiDAR

Camera

Radar

Sensing

GPS/IMU

Autonomous Perception

Decision

Figure 5.1: Abstract model architecture, in multisensor application with additional
tracking and control unit for identified objects.

The choice of an appropriate dataset is discussed with respect to the underlying appli-
cation of semantic lane segmentation. The generation of semantic classes from provided
annotations is discussed and illustrated in detail. Here, semantic classes are derived from
nuScenes dataset [5] to describe road-semantics in detail. The provided point cloud informa-
tion is further projected to a 2d range-image. Hereby, state-of-the-art convolutional neural
network U-Net is chosen as backbone architecture for processing converted point cloud data
fast and efficient. A qualitative and quantitative evaluation of the model performance out-
lines the usability of suggested metrics for validating semantic lane segmentation.

Chapter 5. Methodology 37

5.1. Datasets

5.1 Datasets
Throughout the last decade, several datasets have been published which had a large effect
in further pushing developments of autonomous driving applications and substantially af-
fected the work on object detection, tracking and segmentation tasks towards a full scene
understanding.

Developments to further push detection couldmake huge steps forward in reducing error-
rate and even exceeded human performance within the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) [42, 48, 43, 37, 23].

Besides solving object detection, new and ambitious challenges arose during the past
years with the demand of larger and much more detailed datasets. Several recently published
datasets have been investigated, such as [6, 5, 8, 2, 12], which are in the position to provide
detailed and annotation-rich samples to support semantic and scene understanding.

The well-known KITTI [47] dataset is the pioneering project in providing multimodal
sets of data combined a rich set of annotated frames (15k) from stereo-camera (frontal view
as well as dense LiDAR point clouds). Investigating recently published datasets, where
much larger quantities of category classes as well as annotations are available, it seems
feasible to effectively train deep neural networks. The extended dataset, which also provides
information such as rich annotated map-layers can be used to address semantic segmentation
or instance segmentation.

The visual recognition challenges for object detection, semantic segmentation and oth-
ers, early started in focusing image domain. These day’s, there is a transformation, where
data from a full sensor-suite is needed (camera, LiDAR, radar), for achieving full scene un-
derstanding. Therefore, data fusion gains from multimodal data to attain full environmental
perception.

The following summary in Table (5.1) contains a selection of the most recent bench-
marks, which have been published throughout the past years and gained a lot of popularity
among the development of autonomous driving applications.

sce- ann. 3d night/ map- clas-
dataset year nes cam. lidar radar frames boxes rain layers ses location
KITTI 2012 22 15k 15k 0 15k 200k N/N 0 8 Karlsruhe

Waymo Open 2019 2k 1M 200k 0 200k 12M Y/Y 0 4 3xUSA
CityScapes 2016 - 25k 0 0 25k 0 N/N 0 30 50 cities
BDD100k 2017 100k 100M 0 0 100k 0 Y/Y 0 10 NY, SF

ApolloScape 2018 - 144k 0 0 144k 70k Y/N 0 8-35 China
semanticKITTI 2019 22 0 43k 0 43k 0 N/N 0 19 Karlsruhe

Argoverse 2019 113 490k 44k 0 22k 993 Y/Y 2 15 MIA, PT
NuScenes 2019 1k 1.4M 400k 1.3M 40k 1.4M Y/Y 11 23 MA, SG

LyftLevel 5 2019 366 323k 46k 0 46k 1.3M N/N 7 9 Palo Alto
Y - Yes, N - No, NY - New York, SF - San Francisco, MIA - Miami, PT - Pittsburgh, MA - Boston, SG - Singapore

Table 5.1: Overview, selection of commonly used datasets for development of AD related
applications [5]. 1st section: sets without labels for ground-layers; 2nd section: sets without
lidar frames, but rich diverse views from various scene setups; 3rd section: split from KITTI
Odometry dataset; 4tℎ section: rich annotated map-layers, rich in diversity.

Chapter 5. Methodology 38

5.1. Datasets

The 1st section defines datasets which don’t contain annotations for ground classes.
Although the Waymo Open Dataset holds 12M annotated bounding boxes and up to 200k
LiDAR frames, unfortunately, there are only labels of 4 object classes provided without con-
sidering ground-layers.

The 2nd section contains datasets which are not necessarily helpful for this approach,
because there are no LiDAR frames available. Nonetheless, these sets provide very diverse
views from different scenarios and cities as well as several environmental conditions. It also
gives a better overview of the historical developments of datasets from the autonomous driv-
ing domain.

The 3rd section, shows semanticKITTI, the annotated version of KITTIOdometry dataset,
for semantic segmentation purposes. The KITTI split provides rich annotations for LiDAR
frames as well as ground layers but does not contain samples for night cycles or different
weather conditions.

The 4th section mainly shows sets containing rich annotated map-layers, which are es-
pecially useful for semantic segmentation of ground layers. The nuScenes dataset contains
an overall number of 400k LiDAR point clouds with 40k annotated keyframes and various
weather conditions as well as day and night cycle.

Such extended and highly detailed sets of data are only available partly yet. In the past
years new datasets arose such as: Argoverse [6], NuScenes [5] and Lyft Level 5 [8], to con-
tribute: complex and large-scale multimodal setups, covering 360°surround views from vi-
sion and range sensors, diverse scenery as well as richly annotated map-layer information,
for rapidly pushing development of autonomous driving [5].
KITTI: [47], referenced in numerous papers, is a pioneering dataset in providing a multi-

modal setup of camera frontal view and dense point cloud LiDAR annotations (15k
frames each). In autonomous driving it is one of the most widely used datasets. Also,
other datasets such as Cityscapes [31] gained attention by providing fine segmenta-
tion labels from various city scenes.

Due to the rapidly increasing performance of visual recognition algorithms as well as evolv-
ing pace of autonomous driving applications, the need for extended and much more complex
benchmarks arises.
Argoverse: [6] counts a 113 scenes setup with hd semantic maps recorded in locations of

Miami and Pittsburgh. The sensor setup includes 2 roof-mounted 360°, 32 beams
LiDAR sensors providing on average a ≈107,000 points point cloud at a frequency
of 10 Hz. The ground-layer herein contains information such as: lane centrelines as
well as traffic direction, ground-height and annotations for intersections. Polygons
for road- or individual lane-layers are not available directly. Moreover, the width
of a lane is determined through an average lane-width (separately defined for each
scenery). Unlike to nuScenes (provides a binary rasterized 2d map in top-down view
without graph structure for lane segments), Argoverse includes a 3d vector-map with
ground-height and lane centreline connectivity [6].

NuScenes: [5] provides a broad set of annotations counting a 1,000 scenes setup from two
very diverse cities, Boston and Singapore, which also includes several weather con-
ditions as well as day and night cycle, similarly to [6]. The dataset contains 40k
annotated keyframes and provides 11 semantic classes as a vectorized map in a 2d
top-view. Annotations of vehicles are seen at distances of up to 80m from ego-
vehicle [5], where the roof-mounted 360°and 32 beams LiDAR sensor produces a

Chapter 5. Methodology 39

5.1. Datasets

point cloud with ≈35,000 points on average and 20 Hz spinning frequency. [5] con-
tributes a large-scale multimodal dataset with a full sensor-suite across all vision
and range sensorics (camera, radar and LiDAR) among rich semantic maps, which
do not provide other datasets except [6] and [8]. Compared to [6], nuScenes map lay-
ers don’t provide level of ground-height nor contain a graph like structure showing
lane connectivity which could prevent additional work of pre-processing for map au-
tomation. Therefore, detailed sets of map polygons (e.g. individual lane fragments)
are provided which implicitly contain width of road- and lane-segments as well as
start- and end-tokens to extract flow of traffic-direction [5].

Lyft Level 5: [8] very much relies on nuScenes [5], by using the same tree-like data format
associated with tokens. The set has been recorded in Palo Alto and provides seman-
tic maps with plenty of road segments. Considering the sensor-suite, the recordings
have been undertaken within a full 360°FOV for both sensors camera as well as
LiDAR (7 wide-field-of-view cameras and up to 3 LiDAR sensors in parallel (40-
and 64-beam range sensors)). The average point cloud counts ≈216,000 points per
frames. Furthermore, a map expansion contains up to 7 semantic classes with de-
tailed map layers. Different to [5], where areas of intersections covered by single
polygons, [8] provides lane segments along intersections. This allows decision mak-
ing for multi-path planning. Further, annotations are more flexible where intersec-
tions don’t get assigned a single label.

Considering features of the investigated datasets and the scope of this work, nuScenes dataset
[5] has been chosen, which offers themost diverse set of samples and annotations from plenty
of various scenes. The extended dataset with additional semantic map records should give an
appropriate benchmark for evaluating semantic lane segmentation approach. Besides labels
for ground layers, [5] is also providing bounding boxes for object classes, which could be
important for a detailed evaluation for investigating semantic contextual information. How-
ever, it is still to find out if nuScenes can provide appropriate labels for ground-truth data.
This is because, hd-maps are only available in a 2d top-view with the loss of z-level infor-
mation. Furthermore, to extract information such as traffic-direction, each polygonal lane
fragment must be processed individually, which could potential lead to collisions in flow of
traffic directions among areas representing complex infrastructure.

5.1.1 NuScenes
Data-Format
The format of the nuScenes dataset comes with a relational database, this is different from
traditional datasets, but makes accessing of data fairly simple within a unified structure [5].
All aspects of the dataset including annotations and metadata, calibration, maps, scenes,
sensor-types, etc., are accessible via token-identifier and ordered in a tree-like structure.
The annotations are sampled at a frequency of 2Hz and between keyframes interpolation
is used in combination with odometry data from the test-vehicle to provide accurate labels.
An annotated sample is herein described as a keyframe [5]. Accessing sample data from a
specific sensor, the sequence of token identifiermust be determined (scene-token→ sample-
token→ sample-data-token). The structure of the relational database is illustrated in Figure
(5.2), showing an example of accessing sample-data from a scene record.

Further, detailed hd-maps with semantic classes are provided with accurate localization
and ego-poses. Every scene snippet contains log data which refers to ego-positions for the

Chapter 5. Methodology 40

5.1. Datasets

SCENE

TOKEN

LOG_TOKEN

FIRST_SAMPLE_TOKEN

NAME. . .

SAMPLE SAMPLE, SWEEP, ..., ..., ..., SAMPLE, SWEEP, ...
TOKEN

TIMESTAMP

PREV

NEXT

SCENE_TOKEN

DATA

RADAR_FRONT

LIDAR_TOP.

SAMPLE_DATA

TOKEN

SAMPLE_TOKEN

EGO_POSE_TOKEN

CALIBRATED_SENSOR_TOKEN

TIMESTAMP

FILENAME

MAP

CATEGORY
TOKEN

MASK. . .

LOG

TOKEN

VEHICLE: n015
MAP_TOKEN

LOCATION. . .

annotated sample (keyframe) at 2Hz rate

Figure 5.2: NuScenes data format of the provided relational database. Illustrating sequence
of token-identifiers to access sample-data.

test-vehicle in global coordinates. The map data is herein provided as flat 2d binary mask
from a top-view perspective without any z-level information.

NuScenes, as amultimodal dataset has been recordedwithmultiple of sensors at different
rates of frequency. Achieving good sensor synchronization, data alignment between LiDAR
and camera must be organized carefully. Considering that data annotations are provided
at a frequency of 2Hz, it is important that sensor frames share the same keyframe position,
because of localisation and positioning of bounding boxes throughout streams from different
sensors. Figure (5.3) demonstrates update order of LiDAR and camera frames, where it can
be seen that only a few LiDAR frames share a position with a camera image.

0 5 10 15 20

0 3 6 9 12

keyframe

t

Figure 5.3: NuSccenes data format, sensor synchronisation between Li-
DAR (20Hz) and camera (12Hz) [5].

Furthermore, the dataset provides a broad spectrum of records from different scene lo-
cations as well as contains several environmental conditions. The data has been recorded in
two cities, Boston and Singapore with a percentual proportion of: Boston 55%, Singapore
45% (One-North 21.5%, Queenstown 13.5% and Holland Village 10%). Different weather
conditions such as rain (19.4%) as well as night-cycles (11.6%) are contained in the data,
where this benchmark differs from other datasets which don’t provide such information [5].

On average, there are annotations for 7 pedestrians and 20 vehicles per keyframe. Due to
the very fine-grained classes, of 23 object classes and 11 semantic classes from map layers,

Chapter 5. Methodology 41

5.1. Datasets

there is a large class imbalance existing of 1:10k. This is caused, because of some very rare
classes providing only a few representative instances throughout the entire set of annotations,
where other classes dominate with thousands of label examples. For training, this could be
resolved by merging small collections to larger parent classes [5].

Coordinate-Systems
Localisation is a major concern in autonomous driving, where the map location of a vehicle
needs be known as precise as possible. Several approaches performed localisation by using
Global Positioning System (GPS) or Inertial Measurement Unit (IMU) data, which is prone
to failure, as theGPSmap outages and changes over time. Therefore, in the nuScenes dataset,
a local localization method based on collected data from LiDAR sensor has been used to
create a detailed hd-map, by applying point cloud registration in an offline step. Then, during
recording, odometry information from the vehicle as well as LiDAR point clouds are used
as measurement input for a particle filter algorithm (Monte Carlo Localization), to update
position estimations. Herein, it is stated that a low error value of ≤ 10cm could be achieved,
due to robustness of Monte Carlo Method [5]. The estimated position, as output from the
localization algorithm, is provided as ego-pose, which contains the position and orientation
of the ego-vehicle in global coordinates.

Position: (x,y,z) in [m] z-level always 0
Orientation: (w, x, y, z) given as quaternion

0/0

Figure 5.4: Illustrating global to local coordinate transformation with
nuScenes map example. ego-positions are marked with black dots within
the zoom-view.

For each keyframe an ego-pose record is provided with information of position and ori-
entation of the ego-vehicle. The extrinsic and intrinsic parameters of calibrated sensors are
given with respect to the ego-vehicle body frame in local coordinates [5].

Position: (x,y,z) in [m]
Orientation: (w, x, y, z) given as quaternion

For projecting point cloud data from sensor-frame to the semantic map layer, a global
to local coordinate transformation is needed by using the extrinsic calibration parameters
of the LiDAR scanner as well as ego-pose record. Rendering the sensor data is done in a
top-down view perspective by default. As the sensor frame is not perfectly aligned in an
up-right position, this might cause inaccurate representation of sensor data with respect to

Chapter 5. Methodology 42

5.1. Datasets

the semantic map. Therefore, the map is rendered to the ego-frame of the vehicle (3d vehicle
pose) by using "flat vehicle coordinates" (flat vehicle poses), which is aligned in parallel to
the global z plane. Projecting between 3d vehicle poses and flat vehicle poses, the parameters
of the calibrated sensor and ego-pose records are used [5].

Development Kit
The nuScenes datasets differs from other benchmarks by providing a relational database
which can be used in combination of a python implemented development kit to effectively
work with the data structure. Further, the development kit provides plenty of tools to render
and process sensor data as well as polygonal information from semantic map layers. Herein,
to easily access and visualize data, jupyter notebooks are provided which can be used in any
web-browser.

Geometric information from semantic map layers is mainly provided as polygons, from
a 2d top-view perspective. Processing complex polygons in combination with LiDAR point
clouds can be computational expensive and requires a lot of computing power. Herein, any
geometric shape from the nuScenes dataset is provided as shapely object. Shapely is another
Python library, providing plenty of tools to process geometric shapes. Unfortunately, most of
these functions are provided as CPU implementation and not optimized for speed to process
large quantities of data. Therefore, pre-processing of nuScenes map layers turned out to be
very time consuming and infeasible. This motivated the implementation of GPU accelerated
versions of polygon queries, which is outlined in (5.1.2) and (6.1.2).

Further, the original version of the dataset (v1.0) contained several blacklisted scenes (46
in total) with inaccurate mapping of ego-pose on map layers. Here, a slight offset was no-
ticed between LiDAR scans and the actual map layers. This has mainly been fixed in update
(v.1.1), where only 3 scenes remained blacklisted (scene-499, scene-515, scene-517). Con-
sidering the generation of ground-truth data, this offset led to false labelling and imperfect
annotations, which could not be used for training.

Generating Ground-Truth
In the scope of this approach, the nuScenes dataset has been used for ground-truth generation
which provides a multimodal sensor setup comprising 40,000 annotated LiDAR keyframes
from 1,000 scene samples. Keyframes have been annotated by a frequency of 2Hz. Here,
keyframes only have been used for the generation of ground-truth. This treatment of us-
ing annotated keyframes only mainly benefits from processing data of a larger spectrum of
different scene samples, which adds more variation to the split for training and validation
data.

The distribution of provided ground-truth samples is illustrated in Figure (5.5), which
shows occurrence of single LiDAR pings from defined semantic classes (radial distance and
angular component wrt position of ego-vehicle). As a mid-range sensor, the Velodyne HDL-
32E provides a radial detection range of up to 100m. Most of the sample points from chosen
ground classes are gathered in the near-field of the detection range, farther distances contain
much less data, as it had been investigated in (3.3) by considering traditional LiDAR devices
with static scan pattern.

Figure (5.6) conceptualizes an abstract model for segmenting ground-layers with se-
mantic meaning, where classes for ego-lane, opposite-lane and walkway have mainly been
defined.

The generation of an appropriate ground-truth for semantic map classes from nuScenes
dataset, comes with several difficulties. Associating single LiDAR points with an actual

Chapter 5. Methodology 43

5.1. Datasets

0°

45°

90°

135°

180°

225°

270°

315°

20
40

60
80

100

walkway

0°

45°

90°

135°

180°

225°

270°

315°

20
40

60
80

100

ego

0°

45°

90°

135°

180°

225°

270°

315°

20
40

60
80

100

opposite

Figure 5.5: Polar log scaled density map form annotated LiDAR pings from semantic
classes. Labelled ground-truth data is mapped by using radial distance and angular com-
ponent wrt position of ego-vehicle. Classes: walkway, ego-lane, opposite-lane.

category label is difficult, hence semantic map layers are only available in a 2d top-view
perspective, without providing any z-level information. Looking from a top-view perspec-
tive, this makes it harder to identify which actual point from LiDAR scanner belongs to a
specific ground layer, as LiDAR pings from other classes, (e.g. vehicles, lamp-posts, over-
hanging parts of trees, etc.) can partly overlap parts from ground layers.

ego-lane
opposite-lane
walkway

Figure 5.6: Conceptualizing semantic lane segmentation con-
taining traffic-direction. Three defined semantic classes (walk-
way, ego-lane and opposite-lane) are highlighted by polygonal
patches.

Ground is assumed as a flat and homogenous surface, which is usually seen for urban
scenarios. Difficulties might arise by segmenting points from ground samples which belong
to non-flat surfaces (such as road parts which are elevated, inclined or ramped wrt position
of ego-vehicle).

There are several algorithms to pre-process point cloud information (such as filter tech-
niques for ground-removal). Improving the generation of ground-truth by pre-processing
point cloud data under the use of filter algorithms introduces threshold operations. Here, it
is not guaranteed to process accurate labels throughout all scene samples which might lead
to loss of information, if samples are processed inaccurately. Furthermore, threshold oper-
ations (by using classical algorithms) generally need to be adjusted manually, if conditions
from surrounding environment would change too much. This introduce new complexity to

Chapter 5. Methodology 44

5.1. Datasets

ground-truth generation by appropriately handling threshold values. Moreover, using filter
algorithms to perform ground-removal, would require a detailed comparison to other meth-
ods if pre-processing clearly improves the generation of ground-truth data.

Therefore, a detailed pre-processing of point cloud data has been undertaken to mini-
mize the influence of failure. Keeping pre-processing simple and efficient, the point cloud
information has been tried to be reduced to a minimum set of remaining measurement values
which are most likely to belong to ground layers. Herein, points belonging to bounding-box
geometry and other points (which obviously cannot be part of ground layers, due to certain
z-level height) are excluded and declared as part of background class. Considering the cali-
brated sensor-setup of the ego-vehicle, the position of the LiDAR sensor has been identified
as approximately 1.8m above ground. Herein, looking from a top-view perspective, points
which belong to a polygonal patch have been selected, where the position in z-level is used
to separate ground from non-ground class labels.

In Figure (5.7), semantic map layers are illustrated with additional information of ego-
poses (black dots) and bounding-boxes (rectangular shapes). The nuScenes map-expansion
provides several semantic map layers (drivable-area, road-block, road-segment, lane, walk-
way, stopline, etc.).

Figure 5.7: NuScenes, semantic map layers containing ego-poses and bounding-boxes,
(scene-0061) [5]. Several objects and markers are visualized: polygons of road-segments
(green), intersections (blue), walkway (red); sequence of ego-poses (black dots); bound-
ing boxes from object classes: vehicles (orange), pedestrians (blue) and movable objects
(black); identifiers for traffic direction marked in yellow (from_edge_line_token) and blue
(to_edge_line_token) [5].

For the purpose of semantic lane segmentation, polygons from road-segments (green)
and intersection areas (blue) need to be associated with corresponding traffic direction for

Chapter 5. Methodology 45

5.1. Datasets

enhancing lane-semantics. This is implicitly encoded in map polygons by the use of a token-
based system: from-edge-line → to-edge-line.

Correctly identifying traffic direction throughout all scene samples comes with difficul-
ties. Considering situations containing complex areas of intersections and traffic-rules adds
additional complexity, where latter is not explicitly encoded in nuScenes data. This is tried
to outline in Figure (5.8), where areas of intersections are demonstrated with varying degree
of complexity.

Without the use of global map information, the interpreting of the current scenario
mostly depends on position of ego-vehicle. Hereby, it might be difficult to correctly iden-
tify direction of travel for road-segments throughout all scenarios. Introducing meaning of
traffic-rules also adds further complexity. The training of neural networks might rely on
falsely generated ground samples by not considering road regulations. Therefore, the model
might learn an incorrect representation of the environment, which introduces a major differ-
ence in plain free-space estimation and semantic lane segmentation.

Providing multiple of alternative routes based on one current ego-position introduces
multi-labelling and path planning. Hereby, the set of semantic classes would need to be
extended to appropriately handle sub paths for intersection scenarios. Extending the set
of semantic classes by classes for alternative routes, is very complex. Unfortunately, the
nuScenes dataset is not providing such kind of semantic map annotations, where multipath
labelling should not be a matter of this thesis and is left for future work.

Therefore, simplifying this more complex problem, a road part can either be classified
as an area where the ego-vehicle is allowed to drive (without giving respect to traffic-rules)
or where a road-segment shows opposite direction of travel, the ego-vehicle is not allowed
to use. Furthermore, to avoid label conflicts intersections will be labelled as ego-lane too.

undefined

Figure 5.8: Scenarios for road intersections with varying level of complexity. Interpretation
of direction of travel mostly depends on ego-position and traffic-rules, where latter is not
explicitly encoded in nuScenes data.

Focusing areas of intersections, the nuScenes dataset provides plenty of road-segments,
marked with the intersection flag, which is illustrated as map polygons (blue) in Figure (5.7).
Edge line tokens from road-polygons implicitly encode traffic direction: from_edge_line
(yellow dot)→ to_edge_line (blue dot).

To further derive the orientation of a road polygon, the coordinate system of every scene
sample is aligned in such a way, that the forward position of the ego-vehicle points in di-
rection of positive x-axis. Therefore, the identity vector u⃗ = (1, 0), is analog to the driving
direction of the ego-vehicle. With the help of the law of cosines Equation (5.1), vectors u⃗
and v⃗ = to_edge_line − from_edge_line are used to find the actual orientation of a road-
segment wrt ego-pose:

� = arccos u⃗ ⋅ v⃗
‖u⃗‖ ∗ ‖v⃗‖

. (5.1)

Chapter 5. Methodology 46

5.1. Datasets

5.1.2 Parallel Computing Complexity
Computing ground-truth data for LiDAR point clouds can be computationally expensive.
The average size of a point cloud in the nuScenes dataset is denoted as 35,000 points. Further,
polygons frommap layers are complex and contain up to several thousand of vertex positions.

Processing point in polygon queries, the crossing number algorithm [46] is used, to de-
termine whether a point lies inside or outside of a polygonal shape, demonstrated in Figure
(5.9). The algorithm simply defines a line for each point p of the point cloud, with the coor-
dinates (px, py) and (p+∞, py). Next, all intersections with edge lines are counted indirectly
with the help of a switch variable, which is alternating between values 0 and 1. Herein, 0
represents even number of intersections, which means a point does not intersect with polyg-
onal area, respectively 1 results in an odd number of intersections, where the point lies inside
the polygon [46].

outeven
inodd

Figure 5.9: Showing base concept of crossing number algorithm [46]. The algorithm de-
termines intersection of point and polygonal area. Point lies within polygon (counting odd
number of intersections); point lies outside the polygon (counting even number of intersec-
tions).

A theory of parallel computing complexity describes the benefit of parallel execution
measured as speedup compared to runtime of sequential execution.

There are several quantities to measure the speedup of a program if serial and parallel
execution is compared. A very common metric describes latency, measured in execution
time or instructions per cycle. Herein, latency describes the execution time t1 of a procedure
with respect to timing t2 of the parallelized program. On the other hand, instructions per
cycle defines the throughput of the architecture. Here, no parallelization work has been
undertaken and speedup benefits from system architecture.

Slatency =
t1
t2

(5.2)
In [56], Amdahl’s law defines a theory of achieving large scale computing, where the

overall runtime of a task benefits from parallel execution. Further, a task cannot be paral-
lelized in full, where certain parts of an algorithm are executed just once, (e.g. for initializa-
tion purposes). Therefore, execution time t is given as part of serial and parallel runtime,
t = tS + tP . Herein, the speedup is mainly limited by part of sequential runtime.

Chapter 5. Methodology 47

5.1. Datasets

Slatency(s) =
1

1 − p + p
s

(5.3)

Amdahl defined the theoretical speedup S as latency of the overall execution time. p is
the fraction of the task which benefits from parallel execution. s is given as speedup with
respect to the part which benefits from parallelization. Herein, it is stated that runtime of a
parallelized task cannot be better than the serial part 1 − p. Therefore, parallel computing,
with plenty of processing units, mostly benefits from highly parallelizable tasks [56].

Super-linear speedup mainly describes cache effect, which is seen in modern parallel
computing, where the speedup of S is larger thanN , number of processors. This additional
speedup is caused by different memory architectures and cache-level sizes, which reduces
time of memory access significantly [54].

Expressed in big O notation, computing complexity of the crossing number algorithm
for N number of points and M number of vertices from polygon, results in (NM). An
illustration of runtime complexity is provided in Figure (5.10) with respect to size ofN ,M
and parallel factor 1

k
, where k is the number of available processing units. It is assumed that

the number of verticesM is much smaller than N , where complexity can be simplified to
(N). Further, parallelization can improve complexity by a factor of 1

k
, (1

k
N). Runtime

complexity would be reduced to (1), if the number of processors is equal toN , if the task
is fully parallelizable.

O(1) if k = N

O(1/k N)

O(N)O(N2)
if M = N

Figure 5.10: Big O Notation, runtime complexity related to par-
allel computing. N size of point cloud, M number of vertices
from polygon, k number of available processing units.

Chapter 5. Methodology 48

5.2. Range-Image Generation

5.2 Range-Image Generation
Point clouds commonly suffer a sparse representation and are understood as unordered set,
which makes it harder to analyse if compared to an image with a well-defined grid structure.
Pre-processing point clouds includes several advantages where the data can be transformed
into a dense representation by converting it to the image domain. Further, transforming the
data to a lower dimensional space makes processing much faster with the advantage of using
already optimized neural network architectures which have been developed for the image do-
main. Conversion of data often comes with a loss of information, where the transformation
suffers from discretization errors. However, approaches which use a conversion of three-
dimensional data to a lower-dimensional representation, such as range-images or top-view
perspectives, gained a lot of attention throughout the past years. Similar to an rgb-image
with three colour channels it is possible to convert several information from the 3d space
into a stack of multiple of feature channels, in such a way that no actual three-dimensional
information is lost. The stack of feature channels is illustrated in Figure (5.11) where the
coordinates (x,y,z), the intensity value of the range measurement (i), the calculated radius
(r), the yaw-angle (�) of the 360° surround view and the calculated labels from ground-truth
generation are encoded (x,y,z,i,r,�,l).

c

W

H

x y z i r

Figure 5.11: Stack of feature-channels for range-image repre-
sentation. Generated from 3d point cloud.

Coordinates: (x,y,z) cartesian
Intensity: (i) magnitude of reflected pulse
Radius: (r) radial distance
Yaw-Angle: (�) 360° range
Class-Label: (l) 0,1,2,3, ...

The average point cloud size in the nuScenes dataset counts about 35, 000 points. There-
fore, an adequate resolution of the underlying range-image needs to be chosen to avoid pixels
which are occupied by several 3d points for multiple of times. Due to the Velodyne HDL-
32E scanner, which provides 32 scanlines, the resolution of the range-image is determined
by a size of (1024x32) pixels. The size of the image allows an absolute amount of 32, 768
pixel positions, which covers most of the points from the average point cloud size and still
renders the data in a dense representation.

To calculate a spherical projection from 3d cartesian coordinates (x, y, z) a transforma-
tion to spherical coordinates (r, �, �) needs to be achieved, as it is illustrated in Figure (5.12).
Herein, the transformation is provided in such a way that the range-image is covered by an-
gles from (0°,… , 360°). The beginning and end position of the range-image, in a sense of
360° angular range, is basically determined by the position of the spherical cut. This deci-
sion mostly depends on the target application or the objective of the user and is tried to set
to a point where it is less disruptive (here 0°).

Chapter 5. Methodology 49

5.3. Training

θ

φ

(x,y,z)

0°

90°

180°

270°

360°

sincos

tan sin

φ

Figure 5.12: Transformation of 3d cartesian coordinates (x, y, z) to spherical co-
ordinates (r, �, �). r - radial distance from ego-vehicle position, � - inclination, �
- azimut.

The radial distance is determined by the L2-Norm ‖(x, y, z)‖2, Equation (5.4), the eu-
clidean distance between origin and position in 3d. Further, the angles in spherical coor-
dinates � (inclination) and � (azimuth) are calculated by trigonometric functions Equation
(5.6) and Equation (5.7).

r =
√

x2 + y2 + z2 (5.4)

ℎ =
√

x2 + y2 (5.5)

� = arcsin y
ℎ

(5.6)

� = arccos z
r

(5.7)

The Velodyne HDL-32E scanner with 360° range provides horizontally and vertical an-
gular resolutions of:

Horizontal: 0.08° − 0.33° 360° range
Vertical: 1.33° 41.33° range

Further, to associate the converted spherical coordinates with an actual pixel position
from the 2d range-image, a discretization of the angular coefficients to width and height of
the pixel grid need to be provided. Herein, the discrete pixel positions (u, v) are calculated
with respect to the horizontally and vertical field of view as well as image size: u = �

Δ� ,
v = �

Δ� .

5.3 Training
Training of the nuScenes dataset comprises a 1,000 scenes setup with sequences of 20s. Due
to the fact of ongoing detection and tracking challenges, ground-truth data for the test-split
is currently not provided, where a smaller number of 850 scene samples remains for training
and validation. Therefore, total number of scene samples have been divided in train/val split
by a ratio of 4:1, with a resulting set of:

Chapter 5. Methodology 50

5.4. Semantic Lane Segmentation

Training: 700 scenes
Validation: 150 scenes.

Within the scope of this thesis, [3] has been used to provide a convolutional neural net-
work which has already been proven to perform well for the task of semantic segmentation.
Herein, the entire point cloud is transformed into a range-image representation with fea-
ture channels (x,y,z,i,r,�,l). � defines the sensor’s yaw-angle 0°,… , 360°, to better handle
segmentation of 360° surround views. This additional information is supplied to avoid any
perspective ambiguities between front- and back-view, as it is explained in (6.2).The image
resolution is set to (1024x32) pixels. Hereby, the image height is related to 32 scanlines
from used laser scanner. The baseline architecture originates from U-Net [41], which is an
encoder-decoder network and uses identity-skip connection to feed deconvolutional network
with additional fine-grained information from feature encoding. Herein, it might be inter-
esting to find out if segmenting the perspective projection of a point cloud, rendered to a
dense representation, could still benefit from the use of an optimized architecture, which has
recently been used in image processing.

Addressing issues affecting class imbalance, focal loss function Equation (5.8) (for more
explanations about focal loss, see (3.1.4)) has been used in combination with Adam opti-
mization with momentum (3.1.5).

�t =

{

� if y = 1
1 − � otherwise

FL(pt) = −�t(1 − pt) log pt

(5.8)

Hereby, classes counting only a few samples are getting up-weighted during process of
gradient optimization, whereas categories with a much bigger sample size will be down-
weighted, to less affect the detection of actually interesting category classes. From [24] the
focusing parameter is set to default value of 2. Adam optimization is used with the rec-
ommended default parameters for learning-rate (� = 0.001) and decay rates (�1 = 0.9, �2 =
0.999), which are widely referenced in literature [32].

5.4 Semantic Lane Segmentation
The characterisation of the performance of a sensor model is a hard challenge and depends
on many factors as it has been explained in (3.3). Describing model performance in general,
it is tried to quantitatively evaluate class wise detection scores, which is summarized as box-
plot and violin-plot. Further, multilabel confusion matrix is used where multiple of metrics
can directly be derived from (e.g. true positive rate (TPR) and false discovery rate (FDR)).

The number of class samples of provided ground-truth (ego-lane, opposite-lane, walk-
way) is unbalanced by a factor of 4, considering the even larger size of background samples,
there is an imbalance of (1:7), compared to ground classes:

Background: 75 mio.
Ego-Lane: 39 mio.
Opposite-Lane: 10 mio.
Walkway: 10 mio.

Chapter 5. Methodology 51

5.4. Semantic Lane Segmentation

Herein, a metric which addresses class imbalance is introduced: class wise intersection
over union, which is one of the most widely referenced metrics in literature to measure
performance of semantic segmentation:

IoUc =
TPc

TPc + FPc + FNc
. (5.9)

Further, mean intersection over union (mIoU) is formed by calculating the average over
all IoUc values, per class:

mIoU = 1
|C|

∑

c
IoUc . (5.10)

Class imbalance is a general problem, which addresses both the evaluation of model
performance and training of a network. Herein, the loss function should be in the position
to minimize error and to maximize the used performance measure. By not covering class
imbalance, a network might converge to a solution which is suboptimal and not in the posi-
tion to appropriately predict any category classes, (e.g. ego-lane, opposite-lane, walkway).
In the scope of this approach, focal loss has been used to address the issue of class imbal-
ance, see (3.1.4). Herein, it is tried to apply weight to the set of classes. Hard samples (from
classes with only a few examples) are getting up-weighted for having a more direct influence
on the optimization of the network parameters, whereas easy samples (from classes with a
lot of examples) getting down-weighted, to have less influence to process of training. This
treatment of up- and down-weighting is mainly motivated by the fact, that the number of
actual interesting samples from category classes is much less compared to background sam-
ples. Therefore, by not handling class imbalance, a network might supply a perfect classifier
for background information but cannot positively identify any category sample.

By the use of box-plot visualizations, important information of the underlying data can
be rendered in compact form. Where basically five statistical values are considered to give
an overview of distribution properties of the data (minimum value, maximum value, median
(0.5 quartile), 0.25 quartile, 0.75 quartile), for more detailed explanation see (3.4). Fur-
thermore, box-plot representation is not in the position to show modality of a distribution.
Herein, box-and-whisker visualization is extended by the use of a probability density func-
tion, which is based on the sample wise IoU scores, where the modality (unimodal, bimodal,
multimodal) of the distribution can directly be derived visually. By evaluating the classifica-
tion performance of a semantic segmentation model, the modality of a specific distribution
shows the ability of a classifier to distinguish between different category classes. Good per-
formance should be achieved by unimodal or smooth bimodal distribution with a clear and
single maximum.

Rendering results from classification in a multilabel confusion matrix directly offers
class wise detection scores of defined semantic classes. Several metrics to describe perfor-
mance of the provided model can directly be calculated from row and column wise opera-
tions, which has been explained more in detail in (3.4). Scores for TP, close to the value
of 1.0, show that the classifier is in the position to well distinguish between the defined se-
mantic classes, where occurrence of false negative (type II error) and false positive samples
(type I error) is much lower compared to TP.

Chapter 5. Methodology 52

5.5. Model Evaluation

5.5 Model Evaluation
The characterisation of semantic lane segmentation model is very challenging and demands
detailed investigations. Qualitative evaluation firstly highlights general performance by sub-
jectively describing prediction results through the help of visual feedback. The influence of
several environmental conditions is considered as well as different traffic scenarios from ur-
ban scenery, to show if the proposed model is in the position to appropriately distinguish
between defined semantic classes.

Further, to investigate detection results of the proposed LiDAR application within a
quantitative evaluation, the model performance can basically be described by the probability
of four decisions:

Detection probability Pd is described by rate of true positives, where the predicted
condition meets the actual true positive condition (TP).
False alarm probability Pfa is expressed as type I error, where the predicted positive
condition fails to meet true positive condition interpreted as rate of false positives
(FP).
Probability of miss Pm is defined as the complementary probability of Pd , defined as
Pm = 1−Pd , which is also called type II error and describes when the prediction fails
to correctly identify actual true class value as false negatives (FN).
The probability of the remaining set of samples (1 − Pfa) which is labelled to not
belong to the positive class and which is correctly predicted to be part of the negative
class (TN).

The application of autonomous driving requires meaningful evaluation metrics. Provid-
ing appropriate performance indicators, true positive rate TPR as well as false discovery rate
FDR is considered wrt radial distance as well as number of available LiDAR pings per class
sample.

TPR = TP
TP + FN

(5.11)

FDR = FP
FP + TP

(5.12)

Further, distribution of local errors is investigated, to determine if the network prevents
to falsely identify larger patches of entire road-segments, measured as local metric of TPRl
and FDRl respectively.

Chapter 5. Methodology 53

6 Experiments and Results

6.1 NuScenes Dataloading
6.1.1 Implementation Details
The nuScenes dataset provides a relational database to effectively access and process sample
data. The preloading of the database is supported by the nuScenes development kit. Herein,
scene samples and map locations are encoded in a hierarchical manner, which can easily
be accessed by the use of json-file format. Further, nuScenes provides several versions of
the dataset. Herein, for the purpose of testing, nuScenes mini comprises a smaller selection
of scenes from the much larger train and validation split of the entire dataset. By working
with scene samples from the train and validation split, it is important to notice the stack
of blacklisted scenes, in version (v1.0), which suffer from inaccurate mapping of ego-pose
locations and therefore, causes generation of imperfect and slanted ground-truth samples.
This has been improved as far as map-update (v1.1) provides new and rectified scene samples
for all the blacklisted scenes, but three (scene-499, scene-515, scene-517).

Generating labels for semantic ground classes has been seen to be complicated, due to
the loss of appropriate z-level information, where map-data is rendered in a pure 2d flat rep-
resentation from a top-view perspective. An extended map layer with additional information
for level of ground height (as it is provided in [6]), should give appropriate improvement in
generating annotation samples for semantic ground classes.

To limit the possibility to falsely annotate point samples, a pre-processing has been un-
dertaken. Therefore, to speedup label generation, all parts of a point cloud, which obviously
cannot belong to ground, are excluded and declared as background information. This in-
cluded exclusion of point samples from object classes, which are encapsulated in bounding
box geometry. Further, it is assumed that ground is defined as a flat and homogenous sur-
face. Therefore, point data larger than a certain height in z-level is excluded and declared as
part of background class.

Providing computation of traffic-direction is conceptualized in Figure (6.1) by the use
of polygonal edge line tokens.

ego

from

to

Figure 6.1: Conceptualization for computing traffic direction. (from →
to) edge-line-tokens used to derive polygonal orientation wrt ego-pose.

The following computation of traffic direction for road-segments is achieved by ap-
plying the law of cosines to vectors u⃗ (driving direction of ego-vehicle) and v⃗ (orienta-
tion of road-segment). Herein, vector v⃗ is treated as position vector, as it is illustrated in
Figure (6.2). The corresponding angle � indirectly determines the category label for the

Chapter 6. Experiments and Results 54

6.1. NuScenes Dataloading

road-segment. Determining direction of travel within straight road scenarios, angular bins
of 45°,… , 0°, 360°,… , 315° and 135°,… , 225° are used, which should be sufficiently to
describe ego- and opposite-lane direction. Due to areas of intersections, ranges between
45°,… , 135° and 225°,… , 315° need to be occupied twice.

0°

90°

180°

270°

uα

v

Figure 6.2: Determining traffic direction from vectors u⃗, v⃗. Ori-
entation of road-segment falls into predefined angular bins.

The generation of ground-truth for an entire point cloud is computationally expensive.
Hereby, non-road related LiDAR pings need to be separated from semantic map layers.
Therefore, a point in polygon query decides whether a measurement point intersects with
some polygonal map area. Geometrical shapes from nuScenes map layers are complex and
contain up to multiple of thousands of vertices, where a single scene sample provides up
to several hundreds of map polygons. Reducing computational overhead to a minimum, a
thoughtful selection of map polygons must be found.

Applying the point in polygon search to an entire point cloud, where the point cloud con-
tainsmanymore points compared to polygon vertices, turned out to be infeasible if processed
on CPU. To overcome drawbacks relied on CPU procedures, a GPU accelerated workflow
was provided, with a speedup of more than 99%. Details of Crossing Number Algorithm
and experimental results from parallelized execution are described in (6.1.2) and (6.1.3).

6.1.2 Parallel Computing Complexity
Executing point in polygon query has been implemented by the use of crossing number
algorithm [46]. An example in pseudocode is given in Algorithm (6), which demonstrates
the search problem.
Algorithm 6: Crossing Number Algorithm, pseudocode example.
Required: Polygon: P
Point of interest: p
switch-variable c: 0
number of vertices: n
for i = 0,… , n-1; j = n-1, 0,… , n-2 do

if p intersects with edge line from P thenc = not c
end

end
return if c = 1, point p is within polygon P , otherwise c = 0.

Chapter 6. Experiments and Results 55

6.1. NuScenes Dataloading

The average point cloud size in the nuScenes dataset is denoted as 35,000. Considering
40k annotated keyframes with complex polygons from semantic map layers turned out to be
time consuming and infeasible to process in serial CPU mode.

Therefore, the implementation of aGPU accelerated version ofAlgorithm (6)was needed,
to reduce the effort of execution time to an acceptable minimum. The implementation has
been provided by the use of numba library (v.0.45.1), which defines a just-in-time compiler
and allows parallel executing numpy objects for multiple of CPU or GPU processor units.

The numba library provides tools for copying variables and data structures (such as ar-
rays) to GPU memory to enable fast memory access. Further, numba decorators (jit) are
provided with interfaces to implement function signature and compiler instructions to con-
vert python code to get executed on GPU.

6.1.3 Results and Evaluation
Figure (6.3) shows the results from label generation for semantic ground layers. The dataset
provides a reasonable number of road-segments which are marked with the intersection flag.
An intersection is a single polygonal patch and is not further subdivided into smaller parts for
individual lane polygons. Hereby, it cannot be decided to apply either ego-lane or opposite-
lane label without causing annotation errors. To resolve the situation in case of label conflict,
intersection polygons are treated as ego-lane samples.

Figure 6.3: Defined semantic map layers from nuscenes dataset (scene-0061) [5].
Category labels are defined as polygons ego-lane (green), polygons opposite-lane
(blue) and walkway (red).

Chapter 6. Experiments and Results 56

6.1. NuScenes Dataloading

Ground is assumed as flat and homogenous surface, which is seen very often in urban
scenarios. To provide appropriate labels from map layers it is difficult to handle non-flat,
inclined and ramped parts of a road, where most ground pings don’t necessarily lie within a
surface parallel to xy-layer. The shape of an inclined road part is illustrated in Figure (6.4)
(b). Assuming a flat surface of ground layers, label quality suffers from incorrect label gen-
eration where farther measurement pings from inclined road segments will be excluded due
to increased z-level height, illustrated as red marks in Figure (6.4) (a). Furthermore, Figure
(6.5) suffers from false labelling where several road-blocks have been falsely identified as
class walkway (red points).

(a) Semantic classes, point cloud viewer. (b) Side-view perspective, zx-plane.

Figure 6.4: Showing semantic classes from generated ground truth. Additional side-view
perspective is provided in zx-plane perspective, which is showing the silhouette of a non-flat
ground surface (scene-0061).

(a) Point cloud view. (b) Camera image, front camera [5].

Figure 6.5: NuScenes scene sample: scene-0103.

In general, ground could be identified appropriately and pre-processing led to generation
of correct labels. Examples are illustrated in Figure (6.6).

Chapter 6. Experiments and Results 57

6.1. NuScenes Dataloading

(a) Point cloud view. (b) Point cloud view.

Figure 6.6: NuScenes scene samples: scene-0061.

Parallel Computing Complexity
The computation of ground-truth data from the nuScenes dataset has beenmeasured on both,
CPU and GPU execution. Road geometry of semantic map classes is encoded in complex
polygons, consisting out of multiple of thousands of vertices. Therefore, ground-truth gen-
eration has been seen very time consuming, on average 505.37 seconds for a single point
cloud, computed on CPU. Considering a set 40k keyframes, from the nuScenes dataset,
with an average of 10 complex polygons per scene sample, this turned out to be infeasible,
where an accelerated implementation of the point in polygon query was needed. The re-
sults of CPU and GPU execution is demonstrated in Table (6.1). Compared to the execution
on CPU with, 505.37 seconds per scene sample, the GPU implementation could achieve a
speedup of about 700, which reduced the overall runtime to a fraction of CPU execution.

time [s]
CPU 505.37
GPU 0.72
Numba impl.; v.0.45.1

Table 6.1: Processing ground truth data with GPU
accelerated polygon query, implemented in numba
python. GPU: GeForce RTX 2070

Chapter 6. Experiments and Results 58

6.2. Range Image Generation

6.2 Range Image Generation
6.2.1 Implementation Details
Similar to an rgb-image with three colour channels, the processed range-image contains
several feature-channels (x,y,z,i,r,�,l). Avoiding loss of information by 3d→ 2d conversion
an arbitrary number of features could be stacked on top of each other which are used as input
for a convolutional neural network to improve training.

The Velodyne HDL-32E laser scanner provides 32 channels of scanlines with a verti-
cal offset of 1.33°. Each scanline is mapped linearly to indices from 0,… , 31. Processing
spherical projection of the point cloud to discrete pixel positions, the horizontal and vertical
angular range of the scanner (FOVH , FOVV) is used to determine discretization steps Δ�
and Δ�.

Δ� =
FOVH

imagewidtℎ
(6.1)

Δ� =
FOVV

imageℎeigℎt
(6.2)

The angular projection of the range-image is chosen in such a way to map angles from
(0°,… , 360°). The spherical cut can be set to an arbitrary position from 0,… , 360. Here,
0° has been chosen, where this marks a position which is less disruptive wrt the underlying
application. Commonly, a mapping from ±180° is used to provide 360° spherical projec-
tions. The 0° mark is then right in front of the vehicle, respectively the±180° mark lies right
behind the vehicle.

The stack of feature-channels is extended by the use of yaw-angle � of the spherical
projection. Working with 360° surround views could possibly lead to problems such as
perspective disorientation, which could have negative influence to training of a convolutional
neural network. As it is demonstrated in Figure (6.7), objects from different perspectives will
look similar in front- as well as rear-view of the LiDAR scan. As this approach focuses to
provide semantic lane segmentation, loss of orientation might possibly lead to segmentation
errors. Therefore, the yaw-angle (�) is included to the stack of feature channels, where every
position of the 360° range map is encoded with a unique angular component for horizontal
field of view.

ego_vehicle

opposite direction

same direction
as ego

Figure 6.7: Stress problem of perspective disorientation due to 360° surround view. Objects
looking similar in front- and rear-view. Resolved by adding yaw-angle (�) as additional
feature channel to range-image.

Chapter 6. Experiments and Results 59

6.2. Range Image Generation

6.2.2 Results and Evaluation
After pre-processing the point cloud from sparse representation, data is now rendered to
dense structure with spatial relationships indicating neighboured pixels. In Figure (6.8), the
range-image is illustrated with the corresponding stack of provided feature-maps. Rendering
the point cloud to a dense representation, it was expected to achieve a closed map without
any gaps between pixels as every ping of the LiDAR sensor belongs to one unique pixel
position. However, as it can be seen in Figure (6.8), the image contains plenty of black
stains (noise-like), which actually don’t belong to any LiDAR ping. This phenomenon is
called drop-out noise, see Figure (6.9), which is caused due to mechanical error of sensor
itself, environmental influences or if no signal reflection is registered. Further, drop-out
noise has a significant influence on error of training [27, 19]. This is because parts of drop-
out noise don’t contain any information and need to be excluded to not influencing training
of convolutional neural network. Excluding drop-out noise can be achieved with binary map
mask, where 0 simply means no information is existing, 1 otherwise.

x

y

z

i

r

φ

l

Figure 6.8: Processed range-image from 3d point cloud with feature channels (x,y,z,i,r,�,l)
at a resolution of (1024x32) pixels.

Figure 6.9: Binary map mask example for corresponding range image from Figure (6.8).
White areas indicate regions of drop-out noise, where no information is given from the scan
device.

Chapter 6. Experiments and Results 60

6.3. Training - Results

6.3 Training - Results
U-Net has already been proven to performwell by processing projected point clouds in range
image representation in [3]. The optimized network (U-Net) has been used without any
further modifications to provide semantic segmentation in image domain.

Training is performed with single point cloud, where no temporal information was added
by aggregating multiple LiDAR frames in time. Considering temporal aspects are important
to maintain a continuous flow. This is especially helpful in estimating lane semantics, which
could be demonstrated in [17]. As [3] did not included any temporal information, this will
be left as a matter for future work.

The complete set of samples comprises approximately 34,000 annotated point clouds.
Therefore, the train/val split contained 28,000/ 6,000 samples. The overall training proce-
dure counted 450,000 iterations with a batch size of 4. Further, training has been stopped
after 250,000 iterations (35 epochs), to prevent effect of overfitting from further increasing.
Here, the global validation loss started to increase again and training loss continued to de-
crease. The checkpoint at 35 epochs showed training/ validation loss to be converged to a
minimum of approximately 4%/ 14%, Figure (6.10). Further network engineering, to better
handle effects of overfitting, (e.g. including tuning of hyperparameters, regularization terms,
dropout-layers, etc.) has not been considered within the scope of this approach. Therefore,
this is left for future work to further improve network’s performance.

0

0.2

0.4

0.6

0.8

1

0 100k 200k 300k 400k

(a) IoU - walkway

0.55

0.65

0.75

0.85

0.95

0 100k 200k 300k 400k

(b) IoU - ego-lane

0

0.2

0.4

0.6

0.8

1

0 100k 200k 300k 400k

(c) IoU - opposite-lane

0

0.1

0.2

0.3

0 100k 200k 300k 400k

(d) global loss

Figure 6.10: Results of training procedure of LU-Net [3] performed on nuScenes data [5].
In orange, training loss and blue validation loss; class performance is measured as inter-
section over union (IoU): (a) walkway, (b) ego-lane and (c) opposite-lane; (d) global loss.

Chapter 6. Experiments and Results 61

6.4. Semantic Lane Segmentation Results

6.4 Semantic Lane Segmentation Results
A quantitative evaluation of the provided model for semantic lane segmentation is consid-
ered. The validation split contains 6,000 LiDAR samples including various locations and
environmental conditions.

The box-plot, which is based on scores of intersection over union (IoU, jaccard index)
shows distributions in five-number summary. Considering dispersion for classes walkway,
ego-lane and opposite-lane, it can be seen that the inter quartile range (IRQ) from ego-lane
samples is much more compact and less varying (deviation from median value (orange solid
line)) compared to classes walkway and opposite-lane. Further, range between minimum
and maximum value of ego-lane distribution is almost the half if compared to ranges of
classes walkway and opposite-lane, which shows that classification of ego-lane samples is
more reliable.

Investigating the degree of modality of the underlying distributions, classification per-
formance turned out to be unimodal with a negative skew (left skewed, as the mean values of
the distributions (green dashed lines) are less than the median (orange solid lines)), Figure
(6.11). It can be seen that the classification of ego-lane samples responds in clear unimodal
distribution, whereas samples from walkway and opposite-lane classes show a trend towards
smooth bimodal distribution. Hereby, the classifier is in the position to clearly distinguish be-
tween the defined semantic classes. Relative IoU score of ego-lane class is varyingmuch less
compared to classes of walkway and opposite-lane. That is because walkway and opposite-
lane class suffers much more under larger ranges of dispersion if compared to ego-lane.

background walkway ego-lane opposite-lane
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Io
U

sc
or

e

Figure 6.11: Classification performance of proposed LU-Net. Illustration shows
combination of box-plot and gaussian density function (blue), median (orange solid
line), mean (green dashed line).

IoU scores on the validation set result in a smooth-bimodal distribution for classes walk-
way and opposite-lane. This can be explained by the available number of sample data, where
the number of ego-lane samples was four times the size compared to number of walkway

Chapter 6. Experiments and Results 62

6.4. Semantic Lane Segmentation Results

and opposite-lane samples (1:4). Further, the process of ground truth generation shows sig-
nificant influence on the classification results of opposite-lane samples, which shows a very
large dispersion with a range between minimum and maximum value of almost 1.0.

The generation of ground truth data was challenging and difficult to automate for the
entire set of scene samples. Therefore, a perfect generation of ground-truth samples for the
defined semantic ground classes could not be guaranteed. This error was generally caused by
the provided set of polygonal semantic map layers, which were providing polygonal patches
for several road parts, such as road-segments and intersections. Herein, a road-segment rep-
resents lane information only (either ego-lane or opposite-lane direction) whereas intersec-
tions can represent road-segments with a combined set of different lane directions (ego-lane
direction and opposite-lane direction combined in one single polygonal patch). This led to
the problem to either assign ego-lane label or opposite-lane label to intersection polygons,
which inevitably reduces the number of ego-lane or opposite-lane samples. Focusing on
the segmentation of lane samples, in case of label conflict, the ego-lane label has been as-
signed to intersection polygons. However, a perfect ground-truth, where polygonal layers
are fully separated for each traffic direction, should result in much better detection scores for
opposite-lane class. Due to the large size of the nuScenes dataset, and the amount of time
for relabelling and retraining the segmentation network, this has been left for future work.

Further, rendering the prediction results in a multilabel confusion matrix directly offers
class wise detection scores of defined semantic classes. In general, TP scores close to the
value of 1.0 (main diagonal of confusion matrix, Figure (6.12)) show good classification of
the model, where the trained network can distinguish well between the defined classes, as it
has been explained in detail in (3.4) and (5.4).

ba
ck

gr
ou

nd

wa
lkw

ay eg
o

op
po

sit
e

True condition

background

walkway

ego

opposite

Pr
ed

ict
ed

 c
on

di
tio

n

0.95 0.18 0.037 0.047

0.023 0.79 0.01 0.0074

0.018 0.021 0.9 0.2

0.005 0.006 0.052 0.74

0.2

0.4

0.6

0.8

Figure 6.12: Validation results of proposed LU-Net approach visualized by normalized con-
fusion matrix.

Performance for classification of the proposed model for semantic lane segmentation
could achieve IoUc = 81.69% for ego-lane class. Samples which do not contain information
of the provided semantic classes have not been excluded from testing procedures and could

Chapter 6. Experiments and Results 63

6.4. Semantic Lane Segmentation Results

lead to slightly better segmentation results for classes walkway and opposite-lane. Figure
(6.13) shows the distribution of sample classification in TP, FP, FN and TN. Table (6.2)
summarizes the results in class wise measures of IoUc . Average IoU score remained at
mIoU = 70.63%.

ba
ck

gr
ou

nd

wa
lkw

ay eg
o

op
po

sit
e

True condition

background

walkway

ego

opposite

Pr
ed

ict
ed

 c
on

di
tio

n
7.1e+07 2e+06 1.4e+06 5.5e+05

1.7e+06 8.5e+06 3.9e+05 8.6e+04

1.3e+06 2.3e+05 3.4e+07 2.3e+06

3.7e+05 6.5e+04 2e+06 8.7e+06 1

2

3

4

5

6

7
1e7

Figure 6.13: Validation results of proposed LU-Net approach.

walkway ego opposite
LU-Net 67.77 81.69 62.43

Table 6.2: Classification results of the proposed
LU-Net model for semantic lane segmentation from
nuScenes dataset, class wise score (IoUc , %).

Describing model performance by global metric or in a class wise manner, still lacks in
level of detailed evaluation. No parameterized evaluations have been conducted nor model
performance under different environmental conditions are considered. Sample wise com-
parison of segmentation results could allow to introduce a threshold value. This could be
useful for real-world applications where a defined minimum level of quality is expected.

Therefore, a more detailed evaluation seems to be necessary to describe model perfor-
mance more in detail.

Chapter 6. Experiments and Results 64

6.5. Qualitative Evaluation

6.5 Qualitative Evaluation
A selection of random samples showed good performance of the segmentation algorithm to
well distinguish between the defined semantic ground classes. A detailed view of several
scene samples and semantic map layers is provided in Appendix A. Here, the classification
results of the introduced LU-Net approach have been projected to the camera front- and back-
view for visualization purposes, to better investigate for quality of segmentation. Further, a
top-view projection with additional map-layers directly points to false classifications of cer-
tain ground areas. The provided segmentation model appears to perform well under several
environmental conditions (day, night, rain) as well as street scenes with varying degree of
complexity, see Figure (6.14).

Figure 6.14: Projection of LiDAR point cloud in camera image.

day samples: Figure (A.1) - Figure (A.8)
rain samples: Figure (A.9) - Figure (A.12)
night samples: Figure (A.13) - Figure (A.16)

It can be seen that the appearance of geometrical features, e.g. curb stones or traffic-/
safety-islands, strongly supports the decision making process, where the segmentation feed-
back turned out to be almost perfect around such areas (see Figure (A.1), Figure (A.2), Figure
(A.3)). In general, the separation between road and walkway is seen to be very well in almost
all examples of the provided validation split, where confusion between classes of walkway
and actual road-samples is very little.

Remarkable is the correct identification of road patches of the opposite-lane class. Hereby,
even small parts of opposite-lane samples, of several meters in size, could successfully be
distinguished from ego-lane samples (ego-lane as well as intersection patches), see Figure
(6.15) and Figure (6.16). Figure (A.4) and Figure (A.15) with map-view.

(a) CAM_FRONT (b) CAM_BACK

Figure 6.15: Projection of LiDAR point cloud in camera image (scene-0103).

Further, it is assumed that intensity values originating from lane markings (e.g. stripes,
arrows etc.) sufficiently separate lane areas which containing different traffic directions in

Chapter 6. Experiments and Results 65

6.5. Qualitative Evaluation

(a) CAM_FRONT (b) CAM_BACK

Figure 6.16: Projection of LiDAR point cloud in camera image (scene-1070).

several combinations of lane arrangements (ego-lane and opposite-lane, ego-lane, parallel-
lane to ego and opposite-lane), see Figure (A.4), Figure (A.6) and Figure (A.13).

Intersection areas, in general, providemore contextual information to the network, where
improved segmentation performance could be investigated, even due to increased degree
of complexity within road scenario, see Figure (A.5) and Figure (A.10). In latter, in (a)
parts of ego-lane segments are limited by the appearing of dominant areas of sections of
walkways. Apart from traffic rules, which are not provided within the nuScenes dataset,
the algorithm would have correctly classified ego-lane as well as opposite-lane segment.
Further, Figure (A.15) shows ability of generalization of the network. Although, the ego-
vehicle is directly passing an intersection area, due to oncoming traffic the network could
identify the underlying road part as part of opposite-lane class.

The network could learn to also differentiate between fine grained details such as specific
types of road-markings. In Figure (A.5) (b) area of ego-lane has been separated from lane
markings very much in detail, whereas other types of lane markings and markings as arrows,
from front-view perspective in (a), are also correctly classified as segment of ego-lane.

However, Figure (6.17) (Figure (A.2) with map-view) represents an example of false
classification, where a larger area of the opposite-lane class has falsely been identified as
part of ego-lane.

(a) CAM_FRONT (b) CAM_BACK

Figure 6.17: Projection of LiDAR point cloud in camera image (scene-0269).

Here, the surroundings of the scenery are simple without containing much contextual in-
formation. Although, road segments are clearly separated by curb stones from other parts of
scene, the network could not manage to correctly identify segments from both classes. Fig-
ure (A.17) and Figure (A.18) show sample data from the same sequence in Figure (A.2). It is
seen that errors mostly occur in back-view perspective, whereas front-view remains stable,

Chapter 6. Experiments and Results 66

6.6. Quantitative Evaluation

also see Figure (A.8). The segmentation quality shows appropriate results of opposite-lane
segmentation during oncoming traffic and the existence of lane arrow markings.

In general, the provided segmentation approach showed several remarkable samples with
good and very good segmentation quality. The network mostly fails in separating lane parts
by refering semantic meaning to individual lane segments. It seems not to be fully clear for
all scenarios, where to draw the boundary between ego and opposite direction of traffic. To
further reduce confusion between lane classes, the definition of a separate class (for target-
ing intersection areas) is expected to increase performance of ego-lane and opposite-lane
detection.

Further, from qualitative evaluation, it could be seen that confusionwith semantic classes
seems to appear more often in back-view (−180°) rather than front-view (+180°), where
opposite-lane segments are often falsely identified as ego-lane sample. In Table (6.3), quan-
titative observation showed ego-lane segmentation to performworse in rear-view by severeal
percentages, whereas opposite-lane is slightly better in front-view perspective.

walkway ego opposite
front 66.92 83.87 61.95
rear 64.14 79.43 61.37

Table 6.3: Classification results of the proposed LU-Net model for seman-
tic lane segmentation from nuScenes dataset, class wise detection score
(IoUc , %) for front- and rear-view (72° Field of View (FOV)).

A separate training of the convolutional network could potentially improve segmentation
results of lane classes by separately training front- and back-view. Hereby, it is expected to
improve segmentation performance by dissolving effect of perspective disorientation, (6.2).

However, observing scene samples which could provide detailed contextual information,
(e.g. vehicles, pedestrians, etc.), identification of lane classes has mostly been seen correctly,
if compared to empty scenarios (samples containing very sparse point cloud information).
Here, it is assumed that the neural network gained from detailed local knowledge to better
identify actual class labels.

6.6 Quantitative Evaluation
6.6.1 Classwise Performance
Several aspects have been considered to investigate semantic lane segmentation in detail.
Figure (B.1) shows the general detection performance of the classifier. Samples of semantic
classes have mainly been recognized in the near-field of the sensor device (range < 30m).
Fairly good detection performance can be seen for class walkway. Those samples could be
separated well from lane space and are mostly false classified as background class, as it can
be seen in Figure (6.12).

Figure (B.1) shows the overall distribution of classified sample data separated as number
of true positive, false negative and false positive class samples. The sample space is scaled
logarithmically due to visualization purposes. In the following, a sample is defined as a
single LiDAR ping of a complete sensor frame. A sample frame respectively indicates a
single LiDAR frame (point cloud) from the scan device.

Chapter 6. Experiments and Results 67

6.6. Quantitative Evaluation

0 20 40 60 80

radial distance [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
ob

ab
ilit

y
sc

or
e

walkway
TPR
FDR

0 20 40 60 80

radial distance [m]

ego-lane

0 20 40 60 80

radial distance [m]

opposite-lane

Figure 6.18: TPR, FDR range measurements.

In general, Figure (B.1) shows samples identified as true positive gathered closer to the
near-field of the sensor range (< 30m) for all classes. False negative as well as false pos-
itive classifications cover cells from farther distances. Considering lane classes only, it is
interesting to notice that distribution of false positive and false negative samples counts a
relatively large amount of false classifications along the rear-view (180°−360° range) of the
scan view. In (6.2), the influence of perspective disorientation is emphasized which is as-
sumed to have substantial effect to classification performance of 360° surround views. This
is caused by a loss of orientation, where certain objects (e.g. vehicles, pedestrians, road
segments) looking almost identical from several perspectives. Therefore, the integration of
an additional feature channel as yaw-angle (�) has been considered to dissolve conflicts of
falsely assigning same class labels to multiple of orientations. Nonetheless, less accurate
detection performance is investigated in parts of rear-view, which could indicate no appro-
priate compensation of the effect of perspective disorientation within training of network.
Separating the point cloud in two clusters of front- and back-view segments might improve
segmentation.

6.6.2 Environmental Conditions
The influence of varying environmental conditions to the performance of segmentation has
been investigated. In Figure (6.19) (a) - (c), it is seen that environmental conditions don’t
necessarily show direct influence on the segmentation results in the first place. Hereby, the
true positive rate remains relatively stable if compared to day (a) and night (b) scenarios.
Light detection and ranging defines its own light source, by definition, as it is emphasized in
(3.3) and mostly suffers under the influence of direct sunlight, fog or rain. Considering the
physical principles of rangemeasurements by a LiDAR sensor, performance of segmentation
shows to be better during night cycles by several percentages (3% - 8%). Further, in (A)
Figure (A.9) - Figure (A.12) the performance of range measurements is demonstrated under
rainy conditions. The response of measurements is clearly influenced by reflective properties
of wet surfaces, where the point cloud information partly replies as coarse and sparse set of
points. However, quality of segmentation seems to not suffer in the same way, where LiDAR
pings still getting predicted correctly. Hereby, segmentation might depend on density of
measurement points in general, rather than on quality of individual measurement pings. The
overall probability of rain samples has been seen to be worse if compared to day and night
scenarios by up to 12%.

Chapter 6. Experiments and Results 68

6.6. Quantitative Evaluation

0 20 40 60 80 100

radial distance [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
ob

ab
ilit

y
sc

or
e

walkway
TPR
FDR

0 20 40 60 80 100

radial distance [m]

ego-lane

0 20 40 60 80 100

radial distance [m]

opposite-lane

(a) day sample frames

0 20 40 60 80 100

radial distance [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
ob

ab
ilit

y
sc

or
e

walkway
TPR
FDR

0 20 40 60 80 100

radial distance [m]

ego-lane

0 20 40 60 80 100

radial distance [m]

opposite-lane

(b) night sample frames

0 20 40 60 80 100

radial distance [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
ob

ab
ilit

y
sc

or
e

walkway
TPR
FDR

0 20 40 60 80 100

radial distance [m]

ego-lane

0 20 40 60 80 100

radial distance [m]

opposite-lane

(c) rain sample frames

Figure 6.19: TPR, FDR wrt sensor distance and the influence of environmental conditions;
(a) day, (b) night and (c) rain.

6.6.3 Performance by Number of Class Samples
The number of LiDAR pings has been investigated wrt performance of segmentation. In the
following, frames of validation set have been sorted by number of LiDAR pings per class
per sample frame. Hereby, ranges have been defined to categorize frames with high and

Chapter 6. Experiments and Results 69

6.6. Quantitative Evaluation

low amounts of representative class samples. Detection scores, true positive rate (TPR) and
false discovery rate (FDR), are used to quantitatively describe segmentation results.

In Figure (B.2) - Figure (B.4) the detection scores are visualized in box-plot representa-
tion with additional distribution of probability density in the shape of violin-plot.

Table (6.4) summarizes detection scores for groups of class samples. Hereby, rate of
true positive remains relatively high (> 80%) by larger numbers of LiDAR pings, as it can
be seen for all classes in Figure (B.2) - Figure (B.4) (a).

Class TPR # pings TPR # pings
Ego-Lane: >50% >4000 >90% >11000
Opposite-Lane: >50% >2000 >90% >5000
Walkway: >50% >2000 >80% >6000

Table 6.4: TPR by groups of class samples.

In contrast to TPR, false discovery rate shows similar behaviour with results in reversed
direction. In case of high amounts of representative class samples, FDR stays fairly low
(< 20%) and increases by decreasing number of sample data.

Without considering any specific target, due to physical principles of the scan device,
the number of overall measurement points on the target object is low for farther distances,
on the other hand most measurement pings are registered if the target is close to the sensor.
Segmentation in general could benefit by a sensor setup which is in the position to deliver
high amounts of measurement values independent from radial distance. The static grid pat-
tern cannot fulfil the demands from a dynamic environment, to dynamically change density
of measurement values for several regions of interest. From above investigations, the seg-
mentation result can be thought of to be much more reliable if there is a larger number of
measurement values on the target object.

6.6.4 Performance by Radial Distance
Predicted class samples from (6.6.3) had been grouped by number of occurrence and showed
to directly influence rate of true positive and falsely discovered samples. The scores showed
to be increasing, resp. decreasing, by increasing number of measurement values.

In the following, performance degradation is considered wrt radial distance. In Figure
(B.5) - Figure (B.7) classification scores are collected in bins of 5m in radial range which al-
lows to categorize samples with labels located in near- and far-field. Generally, the detection
probability in the near-field of the sensor was expected to be high and very good throughout
all sample frames.

Here, the segmentation performance in the near-field of sensor space (< 30m) results
in relatively small IQR, as it can be seen in Figure (B.5) (ego-lane) and Figure (B.7) (walk-
way). Segmentation performance for class opposite-lane, in Figure (B.6), mostly suffers
from large ranges of dispersion in measurement values, which is assumed to be caused from
class imbalance of the provided sample set (1:4). Hereby, the neural network most likely
could not derive descriptive and meaningful features from sample space to appropriately
identify opposite-lane samples.

In Figure (6.20) visualizes accuracy degradation in scatter plot representation. Scat-
tering (blue) represents detection scores for single LiDAR frames, whereas second y-axis
(orange line plot), shows the number of actual LiDAR pings, contained in one sample frame
(arranged in descending order), see Figure (B.8) - Figure (B.13) for details. Especially for

Chapter 6. Experiments and Results 70

6.6. Quantitative Evaluation

sensor near-field (< 30m), TPR remains fairly high, > 0.8, for most of the sample frames.
Further, segmentation performance for cells within close distance shows to be almost inde-
pendent from actual number of LiDAR pings. This behaviour could introduce a certain ping
threshold, when segmentation is always performing appropriately, if there is a minimum of
required measurement values on the target object.

Figure 6.20: TPR wrt sensor distance, Figure (B.8) for class ego-lane. Scattering (blue)
shows TPR per LiDAR frame, line plot (orange) indicates number of LiDAR pings, in de-
scending order.

As it has been introduced in (3.3), range measurement depends on several factors such
as: environmental conditions, radial distance, reflectivity properties of surface material and
angle of target orientation (dependent on position of scan device). Furthermore, segmen-
tation performance very much depends on the used scan-device. The scan pattern of the
HDL-32E is static and limited to a predefined resolution, which makes it more difficult to
detect certain objects along arbitrary distances (ROIs). Due to increasing distance, the res-
olution of point cloud points is decreasing. Moreover, the number of points on the target
object decreases as well and the prediction of the category class is less reliable.

6.6.5 Distribution of Local Errors
Investigations on radial distance and number of class samples in a LiDAR frame have been
considered so far. The distribution and occurrence of local errors is observed to study be-
haviour of false classifications. Here the distribution of error samples is investigated for a
local neighbourhood size, to determine whether the error occurs point wise or in larger
quantities of polygonal patches. Therefore, the point cloud data is processed in such a way,
that the local neighbourhood of falsely identified LiDAR pings is searched for the occurrence
of other type I and II errors. Here the local neighbourhood size is limited to a radius of less
than 3m in range. In Figure (6.21) the local neighbourhood of false classified samples is
investigated for classes ego-lane and opposite-lane, represented as 3d box-plot (mesh layers
represent the mean value of the underlying distribution whereas colour-shader shows IQR
(dark colour represents large dispersion, white colour respectively no dispersion).

Furthermore, Figure (6.21) shows direct comparison of falsely identified sample data
for lane classes ego-lane as well as opposite-lane. Herein it can be seen that size of IQR
clearly decreases if distance to sensor decreases, as it was expected from previous inves-
tigations. Herein, the detection rate remains to be good, if the sample is located close to
the sensor. Differences in both plots (ego-lane and opposite-lane samples) shows the size
of local neighbourhood. Considering results of ego-lane only, occurrence of false classified
samples remains relatively low with small range of dispersion. Error count especially peaks

Chapter 6. Experiments and Results 71

6.6. Quantitative Evaluation

distance to sensor [m]

0
5

10
15

20
25

30 neighborhood size [m]
0.0 0.5 1.0 1.5 2.0 2.5

TP
R

0.0

0.2

0.4

0.6

0.8

1.0

(a) TPR, ego-lane samples

distance to sensor [m]

0
5

10
15

20
25

30 neighborhood size [m]
0.0 0.5 1.0 1.5 2.0 2.5

TP
R

0.0

0.2

0.4

0.6

0.8

1.0

(b) TPR, opposite-lane samples

distance to sensor [m]

0
5

10
15

20
25

30 neighborhood size [m]
0.0 0.5 1.0 1.5 2.0 2.5

FD
R

0.0

0.2

0.4

0.6

0.8

1.0

(c) FDR, ego-lane samples

distance to sensor [m]

0
5

10
15

20
25

30 neighborhood size [m]
0.0 0.5 1.0 1.5 2.0 2.5

FD
R

0.0

0.2

0.4

0.6

0.8

1.0

(d) FDR, opposite-lane samples

Figure 6.21: Neighbourhood size of local errors (TPR/ FDR). 3d mesh plot represents box-
plot statistics (mesh layer shows mean of distribution, combined with colour visualization of
inter quartile range (IQR), white symbolizes no dispersion, dark blue maximum dispersion.

in the near-field of the local neighbourhood (radial distance <1m). This indicates the error
to appear in smaller quantities, which could also suggest point wise appearance.

Comparing to opposite-lane samples, distribution of error behaves differently. The range
of local neighbourhood errors differs and exceeds radial distances of 1m. Therefore, error
distribution of opposite-lane samples can appear differently within patches containing larger
quantities of false classified LiDAR pings. Observing several scene examples from (6.5),
qualitative evaluation showed that the neural network is partly not in the position to well
distinguish between ego-lane and opposite-lane samples. Further, false classifications for
opposite-lane samples suffers from correctly identifying entire lane parts. In Figure (A.10),
the segmentation model failed to successful predict opposite-lane samples. Due to the loss
of contextual information such as global maps or traffic rules, it might be difficult to au-
tomatically exclude specific scenarios from evaluation process. Here, samples have been
segmented incorrectly, where the interpretation of the environment from trained network
was appropriate.

In the following, complex scenarios of urban sceneries are taken into account where the
segmentation performance at road intersections has been investigated, see Figure (6.22) for
general results. Appropriate segmentation performance is seen for ego-lane samples (TPR
>90%). Hereby, TPR remains relatively high for a large radial distance (about 40m in range),
if compared to general results from Figure (6.18).

Chapter 6. Experiments and Results 72

6.6. Quantitative Evaluation

0 20 40 60 80 100

radial distance [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
ob

ab
ilit

y
sc

or
e

walkway
TPR
FDR

0 20 40 60 80 100

radial distance [m]

ego-lane

0 20 40 60 80 100

radial distance [m]

opposite-lane

Figure 6.22: TPR, FDR range measurements, intersections samples.

Previous investigations on the segmentation of ego-lane samples, in Figure (B.2) (b),
showed that FDR suffers a large range of outlier frames among groups containing 5000-9000
LiDAR pings per sample frame. On the other hand, groups containing more samples (9000-
16000) showmuch less dispersion of errors. In Table (6.5) the distribution of sample frames
containig intersections is shown, compared to number of frames without road junctions.

pings # frames (w/, w/o)
5000-9000 (1122, 1674)
9000-16000 (494, 700)

Table 6.5: Distribution of sample frames containing road junctions.

Due to the complexity of certain environments, it is assumed that segmentation performs
worse within complex scenes. Here, a lot of contextual information might like to lead to
consecutive confusion with samples from other category classes or background samples.

Therefore, the introduced group ranges of LiDAR pings, from Figure (B.2), are inves-
tigated separately for both intersections and areas which don’t contain road junctions. Ad-
ditionally, segmentation performance of ego-lane and opposite-lane samples is investigated
separately, to further demonstrate ability of the segmentation model in differentiating lane
classes within complex scenarios.

Grouped-Samples:
Considering FDR in Figure (6.23) shows the segmentation performance to not differ a lot
from general results in Figure (6.21) (a). For a detailed illustration for both groups of Li-
DAR samples (5000−9000 and 9000−16000) see Figure (B.14) - Figure (B.21). The most
of falsely identified samples are concentrated among a smaller neighbourhood size, radius
(< 1m). Small differences are seen within Figure (6.23) (a) and (b), where the segmentation
of ego-lane samples turned out to by slightly better (by a few percentages) for sample frames
which belong to areas of road junctions. Hereby, existence of contextual information poten-
tially could have caused the neural network to form more complex features which enables
the application to better differentiate in such situations.

On the contrary, performance of opposite-lane segmentation (FDR) is illustrated in Fig-
ure (6.23) (c) and (d). Hereby, the distributions of false classifications show significant

Chapter 6. Experiments and Results 73

6.6. Quantitative Evaluation

differences in comparison to results from average lane segmentation in Figure (6.21). Con-
sidering frames counting 5000 − 9000 pings (without road junctions), most errors does not
occur in sensor near-field but is scattered across larger radial distances for both sensor dis-
tance and neighbourhood size. Distribution of errors across larger radial distances indicates
the error to occur within larger quantities of LiDAR pings.

distance to sensor [m]

0
5

10
15

20
25

30 neighborhood size [m]
0.0 0.5 1.0 1.5 2.0 2.5

FD
R

0.0

0.2

0.4

0.6

0.8

1.0

(a) Intersection, ego

distance to sensor [m]

0
5

10
15

20
25

30 neighborhood size [m]
0.0 0.5 1.0 1.5 2.0 2.5

FD
R

0.0

0.2

0.4

0.6

0.8

1.0

(b) No intersection, ego

distance to sensor [m]

0
5

10
15

20
25

30 neighborhood size [m]
0.0 0.5 1.0 1.5 2.0 2.5

FD
R

0.0

0.2

0.4

0.6

0.8

1.0

(c) Intersection, opposite

distance to sensor [m]

0
5

10
15

20
25

30 neighborhood size [m]
0.0 0.5 1.0 1.5 2.0 2.5

FD
R

0.0

0.2

0.4

0.6

0.8

1.0

(d) No intersection, opposite

Figure 6.23: Neighbourhood size of local errors, ego-/ opposite-lane. Grouped by number
of LiDAR pings wrt local ranges (5000-9000). 3d mesh plot represents box-plot statistics
(mesh layer shows mean of distribution, combined with colour visualization of inter quartile
range (IQR), white symbolizes no dispersion, dark blue maximum dispersion.

By further considering sample frames containing 9000−16000LiDARpings, the amount
of false classifications is significantly higher, especially in sensor near-field, see Figure
(B.16) - Figure (B.17) and Figure (B.20) - Figure (B.21). Here, the segmentation model
suffers in separating opposite-lane samples from other categories.

In general, semantic segmentation performance, within scenarios such as road junctions,
has been seen to be better compared by classifying ordinary road segments.

Qualitative evaluation showed that the model partly failed to correctly identify entire
road segments, as it can be seen in Figure (A.10). This might be attributed to the loss of
semantic information (e.g. traffic rules), which is not explicitly encoded in the provided
data. Furthermore, a profound quantitative evaluation would require to exclude such scene
samples from validaiton set, where it is assumed that local error level should improve.

Chapter 6. Experiments and Results 74

7 Conclusion and Future Work
In this thesis the approach for semantic lane segmentation of 360° LiDAR point clouds is
addressed under use of machine learning applications.

This approach introduced the use of an extended multimodal dataset for the application
of semantic point cloud segmentation. Semantic classes have been derived from 2d map an-
notations from the well-established nuScenes dataset. Due to encoded information of traffic
direction, lane semantics could be provided to the segmentation process, where it was pos-
sible to successfully distinguish between lanes with different semantic meaning. However,
the generation of appropriate ground truth samples from flat 2d maps, provided in top-view
perspective (without information of z-level position) turned out to be suboptimal, where
training and inference partly suffered from imperfect label generation.

Performing semantic lane segmentation, the model of U-Net architecture is used as a
single-stage approach, which is simple but highly effective and performs in sensor real-time
(32fps). Inference of the used convolutional neural network showed good performance of
segmenting ground pings within a radius of approximately 30m from position of ego-vehicle.
Hereby, the detection score of TPR generally remained higher if compared to measure of
false discoveries. Further, samples containing very low detection scores (TPR ≪ FDR;
exceeding specific distance from sensor, where it is most unlikely to process true positives)
should be down weighted or excluded from processing as such samples don’t provide mean-
ingful and reliable information to the application of ground segmentation. Moreover, this
treatment would allow the use of a threshold which can be useful in real-world applications.

Several ways of evaluating semantic segmentation have been considered. Qualitative
evaluation has shown the overall performance to be good and reliable in most of the cases.
Influence of several environmental conditions (e.g. rain, fog) clearly showed degrading per-
formance of LiDAR range measurement but was not directly affecting quality of segmen-
tation in the same way. Distinguishing ground classes has best seen between walkway and
lane classes. Here, geometrical properties (e.g. curb stone) seems to have a clear influence
on the segmentation result, where the neural network appeared to derive strong and mean-
ingful features from. However, differentiating semantic lane classes seems to be much more
complex, where spatial information only could not provide enough context to robustly sep-
arate lanes with different semantic meanings. Moreover, segmentation performance of the
proposed model is most likely to suffer from class imbalance of provided annotations by a
factor of almost 1:10.

Nonetheless, very good results could be seen in frontal-view perspective of the laser
scan, in front of the vehicle, whereas rear-view consequently suffered from false detections
of opposite-lane samples. This could introduce the need of differently handling surround
views to obtain appropriate results throughout the entire point cloud information. Capa-
bilities of generalization have been seen throughout various scenarios presenting ego-lane
samples. Due to contextual information (vehicles, pedestrians) the network was in the posi-
tion to correctly predict class labels along opposite-lane samples, especially along areas of
intersections, which had been generated as part of ego-lane in the first place.

The quantitative approach showed performance degradation due to decreasing density
of point cloud information as well as increasing radial distance from ego-vehicle position.
Where latter it was difficult to use as appropriate metric to describe quality of segmentation
due to the fact of large ranges in dispersion of measurement values and number of outlier

Chapter 7. Conclusion and Future Work 75

samples. Hereby, point density on the target object much more replied to adequate and reli-
able measurement. Therefore, point density could give an appropriate metric for providing
reliable results of semantic lane segmentation. Further the occurrence and density of lo-
cally distributed errors has been investigated. It could be seen that smaller patches of errors
occurred for class ego-lane, where on the hand, segmenting opposite-lane samples suffered
from confusion with ego-lane segments consisting out of larger patches of collections of
falsely identified LiDAR pings.

Areas of intersections have been separated from other sample frames to quantitatively
evaluate the influence of complex traffic scenarios under isolated circumstances. Herein, the
existence of contextual information seems to have a greater influence on the segmentation
process, where the neural network performs better by several percentages if compared to
road segments containing no intersections.

The detailed quantitative evaluation rapidly starts to become complex and difficult to
handle, especially by trying to investigate conditions of specific situations. The work with
publicly available datasets usually is limiting the range of conditions, where only a specific
subset of selected scenarios is provided. Future work should comprise integration of data
samples which contain only specific traffic situations and environmental conditions in detail
to explicitly investigate model performance throughout a set of several predefined scenarios.

Confusion in semantic lane segmentation has mostly been seen in ego-lane and opposite-
lane samples. Considering lane semantics, the definition of additional category classes such
as intersection could potentially improve the results of segmentation by resolving conflicts
between ego-lane samples and intersection areas.

Splitting point cloud information into two clusters of front- and rear-view might dis-
solve issues of perspective disorientation where especially parts from rear-view suffered
from consequent false detections. On the other hand, subdividing the point cloud by multi-
ple spherical cuts potentially influences quality of segmentation differently.

Further, spatial information should not be the only source of information a network uses
for the decision-making process. Temporal as well semantic aspects might significantly im-
prove the semantic understanding of environment. Introducing time component by aggregat-
ing multiple LiDAR frames increases density of data which has been seen to proportionally
react with increasing score of true positive samples. Further, semantic aspects (e.g. lamp
posts, object tracking to provide information of driving direction) has previously seen to im-
prove segmentation results which shows that lane semantics are not only embodied in road
parts.

Processing predicted point labels, polygonal information can be extracted from segmen-
tationmasks, which allows efficient tracking of estimated free space areas. Hereby, problems
of false classification and occlusion would need to be handled appropriately. Applying belief
propagation (e.g. markov random fields or conditional random fields) have often been seen
as method of postprocessing in semantic segmentation models. Segmentation patches which
suffer from blurry boundaries and areas containing larger quantities of false detections, can
be appropriately handled by applying smoothing to the segmentation results. Quantitative
evaluation, for occurrence of locally distributed errors, showed false classifications to appear
in smaller quantities of measurement values for class ego-lane, where postprocessing could
have a substantial influence to improve classification results.

Fusing 3d point cloud as well as 2d camera image is a treatment which is often seen
for camera applications. Here, depth-rich information from 3d data provides an accurate
depth map, which often cannot be derived from camera sensors at the same level of qual-
ity. Processing multimodal information in data fusion applications requires accurate sensor
calibration as well as detailed annotations for both sensors, camera and LiDAR.

Chapter 7. Conclusion and Future Work 76

This thesis has shown validation concepts to characterise model of semantic lane seg-
mentation. Validation study further demonstrated scenarios which require retraining and
the integration of additional classes or contextual information (e.g. spatial-, semantic- and
temporal-information) to improve segmentation performance. For using the approach within
real-world applications, the model must be proven to provide appropriate performance un-
der variety of conditions. The suggested metric, measured by number of pings registered
on the target object, also has the potential to provide real-time validation while the vehicle
is operating on road. Furthermore, this validation workflow can be extended for the needs
of sensor-fusion applications to include other sensor modalities to increase robustness of
autonomous driving.

Chapter 7. Conclusion and Future Work 77

8 Bibliography
[1] Julie Stephany Berrio et al. “Semantic sensor fusion: from camera to sparse lidar

information”. In: ArXiv abs/2003.01871 (2020) (cit. on p. 1).
[2] J. Behley et al. “SemanticKITTI: A Dataset for Semantic Scene Understanding of Li-

DAR Sequences”. In: Proc. of the IEEE/CVF International Conf. on Computer Vision
(ICCV). 2019 (cit. on p. 38).

[3] Pierre Biasutti et al. “LU-Net: An Efficient Network for 3D LiDAR Point Cloud Se-
mantic Segmentation Based on End-to-End-Learned 3D Features and U-Net”. In:
ArXiv abs/1908.11656 (2019) (cit. on pp. 5, 34–36, 51, 61).

[4] Pierre Biasutti et al. “RIU-Net: Embarrassingly simple semantic segmentation of 3D
LiDAR point cloud”. In: CoRR abs/1905.08748 (2019). arXiv: 1905.08748 (cit. on
p. 5).

[5] Holger Caesar et al. “nuScenes: A multimodal dataset for autonomous driving”. In:
CoRR abs/1903.11027 (2019). arXiv: 1903.11027 (cit. on pp. 37–43, 45, 56, 57, 61).

[6] Ming-Fang Chang et al. “Argoverse: 3D Tracking and Forecasting with Rich Maps”.
In: Conference on Computer Vision and Pattern Recognition (CVPR). 2019 (cit. on
pp. 38–40, 54).

[7] Yilun Chen et al. “Fast Point R-CNN”. In: 2019 IEEE/CVF International Conference
on Computer Vision (ICCV) (2019), pp. 9774–9783 (cit. on p. 4).

[8] R. Kesten et al. Lyft Level 5 AV Dataset 2019. 2019 (cit. on pp. 38–40).
[9] Loïc Landrieu andMohamed Boussaha. “Point Cloud Oversegmentation with Graph-

Structured Deep Metric Learning”. In: CoRR abs/1904.02113 (2019). arXiv: 1904.
02113 (cit. on p. 36).

[10] A. Milioto et al. “RangeNet++: Fast and Accurate LiDAR Semantic Segmentation”.
In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS). 2019 (cit. on pp. 5,
34, 35).

[11] Fabio Pizzati and Fernando García. “Enhanced free space detection in multiple lanes
based on single CNN with scene identification”. In: CoRR abs/1905.00941 (2019).
arXiv: 1905.00941 (cit. on pp. 1, 5).

[12] Pei Sun et al. Scalability in Perception for AutonomousDriving:WaymoOpenDataset.
2019. arXiv: 1912.04838 [cs.CV] (cit. on p. 38).

[13] TomBruls et al. “MarkYourself: RoadMarking Segmentation viaWeakly-Supervised
Annotations from Multimodal Data”. In: May 2018, pp. 1863–1870. DOI: 10.1109/
ICRA.2018.8460952 (cit. on pp. 1, 5).

[14] Johann Laconte et al. “Lidar Measurement Bias Estimation via Return Waveform
Modelling in a Context of 3D Mapping”. In: CoRR abs/ 1810.01619 (2018). arXiv:
1810.01619 (cit. on p. 21).

[15] Alex H. Lang et al. “PointPillars: Fast Encoders for Object Detection from Point
Clouds”. In: CoRR abs/ 1812.05784 (2018). arXiv: 1812.05784 (cit. on pp. 5, 34,
35).

[16] Yangyan Li et al. “PointCNN”. In: CoRR abs/ 1801.07791 (2018). arXiv: 1801 .
07791 (cit. on pp. 32–34).

Chapter 8. Bibliography 78

http://arxiv.org/abs/1905.08748
http://arxiv.org/abs/1903.11027
http://arxiv.org/abs/1904.02113
http://arxiv.org/abs/1904.02113
http://arxiv.org/abs/1905.00941
http://arxiv.org/abs/1912.04838
https://doi.org/10.1109/ICRA.2018.8460952
https://doi.org/10.1109/ICRA.2018.8460952
http://arxiv.org/abs/1810.01619
http://arxiv.org/abs/1812.05784
http://arxiv.org/abs/1801.07791
http://arxiv.org/abs/1801.07791

[17] Annika Meyer et al. “Deep Semantic Lane Segmentation for Mapless Driving”. In:
Oct. 2018, pp. 869–875. DOI: 10.1109/IROS.2018.8594450 (cit. on pp. 1, 5, 61).

[18] YuanWang et al. “PointSeg: Real-Time Semantic Segmentation Based on 3D LiDAR
Point Cloud”. In: CoRR abs/ 1807.06288 (2018). arXiv: 1807.06288 (cit. on pp. 5,
34, 35).

[19] Bichen Wu et al. “SqueezeSegV2: Improved Model Structure and Unsupervised Do-
main Adaptation for Road-Object Segmentation from a LiDAR Point Cloud”. In:
CoRR abs/ 1809.08495 (2018). arXiv: 1809.08495 (cit. on pp. 5, 34–36, 60).

[20] Wei Zhou et al. “Automated Evaluation of Semantic Segmentation Robustness for
Autonomous Driving”. In: CoRR abs/ 1810.10193 (2018). arXiv: 1810.10193 (cit.
on p. 1).

[21] Luca Caltagirone et al. “Fast LIDAR-based Road Detection Using Fully Convolu-
tional Neural Networks”. In: CoRR abs/ 1703.03613 (2017). arXiv: 1703.03613 (cit.
on pp. 1, 5).

[22] Kaiming He et al. “Mask R-CNN”. In: CoRR abs/ 1703.06870 (2017). arXiv: 1703.
06870 (cit. on pp. 4, 5).

[23] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-Excitation Networks”. In: CoRR abs/
1709.01507 (2017). arXiv: 1709.01507 (cit. on p. 38).

[24] Tsung-Yi Lin et al. “Focal Loss for DenseObject Detection”. In:CoRR abs/ 1708.02002
(2017). arXiv: 1708.02002 (cit. on pp. 5, 10, 51).

[25] Charles Ruizhongtai Qi et al. “PointNet++: Deep Hierarchical Feature Learning on
Point Sets in a Metric Space”. In: CoRR abs/ 1706.02413 (2017). arXiv: 1706.02413
(cit. on pp. 5, 33, 34).

[26] Lyne P. Tchapmi et al. “SEGCloud: Semantic Segmentation of 3D Point Clouds”. In:
CoRR abs/ 1710.07563 (2017). arXiv: 1710.07563 (cit. on pp. 5, 30, 31).

[27] Bichen Wu et al. “SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for
Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud”. In: CoRR abs/
1710.07368 (2017). arXiv: 1710.07368 (cit. on pp. 5, 34–36, 60).

[28] Manzil Zaheer et al. “Deep Sets”. In: CoRR abs/ 1703.06114 (2017). arXiv: 1703.
06114 (cit. on p. 32).

[29] Barret Zoph et al. “Learning Transferable Architectures for Scalable Image Recogni-
tion”. In: CoRR abs/ 1707.07012 (2017). arXiv: 1707.07012 (cit. on p. 4).

[30] Dan Barnes,William P.Maddern, and Ingmar Posner. “Find Your OwnWay:Weakly-
Supervised Segmentation of Path Proposals for Urban Autonomy”. In: CoRR abs/
1610.01238 (2016). arXiv: 1610.01238 (cit. on pp. 1, 5).

[31] Marius Cordts et al. “The Cityscapes Dataset for Semantic Urban Scene Understand-
ing”. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016 (cit. on pp. 5, 39).

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http : / /
www.deeplearningbook.org. MIT Press, 2016 (cit. on pp. 6–13, 51).

[33] Charles Ruizhongtai Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classi-
fication and Segmentation”. In: CoRR abs/ 1612.00593 (2016). arXiv: 1612.00593
(cit. on pp. 5, 32–34).

Chapter 8. Bibliography 79

https://doi.org/10.1109/IROS.2018.8594450
http://arxiv.org/abs/1807.06288
http://arxiv.org/abs/1809.08495
http://arxiv.org/abs/1810.10193
http://arxiv.org/abs/1703.03613
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1709.01507
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1710.07563
http://arxiv.org/abs/1710.07368
http://arxiv.org/abs/1703.06114
http://arxiv.org/abs/1703.06114
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1610.01238
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1612.00593

[34] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. “OctNet: Learning Deep
3D Representations at High Resolutions”. In: CoRR abs/ 1611.05009 (2016). arXiv:
1611.05009 (cit. on pp. 5, 31).

[35] Evan Shelhamer, Jonathan Long, and Trevor Darrell. “Fully Convolutional Networks
for Semantic Segmentation”. In: CoRR abs/1605.06211 (2016). arXiv: 1605.06211
(cit. on pp. 4, 28, 29).

[36] Ross B. Girshick. “Fast R-CNN”. In: CoRR abs/1504.08083 (2015). arXiv: 1504.
08083 (cit. on p. 4).

[37] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR abs/
1512.03385 (2015). arXiv: 1512.03385 (cit. on pp. 4, 17, 18, 30, 38).

[38] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: 3rd International Conference on Learning Representations, ICLR 2015, SanDiego,
CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015 (cit. on pp. 12, 13).

[39] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. “Learning Deconvolution Net-
work for Semantic Segmentation”. In: CoRR abs/ 1505.04366 (2015). arXiv: 1505.
04366 (cit. on pp. 4, 15, 16, 29).

[40] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Re-
gion Proposal Networks”. In:CoRR abs/1506.01497 (2015). arXiv: 1506.01497 (cit.
on p. 4).

[41] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Net-
works for Biomedical Image Segmentation”. In:CoRR abs/1505.04597 (2015). arXiv:
1505.04597 (cit. on pp. 4, 29, 30, 35, 51).

[42] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In:
International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. DOI:
10.1007/s11263-015-0816-y (cit. on pp. 3, 4, 38).

[43] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. In: 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015 (cit. on pp. 3, 38).

[44] Christian Szegedy et al. “GoingDeeper with Convolutions”. In:CoRR abs/ 1409.4842
(2014). arXiv: 1409.4842 (cit. on p. 3).

[45] Ross B. Girshick et al. “Rich feature hierarchies for accurate object detection and
semantic segmentation”. In: CoRR abs/1311.2524 (2013). arXiv: 1311.2524 (cit. on
p. 4).

[46] Michael Galetzka and Patrick O. Glauner. “A correct even-odd algorithm for the
point-in-polygon (PIP) problem for complex polygons”. In: CoRR abs/ 1207.3502
(2012). arXiv: 1207.3502 (cit. on pp. 47, 55).

[47] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite”. In: Conference on Computer Vision
and Pattern Recognition (CVPR). 2012 (cit. on pp. 38, 39).

[48] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1097–
1105 (cit. on pp. 3, 38).

Chapter 8. Bibliography 80

http://arxiv.org/abs/1611.05009
http://arxiv.org/abs/1605.06211
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1505.04366
http://arxiv.org/abs/1505.04366
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1505.04597
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1207.3502

[49] Velodyne lidar Inc. Data-Sheet: Velodyne LiDAR HDL-32E, HIGH RESOLUTION
REAL-TIME 3D LIDAR SENSOR. Nov. 2010 (cit. on p. 19).

[50] Sylvie Soudarissanane et al. “Incidence angle influence on the quality of terrestrial
laser scanning points”. In: Proceedings ISPRS Workshop Laserscanning 2009, 1-2
Sept 2009, Paris, France 38 (Jan. 2009) (cit. on pp. 20, 22, 23).

[51] Ove Steinvall. “Effects of Target Shape and Reflection on Laser Radar Cross Sec-
tions”. In: Applied optics 39 (Sept. 2000), pp. 4381–91. DOI: 10.1364/AO.39.
004381 (cit. on p. 24).

[52] R.G.MMorris. “D.O. Hebb: The Organization of Behavior, Wiley: NewYork; 1949”.
In: Brain Research Bulletin 50.5 (1999), p. 437. ISSN: 0361-9230. DOI: https://
doi.org/10.1016/S0361-9230(99)00182-3 (cit. on p. 6).

[53] A.V. Jelalian. “Laser Radar Systems”. In: Artech House radar library (1992) (cit. on
p. 22).

[54] Horst D. Simon, ed. Parallel Computational Fluid Dynamics: Implementations and
Results. Cambridge, MA, USA: MIT Press, 1992. ISBN: 0262193264 (cit. on p. 48).

[55] Williams Ronald J. Rumelhart David E. HintonGeoffrey E. “Learning representations
by back-propagating errors”. In:Nature 323 (Oct. 1986), pp. 533–536.DOI: 10.1038/
323533a0 (cit. on pp. 7, 8).

[56] Gene M. Amdahl. “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities”. In:Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference. AFIPS 67 (Spring). Atlantic City, New Jersey: Association for
Computing Machinery, 1967, pp. 483–485. ISBN: 9781450378956. DOI: 10.1145/
1465482.1465560 (cit. on pp. 47, 48).

[57] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage and
Organization in The Brain”. In: Psychological Review (1958), pp. 65–386 (cit. on
p. 6).

[58] Walter Pitts Warren S. McCulloch. “A logical calculus of the ideas immanent in ner-
vous activity”. In: The bulletin of mathematical biophysics 5 (Dec. 1943), pp. 113–
115. DOI: 10.1007/BF02478259 (cit. on p. 6).

Chapter 8. Bibliography 81

https://doi.org/10.1364/AO.39.004381
https://doi.org/10.1364/AO.39.004381
https://doi.org/https://doi.org/10.1016/S0361-9230(99)00182-3
https://doi.org/https://doi.org/10.1016/S0361-9230(99)00182-3
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1007/BF02478259

Declaration
Herewith, I declare that this thesis with the following title:

Semantic Lane Segmentation of LiDAR Point Clouds
using Convolutional Neural Networks

has fully been created by myself without the influence of other people. All of the used ma-
terials, source-code libraries as well as literature and research-papers, to create this work,
are referenced in the documents text accordingly. This thesis has not been submitted before
and is totally unique.

Place and Date Signature

Chapter 8. Bibliography 82

A Qualitative Evaluation

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.1: Projection of LiDAR point cloud in camera image of scene sample (scene-0039)
with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 83

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.2: Projection of LiDAR point cloud in camera image of scene sample (scene-0269)
with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 84

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.3: Projection of LiDAR point cloud in camera image of scene sample (scene-0273)
with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 85

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.4: Projection of LiDAR point cloud in camera image of scene sample (scene-0103)
with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 86

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.5: Projection of LiDAR point cloud in camera image of scene sample (scene-0554)
with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 87

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.6: Projection of LiDAR point cloud in camera image of scene sample (scene-0771)
with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 88

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.7: Projection of LiDAR point cloud in camera image of scene sample (scene-0963)
with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 89

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.8: Projection of LiDAR point cloud in camera image of scene sample (scene-0012)
with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 90

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.9: Projection of LiDAR point cloud in camera image of scene sample (scene-0905)
with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 91

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.10: Projection of LiDAR point cloud in camera image of scene sample (scene-
0907) with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 92

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.11: Projection of LiDAR point cloud in camera image of scene sample (scene-
0911) with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 93

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.12: Projection of LiDAR point cloud in camera image of scene sample (scene-
0914) with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 94

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.13: Projection of LiDAR point cloud in camera image of scene sample (scene-
1062) with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 95

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.14: Projection of LiDAR point cloud in camera image of scene sample (scene-
1067) with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 96

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.15: Projection of LiDAR point cloud in camera image of scene sample (scene-
1070) with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 97

(a) CAM_FRONT (b) CAM_BACK

(c) range-image: ground truth

(d) range-image: prediction

(e) Point cloud top-view: prediction + map layers

Figure A.16: Projection of LiDAR point cloud in camera image of scene sample (scene-
1073) with range images and point cloud top-view with additional map layers.

Appendix A. Qualitative Evaluation 98

CAM_FRONT CAM_BACK
Figure A.17: Projection of LiDAR point cloud in camera front- and back-view perspective.
Providing sequence of scene samples (scene-0269). False detection mostly appears in back-
view images, whereas front-view mostly remains stable.

Appendix A. Qualitative Evaluation 99

CAM_FRONT CAM_BACK
Figure A.18: Projection of LiDAR point cloud in camera front- and back-view perspective.
Providing sequence of scene samples (scene-0269). False detection mostly appears in back-
view images, whereas front-view mostly remains stable.

Appendix A. Qualitative Evaluation 100

B Quantitative Evaluation

0°

45°

90°

135°

180°

225°

270°

315°

20
40

60
80

100

walkway

0°

45°

90°

135°

180°

225°

270°

315°

20
40

60
80

100

ego

0°

45°

90°

135°

180°

225°

270°

315°

20
40

60
80

100

opposite

(a) true positive samples

0°

45°

90°

135°

180°

225°

270°

315°

20
40

60
80

100

walkway

0°

45°

90°

135°

180°

225°

270°

315°

20
40

60
80

100

ego

0°

45°

90°

135°

180°

225°

270°

315°

20
40

60
80

100

opposite

(b) false negative samples

0°

45°

90°

135°

180°

225°

270°

315°

20
40

60
80

100

walkway

0°

45°

90°

135°

180°

225°

270°

315°

20
40

60
80

100

ego

0°

45°

90°

135°

180°

225°

270°

315°

20
40

60
80

100

opposite

(c) false positive samples

Figure B.1: Distribution of true positive, false negative and false positive class samples,
wrt radial distance measured in [m], illustrated as log scaled polar plot.

Appendix B. Quantitative Evaluation 101

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16

intervals by number of lidar pings, *1e3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TP
R

(a) true positive rate

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16

intervals by number of lidar pings, *1e3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FD
R

(b) false discovery rate

Figure B.2: Detection scores for number of LiDAR pings (∗ 1e3), class ego-lane.

Appendix B. Quantitative Evaluation 102

0-1 1-2 2-3 3-4 4-5 5-6 6-7

intervals by number of lidar pings, *1e3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TP
R

(a) true positive rate

0-1 1-2 2-3 3-4 4-5 5-6 6-7

intervals by number of lidar pings, *1e3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FD
R

(b) false discovery rate

Figure B.3: Detection scores for number of LiDAR pings (∗ 1e3), class opposite-lane.

Appendix B. Quantitative Evaluation 103

0-1 1-2 2-3 3-4 4-5 5-6 6-7

intervals by number of lidar pings, *1e3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TP
R

(a) true positive rate

0-1 1-2 2-3 3-4 4-5 5-6 6-7

intervals by number of lidar pings, *1e3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FD
R

(b) false discovery rate

Figure B.4: Detection scores for number of LiDAR pings (∗ 1e3), class walkway.

Appendix B. Quantitative Evaluation 104

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70

range intervals of radial distance [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TP
R

(a) true positive rate

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70

range intervals of radial distance [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FD
R

(b) false discovery rate

Figure B.5: Detection scores for range intervals [m], class ego-lane.

Appendix B. Quantitative Evaluation 105

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70

range intervals of radial distance [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TP
R

(a) true positive rate

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70

range intervals of radial distance [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FD
R

(b) false discovery rate

Figure B.6: Detection scores for range intervals [m], class opposite-lane.

Appendix B. Quantitative Evaluation 106

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70

range intervals of radial distance [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TP
R

(a) true positive rate

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70

range intervals of radial distance [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FD
R

(b) false discovery rate

Figure B.7: Detection scores for range intervals [m], class walkway.

Appendix B. Quantitative Evaluation 107

Fi
gu

re
B.

8:
Tr

ue
po

sit
iv

er
at

eo
fc
la
ss

eg
o-

la
ne

w
rt
ra
ng
e
of
ra
di
al

di
sta

nc
e
fro

m
po

si
tio

n
of
eg
o-
ve
hi
cl
e.

Bl
ue

-t
ru
e
po

si
tiv
e
sc
or
es

of
va
lid

at
io
n
sa
m
pl
es
,

or
an

ge
-n

um
be
ro

fl
id
ar

pi
ng

sp
er

sc
en
e
sa
m
pl
e
in

de
sc
en
di
ng

or
de
r.

Appendix B. Quantitative Evaluation 108

Fi
gu

re
B.

9:
Fa

lse
di

sc
ov

er
y

ra
te

of
cl
as
s

eg
o-

la
ne

w
rt

ra
ng
e
of

ra
di
al

di
sta

nc
e
fro

m
po

si
tio

n
of

eg
o-
ve
hi
cl
e.

Bl
ue

-f
al
se

di
sc
ov
er
y
ra
te

of
va
lid

at
io
n

sa
m
pl
es
,o

ra
ng
e
-n

um
be
ro

fl
id
ar

pi
ng

sp
er

sc
en
e
sa
m
pl
e
in

de
sc
en
di
ng

or
de
r.

Appendix B. Quantitative Evaluation 109

Fi
gu

re
B.

10
:

Tr
ue

po
sit

iv
e

ra
te
of

cl
as
so

pp
os

ite
-la

ne
w
rt
ra
ng
e
of

ra
di
al

di
sta

nc
e
fro

m
po

si
tio

n
of

eg
o-
ve
hi
cl
e.

Bl
ue

-t
ru
e
po

si
tiv
e
sc
or
es

of
va
lid

at
io
n

sa
m
pl
es
,o

ra
ng
e
-n

um
be
ro

fl
id
ar

pi
ng

sp
er

sc
en
e
sa
m
pl
e
in

de
sc
en
di
ng

or
de
r.

Appendix B. Quantitative Evaluation 110

Fi
gu

re
B.

11
:F

al
se

di
sc

ov
er

yr
at

eo
fc
la
ss

op
po

sit
e-

la
ne

w
rt
ra
ng
e
of

ra
di
al

di
sta

nc
e
fro

m
po

si
tio

n
of

eg
o-
ve
hi
cl
e.

Bl
ue

-f
al
se

di
sc
ov
er
y
ra
te
of

va
lid

at
io
n

sa
m
pl
es
,o

ra
ng
e
-n

um
be
ro

fl
id
ar

pi
ng

sp
er

sc
en
e
sa
m
pl
e
in

de
sc
en
di
ng

or
de
r.

Appendix B. Quantitative Evaluation 111

Fi
gu

re
B.

12
:T

ru
ep

os
iti

ve
ra

te
of
cl
as
sw

al
kw

ay
w
rt
ra
ng
eo

fr
ad

ia
ld
ist
an

ce
fro

m
po

si
tio

n
of
eg
o-
ve
hi
cl
e.

Bl
ue

-t
ru
ep

os
iti
ve

sc
or
es

of
va
lid

at
io
n
sa
m
pl
es
,

or
an

ge
-n

um
be
ro

fl
id
ar

pi
ng

sp
er

sc
en
e
sa
m
pl
e
in

de
sc
en
di
ng

or
de
r.

Appendix B. Quantitative Evaluation 112

Fi
gu

re
B.

13
:

Fa
lse

di
sc

ov
er

y
ra

te
of

cl
as
s

wa
lk

wa
y
w
rt
ra
ng
e
of

ra
di
al

di
sta

nc
e
fro

m
po

si
tio

n
of

eg
o-
ve
hi
cl
e.

Bl
ue

-f
al
se

di
sc
ov
er
y
ra
te

of
va
lid

at
io
n

sa
m
pl
es
,o

ra
ng
e
-n

um
be
ro

fl
id
ar

pi
ng

sp
er

sc
en
e
sa
m
pl
e
in

de
sc
en
di
ng

or
de
r.

Appendix B. Quantitative Evaluation 113

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

TPR

0.
00.
20.
40.
60.
81.
0

(a)
Int

ers
ect

ion

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

TPR

0.
00.
20.
40.
60.
81.
0

(b)
No

int
ers

ect
ion

Fi
gu

re
B.

14
:T

PR
of

eg
o-

la
ne

sa
m
pl
es
,g
ro
up

ed
by

nu
m
be
ro

fL
iD
AR

pi
ng

sw
rt
lo
ca
lr
an

ge
s(

50
00

-9
00

0)
.3

d
m
es
h
pl
ot
re
pr
es
en
ts
bo
x-
pl
ot
sta

tis
tic

s(
m
es
h

la
ye
r
sh
ow

s
m

ea
n
of

di
str

ib
ut
io
n,

co
m
bi
ne
d
w
ith

co
lo
ur

vi
su
al
iz
at
io
n
of

in
te

rq
ua

rt
ile

ra
ng

e
(I
Q
R)
,w

hi
te
sy
m
bo

liz
es

no
di
sp
er
si
on

,d
ar
k
bl
ue

m
ax
im

um
di
sp
er
si
on

.

Appendix B. Quantitative Evaluation 114

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

FDR

0.
00.
20.
40.
60.
81.
0

(a)
Int

ers
ect

ion

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

FDR

0.
00.
20.
40.
60.
81.
0

(b)
No

int
ers

ect
ion

Fi
gu

re
B.

15
:F

D
R
of

eg
o-

la
ne

sa
m
pl
es
,g
ro
up

ed
by

nu
m
be
ro

fL
iD
AR

pi
ng

sw
rt
lo
ca
lr
an

ge
s(

50
00

-9
00

0)
.3

d
m
es
h
pl
ot
re
pr
es
en
ts
bo
x-
pl
ot
sta

tis
tic

s(
m
es
h

la
ye
r
sh
ow

s
m

ea
n
of

di
str

ib
ut
io
n,

co
m
bi
ne
d
w
ith

co
lo
ur

vi
su
al
iz
at
io
n
of

in
te

rq
ua

rt
ile

ra
ng

e
(I
Q
R)
,w

hi
te
sy
m
bo

liz
es

no
di
sp
er
si
on

,d
ar
k
bl
ue

m
ax
im

um
di
sp
er
si
on

.

Appendix B. Quantitative Evaluation 115

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

TPR

0.
00.
20.
40.
60.
81.
0

(a)
Int

ers
ect

ion

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

TPR

0.
00.
20.
40.
60.
81.
0

(b)
No

int
ers

ect
ion

Fi
gu

re
B.

16
:T

PR
of

eg
o-

la
ne

sa
m
pl
es
,g
ro
up

ed
by

nu
m
be
ro

fL
iD
AR

pi
ng

sw
rt
lo
ca
lr
an

ge
s(

90
00

-1
60

00
).
3d

m
es
h
pl
ot
re
pr
es
en
ts
bo
x-
pl
ot
sta

tis
tic

s(
m
es
h

la
ye
r
sh
ow

s
m

ea
n
of

di
str

ib
ut
io
n,

co
m
bi
ne
d
w
ith

co
lo
ur

vi
su
al
iz
at
io
n
of

in
te

rq
ua

rt
ile

ra
ng

e
(I
Q
R)
,w

hi
te
sy
m
bo

liz
es

no
di
sp
er
si
on

,d
ar
k
bl
ue

m
ax
im

um
di
sp
er
si
on

.

Appendix B. Quantitative Evaluation 116

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

FDR

0.
00.
20.
40.
60.
81.
0

(a)
Int

ers
ect

ion

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

FDR

0.
00.
20.
40.
60.
81.
0

(b)
No

int
ers

ect
ion

Fi
gu

re
B.

17
:
FD

R
of

eg
o-

la
ne

sa
m
pl
es
,g

ro
up

ed
by

nu
m
be
r
of

Li
D
AR

pi
ng

s
w
rt
lo
ca
lr
an

ge
s

(9
00

0-
16

00
0)
.
3d

m
es
h
pl
ot

re
pr
es
en
ts
bo
x-
pl
ot

sta
tis
tic

s
(m

es
h
la
ye
r
sh
ow

s
m

ea
n
of

di
str

ib
ut
io
n,

co
m
bi
ne
d
w
ith

co
lo
ur

vi
su
al
iz
at
io
n
of

in
te

r
qu

ar
til

e
ra

ng
e
(I
Q
R)
,w

hi
te

sy
m
bo

liz
es

no
di
sp
er
si
on

,d
ar
k
bl
ue

m
ax
im

um
di
sp
er
si
on

.

Appendix B. Quantitative Evaluation 117

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

TPR

0.
00.
20.
40.
60.
81.
0

(a)
Int

ers
ect

ion

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

TPR

0.
00.
20.
40.
60.
81.
0

(b)
No

int
ers

ect
ion

Fi
gu

re
B.

18
:T

PR
of

op
po

sit
e-

la
ne

sa
m
pl
es
,g
ro
up

ed
by

nu
m
be
ro

fL
iD
AR

pi
ng

sw
rt
lo
ca
lr
an

ge
s(

50
00

-9
00

0)
.3

d
m
es
h
pl
ot

re
pr
es
en
ts
bo
x-
pl
ot

sta
tis
tic

s
(m

es
h
la
ye
r
sh
ow

s
m

ea
n
of

di
str

ib
ut
io
n,

co
m
bi
ne
d
w
ith

co
lo
ur

vi
su
al
iz
at
io
n
of

in
te

r
qu

ar
til

e
ra

ng
e
(I
Q
R)
,w

hi
te

sy
m
bo

liz
es

no
di
sp
er
si
on

,d
ar
k
bl
ue

m
ax
im

um
di
sp
er
si
on

.

Appendix B. Quantitative Evaluation 118

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

FDR

0.
00.
20.
40.
60.
81.
0

(a)
Int

ers
ect

ion

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

FDR

0.
00.
20.
40.
60.
81.
0

(b)
No

int
ers

ect
ion

Fi
gu

re
B.

19
:F

D
R
of

op
po

sit
e-

la
ne

sa
m
pl
es
,g
ro
up

ed
by

nu
m
be
ro

fL
iD
AR

pi
ng

sw
rt
lo
ca
lr
an

ge
s(

50
00

-9
00

0)
.3

d
m
es
h
pl
ot

re
pr
es
en
ts
bo
x-
pl
ot

sta
tis
tic

s
(m

es
h
la
ye
r
sh
ow

s
m

ea
n
of

di
str

ib
ut
io
n,

co
m
bi
ne
d
w
ith

co
lo
ur

vi
su
al
iz
at
io
n
of

in
te

r
qu

ar
til

e
ra

ng
e
(I
Q
R)
,w

hi
te

sy
m
bo

liz
es

no
di
sp
er
si
on

,d
ar
k
bl
ue

m
ax
im

um
di
sp
er
si
on

.

Appendix B. Quantitative Evaluation 119

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

TPR

0.
00.
20.
40.
60.
81.
0

(a)
Int

ers
ect

ion

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

TPR

0.
00.
20.
40.
60.
81.
0

(b)
No

int
ers

ect
ion

Fi
gu

re
B.

20
:T

PR
of

op
po

sit
e-

la
ne

sa
m
pl
es
,g
ro
up

ed
by

nu
m
be
ro

fL
iD
AR

pi
ng

sw
rt
lo
ca
lr
an

ge
s(

90
00

-1
60

00
).
3d

m
es
h
pl
ot
re
pr
es
en
ts
bo
x-
pl
ot
sta

tis
tic

s
(m

es
h
la
ye
r
sh
ow

s
m

ea
n
of

di
str

ib
ut
io
n,

co
m
bi
ne
d
w
ith

co
lo
ur

vi
su
al
iz
at
io
n
of

in
te

r
qu

ar
til

e
ra

ng
e
(I
Q
R)
,w

hi
te

sy
m
bo

liz
es

no
di
sp
er
si
on

,d
ar
k
bl
ue

m
ax
im

um
di
sp
er
si
on

.

Appendix B. Quantitative Evaluation 120

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

FDR

0.
00.
20.
40.
60.
81.
0

(a)
Int

ers
ect

ion

dis
tan

ce
 to

 se
ns

or
[m

]

0
5

10
15

20

25

30
ne

ig
hb

or
ho

od
 si

ze
 [m

]
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

FDR

0.
00.
20.
40.
60.
81.
0

(b)
No

int
ers

ect
ion

Fi
gu

re
B.

21
:
FD

R
of

op
po

sit
e-

la
ne

sa
m
pl
es
,g

ro
up

ed
by

nu
m
be
r
of

Li
D
AR

pi
ng

s
w
rt

lo
ca
lr

an
ge
s

(9
00

0-
16

00
0)
.
3d

m
es
h
pl
ot

re
pr
es
en
ts

bo
x-
pl
ot

sta
tis
tic

s(
m
es
h
la
ye
rs

ho
ws

m
ea

n
of

di
str

ib
ut
io
n,

co
m
bi
ne
d
w
ith

co
lo
ur

vi
su
al
iz
at
io
n
of

in
te

rq
ua

rt
ile

ra
ng

e
(I
Q
R)
,w

hi
te
sy
m
bo

liz
es

no
di
sp
er
si
on

,d
ar
k

bl
ue

m
ax
im

um
di
sp
er
si
on

.

Appendix B. Quantitative Evaluation 121

	Motivation and Introduction
	Related Work
	Theory
	Artificial Neural Networks - ANN
	Perceptron
	Multilayer Perceptron - MLP
	Backpropagation
	Loss Functions
	Optimization Algorithms

	Convolutional Neural Networks - CNN
	Convolution and Deconvolution
	Pooling and Unpooling
	Fully-Connected
	1x1 Convolution
	Identity Skip-Connection

	LiDAR - Theory and Practice
	Metrics

	LiDAR Semantic Segmentation
	Fully Convolutional Networks - FCN
	U-Net
	Point Cloud Segmentation
	LU-Net

	Methodology
	Datasets
	NuScenes
	Parallel Computing Complexity

	Range-Image Generation
	Training
	Semantic Lane Segmentation
	Model Evaluation

	Experiments and Results
	NuScenes Dataloading
	Implementation Details
	Parallel Computing Complexity
	Results and Evaluation

	Range Image Generation
	Implementation Details
	Results and Evaluation

	Training - Results
	Semantic Lane Segmentation Results
	Qualitative Evaluation
	Quantitative Evaluation
	Classwise Performance
	Environmental Conditions
	Performance by Number of Class Samples
	Performance by Radial Distance
	Distribution of Local Errors

	Conclusion and Future Work
	Bibliography
	Qualitative Evaluation
	Quantitative Evaluation

