Aufwärts: Diplom
Vorherige Seite: Schlußbemerkungen
  Inhalt
- 1
-
R. F. ARENS AND J. EELLS, JR., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-403.
- 2
-
W. G. BADE, P. C. CURTIS, JR., AND H. G. DALES, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (1987), 359-377.
- 3
-
G. DE BARRA, Measure Theory and Integration, Ellis Horwood Ltd., 1981.
- 4
-
Y. M. BEREZANSKI, Z. G. SHEFTEL AND G. F. US, Functional Analysis, Vol. I, Birkhäuser, 1996.
- 5
-
R. BONIC, J. FRAMPTON AND A. TROMBA,
-Manifolds, J. Funct. Anal. 3 (1969), 310-320.
- 6
-
Z. CIESIELSKI, On Haar functions and on the Schauder basis of the space
, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959), 227-232.
- 7
-
Z. CIESIELSKI, On the isomorphisms of the spaces
and
, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 217-222.
- 8
-
J. CZIPSZER AND L. GEHER, Extension of functions satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), 213-220.
- 9
-
M. M. DAY, Normed Linear Spaces, 3rd ed., Springer, 1973.
- 10
-
J. DIEUDONNE, Geschichte der Mathematik 1700-1900, VEB Deutscher Verlag der Wissenschaften, 1985.
- 11
-
A. G. O'FARRELL, Lipschitz functions and bad metrics, Michigan Math. J. 21 (1974), 277-287.
- 12
-
P. DE FERMAT, Bemerkungen zu Diophant, Akademische Verlagsgesellschaft, 1932.
- 13
-
G. GLAESER, Etude de quelques algèbres Tayloriennes, J. d'Analyse Math. 6 (1958), 1-125.
- 14
-
S. GOTTWALD, H.-J. ILGAUDS, K.-H. SCHLOTE (Hrsg.), Lexikon bedeutender Mathematiker, Verlag Harri Deutsch, 1990.
- 15
-
L. G. HANIN, Kantorovich-Rubinstein norm and its application in the theory of Lipschitz spaces, Proc. Amer. Math. Soc. 115 (1992), 345-352.
- 16
-
L. G. HANIN, On isometric isomorphism between the second dual to the ``small'' Lipschitz space and the ``big'' Lipschitz space, Operator Theory: Advances and Applications, Vol. 73, Birkhäuser, 1994.
- 17
-
L. G. HANIN, Duality for general Lipschitz classes and applications, Proc. London Math. Soc. 3 (1997), 134-156.
- 18
-
P. HARMAND, D. WERNER AND W. WERNER, M-Ideals in Banach spaces and Banach algebras, LNM Vol. 1547, Springer, 1993.
- 19
-
L. I. HEDBERG, The Stone-Weierstraß theorem in Lipschitz algebras, Ark. Math. 8 (1969), 63-72.
- 20
-
R. B. HOLMES, Geometric Functional Analysis and its applications, Springer, 1975.
- 21
-
O. H¨OLDER, Beiträge zur Potentialtheorie, Dissertation, Tübingen, 1882.
- 22
-
O. H¨OLDER, Über einen Mittelwertsatz, Göttinger Nachr. 44, 1889.
- 23
-
H. JARCHOW, Locally convex spaces, Teubner, 1981.
- 24
-
T. M. JENKINS, Banach spaces of Lipschitz functions on an abstract metric space, Ph.D. thesis, Yale Univ., New Haven, Conn., 1967.
- 25
-
J. A. JOHNSON, Banach spaces of Lipschitz functions and vector-valued Lipschitz functions, Trans. Amer. Math. Soc. 148 (1970), 147-169.
- 26
-
J. A. JOHNSON, Lipschitz function spaces for arbitrary metrics, Bull. Amer. Math. Soc. 78 (1972), 702-705.
- 27
-
J. A. JOHNSON, Lipschitz spaces, Pacific J. Math. 51 (1974), 177-186.
- 28
-
J. A. JOHNSON, A note on Banach spaces of Lipschitz functions, Pacific J. Math. 58 (1975), 475-482.
- 29
-
L. V. KANTOROVICH AND G. P. AKILOV, The problem of translocation of mass and the normed space it generates, Functional Analysis, 2nd ed., Pergamon Press, 1982, 225-237.
- 30
-
S. V. KISLYAKOV, Sobolev imbedding operators and the nonisomorphism of certain Banach spaces, Func. Anal. Appl. 9 (1975), 290-294.
- 31
-
K. K¨ONIGSBERGER, Analysis 1, Springer, 1990.
- 32
-
S. G. KREIN AND Y. I. PETUIN, Scales of Banach spaces, Russian Math. Surveys 21 (1966), 85-159.
- 33
-
K. DE LEEUW, Banach spaces of Lipschitz functions, Studia Math. 21 (1961), 55-66.
- 34
-
J. LINDENSTRAUSS, Extension of compact operators, Memoirs of the Amer. Math. Soc. 48 (1964).
- 35
-
J. LINDENSTRAUSS AND L. TZAFRIRI, Classical Banach Spaces, Vol. I, Springer, 1977.
- 36
-
R. LIPSCHITZ, Sur la possibilité d'intégrer complètement un système donné d'équations différentielles, Bull. Sci. Math. 10 (1876), 149-159.
- 37
-
R. LIPSCHITZ, Lehrbuch der Analysis, zweiter Band, Verlag von Max Cohen & Sohn, 1880.
- 38
-
E. MAYER-WOLF, Isometries between Banach spaces of Lipschitz functions, Israel J. Math. 38 (1981), 58-74.
- 39
-
E. J. MCSHANE, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837-842.
- 40
-
R. E. MEGGINSON, An introduction to Banach space theory, Springer, 1998.
- 41
-
H. MIRKIL, Continuous translation of Hölder and Lipschitz functions, Can. J. Math. 12 (1960), 674-685.
- 42
-
J. MUSIELAK AND Z. SEMADENI, Some classes of Banach spaces depending on a parameter, Studia Math. 20 (1961), 271-284.
- 43
-
G. PREUß, Allgemeine Topologie, 2. Aufl., Springer, 1975.
- 44
-
D. R. SHERBERT, Banach algebras of Lipschitz functions, Pacific J. Math. 13 (1963), 1387-1399.
- 45
-
D. R. SHERBERT, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240-272.
- 46
-
J. D. STEIN, JR., Functions satisfying Lipschitz conditions, Michigan Math. J. 16 (1969), 385-396.
- 47
-
F. A. VALENTINE, On the extension of a vector function so as to preserve a Lipschitz condition, Bull. Amer. Math. Soc. 49 (1943), 100-108.
- 48
-
N. WEAVER, Lattices of Lipschitz functions, Pacific J. Math. 164 (1994), 179-193.
- 49
-
N. WEAVER, Subalgebras of little Lipschitz algebras, Pacific J. Math. 173 (1996), 283-293.
- 50
-
N. WEAVER, Duality for locally compact Lipschitz spaces, Rocky Mountain J. Math. 26 (1996), 337-353.
- 51
-
N. WEAVER, Quotients of little Lipschitz algebras, Proc. Amer. Math. Soc. 125 (1997), 2643-2648.
- 52
-
N. WEAVER, Lipschitz Algebras, World Scientific, 1999.
- 53
-
E. W. WEISSTEIN, CRC Concise Encyclopedia of Mathematics, Chapman & Hall/CRC, 1999.
- 54
-
D. WERNER, New classes of Banach spaces which are
-ideals in their biduals, Math. Proc. Camb. Phil. Soc. 111 (1992), 337-354.
- 55
-
D. WERNER, Funktionalanalysis, 2. Aufl., Springer, 1997.
- 56
-
D. WERNER, Partielle Differentialgleichungen, Freie Universität Berlin, Vorlesungsskript, Wintersemester 97/98.
- 57
-
D. WERNER, Operatorhalbgruppen, Freie Universität Berlin, Vorlesungsskript, Sommersemester 98.
- 58
-
D. WERNER, Unzerlegbare Banachräume -- über die Arbeiten von W. T. Gowers, Freie Universität Berlin, Serie A Mathematik, Preprint Nr. A-1-2000.
- 59
-
P. WOJTASZCZYK, Banach Spaces for Analysts, Cambridge University Press, 1991.
- 60
-
D. E. WULBERT, Representations of the spaces of Lipschitz functions, J. Func. Anal. 15 (1974), 45-55.
- 61
-
A. ZYGMUND, Trigonometric series, Vols. I and II combined, reprinted 2nd ed., Cambridge University Press, 1968.
Heiko Berninger
2003-04-25