next up previous contents
Aufwärts: Diplom Vorherige Seite: Schlußbemerkungen   Inhalt

Literatur

1
R. F. ARENS AND J. EELLS, JR., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-403.

2
W. G. BADE, P. C. CURTIS, JR., AND H. G. DALES, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (1987), 359-377.

3
G. DE BARRA, Measure Theory and Integration, Ellis Horwood Ltd., 1981.

4
Y. M. BEREZANSKI, Z. G. SHEFTEL AND G. F. US, Functional Analysis, Vol. I, Birkhäuser, 1996.

5
R. BONIC, J. FRAMPTON AND A. TROMBA, $ \Lambda$-Manifolds, J. Funct. Anal. 3 (1969), 310-320.

6
Z. CIESIELSKI, On Haar functions and on the Schauder basis of the space $ C_{<0,1>}$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959), 227-232.

7
Z. CIESIELSKI, On the isomorphisms of the spaces $ H_{\alpha }$ and $ m$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 217-222.

8
J. CZIPSZER AND L. GEHER, Extension of functions satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), 213-220.

9
M. M. DAY, Normed Linear Spaces, 3rd ed., Springer, 1973.

10
J. DIEUDONNE, Geschichte der Mathematik 1700-1900, VEB Deutscher Verlag der Wissenschaften, 1985.

11
A. G. O'FARRELL, Lipschitz functions and bad metrics, Michigan Math. J. 21 (1974), 277-287.

12
P. DE FERMAT, Bemerkungen zu Diophant, Akademische Verlagsgesellschaft, 1932.

13
G. GLAESER, Etude de quelques algèbres Tayloriennes, J. d'Analyse Math. 6 (1958), 1-125.

14
S. GOTTWALD, H.-J. ILGAUDS, K.-H. SCHLOTE (Hrsg.), Lexikon bedeutender Mathematiker, Verlag Harri Deutsch, 1990.

15
L. G. HANIN, Kantorovich-Rubinstein norm and its application in the theory of Lipschitz spaces, Proc. Amer. Math. Soc. 115 (1992), 345-352.

16
L. G. HANIN, On isometric isomorphism between the second dual to the ``small'' Lipschitz space and the ``big'' Lipschitz space, Operator Theory: Advances and Applications, Vol. 73, Birkhäuser, 1994.

17
L. G. HANIN, Duality for general Lipschitz classes and applications, Proc. London Math. Soc. 3 (1997), 134-156.

18
P. HARMAND, D. WERNER AND W. WERNER, M-Ideals in Banach spaces and Banach algebras, LNM Vol. 1547, Springer, 1993.

19
L. I. HEDBERG, The Stone-Weierstraß theorem in Lipschitz algebras, Ark. Math. 8 (1969), 63-72.

20
R. B. HOLMES, Geometric Functional Analysis and its applications, Springer, 1975.

21
O. H¨OLDER, Beiträge zur Potentialtheorie, Dissertation, Tübingen, 1882.

22
O. H¨OLDER, Über einen Mittelwertsatz, Göttinger Nachr. 44, 1889.

23
H. JARCHOW, Locally convex spaces, Teubner, 1981.

24
T. M. JENKINS, Banach spaces of Lipschitz functions on an abstract metric space, Ph.D. thesis, Yale Univ., New Haven, Conn., 1967.

25
J. A. JOHNSON, Banach spaces of Lipschitz functions and vector-valued Lipschitz functions, Trans. Amer. Math. Soc. 148 (1970), 147-169.

26
J. A. JOHNSON, Lipschitz function spaces for arbitrary metrics, Bull. Amer. Math. Soc. 78 (1972), 702-705.

27
J. A. JOHNSON, Lipschitz spaces, Pacific J. Math. 51 (1974), 177-186.

28
J. A. JOHNSON, A note on Banach spaces of Lipschitz functions, Pacific J. Math. 58 (1975), 475-482.

29
L. V. KANTOROVICH AND G. P. AKILOV, The problem of translocation of mass and the normed space it generates, Functional Analysis, 2nd  ed., Pergamon Press, 1982, 225-237.

30
S. V. KISLYAKOV, Sobolev imbedding operators and the nonisomorphism of certain Banach spaces, Func. Anal. Appl. 9 (1975), 290-294.

31
K. K¨ONIGSBERGER, Analysis 1, Springer, 1990.

32
S. G. KREIN AND Y. I. PETUIN, Scales of Banach spaces, Russian Math. Surveys 21 (1966), 85-159.

33
K. DE LEEUW, Banach spaces of Lipschitz functions, Studia Math. 21 (1961), 55-66.

34
J. LINDENSTRAUSS, Extension of compact operators, Memoirs of the Amer. Math. Soc. 48 (1964).

35
J. LINDENSTRAUSS AND L. TZAFRIRI, Classical Banach Spaces, Vol. I, Springer, 1977.

36
R. LIPSCHITZ, Sur la possibilité d'intégrer complètement un système donné d'équations différentielles, Bull. Sci. Math. 10 (1876), 149-159.

37
R. LIPSCHITZ, Lehrbuch der Analysis, zweiter Band, Verlag von Max Cohen & Sohn, 1880.

38
E. MAYER-WOLF, Isometries between Banach spaces of Lipschitz functions, Israel J. Math. 38 (1981), 58-74.

39
E. J. MCSHANE, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837-842.

40
R. E. MEGGINSON, An introduction to Banach space theory, Springer, 1998.

41
H. MIRKIL, Continuous translation of Hölder and Lipschitz functions, Can. J. Math. 12 (1960), 674-685.

42
J. MUSIELAK AND Z. SEMADENI, Some classes of Banach spaces depending on a parameter, Studia Math. 20 (1961), 271-284.

43
G. PREUß, Allgemeine Topologie, 2.  Aufl., Springer, 1975.

44
D. R. SHERBERT, Banach algebras of Lipschitz functions, Pacific J. Math. 13 (1963), 1387-1399.

45
D. R. SHERBERT, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240-272.

46
J. D. STEIN, JR., Functions satisfying Lipschitz conditions, Michigan Math. J. 16 (1969), 385-396.

47
F. A. VALENTINE, On the extension of a vector function so as to preserve a Lipschitz condition, Bull. Amer. Math. Soc. 49 (1943), 100-108.

48
N. WEAVER, Lattices of Lipschitz functions, Pacific J. Math. 164 (1994), 179-193.

49
N. WEAVER, Subalgebras of little Lipschitz algebras, Pacific J. Math. 173 (1996), 283-293.

50
N. WEAVER, Duality for locally compact Lipschitz spaces, Rocky Mountain J. Math. 26 (1996), 337-353.

51
N. WEAVER, Quotients of little Lipschitz algebras, Proc. Amer. Math. Soc. 125 (1997), 2643-2648.

52
N. WEAVER, Lipschitz Algebras, World Scientific, 1999.

53
E. W. WEISSTEIN, CRC Concise Encyclopedia of Mathematics, Chapman & Hall/CRC, 1999.

54
D. WERNER, New classes of Banach spaces which are $ M$-ideals in their biduals, Math. Proc. Camb. Phil. Soc. 111 (1992), 337-354.

55
D. WERNER, Funktionalanalysis, 2. Aufl., Springer, 1997.

56
D. WERNER, Partielle Differentialgleichungen, Freie Universität Berlin, Vorlesungsskript, Wintersemester 97/98.

57
D. WERNER, Operatorhalbgruppen, Freie Universität Berlin, Vorlesungsskript, Sommersemester 98.

58
D. WERNER, Unzerlegbare Banachräume -- über die Arbeiten von W. T. Gowers, Freie Universität Berlin, Serie A Mathematik, Preprint Nr. A-1-2000.

59
P. WOJTASZCZYK, Banach Spaces for Analysts, Cambridge University Press, 1991.

60
D. E. WULBERT, Representations of the spaces of Lipschitz functions, J.  Func. Anal. 15 (1974), 45-55.

61
A. ZYGMUND, Trigonometric series, Vols. I and II combined, reprinted 2nd  ed., Cambridge University Press, 1968.



Heiko Berninger 2003-04-25