3. Übung Lineare Algebra I

Sommersemester 2005 Barbara Baumeister, Abgabe: Mo, 9.5.05

(1) Beweisen Sie:

Sei $n \in \mathbb{N}$. Dann ist die modulo n Relation auf \mathbb{Z}

 $a \sim b$ genau dann, wenn nteil
tb-a

eine Äquivalenzrelation.

Die Menge $\{0, \dots, n-1\}$ enthält einen Repräsentanten jeder Äquivalenzklasse.

- (2) Sei $f:A\to B$ eine Abbildung, X_1,X_2 Teilmengen von A und Y_1,Y_2 Teilmengen von B. Zeigen Sie:
 - (a) $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$
 - (b) $f^-(Y_1 \cup Y_2) = f^-(Y_1) \cup f^-(Y_2)$
 - (c) $f(X_1 \cap X_2) \subseteq f(X_1) \cap f(X_2)$
 - (d) $f^-(Y_1 \cap Y_2) = f^-(Y_1) \cap f^-(Y_2)$
- (3) Sei M eine endliche Menge und $f:M\to M$ eine Abbildung von M nach M. Zeigen Sie, dass folgende Aussagen äquivalent sind:

f ist injektiv

f ist surjektiv

f ist bijektiv.

(4) Die Abbildungen $f_i: \mathbf{N} \to \mathbf{N}, i = 1, 2$ seien wie folgt definiert:

$$f_1(n) = 3n + 2$$

$$f_2(n) = n+1, n=1,3,5,\dots$$

$$n-1, n=2,4,6,...$$

Untersuchen Sie, ob es Abbildungen $g_i : \mathbf{N} \to \mathbf{N}$ mit $g_i \circ f_i = id$ oder $h_i : \mathbf{N} \to \mathbf{N}$ mit $f_i \circ h_i = id$ gibt. Folgern Sie, ob die f_i injektiv bzw. surjektiv sind (i = 1, 2).