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We consider “carpenter’s rules”, i.e., polygonal chains where the edges are
considered as ”links” which can rotate freely around the vertices. So we can
identify a carpenter’s rule with the sequence l1, ..., lk of lengths of its links.

1 One-dimensional containers

Hopcroft, Joseph, and Whitesides [HJW85] considered the problem of fold-
ing a carpenter’s rule to a minimal length line segment. They showed that
this problem is NP-hard and gave a factor 2 approximation algorithm.

They also observed that any carpenter’s rule can be folded to length at
most two, so an interval I of length 2 can be considered as a ”universal
one-dimensional container” into which any carpenter’s rule can be folded.
In fact, if any initial segment of a carpenter’s rule γ has been folded into
I and ends at some point p ∈ I, p has distance at least 1 to one of the
endpoints of I and the next link of γ can be placed into that direction.

On the other hand, it was shown in [HJW85] that there is no universal
interval of length less than 2 (i.e. less than 2 − ε for some ε > 0). In
fact, observe the construction in Figure 1, where a carpenter’s rule γ of link
lengths 1, 1− ε, 1, 1− ε, ... is considered. In order to fold γ into an interval
of length less than 2 − ε it is necessary to completely bend back γ at each
vertex. But this causes γ to occupy an interval of length 1 + kε after 2k + 1
links have been folded. For k large enough the total length is greater than
2− ε.

Calinescu and Dumitrescu [CD05] then found an FPTAS for the problem of
finding the minimal folding of a carpenter’s rule.
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Figure 1: A carpenter’s rule not fitting into any interval of length less than
2− ε
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Figure 2: Universal boxes

2 Universal Boxes

Calinescu and Dumitrescu [CD05] then raised the question of a two-dimensional
minimum area universal box (convex compact set) of width 1 that can con-
tain any chain whose links have length at most 1.

Clearly, the circle C of diameter 1 is a universal box (of area π/4 ≈ 0.785)
since from any point on the boundary we can place any segment of length
at most 1 so that its second endpoint lies on the boundary again. For the
same reason, however, the Releaux triangle R3 of side length 1, see Figure
2b) is a universal box of area (π −

√
(3))/2 ≈ 0.704.

Also, one easily observes that a truncated version R2 of the Releaux triangle
where one circular arc is replaced by a straight segment, still has this prop-
erty and is a universal box of area π/3 −

√
3/4 ≈ 0.614. R2 was presented

in [CD05] and is the smallest universal box known so far. In [CD05] also a
lower bound of 3/8 = 0.375 for the area of any universal box is shown by
presenting a chain of length 3 that cannot be placed into any smaller box.
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3 k-universal Boxes

Let us call a convex set a k-universal box if its diameter is 1 and any car-
penter’s rule with k segments can be folded into it. Again, we can ask for
the smallest area Ak of a k-universal box for distinct values of k.

Remarks:

a) A1 = A2 = 0

b) (see [CD05]) A3 ≥ 3/8

c) No polygon is 3-universal.

To see remark c) observe that the diameter of a polygon is attained only
between two vertices. Therefore, for any given polygon the chain 1, x, 1
where x is not a distance bewteen two vertices cannot be folded into it.

3.1 A 6-universal Box

The question comes to mind whether the box R1, see Figure 3, where two
circular arcs of the Releaux triangle are replaced by straight segments is still
universal or k universal for some k. R1 has area π/6 ≈ 0.523.

In fact, we will show:

a) R1 is 6-universal, so A6 ≤ π/6 ≈ 0.523.

b) R1 is not 7-universal.

In order to prove these propositions we separate the points of R1 into four
types (see Figure 3): Type 1 are the two endpoints A,B of the circular arc,
type 2 are the points in the interior of the circular arc, type 3 is the common
point C of the two straight segments of the boundary, and type 4 are all
remaining points.

Proposition a) follows from

Claim: Any chain γ of length 3 can be placed inside R1 starting with a
point of type 1.

In fact, if the claim holds then we can place any chain of length 6 by placing
the second half of the chain from point A and also the first half in reverse
order which gives altother a placement of the whole chain.
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Figure 3: Types of points in R1

R1

A B

C

a)

R1

A B

C

b)

R1

A B

C

D

c)

Figure 4: Placing chains of length 3 starting at point A

To prove the claim (wlog for point A), let the consecutive segments of γ
have lengths a,b, and c, respectively. We consider three cases:

1.
If a + b < 1 (see Figure 4 a)) then we can place the first segment from A to
a point of type 2, the second from there to another point of type 2, and the
third one from there to some point of type 3 or 4.

2.
If a > b (see Figure 4 b)) we can go from A to a point of type 2, from there
to another point of type 2, and from there to type 3 or 4.

3.
The remaining case is that a + b ≥ 1 and a ≤ b (see Figure 4 c)). We place
the first two segments between A and C, so that their common endpoint D
lies to the right of the line segment AC. Since it also lies to the left of the
bisector of AC and inside the circle of radius 1 around C. Consequently, it
lies inside the shaded area in Figure 4c). Therefore, D and the whole first
two segments lie in R1. The third segment can be placed from point C to
some point of type 1 or 4.
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Figure 5: Possible type transitions by placing segments

In order to prove proposition b) let us call a link in a chain “black” if it has
length 1 and “red” if its length is less than 1. As easily can be verified, the
diagram in Figure 5 shows all possible transitions when placing a link.

More precisely, a black (red) arrow from i to j means that if a black (red)
link is placed with one endpoint on a point of type i then the other endpoint
could be on a point of type j. Any black-red chain that has no correspond-
ing path in the diagram cannot be folded into R1. As easily can be verified
there is no path colored “black-red-black-red-black-red-black” in the dia-
gram, therefore, e.g., the chain with lengths 1, 1/2, 1, 1/2, 1, 1/2, 1 cannot
be folded into R1.

3.2 A 4-universal Box

For chains consisting of fewer than 6 segments we consider the box R1/2
which results from R1 by replacing half of the circular arc by a straight
segment, see Figure 6. The length of this segment is α =

√
2−

√
3 ≈ 0.518.

The area of R1/2 is π/12 + 1/4 ≈ 0.512. Let A,B, C denote the vertices
and κ the circular segment as shown in Figure 6. We will show:

a) R1/2 is 4-universal, so A4 ≤ π/12 + 1/4 ≈ 0.512.

b) R1/2 is not 5-universal.

To prove the 4-universality we first observe that it is sufficient to show that
sequences of lengths 1, a, b, 1 with a, b ∈ (0, 1] can be folded into R1/2. In
fact, it must be possible to fold any such sequence, and, on the other hand,
an arbitrary sequence c, a, b, d can be folded, if the sequence 1, a, b, 1 can be.
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Figure 7: Folding 4-chains into R1/2

Then we observe that R1/2 is 3-universal. To see this we can argue as before
that it suffices to show that any sequence 1, a, 1 can be folded into R1/2. If
a ≤ α we can do this by going from C to A, from A to some point on κ and
from there back to C. If a > α, we can go from C to B to some point on κ
and back to C.

Returning to length-4 sequences 1, a, b, 1 we first observe that if a + b ≤ 1
we can reduce folding the whole sequence to folding the length-3 sequence
1, a+ b, 1 which is possible by the 3-universality of R1/2, see Figure 7a). So
we may assume that a + b > 1.

If one of the segments has length at most α, wlog a ≤ α, we put the first
segment from C to A, see Figure 7b). The endpoint of the second segment
then can be placed on the circular arc σ of radius a around A lying inside
R1/2 whose endpoints are some point on P1 ∈ κ and a point P2 on the line
segment AC. Since the distance of P1 to C is 1 and the distance of P2 to
C is 1− a < b there must be some point P on σ which has distance b to C.
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Figure 8: The 4-universal box S2

The chain then can be placed from C to A to P to C to A.

The remaining case are sequences 1, a, b, 1 with a, b > α, see Figure 7c).
Without loss of generality let us assume that a ≥ b. We place this sequence
by going from C to A, and then from A to the point P ∈ AB that has
distance a from A. Observe that the distance from P to the upper endpoint
of κ is at most α < b and to A it is a ≥ b. So there must be some point Q ∈ κ
having distance b to P and we can place the chain C → A → P → Q → C.

To see proposition b) consider the chain 1, 1/2, 1, 1/2, 1. Observe first that
the suffix 1/2, 1 cannot be placed starting from points C. So the middle
segment of length 1 must be placed between A and B. So either the sequence
1/2, 1 would have to start from B or the sequence 1, 1/2 would have to end
in B (which is equivalent). This is impossible.

3.3 A better 4-universal box

Consider the box S2 in Figure 8. Observe that the conditions that DC =
DB = AC = 1 and AB = BC do not identify the figure uniquely, there is
still one degree of freedom. However, as is shown below each such box is
4-universal. S2 is the one with smallest area which is approximately 0.485.

a) S2 is 4-universal, so A4 < 0.486.

b) S2 is not 5-universal.

Proof.

We first show that S2 is 3-universal. As we saw before it suffices to show
that any chain of lengths 1, a, 1 can be placed inside S2. If a ≤ s this can be
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Figure 9: Placing a chain 1, a, b, 1 inside S2 a) if a ≤ s b) if a > s

done by placing the middle link on the circular arc
_

BC and the outer links

between
_

BC and D. If a > s, then there is some point P on
_

BC which has
distance a from A and we can go from A to P to D.

For the 4-universality it suffices to show that chains of lengths 1, a, b, 1 can
be placed inside S2. Again we can assume that a + b > 1 since otherwise,
because of the 3-universality of S2 we can place the chain by keeping the
two middle links stretched. We will also assume wlog that a ≤ b.

If a ≤ s (see Figure 9 a)) the circle c1 around C of radius a intersects the

arc
_

BC at some point P which has distance 1(≥ b) from D. On the other
hand c1 intersects the line segment DC in a point Q that has, because of
a+b > 1, distance < b from D. Consequently the circle c2 of radius b around
D must intersect c1 in some point R between P and Q, i.e., inside S2. The
chain can then be placed with its vertices at, say, A,C, R,D,B.

If b ≥ a > s (see Figure 9 b)) the circle c1 of radius a around A intersects
_

BC in some point P and DC in some point Q. Since the bisector between
A and D passes through C, Q is closer to D than to A, i.e., the distance
of D to Q is < a ≤ b. Therefore, the circle c2 of radius b around D must
intersect c1 in some point R between P and Q, i.e., inside S2. The chain
can then be placed with its vertices at, say, C,A, R,D,B.

To see that S2 is not 5-universal, consider any chain 1, a, 1, b, 1 with s <
a, b < 1. The segments of length 1 can only be placed between two points

from A,D or on
_

BC, let us call them width points. Therefore all vertices of
the chain must be placed on width points. The only width points of distance

a with s < a < 1 can be A and some interior point of
_

BC. Therefore, the
only way to place the prefix 1, a, 1 is between C and D. Since from neither
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one a width point lies at distance b, the chain cannot be placed.

4 Open Problems

• Find a 5-universal box smaller than R1.

• Find a 3-universal box smaller than S2 trying to get closer to the lower
bound. For 3-universality there are small improvements of S2 possible
(maybe for 4-universality, as well).

• Find better lower bounds for 4-universal, 5-universal, 6-universal and
universal boxes. The bound 3/8 is based on one single 3-chain.

• Find an algorithm to find a minimum area box for a given chain
l1, ..., lk. It seems it is possible by solving exponentially many quadratic
programs. Is the 2-d problem also NP-hard?
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