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Abstract

Let S be a planar n-point set. A triangulation for S is a maximal plane straight-
line graph with vertex set S. The Voronoi diagram for S is the subdivision of
the plane into cells such that all points in a cell have the same nearest neighbor
in S. Classically, both structures can be computed in O(n log n) time and O(n)
space. We study the situation when the available workspace is limited: given a
parameter s ∈ {1, . . . , n}, an s-workspace algorithm has read-only access to an
input array with the points from S in arbitrary order, and it may use only O(s)
additional words of Θ(log n) bits for reading and writing intermediate data.
The output should then be written to a write-only structure. We describe a
deterministic s-workspace algorithm for computing an arbitrary triangulation
of S in time O(n2/s+n log n log s) and a randomized s-workspace algorithm for
finding the Voronoi diagram of S in expected time O((n2/s) log s+n log s log∗ s).

1. Introduction

Since the early days of computer science, a major concern has been to cope
with strong memory constraints. This started in the ’70s [22] when memory
was expensive. Nowadays, a major motivation comes from a proliferation of
small embedded devices where large memory is neither feasible nor desirable
(e.g., due to constraints on budget, power, size, or simply to make the device
less attractive to thieves).

Even when memory size is not an issue, we might want to limit the num-
ber of write operations: one can read flash memory quickly, but writing (or
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even reordering) data is slow and may reduce the lifetime of the storage sys-
tem; write-access to removable memory may be limited for technical or security
reasons (e.g., when using read-only media such as DVDs or to prevent leaking
information about the algorithm). Similar problems occur when concurrent al-
gorithms access data simultaneously. A natural way to address this is to consider
algorithms that do not modify the input.

The exact setting may vary, but there is a common theme: the input resides
in read-only memory, the output must be written to a write-only structure, and
we can use O(s) additional variables to find the solution (for a parameter s).
The goal is to design algorithms whose running time decreases as s grows, giving
a time-space trade-off [23]. One of the first problems considered in this model
is sorting [19, 20]. Here, the time-space product is known to be Ω(n2) [8], and
matching upper bounds for the case b ∈ Ω(log n) ∩ O(n/ log n) were obtained
by Pagter and Rauhe [21] (b denotes the available workspace in bits).

Our current notion of memory constrained algorithms was introduced to
computational geometry by Asano et al. [4], who showed how to compute many
classic geometric structures with O(1) workspace (related models were studied
before [9]). Later, time-space trade-offs were given for problems on simple poly-
gons, e.g., shortest paths [1], visibility [6], or the convex hull of the vertices [5].

We consider a model in which the set S of n points is in an array such
that random access to each input point is possible, but we may not change or
even reorder the input. Additionally, we have O(s) variables (for a parame-
ter s ∈ {1, . . . , n}). We assume that each variable or pointer contains a data
word of Θ(log n) bits. Other than this, the model allows the usual word RAM
operations. In this setting we study two problems: computing an arbitrary tri-
angulation for S and computing the Voronoi diagram VD(S) for S. Since the
output cannot be stored explicitly, the goal is to report the edges of the trian-
gulation or the vertices of VD(S) successively, in no particular order. Dually,
the latter goal may be phrased in terms of Delaunay triangulations. We focus
on Voronoi diagrams, as they lead to a more natural presentation.

Both problems can be solved in O(n2) time with O(1) workspace [4] or in
O(n log n) time with O(n) workspace [7]. However, to the best of our knowledge,
no trade-offs were known before. Our triangulation algorithm achieves a running
time of O(n2/s+n log n log s) using O(s) variables. A key ingredient is the recent
time-space trade-off by Asano and Kirkpatrick for triangulating a special type of
simple polygons [3]. This also lets us obtain significantly better running times for
the case that the input is sorted in x-order; see Section 2. For Voronoi diagrams,
we use random sampling to find the result in expected time O((n2 log s)/s +
n log s log∗ s)); see Section 3. Together with recent work of Har-Peled [16], this
appears to be one of the first uses of random sampling to obtain space-time
trade-offs for geometric algorithms. The sorting lower bounds also apply to
triangulations and Voronoi diagrams (since we can reduce the former to the
latter). This implies that our second algorithm is almost optimal.
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2. A Time-Space Trade-Off for General Triangulations

In this section we describe an algorithm that outputs the edges of a trian-
gulation for a given point set S in arbitrary order. For ease in the presentation
we first assume that S is presented in sorted order. In this case, a time-space
trade-off follows quite readily from known results. We then show how to gener-
alize this for arbitrary inputs, which requires a careful adaptation of the existing
data structures.

2.1. Sorted Input
Suppose the input points S = {q1, . . . , qn} are stored in increasing order of

x-coordinate and that all x-coordinates are distinct, i.e., xi < xi+1 for 1 ≤ i < n,
where xi denotes the x-coordinate of qi.

A crucial ingredient in our algorithm is a recent result by Asano and Kirk-
patrick for triangulating monotone mountains2 (or mountains for short). A
mountain is a simple polygon with vertex sequence v1, v2, . . . , vk such that the
x-coordinates of the vertices increase monotonically. The edge v1vk is called the
base. Mountains can be triangulated very efficiently with bounded workspace.

Theorem 2.1 (Lemma 3 in [3], rephrased). Let H be a mountain with n ver-
tices, stored in sorted x-order in read-only memory. Let s ∈ {2, . . . , n}. We
can report the edges of a triangulation of H in O(n logs n) time and using O(s)
words of space.

Since S is given in x-order, the edges qiqi+1, for 1 ≤ i < n, form a monotone
simple polygonal chain. Let Part(S) be the subdivision obtained by the union
of this chain with the edges of the convex hull of S (denoted by conv(S)). A
convex hull edge is long if the difference between its indices is at least two (i.e.,
the endpoints are not consecutive). The following lemma (illustrated in Fig. 1)
lets us decompose the problem into smaller pieces.

Figure 1: Any face of Part(S) is a mountain that is uniquely associated with a long convex
hull edge.

2Also known as unimonotone polygons [15].
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Lemma 2.2. Any bounded face of Part(S) is a mountain whose base is a long
convex hull edge. Moreover, no point of S lies in more than four faces of Part(S).

Proof. Any point qi ∈ S has at most four neighbors in Part(S): qi−1, qi+1, its
predecessor and its successor along the convex hull (if qi lies on conv(S)). Thus,
no point of S belongs to more than four faces of Part(S).

Next we show that every face F of Part(S) is a mountain with a long convex-
hull edge as its base. The boundary of F contains at least one long convex-hull
edge e = (qi, qj) (i < j), as other edges connect only consecutive vertices.
Since the monotone path qi, . . . , qj forms a cycle with the edge e and since the
boundary of F is a simple polygon, we conclude that e is the only long convex-
hull edge bounding F . Recall that e is a convex hull edge, and thus all points
qi+1, . . . , qj−1 lie on one side of e and form a monotone chain (and in particular
F is a mountain with base e).

The algorithm for sorted input is now very simple. We compute the edges
of the convex hull (starting from the leftmost point and proceeding in clockwise
order). Whenever a long edge would be reported, we pause the convex hull
algorithm, and we triangulate the corresponding mountain. Once the mountain
has been triangulated, we resume with the convex hull algorithm until all convex
hull edges have been computed. The trade-off now follows from already existing
trade-offs in the various subroutines.

Theorem 2.3. Let S be a set of n points, sorted in x-order. We can re-
port the edges of a triangulation of S in O(n2) time using O(1) variables, in
O(n2 log n/2s) time using O(s) variables (for any s ∈ Ω(log log n) ∩ o(log n)),
and in O(n logp n) time using O(p logp n) variables (for any 2 ≤ p ≤ n).
Proof. Correctness follows from Lemma 2.2, so we focus on the performance
analysis. The main steps are: (i) computing the convex hull of a point set given
in x-order; and (ii) triangulating a mountain.

By Theorem 2.1, we can triangulate a mountain Fi with ni vertices in
time O(ni logs ni) with O(s) variables. We do not need to store Fi explicitly,
since its vertices constitute a consecutive subsequence of S and can be speci-
fied by the two endpoints of the base. No vertex appears in more than four
mountains by Lemma 2.2, so the total time for triangulating the mountains is∑
iO(ni logs ni) = O(n logs n). By reusing space, we can ensure that the total

space requirement is O(s).
Now we bound the time for computing conv(S). This algorithm is paused

to triangulate mountains, but overall it is executed only once. There are several
convex hull algorithms for sorted point sets under memory constraints. If s ∈
Θ(1), we can use gift-wrapping (Jarvis march [17]), which runs in O(n2) time.
Barba et al. [5] provided a different algorithm that runs in O(n2 log n/2s) time
using O(s) variables (for any s ∈ o(log n)).3 This approach is desirable for s ∈
Ω(log log n)∩o(log n). As soon as s = Ω(log n), we can use the approach of Chan

3In fact, Barba et al. show how to compute the convex hull of a simple polygon, but also
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and Chen [10]. This algorithm runs in O(n logp n) time and uses O(p logp n)
variables, for any 2 ≤ p ≤ n. Regardless of the size of the workspace, the time
for computing the convex hull dominates the time needed for triangulating all
mountains.

A similar approach is unlikely to work for the Delaunay triangulation, since
knowing the x-order of the input does not help in computing it [14].

2.2. General Input
The algorithm from Section 2.1 uses the sorted order in two ways. Firstly,

the convex-hull algorithms of Barba et al. [5] and of Chan and Chen [10] work
only for simple polygons (e.g., for sorted input). Instead, we use the algorithm
by Darwish and Elmasry [13] that gives the upper (or lower) convex hull of
any sequence of n points in O(n2/(s log n) + n log n) time with O(s) variables4,
matching known lower bounds. Secondly, and more importantly, the Asano-
Kirkpatrick (AK) algorithm for triangulating a mountain requires the input to
be sorted. To address this issue, we simulate sorted input using multiple heap
structures. This requires a close examination of how the AK-algorithm accesses
its input.

Let F be a mountain with n vertices. Let F ↑ and F ↓ denote the vertices of
F in ascending and in descending x-order. The AK-algorithm has two phases,
one focused on F ↑ and the other one on F ↓.5 Each pass computes a portion
of the triangulation edges, uses O(s) variables, and scans the input Θ(logs n)
times. We focus on the approach for F ↑.

As mentioned, the algorithm uses Θ(logs n) rounds. In round i, it partitions
F into blocks of O(|F |/si) consecutive points that are processed from left to
right. Each block is further subdivided into O(s) sub-blocks b1, . . . , bk of size
O(|F |/si+1). The algorithm does two scans over the sub-blocks. The first
scan processes the elements from left to right. Whenever the first scan finishes
reading a sub-block bi, the algorithm makes bi active and creates a pointer li
to the rightmost element of bi. The second scan goes from right to left and
is concurrent to the first scan. In each step, it reads the element at li in the
rightmost active sub-block bi, and it decreases li by one. If li leaves bi, then bi
becomes inactive. As the first scan creates new active sub-blocks as it proceeds,
the second scan may jump between sub-blocks. The interested reader may find
a more detailed description in Appendix A.

To provide the input for the AK-algorithm, we need the heap by Asano et
al. [2]. For completeness, we briefly restate its properties here.

show that both problems are equivalent. The monotone chain can be completed to a polygon
by adding a vertex with a very high or low y-coordinate.

4Darwish and Elmasry [13] state a running time of O(n2/s + n logn), but they measure
workspace in bits, while we use words.

5AK reduce triangulation to the next smaller right neighbor (NSR) and the next smaller
left neighbor (NSL) problem and present an algorithm for NSR if the input is in x-order. This
implies an NSL-algorithm by reading the input in reverse.
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Lemma 2.4 ([2]). Let S be a set of n points. There is a heap that supports
insert and extract-min (resp. extract-max) in O

(
(n/(s log n) + log s)D(n)) time

using O(s) variables, where D(n) is the time to decide whether a given element
currently resides in the heap (is alive).6

Proof. We first describe the data structure. Then we discuss how to perform
insertions and extract-min operations.

We partition the input into s log n consecutive buckets of equal size, and we
build a complete binary tree T over the buckets. Let v be a node of T with
height h. Then, there are 2h buckets below v in T . We store 2h information
bits in v to specify the minimum alive element below v. The first h bits identify
the bucket containing the minimum. We further divide this bucket into 2h

consecutive parts of equal size, called quantiles. The second h bits in v specify
the quantile containing the minimum. If 2h > log n, we use log n bits to specify
the minimum directly. Hence, the total number of bits is bounded by

log(s logn)∑
h=0

s log n

2h
min{2h, log n} = O(s log n).

Therefore we need O(s) variables in total.
Let v be a node with height h. To find the minimum alive element in T

below v, we use the 2h information bits stored in v. First, we identify the
bucket containing the minimum and the correct quantile within this bucket.
This quantile contains O

(
n

2hs logn

)
elements. For each element in the quantile,

we decide in D(n) time whether it is alive, and we return the minimum such
element. This takes O

(
n

2hs logn
D(n)

)
time in total.

insert: Assume we want to insert an element x that is at position i in the input
array. Let v be the parent of the leaf of T corresponding to the bucket
that contains x. We update the information bits at each node u on the
root path starting at v. To do so, we use the information bits in u to find
the minimum element in the buckets covered by u, as described above.
Then we compare it with x. If x is larger, we are done and we stop the
insertion. Otherwise, we update the information bits at u to the bucket
and quantile that contain x. If we reach and update the root node, we
also update the pointer that points to the minimum element in the heap.
The work per node is dominated by the costs for finding the minimum,
which is O

(
n

2hs logn
D(n)

)
. Thus, the total cost for insertion is bounded

by
log(s logn)∑

h=0

n

2hs log n
D(n) = O

( n

s log n
D(n)

)
.

6The bounds in [2] do not include the factor D(n) since the authors studied a setting
similar to Lemma 2.5 where it takes O(1) time to decide whether an element is alive.
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extract-min: First we use the pointer to the minimum alive element to deter-
mine the element x to return. Then we use a similar update strategy as
for insertions. Let v be the leaf node corresponding to the bucket of x.
We first update the information bits of v by scanning through the whole
bucket of v and determining the smallest alive element. Since a bucket
contains O(n/s log n) elements, this needs time O(n/(s log n)D(n)). Then
we update the information bits of each node u on the path for v as fol-
lows: let v1 and v2 be the two children of u. We determine the minimum
alive element in the buckets covered by v1 and v2, take the smaller one,
and use it to update the information bits at u. Once we reach the root,
we also update the pointer to the minimum element of the heap to the
new minimum element of the root. The total time again is bounded by
O
(

n
s lognD(n)

)
.

Lemma 2.5 ([2]). Let S be a set of n points. We can build a heap with all
elements in S in O(n) time that supports extract-min in O

(
n/(s log n) + log n)

time using O(s) variables.

Proof. The construction time is given in [2]. To decide in O(1) time if some x ∈
S is alive, we store the last extracted minimum m and test whether x > m.

We now present the complete algorithm. We show how to subdivide S into
mountains Fi and how to run the AK-algorithm on each F ↑i . By reversing the
order, the same discussion applies to F ↓i . Sorted input is emulated by two heaps
H1, H2 for S according to x-order. By Lemma 2.5, each heap uses O(s) space,
can be constructed in O(n) time, and supports extract-min in O(n/(s log n) +
log n) worst-case time. We will useH1 to determine the size of the next mountain
Fi and H2 to process the points of Fi.

We execute the convex hull algorithm with Θ(s) space until it reports the
next convex hull edge pq. Throughout the execution of the algorithm, heaps H1

and H2 contain exactly the points to the right of p. We repeatedly extract the
minimum of H1 until q becomes the minimum element. Let k be the number of
removed points.

If k = 1, then pq is short. We extract the minimum of H2, and we continue
with the convex hull algorithm. If k ≥ 2, then Lemma 2.2 shows that pq is
the base of a mountain F that consists of all points between p and q. These
are exactly the k + 1 smallest elements in H2 (including p and q). If k ≤ s, we
extract them fromH2, and we triangulate F in memory. If k > s, we execute the
AK-algorithm on F using O(s) variables. At the beginning of the ith round, we
create a copy H(i) of H2, i.e., we duplicate the O(s) variables that determine the
state of H2. Further, we create an empty max-heap H(ii) using O(s) variables to
provide input for the second scan. To be able to reread a sub-block, we create a
further copy H ′(i) of H2. Whenever the AK-algorithm requests the next point in
the first scan, we simply extract the minimum of H(i). When a sub-block is fully
read, we use H ′(i) to reread the elements and insert them into H(ii). Now, the
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rightmost element of all active sub-blocks corresponds exactly to the maximum
of H(ii). One step in the second scan is equivalent to an extract-max on H(ii).

At the end of a round, we delete H(i), H ′(i), and H(ii), so that the space can
be reused in the next round. Once the AK-algorithm finishes, we repeatedly
extract the minimum of H2 until we reach q.

Theorem 2.6. We can report the edges of a triangulation of a set S of n points
in time O(n2/s+ n log n log s) using O(s) additional variables.

Proof. Similarly as before, correctness directly follows from Lemma 2.2 and the
correctness of the AK-algorithm. The bound on the space usage is immediate.

Computing the convex hull now needs O(n2/(s log n) + n log n) time [13].
By Lemma 2.5, the heaps H1 and H2 can be constructed in O(n) time. Dur-
ing execution, we perform n extract-min operations on each heap, requiring
O(n2/(s log n) + n log n) time in total.

Let Fj be a mountain with nj vertices that is discovered by the convex hull
algorithm. If nj ≤ s, then Fj is triangulated in memory in O(nj) time, and
the total time for such mountains is O(n). If nj > s, then the AK-algorithm
runs in O(nj logs nj) time. We must also account for providing the input for
the algorithm. For this, consider some round i ≥ 1. We copy H2 to H(i) in O(s)
time. This time can be charged to the first scan, since nj > s. Furthermore,
we perform nj extract-min operations on H(i). Hence the total time to provide
input for the first scan is O(njn/(s log n) + nj log n).

For the second scan, we create another copy H ′(i) of H2. Again, the time for
this can be charged to the scan. Also, we perform nj extract-min operations on
H ′(i) which takes O(njn/(s log n) + nj log n) time. Additionally, we insert each
fully-read block into H(ii). The main problem is to determine if an element in
H(ii) is alive: there are at most O(s) active sub-blocks. For each active sub-block
bi, we know the first element yi and the element zi that li points to. An element
is alive if and only if it is in the interval [yi, zi] for some active bi. This can be
checked in O(log s) time. Thus, by Lemma 2.4, each insert and extract-max on
H(ii) takes O

(
(n/(s log n)+log s) log s) time. Since each element is inserted once,

the total time to provide input to the second scan is O(nj log(s)(n/(s log n) +
log s)). This dominates the time for the first scan. There are O(logs nj) rounds,
so we can triangulate Fj in time O

(
nj logs nj + nj log(nj)

(
n/(s log n) + log s

))
.

Summing over all Fj , the total time is O(n2/s+ n log n log s).

3. Voronoi Diagrams

Given a planar n-point set S, we would like to find the vertices of VD(S).
Let K = {p1, p2, p3} be a triangle with S ∩ K = ∅, S ⊆ conv(K), and so
that all vertices of VD(S) are vertices of VD(S ∪ K). For example, we can
set K = {(−κ,−κ), (−κ, κ), (0, κ)} for some large κ > 0. Since the desired
properties hold for all large enough κ, we do not need to find an explicit value
for it. Instead, whenever we want to evaluate a predicate involving points from
K, we can take the result obtained for κ→∞.
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Our algorithm relies on random sampling. First, we show how to take a
random sample from S with small workspace. One of many possible approaches
is the following one that ensures a worst-case guarantee:

Lemma 3.1. We can sample a uniform random subset R ⊆ S of size s in time
O(n+ s log s) and space O(s).

Proof. The sampling algorithm consists of two phases. In the first phase, we
sample a random sequence I of s distinct numbers from [n].7 The phase proceeds
in s rounds. At the beginning of round k, for k = 1, . . . , s, we have already
sampled a sequence I of k − 1 numbers from [n], and we would like to pick an
element from [n] \ I uniformly at random. We store I in a binary search tree T .
We maintain the invariant that T stores with each element x ∈ [n− k+ 1]∩ I a
replacement ρx ∈ {n−k+ 2, . . . , n}\ I such that [n]\ I = ([n−k+ 1]\ I)∪{ρx |
x ∈ [n − k + 1] ∩ I}, see Figure 2. In round k, we sample a random number x

1 n− k + 1 n

Figure 2: Sampling a random sequence I from [n]. At the beginning of round k, we have
already sampled k − 1 elements (shown in gray). Each element x ∈ [n − k + 1] ∩ I has a
replacement ρx ∈ {n − k + 2, . . . , n} \ I (indicated by the arrows). In round k, we pick a
random number x ∈ [n− k+1]. If x is already contained in I, we add ρx to I. Otherwise, we
add x.

from [n− k + 1], and we check in T whether x ∈ I. If not, we add x to I (and
T ), otherwise, we add ρx to I (and T ). By the invariant, we add a uniform
random element from [n] \ I to I.

It remains to update the replacements, see Figure 3. If x = n− k+ 1, we do
not need a replacement for x. Now suppose x < n−k+1. If n−k+1 6∈ I, we set
ρx = n− k+ 1. Otherwise, we set ρx = ρn−k+1. This ensures that the invariant
holds at the beginning of round k + 1, and it takes O(log s) time and O(s)
space. We continue for s rounds. At the end of the first phase, any sequence of
s distinct numbers in [n] is sampled with equal probability. Furthermore, the
phase takes O(s log s) time and O(s) space.

In the second phase, we scan through S to obtain the elements whose po-
sitions correspond to the numbers in I. This requires O(n) time and O(s)
space.

We use Lemma 3.1 to find a random sample R ⊆ S of size s. We compute
VD(R∪K), triangulate the bounded cells and construct a planar point location
structure for the triangulation. This takes O(s log s) time and O(s) space [18].
By our choice of K, all Voronoi cells for points in R are bounded, and every

7We write [n] for the set {1, . . . , n}.
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1 n− k + 1 n

1 n− k + 1 n

1 n− k n

1 n− k + 1 n

1 n− k n 1 n− k n

x x

x

Figure 3: Finding a replacement for x. If x = n− k + 1, we do not need a replacement for x
in the next round (top left). If n− k + 1 is not sampled yet, we can make it the replacement
for x (top right). Otherwise, we make the old replacement for n− k+ 1 the new replacement
for x (bottom).

point in S lies in a bounded Voronoi cell. Given a vertex v ∈ VD(R ∪K), the
conflict circle of v is the largest circle with center v and no point from R ∪K
in its interior. The conflict set Bv of v contains all points from S that lie in the
conflict circle of v, and the conflict size bv of v is |Bv|. We scan through S to
find the conflict size bv for each vertex v ∈ VD(R ∪K): every Voronoi vertex
has a counter that is initially 0. For each p ∈ S \ (R ∪ K), we use the point
location structure to find the triangle ∆ of VD(R ∪ K) that contains it. At
least one vertex v of ∆ is in conflict with p. Starting from v, we walk along the
edges of VD(R ∪K) to find all Voronoi vertices in conflict with p (recall that
these vertices induce a connected component in VD(R∪K)). We increment the
counters of all these vertices. This may take a long time in the worst case, so
we impose an upper bound on the total work. For this, we choose a threshold
M . When the sum of the conflict counters exceeds M , we start over with a
new sample R. The total time for one attempt is O(n log s+M), and below we
prove that for M = Θ(n), the success probability is at least 3/4. Next, we pick
another threshold T , and we compute for each vertex v of VD(R∪K) the excess
tv = bvs/n. The excess measures how far the vertex deviates from the desired
conflict size n/s. We check if

∑
v∈VD(R∪K) tv log tv ≤ T . If not, we start over

with a new sample. Below, we prove that for T = Θ(s), the success probability
is at least 3/4. The total success probability is 1/2, and the expected number of
attempts is 2. Thus, in expected time O(n log s+ s log s), we can find a sample
R ⊆ S with

∑
v∈VD(R∪K) bv = O(n) and

∑
v∈VD(R∪K) tv log tv = O(s).
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We now analyze the success probabilities, using the classic Clarkson-Shor
method [12]. We begin with a variant of the Chazelle-Friedman bound [11].

Lemma 3.2. Let X be a planar point set of size m, and let Y ⊂ R2 with |Y | ≤ 3
and X ∩ Y = ∅. For fixed p ∈ (0, 1], let R ⊆ X be a random subset of size pm
and let R′ ⊆ X be a random subset of size p′m, for p′ = p/2. Suppose that
p′m ≥ 4. Fix u ⊂ X ∪ Y with |u| = 3, and let vu be the Voronoi vertex defined
by u. Let bu be the number of points from X ∪ Y in the interior of the circle
with center vu and with the points from u on the boundary. Then,

Pr[vu ∈ VD(R ∪ Y )] ≤ 64e−pbu/2 Pr[vu ∈ VD(R′ ∪ Y )].

Proof. Let σ = Pr[vu ∈ VD(R∪Y )] and σ′ = Pr[vu ∈ VD(R′ ∪Y )]. The vertex
vu is in VD(R ∪ Y ) precisely if u ⊆ R ∪ Y and Bu ∩ (R ∪ Y ) = ∅, where Bu

are the points from X ∪ Y inside the circle with center vu and with the points
from u on the boundary. If Bu ∩Y 6= ∅, then σ = σ′ = 0, and the lemma holds.
Thus, assume that Bu ⊆ X. Let du = |u ∩X|, the number of points in u from
X. There are

(
m−bu−du
pm−du

)
ways to choose a pm-subset from X that avoids all

points in Bu and contains all points of u ∩X, so

σ =

(
m− bu − du
pm− du

)/(
m

pm

)
=

∏pm−du−1
j=0 (m− bu − du − j)∏pm−du−1
j=0 (pm− du − j)

/ ∏pm−1
j=0 (m− j)∏pm−1
j=0 (pm− j)

=

du−1∏
j=0

pm− j
m− j ·

pm−du−1∏
j=0

m− bu − du − j
m− du − j

≤ pdu
pm−du−1∏

j=0

(
1− bu

m− du − j

)
.

Similarly, we get

σ′ =

du−1∏
i=0

p′m− i
m− i

p′m−du−1∏
j=0

(
1− bu

m− du − j

)
,

and since p′m ≥ 4 and i ≤ 2, it follows that

σ′ ≥
(
p′

2

)du p′m−du−1∏
j=0

(
1− bu

m− du − j

)
.

Therefore, since p′ = p/2,

σ

σ′
≤
(

2p

p′

)du pm−du−1∏
j=p′m−du

(
1− bu

m− du − j

)
≤ 64

(
1− bu

m

)pm/2
≤ 64 e−pbu/2.
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We can now bound the total expected conflict size.

Lemma 3.3. We have E
[∑

v∈VD(R∪K) bv

]
= O(n).

Proof. By expanding the expectation, we get

E

 ∑
v∈VD(R∪K)

bv

 =
∑

u⊂S∪K,|u|=3

Pr[vu ∈ VD(R ∪K)]bu,

with vu being the Voronoi vertex of u and bu its conflict size. By Lemma 3.2
with X = S, Y = K and p = s/n, this is

≤
∑

u⊂S∪K,|u|=3

64e−pbu/2 Pr[vu ∈ VD(R′ ∪K)]bu,

where R′ ⊆ S is a sample of size s/2. We bound this as

≤
∞∑
i=0

∑
u⊂S∪K,|u|=3

bu∈[ i
p ,

i+1
p )

64e−i/2(i+ 1)

p
Pr[vu ∈ VD(R′ ∪K)]

≤ 1

p

∑
u⊂S∪K,|u|=3

Pr[vu ∈ VD(R′ ∪K)]

∞∑
i=0

64e−i/2(i+ 1)

= O(s/p) = O(n),

since
∑

u⊂S∪K,|u|=3 Pr[vu ∈ VD(R′ ∪K)] = O(s) is the size of VD(R′ ∪K) and∑∞
i=0 e

−i/2(i+ 1) = O(1).

By Lemma 3.3 and Markov’s inequality, it follows that there is anM = Θ(n)
with Pr[

∑
v∈VD(R∪K) bv > M ] ≤ 1/4.

Lemma 3.4. E
[∑

v∈VD(R∪K) tv log tv

]
= O(s).

Proof. By Lemma 3.2 with X = S, Y = K, and p = s/n,

E

 ∑
v∈VD(R∪K)

tv log tv

 =
∑

u⊂S∪K,|u|=3

Pr[vu ∈ VD(R ∪K)] tu log tu

≤
∑

u⊂S∪K,|u|=3

64e−pbu/2 Pr[vu ∈ VD(R′ ∪K)]tu log tu

≤
∞∑
i=0

∑
u⊂S∪K,|u|=3

bu∈[ i
p ,

i+1
p )

64e−
i
2 (i+ 1)2 Pr[vu ∈ VD(R′ ∪K)]

≤
∞∑
i=0

64e−
i
2 (i+ 1)2

∑
u⊂S∪K,|u|=3

Pr[vu ∈ VD(R′ ∪K)]

= O(s).
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By Markov’s inequality and Lemma 3.4, we can conclude that there is a
T = Θ(s) with Pr[

∑
v∈VD(R∪K) tv log tv ≥ T ] ≤ 1/4. This finishes the first

sampling phase.
The next goal is to sample for each vertex v with tv ≥ 2 a random subset

Rv ⊆ Bv of size min{αtv log tv, bv} for large enough α > 0 (recall that Bv is the
conflict set of v and that bv = |Bv|).

Lemma 3.5. In total time O(n log s), we can sample for each vertex v ∈ VD(R∪
K) with tv ≥ 2 a random subset Rv ⊆ Bv of size min{αtv log tv, bv}.

Proof. First, we sample for each vertex v with tv ≥ 2 a sequence Iv of αtv log tv
distinct numbers from {1, . . . , bv}. For this, we use the first phase of the algo-
rithm from the proof of Lemma 3.1 for each such vertex, but without reusing
the space. As explained in the proof of Lemma 3.1, this takes total time

O

(∑
v

(tv log tv) log(tv log tv)

)
= O

(∑
v

(tv log tv) log s

)
= O(s log s),

since
∑
v tv log tv = O(s), and in particular tv log tv = O(s) for each vertex

v (note that the constant in the O-notation is independent of v). Also, since∑
v tv log tv = O(s), the total space requirement is O(s).
After that, we scan through S. For each vertex v, we have a counter cv,

initialized to 0. For each p ∈ S, we find the conflict vertices of p, and for each
conflict vertex v, we increment cv. If cv appears in the corresponding set Iv, we
add p to Rv. The total running time is O(n log s), as we do one point location
for each input point and the total conflict size is O(n).

We next show that for a fixed vertex v ∈ VD(R ∪K), with constant proba-
bility, all vertices in VD(Rv) have conflict size n/s with respect to Bv.

Lemma 3.6. Let v ∈ VD(R ∪K) with tv ≥ 2, and let Rv ⊆ Bv be the sample
for v. The expected number of vertices v′ in VD(Rv) with at least n/s points
from Bv in their conflict circle is at most 1/4.

Proof. If Rv = Bv, the lemma holds, so assume that αtv log tv < bv. Recall that
tv = bvs/n. We have

E

[ ∑
v′∈VD(Rv)
b′
v′≥n/s

1

]
=

∑
u⊂Bv,|u|=3
b′u≥n/s

Pr[v′u ∈ VD(Rv)],
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where b′u denotes the number of points from Bv inside the circle with center v′u
and with the points from u on the boundary. Using Lemma 3.2 with X = Bv,
Y = ∅, and p = (αtv log tv)/bv = α(s/n) log tv, this is

≤
∑

u⊂Bv,|u|=3
b′u≥n/s

64e−pb
′
u/2 Pr[v′u ∈ VD(R′v)]

≤ 64e−(α/2) log tv
∑

u⊂Bv,|u|=3

Pr[v′u ∈ VD(R′v)]

= O(t−α/2v tv log tv) ≤ 1/4,

for α large enough (remember that tv ≥ 2).

Figure 4: A Voronoi Diagram of the sampled set R (left). The two red square vertices of
VD(R ∪K) are not good and we need to resample within their conflict list (the blue crosses)
and compute the new Voronoi Diagram (right).

By Lemma 3.6 and Markov’s inequality, the probability that all vertices
from VD(Rv) have at most n/s points from Bv in their conflict circles is at
least 3/4. If so, we call v good, see Figure 4. Scanning through S, we can
identify the good vertices in time O(n log s) and space O(s). Let s′ be the size
of VD(R ∪K). If we have less than s′/2 good vertices, we repeat the process.
Since the expected number of good vertices is 3s′/4, the probability that there
are at least s′/2 good vertices is at least 1/2, by Markov’s inequality. Thus, in
expectation, we need to perform the sampling twice. For the remaining vertices,
we repeat the process, but now we take two samples per vertex, decreasing the
failure probability to 1/4. We repeat the process, taking in each round the
maximum number of samples that fit into the work space. In general, if we have
s′/ai active vertices in round i, we can take ai samples per vertex, resulting in
a failure probability of 2−ai . Thus, the expected number of active vertices in
round i+1 is s′/ai+1 = s′/(ai2

ai). After O(log∗ s) rounds, all vertices are good.
To summarize:

Lemma 3.7. In total expected time O(n log s log∗ s) and space O(s), we can
find sets R ⊆ S and Rv ⊂ Bv for each vertex v ∈ VD(R ∪ K) such that (i)
|R| = s: (ii)

∑
v∈VD(R∪K) |Rv| = O(s); and (iii) for every Rv, all vertices of

VD(Rv) have at most n/s points from Bv in their conflict circle.

14



We set R2 = R ∪ ⋃v∈VD(R∪K)Rv. By Lemma 3.7, |R2| = O(s). We com-
pute VD(R2 ∪ K) and triangulate its bounded cells. For a triangle ∆ of the
triangulation, let r ∈ R2 ∪ K be the site whose cell contains ∆, and v1, v2, v3

the vertices of ∆. We set B∆ = {r}∪⋃3
i=1Bvi . Using the next lemma, we show

that |B∆| = O(n/s).

Lemma 3.8. Let S ⊂ R2 and ∆ = {v1, v2, v3} a triangle in the triangulation
of VD(S). Let x ∈ ∆. Then any circle C with center x that contains no points
from S is covered by the conflict circles of v1, v2 and v3.

Proof. Let p ∈ C and let r ∈ S be the site whose cell contains ∆. We show that
p is contained in the conflict circle of v1, v2, or v3. Consider the bisector B of p
and r. Since C contains p but not r, we have d(x, p) < d(x, r), so x lies on the
same side of B as p. Since x ∈ ∆, at least one of v1, v2, v3, is on the same side
of B as p; say v1. This means that d(v1, p) < d(v1, r), so p lies inside the circle
around v1 with r on the boundary. This is precisely the conflict circle of v1.

Lemma 3.9. Any triangle ∆ in the triangulation of VD(R2 ∪K) has |B∆| =
O(n/s).

Proof. Let v be a vertex of ∆. We show that bv = O(n/s). Let ∆R = {v1, v2, v3}
be the triangle in the triangulation of VD(R) that contains v. By Lemma 3.8,
we have Bv ⊆

⋃3
i=1Bvi . We consider the intersections Bv ∩Bvi , for i = 1, 2, 3.

If tvi < 2, then bvi = O(n/s) and |Bv∩Bvi | = O(n/s). Otherwise, we have sam-
pled a set Rvi for vi. Let ∆i = {w1, w2, w3} be the triangle in the triangulation
of VD(Rvi) that contains v. Again, by Lemma 3.8, we have Bv ⊆

⋃3
j=1Bwj

and thus also Bv ∩ Bvi ⊆
⋃3
j=1Bwj ∩ Bvi . However, by construction of Rvi ,

|Bwj
∩ Bvi | is at most n/s for j = 1, 2, 3. Hence, |Bv ∩ Bvi | = O(n/s) and

bv = O(n/s).

The following lemma enables us to compute the Voronoi diagram of R2 ∪K
locally for each triangle ∆ in the triangulation of VD(R2∪K) by only considering
sites in B∆. It is a direct consequence of Lemma 3.8.

Lemma 3.10. For every triangle ∆ in the triangulation of VD(R2 ∪ K), we
have VD(S ∪K) ∩∆ = VD(B∆) ∩∆.

Theorem 3.11. Let S be a planar n-point set. In expected time O((n2/s) log s+
n log s log∗ s) and space O(s), we can compute all Voronoi vertices of S.

Proof. We compute a set R2 as above. This takes O(n log s log∗ s) time and
space O(s). We triangulate the bounded cells of VD(R2 ∪ K) and compute
a point location structure for the result. Since there are O(s) triangles, we
can store the resulting triangulation in the workspace. Now, the goal is to
compute simultaneously for all triangles ∆ the Voronoi diagram VD(B∆) and
to output all Voronoi vertices that lie in ∆ and are defined by points from S.
By Lemma 3.10, this gives all Voronoi vertices of VD(S).

Given a planarm-point set X, the algorithm by Asano et al. finds all vertices
of VD(X) in O(m) scans over the input, with constant workspace [4]. We can
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perform a simultaneous scan for all sets B∆ by determining for each point in S
all sets B∆ that contain it. This takes total time O(n log s), since we need one
point location for each p ∈ S and since the total size of the B∆’s is O(n). We
need O(max∆ |B∆|) = O(n/s) such scans, so the second part of the algorithm
needs O((n2/s) log s) time.

As mentioned in the introduction, Theorem 3.11 also lets us report all edges
of the Delaunay triangulation of S in the same time bound: by duality, the
three sites that define a vertex of VD(S) also define a triangle for the Delaunay
triangulation. Thus, whenever we discover a vertex of VD(S), we can instead
output the corresponding Delaunay edges, while using a consistent tie-breaking
rule to make sure that every edge is reported only once.
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Appendix A. The Asano-Kirkpatrick Algorithm

We give more details on the algorithm of Asano and Kirkpatrick [3]. Let F be
a mountain with vertices q1, . . . , qn sorted in x-order and base q1qn. We define
the height h(qi) of qi, i = 1, . . . , n, as the distance from qi to the line through
the base. Let A = (q1, . . . , qn) be the input array. A vertex qr is the nearest-
smaller-right-neighbor (NSR) of a vertex ql if (i) l < r; (ii) h(ql) > h(qr); and
(iii) h(ql) ≤ h(qk) for l < k < r. We call (ql, qr) a NSR-pair, with left endpoint
ql and right endpoint qr. Nearest-smaller-left-neighbors (NSL) and NSL-pairs
are defined similarly. Let R be the set of all NSR-pairs and L be the set of all
NSL pairs. Asano and Kirkpatrick show that the edges R ∪ L triangulate F .
We describe the algorithm for computing R. The algorithm for L is the same,
but it reads the input in reverse.

Let s denote the space parameter. The algorithm runs in logs n rounds. In
round i, i = 0, . . . , logs n − 1, we partition A into si consecutive blocks of size
n/si. Each block B is further partitioned into s consecutive sub-blocks b1, . . . , bs
of size n/si+1. In each round, we compute only NSR-pairs with endpoints in
different sub-blocks of the same block. We handle each block B individually as
follows. The sub-blocks of B are visited from left to right. When we visit a
sub-block bj , we compute all NSR-pairs with a right endpoint in bj and a left
endpoint in the sub-blocks b1, . . . , bj−1. Initially, we visit the first sub-block
b1 and we push a pointer to the rightmost element in b1 onto a stack S. We
call a sub-block with a pointer in S active. Assume now that we have already
visited sub-blocks b1, . . . , bj−1. Let l be the topmost pointer in S, referring to an
element ql in bj′ , j′ < j. Furthermore, let r be a pointer to the leftmost element
qr in bj . If h(ql) > h(qr), we output (ql, qr) and we decrement l until we find
the first element whose height is smaller than the current h(ql). If l leaves bj′ ,
this sub-block becomes inactive and we remove l from S. We continue with the
new topmost pointer as our new l. On the other hand, if h(ql) ≤ h(qr), we
increment r by one. We continue until either r leaves bj or S becomes empty.
Then we push a pointer to the rightmost element in bj onto S and proceed to
the next sub-block.

In each round, the algorithm reads the complete input once in x-order. In
addition, the algorithm reads at most once each active sub-blocks in reverse
order. Note that a sub-block becomes active only once.
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