
Approximating the Simplicial Depth

Peyman Afshani 1∗ Donald R. Sheehy 2 Yannik Stein 3†

1 MADALGO, Department of Computer Science,
Aarhus University, Denmark
peyman@madalgo.au.dk

2 University of Connecticut, USA
don.r.sheehy@gmail.com

3 Institut für Informatik, Freie Universität Berlin, Germany
yannik.stein@fu-berlin.de

Abstract

Let P be a set of n points in d-dimensions. The simplicial depth, σP (q) of a point q
is the number of d-simplices with vertices in P that contain q in their convex hulls.
The simplicial depth is a notion of data depth with many applications in robust
statistics and computational geometry. Computing the simplicial depth of a point
is known to be a challenging problem. The trivial solution requires O(nd+1) time
whereas it is generally believed that one cannot do better than O(nd−1).

In this paper, we consider approximation algorithms for computing the simplicial
depth of a point. For d = 2, we present a new data structure that can approximate
the simplicial depth in polylogarithmic time, using polylogarithmic query time.
In 3D, we can approximate the simplicial depth of a given point in near-linear
time, which is clearly optimal up to polylogarithmic factors. For higher dimensions,
we consider two approximation algorithms with different worst-case scenarios. By
combining these approaches, we compute a (1 + ε)-approximation of the simplicial
depth in time Õ(nd/2+1) ignoring polylogarithmic factor. All of these algorithms are
Monte Carlo algorithms. Furthermore, we present a simple strategy to compute the
simplicial depth exactly in O(nd log n) time, which provides the first improvement
over the trivial O(nd+1) time algorithm for d > 4. Finally, we show that computing
the simplicial depth exactly is #P-complete and W[1]-hard if the dimension is part
of the input.

∗Work supported in part by the Danish National Research Foundation grant DNRF84
through Center for Massive Data Algorithmics (MADALGO).
†Supported by the Deutsche Forschungsgemeinschaft within the research training group

“Methods for Discrete Structures” (GRK 1408).

1

1 Introduction 2

1 Introduction

Let P ⊂ Rd be a point set and q ∈ Rd be a point. The simplicial depth [31]
σP (q) of q with respect to P is the number of subsets P ′ ⊆ P , |P ′| = d+1, that
contain q in their convex hull (see also [12] for an alternate definition). This
is one of the important definitions of data depth and has generated interest
in both robust statistics and computational geometry since its introduction.
Designing efficient algorithms to compute (or approximate) the simplicial
depth of a point remains an intriguing task in this area.

Other notions of depth include halfspace (a.k.a. Tukey) depth, Oja depth,
regression depth and convex hull peeling depth [5]. Among them, the one
most relevant to our techniques is the Tukey depth: given a set P of n points
in Rd, the Tukey depth, τP (q) of q with respect to P is the minium number
of points contained in a halfspace that also contains q.

Previous and Related Results. Computing the simplicial depth of a single
point in 2D was considered even before its formal definition [26] almost three
decades ago, perhaps because it translates into an “intuitive” problem of
counting the number of triangles containing a given point. In fact, at least
three independent papers study this problem in 2D and show how to compute
the simplicial depth in O(n log n) time [23, 26, 31]. This running time is
optimal [4]. In 2003, Burr et al. [12] presented an alternate definition for the
simplicial depth to overcome some unpleasant behaviors that emerge when
dealing with degeneracies. Since we will be dealing with approximations, we
will assume general position and thus avoid issues with degeneracy. In 3D,
the first non-trivial result offered the bound of O(n2) [23] but it was flawed;
fortunately, the running time of O(n2) could still be obtained with proper
modifications [21]. The same authors presented an algorithm with running
time of O(n4) in 4D. For dimensions beyond 4 there seems to be no significant
improvements over the trivial O(nd+1) brute-force solution. Furthermore, it
is natural to conjecture that computing the simplicial depth should require
Ω(nd−1) time: given a set P of n points, it is generally conjectured that
detecting whether or not d + 1 points lie on a hyperplane requires Ω(nd)
time [22] and this conjecture would imply that detecting whether d points
of P and a fixed point q lie on a hyperplane should require Ω(nd−1) time.
This is one motivation to consider the approximate version of the problem.
In fact, Burr et al. [12] have already expressed interest in computing an
approximation to the simplicial depth and they propose a potential approach,
although without any worst-case analysis [11]. In 2007, Bagchi et al. [8]
presented a data structure for the two-dimensional case: using O(n polylogn)
preprocessing time, they can additively ε-approximate the simplicial depth
of a given query point in O(1) time.

Here, we only consider relative approximation; additive approximation
(with additive error of εnd+1) can be obtained using ε-nets and ε-approxima-

1 Introduction 3

tions (see [16, 8] for more details).
Another motivation for computing a relative approximation comes from

applications in outlier removal. Intuitively, statistical depth measures how
deep a point is embedded in the data cloud with outliers corresponding to
points with small values of depth. In such applications, if a small relative
error of (1 + ε) is tolerable, then faster outlier removal can be possible using
approximations.

There are several notions of data depth for which approximation and
related computational problems have been considered. Aronov and Har-
Peled [6] describe general techniques to attack approximation problems related
to various notions of depth including finding an approximately deepest point
in an arrangement of pseudodisks, approximating the depth of a query point
in an arrangement of pseudodisks, approximate halfspace range counting and
an approximate version of linear programming with violations which both
can be formulated to depth-related problems in an arrangement of halfspaces.

Approximate halfspace range counting received most of the attention [2,
3, 25] but this also renewed interest on the general study of relative approx-
imations [7]. Continuing this line of research Afshani and Chan presented
data structures to approximate the depth of a query point in an input set of
points for Tukey depth in 3D and regression depth in 2D [2].

Our Results. In Sections 3 and 7, we consider the simplicial depth problem
in 2 and 3 dimensions. For d = 2, we present a data structure of size Õ(n)1

with Õ(n) preprocessing that returns the relative ε-approximation of the
simplicial depth of a query point q with high probability in Õ(1) time, where
ε > 0 is an arbitrary constant. In Section 6, we consider the simplicial depth
problem in arbitrary but fixed dimensions. We present two algorithms that
each compute a (1 + ε)-approximation, however with different worst-case
scenarios. A combination of these strategies gives an algorithm that returns
a (1 + ε)-approximation of the simplicial depth with high probability in
Õ(nd/2+1) time. Finally, we show in Section 9 that computing the simplicial
depth becomes #P-complete and W[1]-hard with respect to the parameter d
if the dimension is part of the input.

Technical Difficulties. One standard technique to approximate various
geometric measures is the use of uniform random samples combined with
Chernoff type inequalities. Often uniform random sampling enables us to
approximate the depth with high probability if the depth lies in a certain
range. This property is exploited by building a hierarchy of random samples
that cover all possible ranges of data depth (see [2, 6, 13, 25]). However, these
existing techniques seem insufficient to approximate the simplicial depth. One

1 The Õ(·) notation hides a constant number of polylogarithmic factors of n, e.g.,
logn = Õ(1).

2 Structural Theorems and Preliminaries 4

particular troubling situation is depicted in Figure 1: in this configuration
no high probability bound can be achieved for the simplicial depth of q in a
uniform random sample despite the fact that q is far from being an outlier
(it has Tukey depth Θ(n1/3) and simplicial depth Θ(n2)). This poses serious
problems for all the previous techniques including the general techniques of
Aronov and Har-Peled [6], Afshani and Chan [2] and Kaplan and Sharir [25].
In fact, it can be seen that the definition of simplicial depth prevents us from
using any technique which depends on a Chernoff-type inequality.

q

n
2 points n

2 points

c points c points

q

≈ n
4 points

≈ c/2 points ≈ c/2 points

≈ n
4 points

1
2-sample

p

Fig. 1: (a) The point q has simplicial depth Θ(n2) for c = O(1). (b) The
random sample misses point p and the n2/4 triangles that shared p
as a vertex; the simplicial depth of q is now O(n4/3).

2 Structural Theorems and Preliminaries

In this section, we provide non-algorithmic results and review properties
of simplicial depth which can be of independent interest. In the following
sections, these results are used extensively to approximate the simplicial
depth.

2.1 Notation

Throughout this paper, we denote the input set of n points in Rd (for a
constant d) by P and the query point by q. For a given set of points P ,
the Tukey depth of a point q with respect to P , denoted by τP (q), is the
minimum number of points of P that is contained in a halfspace h with
q ∈ h. We will always assume the set P ∪ {q} is in general position. We
denote with ∆P (q) all subsets P ′ ⊆ P , |P ′| = d+ 1, that contain q in their
convex hull. For a point p ∈ Rd, let ∆p;P (q) ⊆ ∆P (q) be the set of simplices
formed by p and d points in P that contain q. We define the weight function
ωq;P (p) = |∆p;P (q)| (we might omit P in the subscript if there is no danger
of ambiguity). Note that we have

∑
p∈P ωq;P (p) = (d+ 1)σP (q). Given any

two points v and u, we denote the line passing through them by uv and the
ray from v and through u by −→vu. We call a set S an α-sample of a set U if
every element of U is chosen uniformly and randomly in S with probability

2 Structural Theorems and Preliminaries 5

α. We will say an event X happens with high probability if Pr[X] ≥ 1− n−c
in which c is some (large) constant.

2.2 Bounding the Simplicial Depth with Tukey Depth

The main result of this section are tight asymptotic bounds between σP (q)
and τP (q). These results will be useful later on, but we believe they might
be of independent interest as well. We start with the following easy lemma.

Lemma 2.1. Let P ⊂ Rd be a point set and q ∈ Rd. Let S ⊆ P , |S| = d+ 1,
be a subset with q ∈ conv(S). For every point p ∈ P , there exists a unique
vertex v of S such that the simplex S ∪ {p} \ {v} contains q.

Proof. Consider the ray r starting from q in direction q − p. Since q is inside
conv(S), r intersects a facet of conv(S). An easy calculation reveals the vertex
v opposite to this facet is the vertex claimed in the lemma. Furthermore, v
is unique since we assume general position.

We call the operation used in the above lemma swapping. The main result
of this section is the following.

Lemma 2.2. For any point set P ⊂ Rd and any q ∈ Rd, σP (q) = Ω(|P |τdP (q))
and σP (q) = O(|P |dτP (q)). Furthermore, these bounds are tight.

Proof. If τP (q) = 0, then q is outside the convex hull of P and there is nothing
left to prove, so assume otherwise. By Carathéodory’s theorem, there exists a
simplex ∆1 formed by d+1 points of P which contains q. Removing ∆1 from P
reduces the Tukey depth of q by at most d and by repeating this operation we
can find m disjoint subsets ∆1, . . . ,∆m ⊂ P where m ≥ τP (q)

d . Let A =
⋃

∆i.
Using the Colorful Carathéodory Theorem, and following the exact same
technique as Bárány [9], it follows that σA(q) = Ω(md+1) = Ω(τd+1

P (q)). We
assume |A| ≤ |P |/2, otherwise ∆A(q) already contains Ω(|P |d+1) simplices
and there is nothing left to prove. Using Lemma 2.1, for any p ∈ P \ A
and for every simplex ∆ ∈ ∆A(q), we can create another simplex ∆′ by
adding p and removing some other point. This way, we can create σA(q)
simplices for every point p. However, some of these simplices could be
identical. The main observation is that any simplex ∆′, can be obtained
through at most |A| different ways. Thus, it follows that there are at least
Ω(|∆A(q)|/|A|) = Ω(τdP (q)) distinct simplices ∆p,A with p as a vertex and no
other point from P \A. For two points p and p′ in P \A, the sets ∆p,A and
∆p′,A are disjoint. Hence, in total we have produced Ω(|P |τdP (q)) distinct
simplices.

To prove the upper bound, consider a halfspace h that passes through
q and contains τP (q) points. Every simplex containing q must have at least
one point from h ∩ P . The maximum number of such simplices is at most
|P |dτP (q).

2 Structural Theorems and Preliminaries 6

To demonstrate the tightness of the upper bound, consider a simplex ∆
and a point q inside it. Replace one vertex of the simplex with a cluster of
m points placed closely to each other and replace all the remaining vertices
with clusters of n points. The resulting point set P1 will contain Θ(n) points
with σP1(q) = mnd and τP1(q) = m. The tightness of the lower bound is
realized by a very similar construction but using clusters of size m at every
vertex except one, and using a cluster of size n at the remaining vertex. The
resulting point set P2 will contain Θ(n) points with σP2(q) = mdn.

2.3 Properties of Random Samples

A big obstacle to approximating the simplicial depth is that it is not easy to
estimate the simplicial depth from a random sample: the probability that a
simplex ∆ survives in an α-sample of the point set is exactly αd+1 but these
probabilities can be highly dependent for different simplices. Because of this,
we need proper tools to deal with such dependence. One such tool is Azuma’s
inequality.

Azuma’s Inequality. Suppose {Xk} is a martingale with the property that
|Xi −Xi−1| ≤ ci. Then

Pr[|Xn −X0| ≥ t] ≤ e
− t2

2
∑n
k=1

c2
k .

The following lemma is our main tool for estimating the simplicial depth
from random samples.

Lemma 2.3. Let P ⊂ Rd be a point set of size n and q ∈ Rd an arbitrary
point. There exists a universal constant C such that for any parameter
ε > 0 the following holds. Set M = C−1ε2σP (q)/ log n and pick Plarge as
a subset of P that includes all points p with ωq;P (p) ≥ M . Build a sample
S ⊆ P by adding a 1/2-sample of P \ Plarge to Plarge. Then, the event
|E(σS(q))− σS(q)| ≥ εσP (q) holds with high probability.

Proof. Let P ′ = P \ Plarge and let S′ be a 1/2-sample of P ′. By construction,
we have S = S′ ∪ Plarge. Let p1, . . . , pn′ be an ordering of the points of P ′.
We build a martingale by revealing presence or absence of points of P ′ in S′

in this order. Define xi = 1 if pi is sampled in S′ and 0 otherwise. Let Xi be
the random variable corresponding to the expected value of σS(q) in which
the values of x1, . . . , xi have been revealed. That is, the expectation is taken
over xi+1, . . . , xn′ . According to this definition, Xn′ is equal to σS(q), since
we have revealed all the points in our sample, while X0 is equal to E(σS(q)),
since we have revealed nothing.

The sequence X0, . . . , Xn has the martingale property:

E(Xi+1|X1, · · · , Xi) = E(Xi+1|Xi)

3 Approximating the Simplicial Depth in 2 Dimensions 7

and furthermore, the difference between Xi+1 and Xi is the knowledge of
xi+1. However, a simple calculation reveals that the contribution of a simplex
with pi+1 as a vertex is exactly the same in both E(Xi+1|Xi) and E(Xi).
Thus, E(Xi+1|Xi) = E(Xi).

Let ci = |Xi −Xi−1| as in Azuma’s inequality. We now show that ci is
at most ωq;P (pi) < M . If pi is not sampled, then any simplex with pi as a
vertex will not survive and thus their contribution to the expected value of
σS(q) will be zero, a decrease of at most ωq;P (pi) in the expected value. So
assume pi is part of the sample, and consider a simplex ∆ that contains q
and is composed of pi, t points p′1, · · · , p′t ∈ {pi+1, · · · , pn′}, and d− t point
p′′1, · · · , p′′d−t ∈ {p1, · · · , pi−1}. If any of the points p′′1, · · · , p′′d−t have not been
sampled, then the contribution of ∆ to the expected value of σS(q) is zero
so assume we have revealed that all these points have been sampled in S.
The contribution of ∆ to the expected value of σS(q) before revealing that
xi = 1 was exactly 2−(t+1), equal to the probability that we sample all the
points p′1, · · · , p′t and pi. After revealing xi = 1, this contribution increases
to 2−t. Clearly, over all simplices with pi as a vertex, this increase is at most
ωq;P (pi). Since pi 6∈ Plarge, the magnitude of the change is at most M in both
cases.

As discussed, Xn′ = σS(q) and X0 = E(σS(q)). Note that X0 is not a
random variable and that we have

∑n′
i=1 ci ≤

∑n′−1
i=1 ωq;P (pi+1) = O(σP (q)).

By Azuma’s inequality we have

Pr[|Xn′ −X0| ≥ εσP (q)] ≤ e
− ε

2σ2P (q)∑
c2
i ≤ e−

ε2σ2P (q)

M
∑
ci ≤ e

−Ω

(
ε2σP (q)

M

)

= e
−Ω

(
ε2σP (q) logn

C−1ε2σP (q)

)
.

The lemma follows by picking C large enough.

The above lemma can be used to reduce the problem of computing σP (q)
to computing the simplicial depth of q with the respect to a set S of roughly
half the size of P . Furthermore, the value of E(σS(q)) is directly tied to the
value of σP (q): any simplex ∆ ∈ ∆P (q) that contains t points from the set
P ′ and d+ 1− t points from Plarge contributes exactly 2−t to E(σS(q)).

3 Approximating the Simplicial Depth in 2 Dimensions

The main result of this section is a data structure of near-linear size that can
answer approximate simplicial depth queries in polylogarithmic time. Later,
it will be used to get an almost-optimal algorithm for approximating the
simplicial depth in 3D. The problem can be stated as a triangle counting
problem: given a set of n points P in the plane, build a data structure capable
of approximating the number of triangles formed by points of P that contain
a query point q.

3 Approximating the Simplicial Depth in 2 Dimensions 8

Let S be a 1
2 -sample from P . Consider the simple and easy case when Plarge

is empty. Then, we have E(σS(q)) = σP (q)/8 by linearity of expectation and
the observation that any triangle made by points of P containing q survives
with probability 1/8. By Lemma 2.3, we can conclude that a recursively
computed approximation for σS(q) is with high probability very close to
σP (q)/8. If Plarge is not empty, then it can only contain polylogarithmically
many points (as each point contributes a significant amount to the simplicial
depth) and thus we need to keep track of a “few” points. The biggest challenge,
however, is finding the subset Plarge. This is done with the following lemma.
Unfortunately its proof does not seem to be easy and in fact it requires
overcoming many technical steps and combining shallow cuttings with various
observations regarding the geometry of planar points. We ultimately reduce
the problem to instances of orthogonal range reporting problem in eight(!)
dimensional space, which fortunately can be solved with Õ(n) space and Õ(1)
query time. The proof is given in Section 4.

Lemma 3.1. Let P be set of n points and let S′0 = P, S′1, . . . , S
′
r in which

S′i+1 is a 1
2 -sample from S′i. There exists a data structure of size Õ(n), such

that the following holds with high probability. Given j and a query point q,
define M = C−1ε2σS′j (q)/ log n, where C is a constant and ε > 0 is a fixed
parameter. If τSj (q) = Ω(ε−2 log3 n), then the data structure can find the set
Plarge ⊂ Sj that contains all the points p with ωq;Sj (p) ≥ M in Õ(1) time.
The data structure can be built in Õ(n) expected time.

Also, the data structure defines O(n) canonical halfplanes, such that Plarge

lies inside a halfplane h(q) that contains q and Õ(τSj (q)) points of Sj. h(q)
only depends on q and not j.

We also need the following lemma. For the proof, see Section 5.

Lemma 3.2. Given a parameter ε > 0, we can store a set S of n points in
a data structure of size Õ(n) that can answer the following queries. Given
a query point q, a halfplane h with q on its boundary containing Õ(τS(q))
points of S, and a subset of R ⊂ S ∩ h, we approximate the total number of
triangles that contain q and include at least one point from R in Õ(ε−2|R|2)
time and with additive error of at most εσS(q).

In the rest of this section, we outline our solution to approximate the
simplicial depth of a query point. Consider a series of random samples
S′0 = P, S′1, . . . , S′r in which S′i+1 is a 1/2-sample from S′i and |Sr| = Õ(1).
We store each sample S′i in the data structure from Lemma 3.2. Furthermore,
we store the sampling sequence sampling sequence S′0, · · · , S′r in the data
structure from Lemma 3.1.

We use a recursive approach where Lemmata 2.3, 3.1, and 3.2 are our
bread and butter: during step i of the query algorithm, we are given a set

3 Approximating the Simplicial Depth in 2 Dimensions 9

S
(i)
large ⊂ R(q) ∩ P containing Õ(1) points, such that S(i)

large ∩ S′i = ∅. The goal
is to compute σSi(q) where Si = S′i ∪ Slarge. Initially, S

(0)
large = ∅ and S′0 = P .

Our strategy will be to recursively compute the simplicial depth. We will
assume our recursion returns a relative (1 + δ)-approximation of σSi+1(q). By
using Lemmata 2.3, 3.1, and 3.2 with parameter ε, we can return a value that
is a relative (1 + δ+O(ε))-approximation of σSi(q). We set ε = 1/δ such that
at the top of the recursion we end up with a relative (1+O(δ))-approximation.
Now we present the details.

S′
i

S(i)
large

S′
i+1

Plarge

Ti+1

Ti

Fig. 2: S′i+1 is a 1/2-sample of S′i. Plarge ⊂ S′i is obtained through Lemma 3.1
and it is shown in red. Si = S

(i)
large ∪ S′i, Ti+1 = S′i+1 \ Plarge, Ti =

S′i \ Plarge, and the greyed areas represent S(i+1)
large .

Approximating σSi(q). Let ε = δ/ log n. First, observe that if τSi(q) =
Õ(1), then we can directly approximate σSj (q) using Lemma 3.2 by setting
R = R(q) ∩ Sj in Lemma 3.2. In the rest of this proof, we assume that
τSi(q) = Ω(ε−2 log3 n).

See Figure 2 for a Venn diagram of the various subsets involved here. We
set M = C−1ε2σS′i(q)/ log n and using Lemma 3.1, we find the set Plarge ⊂ S′i.
Let Ti+1 = S′i+1 \ Plarge, Ti = S′i \ Plarge, and S

(i+1)
large = (Plarge \ S′i+1) ∪ S(i)

large.
Clearly, S(i+1)

large ∩ Si+1 = ∅, and S(i+1)
large ⊂ R(q)∩ P so we can recurse. Assume

we obtain a value Y that is a relative (1 + δ) approximation of σSi+1(q).
Note that Ti+1 is a 1/2-sample of Ti. From the definition of Plarge and by
Lemma 2.3, we can conclude that with high probability

|E[σTi+1∪Plarge(q)]− σTi+1∪Plarge(q)| ≤ εσS′i(q). (1)

By Lemma 3.2, we can approximate the number of triangles, m, that contain
at least one point from S

(i)
large with additive error ετSi+1(q). This combined with

Y gives an approximate value of σTi+1∪Plarge(q) with additive error (O(ε) +
δ)τSi+1(q). Combined with (1), this gives an estimate for E[σTi+1∪Plarge(q)]
with additive error (O(ε) + δ)τSi(q). Let ni, 0 ≤ i ≤ 3, be the number
of triangles containing q that have i points from the set Plarge and 3 − i
points from Ti. Clearly, σS′i(q) = n0 + n1 + n2 + n3 and E[σTi+1∪Plarge(q)] =

4 Proof of Lemma 3.1 10

n0/8+n1/4+n2/2+n3. Using Lemma 3.2, we approximate n1 +n2 +n3 with
additive error ετSi(q). However, n2 and n3 are negligible compared to our
error margins: by Lemma 2.2, σSi(q) = Ω(|Si|τ2

Si
(q)) but n2 can be at most

|Plarge|2|Si| and n3 can be at most |Plarge|3. Since τSi(q) = Ω(ε−2 log3 n), it
follows that we can ignore n2 and n3 in our calculations and that Lemma 3.2
reveals an approximation of n1. With these observations, we can obtain an
approximation σS′i(q) with additive error (O(ε) + δ)τSi(q). Combining this
with an approximation of m yields an approximation of σSi(q) with additive
error (δ+O(ε))σSi(q). Observe that the error factor in our additive term has
worsened from δ (regarding Y and σSi+1(q)) to δ +O(ε) (regarding σSi(q)).
However, we have ε = δ/ log n and there are at most O(log n) recursion steps.
Thus at the top of the recursion (that is for σP (q)), we obtain a (1 +O(δ))
approximation factor, as claimed.

Theorem 3.3. It is possible to preprocess a point set P ⊂ R2 of n points
in Õ(n) expected time using Õ(n) space such that, given a query point q, a
relative ε-approximation for the simplicial depth of q can be found in Õ(1)
expected time for any arbitrary fixed constant ε > 0 with high probability.

4 Proof of Lemma 3.1

Lemma 4.1. Let P ⊂ R2 be a set of n points, q ∈ R2 an arbitrary point
and h a halfplane containing at most C ′τP (q) points with q at its boundary.
Consider the line pq for a point p ∈ h and assume it partitions P into two
sets of sizes n1 and n2. If n1, n2 ≥ 2C ′ε−1τP (q) then n1n2 is a relative
(1+ε)-approximation of ωq;P (p).

Proof. The number of triangles containing q and involving p is at least
(n1 −m)(n2 −m) and at most n1n2 where m ≤ C ′τP (q) is the number of
points in h. The lemma follows by a simple calculation and observing that
n1n2 is minimized when n1 or n2 is 2C ′ε−1τP (q).

We also use shallow cuttings which we state in two dimensions. For a set
of lines H in the plane, the level of a point p is the number of points that
pass below p. Given an integer k, the k-level of H is the closure of all the
points that have level exactly k. The (≤ k)-level is defined as the closure of
all the points with level at most k.

Theorem 4.2. Let H be a set of n lines in the plane and k be a given
parameter 1 ≤ k < n/2. We can find a convex polygonal chain C of size
O(n/k) such that it lies above the k-level of H, the level of every vertex of C
is O(k). The cutting can be constructed in O(n log n) time.

4 Proof of Lemma 3.1 11

Proof. Matoušek [30] proved that one can cover the (≤ k)-level with O(n/k)
triangles such that there are at most O(k) lines passing below each triangle.
Chan [13] observed that we can consider the convex hull of the triangles; the
number of lines passing below the convex hull is only increasing by O(k).

Ramos [29] offered a randomized O(n log n) construction in 1999 and
recently Chan and Tsakalidis have shown the same running time can be
achieved with a deterministic algorithm [15].

We will also be working with point-line duality in the plane. This trans-
formation, maps a line ` passing below (reps. above) a point p to point ` that
lies below (resp. above) the line p.

Lemma 4.3. Let P be set of n points and let S′0 = P, S′1, . . . , S
′
r in which

S′i+1 is a 1
2 -sample from S′i. There exists a data structure of size Õ(n), such

that the following holds with high probability. Given j and a query point q,
define M = C−1ε2σS′j (q)/ log n, where C is a constant and ε > 0 is a fixed
parameter. If τSj (q) = Ω(ε−2 log3 n), then the data structure can find the set
Plarge ⊂ Sj that contains all the points p with ωq;Sj (p) ≥ M in Õ(1) time.
The data structure can be built in Õ(n) expected time.

Also, the data structure defines O(n) canonical halfplanes, such that Plarge

lies inside a halfplane h(q) that contains q and Õ(τSj (q)) points of Sj. h(q)
only depends on q and not j.

Proof. We will describe the data structures incrementally. Consider the set P
of n lines dual to P . Let ki = 2i, 1 ≤ i < log n. First, by Matoušek’s shallow
cutting theorem (Theorem 4.2), for each ki, we build a shallow cutting Li for
the (≤ ki)-level of P , that is a convex polygonal chain of size O(n/ki) that
lies between ki-level and O(ki)-level of P . Each vertex v of the polygonal
chain Li defines a canonical halfplane in primal space (the region below v).
For each Sj , the subset of Sj that lies inside a canonical halfplane is called a
canonical set. We also do the same for the (≥ ki)-level (to obtain cuttings Ui).
By Theorem 4.2, each chain Li has O(n/ki) vertices and thus creates O(n/ki)
canonical sets. Furthermore, each canonical set contains O(ki) points. Thus,
the total size of canonical sets on P is O(n log n) which is also an upper
bound for the total size of the canonical sets on each Si. This means, the
total size of canonical sets, over all indices j, 1 ≤ j ≤ log n is O(n log2 n).
Furthermore, a standard application of the Chernoff bound yields that Li
is below (≤ Θ(ki log n/2j))-level and above (≤ (Θ(ki/(2

j log n)))-level of Sj ,
with high probability (similarly for Ui); let’s call this the level property. In
the rest of this proof, we will build a separate data structure for each Sj .
There are O(log n) different indices j and thus this would only blow up the
space by a log n factor. Let S = Sj be the subset we are currently working
with. Given a query point q, the goal is to report a subset Plarge ⊂ S that
contains all the points p with ωq;S(p) ≥M .

4 Proof of Lemma 3.1 12

Li

v

v′

q

q v′v q v′

p

(a) (b) (c)

q
v′

p

(d)

`n1

n2

O(log2 nτS(q))

O(log2 nτS(q)) O(log2 nτS(q))

L′i−1

L′i p

(e)

q

Fig. 3: (a) In dual space, q passes below a vertex v of a shallow cutting. The
set of lines below v are considered a canonical set. (b) In primal space,
the region below v is a canonical halfplane. We can draw a line v′
parallel to v from q. (c) Any point that is above v′ cannot create M
triangles that contain q since it is forced to pick a point from below
v′ and there are only few such points. (d) p lies below v. The line `
is defined by connecting p and q. There are n1 points below the line
` and n2 points above it. (e) If a line intersects the convex chain L′i,
then it creates an interval on its boundary. We can tell if two lines
intersects between chains L′i−1 and L′i by examining the corresponding
intervals that they define.

The given query point q, corresponds to a query line q in the dual space.
If i is the smallest index such that q intersects Li or Ui, then ki/2

j is an
approximation of τS(q) up to O(log2 n) factor, by the level property. W.l.o.g,
assume q intersects Li and thus passes below a vertex v ∈ Li (the other
case when q intersects Ui can be found in an analogous way and by building
analogous data structures). Let v′ be the point on q the lies directly below v
(Figure 3(a)). In the primal space, v′ corresponds to a line that goes through
q and has O(log2 nτS(q)) points below it, with high probability (by definition
of τS(q), there are at least τS(q) points below v′ as well). Furthermore, v′ is
parallel to a canonical halfplane that is the dual of v (see Figure 3(a,b)). v′

defines h(q).
We now claim, Plarge has to be a subset of points of S that are below v′. See

Figure 3(c). Consider a point p that is not below v′; any triangle that contains
q and includes p, must include a point below v′. Remember that v′ has only
O(log2 nτS(q)) points below it. This means, ωq;S(p) = O(|S| log2 nτS(q)).
By Lemma 2.2, we have σS(q) = Ω(|S|τ2

S(q)). Note that we need to answer

4 Proof of Lemma 3.1 13

queries for when τS(q) = Ω(ε−2 log3 n), namely, when τS(q) > Cε−2 log3 n,
so we have σS(q) = Ω(|S|ε−2 log3 nτS(q)). This means ωq,S(p) < M .

Now that we have established Plarge has to be a subset of S below v′, we
turn our attention to building the proper data structures to find it.

Consider a canonical set that contains the subset of S below the line
v; denote this canonical set by v↓ and let |v↓| = m. We can build O(m)
canonical subgroups, where each subgroup is a subset of v↓ such that the
points below any line v′ parallel to v can be expressed as the union of at
most logm canonical subgroups: this is done by projecting the points of v↓

onto a line perpendicular to v, and then building a balanced binary tree on
the resulting one-dimensional point set; each node of the balanced binary
tree defines a canonical subgroup. The total size of the canonical subgroups
created on v↓ is O(m logm).

Remember that our goal was to find all the points p below v′ with
ωq;S(p) ≥M . We can now use the canonical subgroups, since there O(logm)
subgroups that cover all the points below v′; we can query each such subgroup
independently to find the subset of Plarge that lies in that subgroup; this
would only blow up the query time by a log n factor. Furthermore, remember
that the total size of all canonical sets was O(n log2 n) and thus the total
size of all canonical subgroups is O(n log3 n). Thus, we can afford to build a
separate data structure for each canonical subgroup.

Consider a canonical subgroup G ⊂ v↓ that contains g points. Our
new goal is to find all points p ∈ G such that ωq;S(p) ≥ M . We claim to
approximate ωq;S(p) it suffices to draw the line ` = pq and then multiply
the number of points of S that lie at either side of `. See Figure 3(d). Let
n1 = |`−∩S| and n2 = |`+∩S| where `+ and `− corresponds to the halfplane
above and below `. W.l.o.g, assume n1 ≥ n2. Consider a point p with
ωq;S(p) ≥M . We have

M =
C−1ε2σS(q)

log n
= Ω

(
C−1ε2|S|τ2

S(q)

log n

)
and thus we must have

Ω

(
C−1ε2|S|τ2

S(q)

log n

)
≤ ωq;S(p) ≤ n1n2 ≤ |S|n2

and thus

n2 = Ω

(
ε2τ2

S(q)

log n

)
.

Let r be the number of points below v′. On the other hand, we have

ωq;S(p) ≥ (n1 − r)(n2 − r) ≥ n1n2 − |S|r.

Since r = O(log2 nτS(q)), it follows that n2/r = Ω
(
ε2τS(q)

log3 n

)
= Ω(ε−1) and

thus n1n2 is a constant factor approximation of ωq;S(p). This in turn implies

4 Proof of Lemma 3.1 14

|S|n2 is also a constant factor approximation of ωq;S(p). This is the motivation
for defining the following concept: For a point p below v′, we call the minimum
number of points of Si at either side of line pq its dissection value with respect
to q and Si (or its dissection value for short). In Figure 3(d), n2 is the
dissection value of p, if n1 ≥ n2.

Thus, our goal can be further reduced to the following, that we call
dissection reporting : For a canonical subgroup G ⊂ v↓ that contains g points,
build a data structure that can answer the following: given a query point
q, a threshold t, and a line v′ parallel to v such that G lies below v′, find
all points in G with dissection value larger than t. To find the part of Plarge

in G, we simply set t = Ω(M/|S|) for an appropriate constant hiding in the
Ω(·) notation; as we observed, the dissection value times |S| is a constant
approximation of ωq;S(p) so this way, we can find a subset that contains all
the point in Plarge ∩ G. However, we will report a few extra points as well;
nonetheless, we can observe that the number of extra points reported is only
a constant factor larger since every point that gets reported contributes a lot
to the simplicial depth of q and there cannot be too many such points.

To solve the dissection reporting problem, let S be the set of lines dual
to S. We build a shallow cutting L′i for the (≤ ki)-level of S (resp. U ′i for
the (≥ ki)-level of S), for i = ci, 1 ≤ i ≤ t = O(log |S|) for a large enough
constant c. L′i is a convex polygonal chain and if c is set large enough, then
L′i lies between the ki-level and the cki-level of S. This means that the
polygonal chains L′i will be non-intersecting and L′i−1 is contained inside L′i.
Consider a line p in dual space (see Figure 3(e)). If p intersects L′i, then it
creates an interval on L′i, marked by the two intersection points of p with L′i.
Let’s call this Ii(p); note that the end points of this interval come from a one
dimensional domain which can be parameterized in various different ways,
such as using polar angles from a point inside each polygonal chain. Consider
Ii(p) for every point p ∈ G as well as the interval Ii(q) defined by the line
dual to the query point. We say two intervals I1 and I2 intersect if they
have a point in common and none of the intervals fully contains the other.
Consider an index i such that Ii(q) intersects the interval Ii(p) but Ii−1(q)
does not intersect the interval Ii−1(p). This means that the intersection point
of the lines q and p is between L′i−1 and L′i (see Figure 3(e)). Imagine for the
upper chains, the intersection point of the lines q and p is between U ′j−1 and
U ′j where j > i. This implies that the dissection value of line pq is Θ(ki).

Motivated by the observation in the above paragraph, we do the following.
For each pair of indices (i, j), we create a data structure that is capable
of finding all the lines p ∈ G that the intersection point of p and q lies
between L′i−1 and L′i and also between U ′j−1 and U ′j . If we do this, then we
can perform dissection reporting by issuing O(log2 n) such queries: we first
query (t, t), then query (t, t− 1) and (t− 1, t) and so on. Specifically, to find
points with dissection value Θ(ki) we query (t, i), (t− 1, i), · · · , (i, i) as well

5 Proof of Lemma 3.2 15

as (i, t), (i, t− 1), · · · , (i, i).
It thus remains to show how a query pair (i, j) is answered. For every

point p ∈ G, we create a tuple of four input intervals corresponding to
the intersection of p with L′i−1, L

′
i, U
′
j−1, and U

′
j . The query also defines a

tuple of four intervals in a similar fashion. The goal is to store the input
tuples of intervals in a data structure such that given a query tuple of
intervals we can find all the input interval tuples such that they guarantee
p and q intersect between L′i−1 and L′i and also between U ′j−1 and U ′j . Let
([a1, b1], [a2, b2], [a3, b3], [a4, b4]) an input tuple of four intervals. We create an
eight-dimensional point (a1, b1, · · · , a4, b4).

We now claim the problem can be solved using dominance reporting in
eight dimensional space. In dominance reporting, a point p ∈ Rd is said to
dominate a point q ∈ Rd if any coordinates of p is greater than that of q.
In dominance reporting, we are to store a set of points in a data structure
such that given a point q, we can report all the points dominated by q.
Observe that in our subproblem, we can also map the tuple of intervals
corresponding to the query to the eight dimensional space. Here, we can
express the constraints that p and q intersect between L′i−1 and L′i and also
between U ′j−1 and U ′j as inequalities between respective coordinates of the
eight dimensional points, meaning, the problem can be solved by building a
constant number of eight dimensional dominance reporting data structures
and issuing a constant number of dominance reporting queries.

Dominance reporting queries can be answered in polylogarithmic time,
using data structure that needs near-linear space and preprocessing time [1,
14, 10, 17, 18] polylogarithmic time, we can find the subset of Plarge in G
using polylogarithmic space overhead and polylogarithmic query time.

Thus, in overall, our data structure will use Õ(n) space and preprocessing
time and can answer queries in Õ(1) time.

5 Proof of Lemma 3.2

Lemma 5.1. Given a parameter ε > 0, we can store a set S of n points in
a data structure of size Õ(n) that can answer the following queries. Given
a query point q, a halfplane h with q on its boundary containing Õ(τS(q))
points of S, and a subset of R ⊂ S ∩ h, we approximate the total number of
triangles that contain q and include at least one point from R in Õ(ε−2|R|2)
time and with additive error of at most εσS(q).

Proof. We recall the definition of the dissection value from the proof of
Lemma 3.1: For a point p ∈ R, we call the minimum number of points of S
at either side of line pq its dissection value with respect to q and S (or its
dissection value for short). Let m be the number of points in h.

We build data structure for approximate range counting [2], and halfplane
range reporting [19] on S. Using these, for every point p ∈ R we can obtain

5 Proof of Lemma 3.2 16

a constant factor approximation of its dissection value.
Consider a point p ∈ R. Draw the line ` = pq and let n1 = |`− ∩ S| and

n2 = |`+ ∩ S| where `+ and `− corresponds to the halfplane above and below
` (very similar to the situation in Lemma 3.1; see also Figure 3(d)). Assume
n1 ≤ n2. Let ∆p be the set of triangles that contain q and have p as one of
their vertices.

As first case, assume n1 ≥ 2ε−1(m+ |R|). At most |S||R| triangles from
∆p can have two points from R. However, ∆p contains at least

(n1 −m)(n2 −m) ≥ n1n2 − |S|m

triangles. Observe that if n1 ≥ 2ε−1(m+ |R|) then

n1n2 − |S|m ≥ ε−1|S||R|.

Thus, the number of triangles in ∆p with two points from R is negligible. So,
we focus on the triangles that have exactly one point from R. This is at most
n1n2 and at least (n1 −m)(n2 −m). Again, an easy calculation yield that
n1n2 ≥ ε−1m|S| and thus n1n2 is a relative (1 +O(ε))-approximation of the
number of triangles in ∆p.

Thus, it suffices to handle points with dissection value less than 2ε−1(m+
|R|). In the rest of this proof, we assume all the points in R have dissection
value less than this.

As a second case, assume τS(q) = Õ(ε−1|R|) which also implies m =
Õ(ε−1|R|), and that the dissection value of the points in R is at most
2ε−1(m + |R|) = Õ(ε−1|R|). Let p1, · · · , pr ∈ R be all the points in R.
We create the lines `1, · · · , `r by connecting pi to q. Using halfplane range
reporting, we can exactly compute the number of points at one side of each
line `i in Õ(ε−1|R|) time. Over all the points in R this will take Õ(ε−2|R|2)
time. Given these values, we can compute the number of points that lie inside
each “wedge” created by the lines `1, · · · , `r (see Figure 4(b)) in Õ(ε−2|R|2)

q

Rh h

q

`2`1

`r

. . .

n0

n1

. . .

nr

(a) (b)

n′
0

n′
r

Fig. 4: (a) The input configuration for Lemma 3.2. (b) For each point p ∈ R,
a line through p and q is created. This subdivides the plane into
“wedges” that are ifinite triangles with q as their only vertex. By
knowing the exact number of points inside each wedge, we can compute
the simplicial depth in O(r) time.

6 Approximation in High Dimensions 17

time. Given these values, the total number of triangles that contain q and
have one or two points from the set {p1, · · · , pr} can be counted in O(r) time
(see [23, 26]).

Finally, we assume τS(q) ≥ ε−1|R| log2 n. This case can be handled using
similar ideas as the previous two. Here, we claim among triangles in ∆p, the
number of those that include two points from R is negligible: the number of
such triangles is at most |S||R|2 where at the simplicial depth of q is at least
Ω(|S|τ2

S(q)) by Lemma 2.2. We have

|S|τ2
S(q) ≥ |S|ε−2|R|2 = ω(ε−1|S||R|2)

so we can safely ignore triangles that contain two points from R. This limits
us to triangles that have exactly one point from R. Let p1, · · · , pr ∈ R be
the points in R. Again, we create the lines `1, · · · , `r by connecting pi to
q. Using halfplane range reporting, we can exactly compute the number of
points at each side of the line `i in Õ(ε−1|R|) time. Over all the points in R
this will take Õ(ε−2|R|2) time. As before, these values enable us to compute
the number of triangles containing one point from R.

Combining all these cases, we obtain a relative (1 +O(ε)-approximation.
By scaling ε by a constant, we can obtain a relative (1 + ε)-approximation.
The total query time is Õ(ε−2|R|2).

6 Approximation in High Dimensions

In this section, we present two approximation algorithms for simplicial depth
in high dimensions, each with a different worst case scenario. By combining
these strategies, we obtain a constant factor approximation algorithm with
Õ(nd/2+1) running time.

6.1 Small Simplicial Depth: Enumeration

Let P ⊂ Rd be a set and q ∈ Rd a query point. If σP (q) is small, a simple
counting approach that iterates through all simplices ∆ ∈ ∆P leads to an
efficient algorithm. The key is to construct a graph that contains exactly
one node per simplex ∆ ∈ ∆P . Then, counting can be carried out by a
breadth-first search and we avoid looking at subsets of P that do not contain
q in their convex hull. For this, we use the Gale transform to dualize the
problem. We shortly restate important properties of the Gale transform. For
more details see [28]. Let in the following 0 denote the origin.

Lemma 6.1. Let P = {p1, . . . , pn} ⊂ Rd be a point set with σP (0) > 0.
Then, there is a set P̄ = {p̄1, . . . , p̄n} ⊂ Rn−d−1 such that a (d + 1)-subset
P ′ ⊆ P contains 0 in its convex hull iff P̄ \ {p̄i | pi ∈ P ′} defines a facet of
conv(P̄).

6 Approximation in High Dimensions 18

Consider now the graph GP (q) = (V,E) with V = ∆P . Two simplices
∆,∆′ are adjacent iff ∆′ can be obtained from ∆ by swapping one point in
∆ with a different point in P . We call GP (q) the simplicial graph of P with
respect to q.

Lemma 6.2. Let P ⊂ Rd be a set of size n. Then, GP (q) is (n − d − 1)-
connected and (n− d− 1)-regular.

Proof. We assume w.l.o.g. that q = 0. Let ∆,∆′ be two adjacent nodes in
GP (q). Furthermore let P̄ denote the Gale transform of P . Set ∆̄ = {p̄ | p ∈
P \∆} and ∆̄′ = {p̄ | p ∈ P \∆′}. By Lemma 6.1, the two sets ∆̄ and ∆̄′

define facets of conv(P̄). Since ∆ and ∆′ are adjacent, we have |∆ ∩∆′| = d
and hence |∆̄ ∩ ∆̄′| = n− d− 2. Thus, the facets defined by ∆̄ and ∆̄′ share
a ridge. Hence, GP (q) is isomorph to the 1-skeleton of the polytope dual to
conv(P̄). In particular, this implies that GP (q) is (n− d− 1)-connected. It
remains to show that the graph is (n− d− 1)-regular. Let ∆ ∈ V be a node.
Lemma 2.1 states that each of the n− d− 1 points in P \∆ can be swapped
in, each time resulting in a distinct simplex.

Since GP (q) is connected, we can count the number of vertices using BFS.

Lemma 6.3. Let P ⊂ Rd be a set of size n and q ∈ Rd a query point. Then,
σP (q) can be computed in O(nσP (q)) time.

6.2 Large Simplicial Depth: Sampling

If the simplicial depth is large, the enumeration approach becomes infeasible.
In this case we apply a simple random sampling algorithm.

Lemma 6.4. Let P ⊂ Rd be a set and q ∈ Rd a query point. Furthermore,
let ε, δ > 0 be constants and let m ∈ N be a parameter. If σP (q) ≥ m, then
σP (q) can be (1 + ε)-approximated in Õ(nd+1/m) time with error probability
O(n−δ).

Proof. Let ∆1, . . . ,∆k be k random (d+1)-subsets of P for k =
⌈

4δnd+1 logn
ε2m

⌉
.

For each random subset ∆i, let Xi be 1 iff q ∈ conv(∆i) and 0 otherwise.
We have µ = E[

∑k
i=1Xi] = k σP (q)

nd+1 = 4δσP (q) logn
ε2m

≥ 4δ
ε2

log n. Applying the
Chernoff bound, we get Pr[|∑k

i=1Xi − µ| ≥ εµ] = O(n−δ). Thus, n
d+1

k X is
a (1 + ε)-approximation of σP (q) with error probability O(n−δ).

For d = O(1), we can test in O(1) whether a given (d+ 1)-subset of P
contains a point in its convex hull. Hence, the running time is dominated by
the number of samples.

7 Improved Approximation in Three Dimensions 19

6.3 Combining the Strategies

Theorem 6.5. Let P ⊂ Rd be a set and q ∈ Rd a query point. Furthermore,
let ε > 0 and δ > 0 be constants. Then, σP (q) can be (1 + ε)-approximated in
Õ(nd/2+1) time with error probability O(n−δ).

Proof of Theorem 6.5. We apply the algorithm from Lemma 6.3 and stop
it once nd/2 nodes of GP (q) are explored. This requires O(nd/2+1) time. If
the graph is not yet fully explored, we know σP (q) ≥ nd/2. We can now
apply the algorithm from Lemma 6.4 and compute a (1 + ε)-approximation
in Õ(nd/2+1) time with error probability O(n−δ).

7 Improved Approximation in Three Dimensions

In this section, we show that the simplicial depth in 3D can be approximated
in Õ(n) time, which is clearly optimal up to polylogarithmic factors. The
main ingredients required for our proof are the two-dimensional data structure
from Section 3, Lemma 2.2, and Observation 8.1.

Theorem 7.1. Let P be a set of n points in 3D. The simplicial depth of
a given point q can be approximate in Õ(n) expected time and with high
probability.

Proof. First, we find a halfspace h that passes through q and contains a
subset A ⊂ P of Θ(τP (q)) points on one side of it. We can find h using
different methods, e.g., by using the general reduction used by Aronov and
Har-Peled [6] which can be summarized as follows: take 2−i-random samples
Si of P , for i = 1, · · · , log n until we find the first index l such that q lies
outside the convex hull of Sl. Repeat this O(log n) times and let j be the
smallest index found during these repetitions. Let h be the hyperplane that
separates q from Sj . Testing whether q lies outside the convex hull of Sj and
finding h if it does, is a three-dimensional linear programming step and can
be done in O(|Sj |) expected time so the overall computation time is Õ(n).
Let h+ be the side of h that contains q. A standard application of Chernoff
bound shows that with high probability, h+ contains at least Ω(τP (q)/ log n)
points and at most Ω(τP (q) log n) points of P .

Similar to the technique used in Section 8, consider two parallel hyper-
planes h1 and h2, but this time parallel to h. Do a central projection from q
and map the points of P onto h1 and h2, resulting in point sets P1 and P2

on h1 and h2, respectively. However, we can observe that since h1 and h2 are
parallel to h, one of them will contain Õ(τP (q)) points. Let this be P1.

Any simplex containing q must have at least one point from P1. Thus, we
can express the simplicial depth of q as the sum of the number of simplices
containing exactly one point from P1 (denoted by σ(1)(q)) and the number of
simplices containing two or more points from P1 (denoted by σ(2+)(q)). We
approximate each term separately.

8 An Exact Algorithm in High Dimensions 20

To approximate σ(1)(q), we build the data structure of Theorem 3.3 on P2

in Õ(n) time. For any point p ∈ P1, consider the ray −→pq and its intersection
p′ with h2. The two-dimensional simplicial depth σP2(p′) approximates the
number of triangles that contain p′ which is equal to the number of three-
dimensional simplices that contain q and have only p from P1. Thus, by
issuing |P1| queries to the two-dimensional data structure, we can approximate
σ(1)(q) in Õ(|P1|) = Õ(n) time.

To approximate σ(2+)
P (q), notice that σ(2+)

P (q) ≤ |P1|2n2 since we are
forced to pick at least two points from P1. On the other hand, by the
Lemma 2.2, σP (q) = Ω(τ3

P (q)n). Thus, we can use the same approach as in
Subsection 6.2 and directly sample simplices. However, we sample simplices
that have at least two points from P2. Using the above inequalities and similar
to the analysis used in Lemma 6.4, it suffices to sample O(δ logn|P1|2n2

ε2τ3P (q)n
) = Õ(n)

simplices and to obtain a relative (1 + ε)-approximation with high probability
for σ(2+)

P (q).

8 An Exact Algorithm in High Dimensions

In this section we describe a simple strategy to compute the simplicial depth
exactly in O(nd log n) time. While we do not achieve the conjectured lower
bound of Ω(nd−1), we cut down roughly a factor n compared to the trivial
upper bound of O(nd+1). Note that this almost matches the best previous
bound of O(n4) in 4D as well [21].

W.l.o.g, assume q is the origin, 0. Our main idea is very simple: consider
d points p1, . . . , pd ∈ P . Let −→ri be the ray that originates from 0 towards −pi.
We would like to count how many points p ∈ P can create a simplex with
p1, . . . , pd that contains 0. We observe that this is equivalent to counting the
number of points of P that lie inside the simplex created by rays −→r1 , . . . ,

−→rd .
We can count this number in polylogarithmic time if we spend Õ(nd) time
to build a simplex range counting data structure on P . This would give an
algorithm with overall running time of Õ(nd). We can cut the log factors
down to one by employing a slightly more intelligent approach.

We use the following observation made by Gil et al. [23].

Observation 8.1. Let q be a point inside a simplex a1 . . . ad+1 and let a′i
be a point on the ray

→
qai. The simplex defined by a1 . . . ai−1a

′
iai+1 . . . ad+1

contains p.

Pick two arbitrary parallel hyperplanes h1 and h2 such that P lies between
them. This can be done easily in O(n) time. Next, using central projection
from 0, we map the points onto the hyperplanes h1 and h2: for every point
pi ∈ P , we create the ray

−→
0pi and let p′i be the intersection of the ray with

h1 or h2. Thus, the point set P can be mapped to two point sets P1 and P2

9 Complexity 21

where P1 lies on h1 and p2 lies on P2 and furthermore, by Observation 8.1,
σP (q) = σP1∪P2(q).

Now we use the following result from the simplex range counting literature.

Theorem 8.2. [20] Given a set of n points in d-dimensional space, and any
constant ε > 0, one can build a data structure of size O(nd+ε) in O(nd+ε)
expected preprocessing time, such that given any query simplex ∆, the number
of points in ∆ can be counted in O(log n) time.

We build the above data structure on P1 and P2. However, since both of
these point sets lie on a (d− 1)-dimensional flat, the preprocessing time is
O(nd−1+ε) = O(nd) if we choose ε = 1/2. Next, for any d tuples of points
p1, . . . , pd, we create the rays −→r1 , . . . ,

−→rd and the corresponding simplex ∆.
We find the intersection of ∆ in O(1) time with hyperplanes h1 and h2 and
issue two simplex range counting queries, one in each hyperplane. Thus, in
O(log n) time, we can count how many simplices contain 0 that are made by
points p1, . . . , pd. We add all these numbers over all d tuples, which counts
each simplex containing 0 exactly (d + 1) times. The number of d-tuples
is O(nd) and for each we spend O(log n) time querying the data structures.
Thus, we obtain the following theorem.

Theorem 8.3. Given a set P of n points in Rd, the simplicial depth of a
point p can be computed in O(nd log n) expected time.

9 Complexity

Let P ⊂ Rd be a set of n points and q ∈ Rd a query point. If the dimension
is constant, then clearly computing σP (q) can be carried out in polynomial
time. We now consider the case that d is part of the input. We show that in
this case computing the simplicial depth is #P-complete by a reduction from
counting the number of perfect matchings in bipartite graphs.

Proposition 9.1. Let P ⊂ Rd be a set and q ∈ Rd a query point. Then,
computing σP (q) is #P-complete if the dimension is part of the input.

Proof. Let G = (V,E) be a bipartite graph with |V | = n and |E| = m.
It is well known that computing the number of perfect matchings in G is
#P-complete [32]. Let PH ⊂ Rm be the perfect matching polytope for G [24,
Chapter 30]. It is defined by m+ 2n half-spaces. Furthermore, the number
of vertices of PH equals the number k of perfect matchings in G. Consider
now the dual polytope PV ⊂ Rm. It is the convex hull of m + 2n points
P ⊂ Rm and the number of facets equals k. Let P̄ ⊂ R2n−1 be the Gale
transform of P . By Lemma 6.1, there is a bijection between the facets of PV
and the (2n− 1)-simplices with vertices in P̄ that contain 0 in their convex
hull. Hence, σP̄ (0) = k.

9 Complexity 22

Next, we show that computing the simplicial depth is W[1]-hard with re-
spect to the parameter d by a reduction to d-Carathéodory. In d-Carathéodory,
we are given a set P ⊂ Rd and have to decide whether there is a (d − 1)-
simplex with vertices in P that contains 0 in its convex hull. Knauer et
al. [27] proved that this problem is W[1]-hard with respect to the parameter
d.

Proposition 9.2. Let P ⊂ Rd be a set and q ∈ Rd a query point. Then,
computing σP (q) is W[1]-hard with respect to the parameter d.

Proof. Assume we have access to an oracle that, given a query point q and a
set Q ⊂ Rd, returns σQ(q). We show that #d-Carathéodory can be decided
with two oracle queries.

Let kd denote the number of (d − 1)-simplices with vertices in P that
contain 0 in their convex hulls and let kd+1 denote the number of d-simplices
with vertices in P that contain 0 in their interior. Then σP (0) can be
written as (|P | − d)kd + kd+1. We want to decide whether kd > 0. For
each point p ∈ P let p̃ ∈ Rd+1 denote the (d+ 1)-dimensional point that is
obtained by appending a 1-coordinate and similarly, for each subset P ′ ⊂ P
let P̃ ′ denote the set {p̃ | p ∈ P ′} ⊂ Rd+1. We denote with S the set
{(0, . . . , 0,−1)T , (0, . . . , 0,−2)T } ⊂ Rd+1 and set Q = P̃ ∪S. Again, we want
to express σQ(0) as a function of kd and kd+1. Let Q′ ⊂ Q, |Q′| = d+ 2, be
a subset that contains 0 in its convex hull. Clearly, Q′ has to contain a point
from S. Let P̃ ′ = Q′ ∩ P̃ denote the part from P̃ and let S′ = Q′ ∩ S denote
the part from S. By construction of S, we have (0, . . . , 0, 1)T ∈ conv(P̃ ′) and
hence 0 ∈ conv(P ′). That is, each (d + 2)-simplex with vertices in Q that
contains 0 in its convex hull corresponds to either a d-simplex or a (d− 1)-
simplex with vertices in P that contains 0 in its convex hull. Consider now
a set P ′ ⊂ P with |P ′| = d+ 1 and 0 ∈ conv(P). Then, the corresponding
set P̃ ′ can be extended in two ways to a subset Q′ ⊂ Q, |Q′| = d+ 2, with
0 ∈ conv(Q′) by taking either point in S. On the other hand, if P ′ ⊂ P is a
subset of size d with 0 ∈ conv(P ′), then we can extend P̃ ′ to a set Q′ ⊂ Q,
|Q′| = d + 2, with 0 ∈ conv(Q′) by either taking both points in S or by
taking one arbitrary point in P̃ \ P̃ ′ and either point in S. Hence, we have
σQ(0) = 2kd+1 + kd−1 + 2(|P | − d)kd−1. Since kd = σQ(0)− 2σP (0), we can
decide whether kd > 0 with two oracle queries.

The following theorem is now immediate.

Theorem 9.3. Let P ⊂ Rd be a set of d-dimensional points and q ∈ Rd
a query point. Then, computing σP (q) is #P-complete and W[1]-hard with
respect to the parameter d.

We conclude the section with constructive result: although computing
the simplicial depth is #P-complete, it is possible to determine the parity in
polynomial-time.

9 Complexity 23

Proposition 9.4. Let P ⊂ Rd be a set of points and q ∈ Rd a query point.
If n− d− 1 is odd or

(
n
d

)
is even, then σP (q) is even. Otherwise, σP (q) is

odd.

Proof. We assume w.l.o.g. that q is the origin. Since the simplicial graph
GP (0) is (n− d− 1)-regular, the product (n− d− 1)|V | = (n− d− 1)σP (0)
is even. If (n− d− 1) is odd, σP (q) has to be even. Assume now (n− d− 1)
is even. We construct a new point set Q in Rd+1 similar as in the proof
of Proposition 9.2. Let R denote the set {(0, . . . , 0,−1)T , (0, . . . , 0, 2)T } ⊂
Rd+1 and set Q = P̃ ∪ R ⊂ Rd+1, where P̃ is defined as in the proof of
Proposition 9.2. Let us now consider the graph GQ(0). Since n − d − 1 is
even, (|Q| − (d + 1) − 1) = n − d is odd. Now, GQ(0) is (n − d)-regular
and thus σQ(0) is even. Let Q′ ⊂ Q, |Q| = d+ 2, be a subset that contains
the origin in its convex hull. Then either (i) R ⊂ Q′ or (ii) Q′ contains the
point r = (0, . . . , 0,−1)T ∈ R and d+ 1 points P̃ ′ ⊆ P̃ with (0, . . . , 0, 1)T ∈
conv(P̃ ′). There are

(
n
d

)
sets Q′ with Property (i) and σP (0) sets Q′ with

Property (ii). Hence, we have σQ(0) = σP (0) +
(
n
d

)
is even and thus σP (0)

is odd iff
(
n
d

)
is odd.

Acknowledgements. This work was initiated while YS was visiting
MADALGO in Aarhus. I would like to thank the working group for their
hospitality and for a constructive atmosphere.

References

[1] Peyman Afshani, Lars Arge, and Kasper Green Larsen. Higher-
dimensional orthogonal range reporting and rectangle stabbing in the
pointer machine model. In SCG ’12: Symposium on Computational
Geometry (SoCG), pages 323–332, 2012.

[2] Peyman Afshani and Timothy M. Chan. On approximate range counting
and depth. Discrete Comput. Geom., 42(1):3–21, 2009.

[3] Peyman Afshani, Chris Hamilton, and Norbert Zeh. A general approach
for cache-oblivious range reporting and approximate range counting.
Computational Geometry: Theory and Applications, 43:700–712, 2010.

[4] G. Aloupis, C. Cortés, F. Gómez, M. Soss, and G. Toussaint. Lower
bounds for computing statistical depth. Comput. Stat. & Data Anal.,
40(2):223–229, 2002.

[5] Greg Aloupis. Geometric measures of data depth. DIMACS series in
discrete mathematics and theoretical computer science, 72:147–158, 2006.

[6] B. Aronov and S. Har-Peled. On approximating the depth and related
problems. SIAM J. Comput., 38(3):899–921, 2008.

9 Complexity 24

[7] B. Aronov, S. Har-Peled, and M. Sharir. On approximate halfspace range
counting and relative epsilon-approximations. In SCG ’07: Symposium
on Computational Geometry (SoCG), pages 327–336, 2007.

[8] Amitabha Bagchi, Amitabh Chaudhary, David Eppstein, and Michael T
Goodrich. Deterministic sampling and range counting in geometric data
streams. ACM Transactions on Algorithms (TALG), 3(2):16, 2007.

[9] I. Bárány. A generalization of Carathéodory’s theorem. Discrete Math.,
40(2):141–152, 1982.

[10] Jon Louis Bentley. Multidimensional divide-and-conquer. Communica-
tions of the ACM, 23(4):214–229, 1980.

[11] Michael Burr, Eynat Rafalin, and Diane L. Souvaine. Simplicial depth:
An improved definition, analysis, and efficiency for the finite sample case.
ftp://dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/2003/2003-
28.ps.gz.

[12] Michael Burr, Eynat Rafalin, and Diane L. Souvaine. Simplicial depth:
An improved definition, analysis, and efficiency for the finite sample case.
In CCCG, pages 136–139, 2004.

[13] Timothy M. Chan. Random sampling, halfspace range reporting, and
construction of (≤ k)-levels in three dimensions. SIAM J. Comput.,
30(2):561–575, 2000.

[14] Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogo-
nal range searching on the RAM, revisited. In SCG ’11: Symposium on
Computational Geometry (SoCG), pages 1–10, 2011.

[15] Timothy M Chan and Konstantinos Tsakalidas. Optimal deterministic
algorithms for 2-d and 3-d shallow cuttings. In SCG ’15: Symposium on
Computational Geometry (SoCG), 2015.

[16] B. Chazelle. The discrepancy method: randomness and complexity.
Cambridge University Press, 2000.

[17] Bernard Chazelle. Filtering search: a new approach to query answering.
SIAM Journal of Computing, 15(3):703–724, 1986.

[18] Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: II.
applications. Algorithmica, 1:163–191, 1986.

[19] Bernard Chazelle, Leonidas J. Guibas, and D. T. Lee. The power of
geometric duality. BIT Numerical Mathematics, 25(1):76–90, 1985.

9 Complexity 25

[20] Bernard Chazelle, Micha Sharir, and Emo Welzl. Quasi-optimal upper
bounds for simplex range searching and new zone theorems. Algorithmica,
8:407–429, December 1992.

[21] A. Y. Cheng and M. Ouyang. On algorithms for simplicial depth. In
CCCG, pages 53–56, 2001.

[22] Jeff Erickson. New lower bounds for convex hull problems in odd
dimensions. SIAM Journal on Computing, 28(4):1198–1214, 1999.

[23] J. Gil, W. Steiger, and A. Wigderson. Geometric medians. Discrete
Math., 108(1):37–51, 1992.

[24] R. L. Graham, M. Grötschel, and L. Lovász. Handbook of combinatorics,
volume 2. Elsevier, 1995.

[25] H. Kaplan and M. Sharir. Randomized incremental constructions of three-
dimensional convex hulls and planar Voronoi diagrams, and approximate
range counting. In Proc. of the 17th Annu. ACM-SIAM Symp. on
Discrete Algorithms, pages 484–493, 2006.

[26] S. Khuller and J. S. B. Mitchell. On a triangle counting problem. Inf.
Process. Lett., 33(6):319–321, 1990.

[27] C. Knauer, H. R. Tiwary, and D. Werner. On the computational com-
plexity of Ham-Sandwich cuts, Helly sets, and related problems. In 28th
Int. Symp. on Theoretical Aspects of Comput. Sci. (STACS 2011), pages
649–660, 2011.

[28] R. Thomas R. Lectures in Geometric Combinatorics. American Mathe-
matical Society, 2006.

[29] E. A. Ramos. On range reporting, ray shooting and k-level construction.
In SCG ’99: Symposium on Computational Geometry (SoCG), pages
390–399. ACM, 1999.

[30] Jiří Matoušek. Reporting points in halfspaces. Computational Geometry,
Theory and Applications, 2(3):169–186, 1992.

[31] P. J. Rousseeuw and I. Ruts. Bivariate location depth. J. R. Stat. Soc.
Series C (Appl. Stat.), 45(4):516–526, 1996.

[32] L. G. Valiant. The complexity of computing the permanent. Theor.
Comput. Sci., 8(2):189 – 201, 1979.

	Introduction
	Structural Theorems and Preliminaries
	Notation
	Bounding the Simplicial Depth with Tukey Depth
	Properties of Random Samples

	Approximating the Simplicial Depth in 2 Dimensions
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Approximation in High Dimensions
	Small Simplicial Depth: Enumeration
	Large Simplicial Depth: Sampling
	Combining the Strategies

	Improved Approximation in Three Dimensions
	An Exact Algorithm in High Dimensions
	Complexity

