Complexity of Finding Nearest Colorful Polytopes

Wolfgang Mulzer

Yannik Stein*

Institut für Informatik, Freie Universität Berlin Takustr. 9, 14195 Berlin, Germany {mulzer, yannikstein}@inf.fu-berlin.de

Abstract

Let $P_1, \ldots, P_{d+1} \subset \mathbb{R}^d$ be point sets whose convex hulls each contain the origin. Each set represents a color class. The *Colorful Carathéodory theorem* guarantees the existence of a *colorful choice*, i.e., a set that contains exactly one point from each color class, whose convex hull also contains the origin. The computational complexity of finding such a colorful choice is still unknown. We study a natural generalization of the problem: in the *Nearest Colorful Polytope* problem (NCP), we are given sets $P_1, \ldots, P_n \subset \mathbb{R}^d$, and we would like to find a colorful choice whose convex hull minimizes the distance to the origin.

We show that computing local optima of the NCP problem is PLS-complete, while computing a global optimum is NP-hard.

1 Introduction

Let $P \subset \mathbb{R}^d$ be a point set. Carathéodory's theorem [4, Chapter 1] states that if $\vec{0} \in \operatorname{conv}(P)$, we can find a subset $P' \subseteq P$ of at most d + 1 points with $\vec{0} \in \operatorname{conv}(P')$. Bárány [2] has generalized this result to the colorful setting:

Theorem 1 (Colorful Carathéodory theorem)

Let $P_1, \ldots, P_{d+1} \subset \mathbb{R}^d$ be point sets (the color classes). If $\vec{0} \in \operatorname{conv}(P_i)$ for $i = 1, \ldots, d+1$, there is a colorful choice C with $\vec{0} \in \operatorname{conv}(C)$. Here, a colorful choice is a set with exactly one point from each color class.

Proof. (*sketch*) Let *C* be some colorful choice. Assume $\vec{0} \notin \text{conv}(C)$ (otherwise, we are done). Let *F* be the facet of conv(C) nearest to the origin and let $p \in C$ be a point in the color class P_i that is no vertex of *F*. Define *h* to be the hyperplane through *F*. Since $\vec{0} \in \text{conv}(P_i)$, there is a point $p' \in P_i$ that is separated from conv(C) by *h*. Then, the hull $\text{conv}(C \setminus \{p\} \cup \{p'\})$ is strictly closer to the origin. Since there are only finitely many colorful choices, this concludes the proof.

Carathéodory's theorem follows by setting $P_1 =$ $\cdots = P_{d+1}$. While Carathéodory's theorem can be cast as a linear program and thus be implemented in polynomial time, very little is known about the complexity of the colorful Carathéodory theorem. The problem of finding a colorful choice is contained in Total Functional NP (TFNP), the class of total search problems that can be computed in non-deterministic polynomial time. It is well-known that no problem in TFNP can be NP-hard unless NP = coNP [3, Lemma 4]. As a first step towards settling the complexity of Colorful Carathéodory, we consider a further generalization: the Nearest Colorful Polytope (NCP) problem. Given a family of color classes $P_1, \ldots, P_n \subset \mathbb{R}^d$, find a colorful choice whose convex hull minimizes the distance to the origin. We study this problem in two variants: as a local search problem, in which we want to find colorful choices whose distance of the convex hull to the origin cannot be reduced by exchanging a single point with another point of the same color; and as a global search problem, in which we want to compute colorful choices that minimize the distance over all colorful choices. We refer to these problems as L-NCP and G-NCP, respectively. The local search variant is particularly interesting since Bárány's proof of the Colorful Carathéodory theorem gives a local search algorithm and is thus tied closely to L-NCP.

In the first part of Section 2, we show that L-NCP is complete for *Polynomial-Time Local Search* (PLS) [3], a subclass of TFNP. A problem in PLS is defined by

- a set of problem instances \Im ;
- for each problem instance, a set \mathfrak{S} of polynomialtime verifiable solutions and a polynomial-time algorithm that returns a base solution;
- a polynomial-time computable cost function \mathfrak{C} that, given the instance, weights the solutions; and
- a polynomial-time neighborhood algorithm \mathfrak{N} , which, given some solution and the instance, returns a set of neighboring solutions.

The problem is to find a *local optimum*, that is, a solution S^* for which all neighbors $S \in \mathfrak{N}(S^*)$ have

^{*}This research was supported by the Deutsche Forschungsgemeinschaft within the research training group 'Methods for Discrete Structures' (GRK 1408).

larger cost (in a minimization problem) or smaller cost (in a maximization problem). The problem definition suggests a simple algorithm: start with the base solution and use \mathfrak{N} to improve until a local optimum is reached. Each iteration takes polynomial-time, but the total number of iterations may be exponential. This is called the *standard algorithm*. There are examples where it is PSPACE-hard to find the solution given by the standard algorithm [1, Chapter 2].

A *PLS-reduction* from a PLS-problem A to a PLSproblem B is defined by two polynomial-time computable functions f and g: f maps problem instances of A to problem instances of B, and g maps local optima of B to local optima of A. Thus, if A is PLSreducible to B, we can transform any algorithm for B with polynomial-time overhead into an algorithm for A. For a more thorough discussion of PLS and PLS-reductions see [1,3,5,6].

2 Complexity

We start by defining the local search variant of NCP as a PLS problem. Then we prove completeness. We also show NP-hardness of the global search variant.

Definition 1 (L-NCP)

- **Instances** $\mathfrak{I}_{\mathbf{NCP}}$. Set families $P = \{P_1, \ldots, P_n\}$ in \mathbb{R}^d , where each $P_i \subset \mathbb{R}^d$ represents a color class.
- Solutions \mathfrak{S}_{NCP} . All colorful choices, i.e., sets that contain exactly one point from each color class.
- Cost function \mathfrak{C}_{NCP} . Let S_{NCP} be a colorful choice. Then, $\mathfrak{C}(S_{NCP}) = \|\mathsf{conv}(S_{NCP})\|_1$, where we set $\|\mathsf{conv}(S_{NCP})\|_1 = \min\{\|q\|_1 \mid q \in \mathsf{conv}(S_{NCP})\}.$ We want to minimize the cost function.
- **Neighborhood** \mathfrak{N}_{NCP} . The neighbors $\mathfrak{N}(S_{NCP})$ of a colorful choice S_{NCP} are all colorful choices that can be obtained by swapping one point with another point of the same color.

The following PLS problem is used to show completeness of L-NCP. It was shown to be PLS-complete by Schäffer and Yannakakis [6, Corollary 5.12].

Definition 2 (Max-2SAT/Flip)

- **Instances** \mathfrak{I}_{M2SAT} . All weighted CNF formulas $\bigwedge_{i=1}^{d} C_i$, where each clause C_i is the disjunction of at most two literals and has weight $w_i \in \mathbb{N}_+$.
- **Solutions** \mathfrak{S}_{M2SAT} . Let x_1, x_2, \ldots, x_n be the variables appearing in the clauses. Then, every complete assignment $\mathcal{A} : \{x_1, \ldots, x_n\} \to \{0, 1\}$ of these variables is a solution.
- Cost function \mathfrak{C}_{M2SAT} . The cost of an assignment is the sum of the weights of all satisfied clauses. We want to maximize the cost function.

Neighborhood \mathfrak{N}_{M2SAT} . The neighbors $\mathfrak{N}(\mathcal{A})$ of an assignment \mathcal{A} are all assignments obtained by flipping (i.e., negating) a single variable in \mathcal{A} .

Theorem 2 L-NCP is PLS-complete.

Proof. Fix an instance $I_{\text{M2SAT}} = (C_1, \ldots, C_d, w_1, \ldots, w_d, x_1, \ldots, x_n)$ of M2SAT. We construct an instance I_{NCP} of L-NCP in which each colorful choice encodes an assignment to the variables in I_{M2SAT} . Furthermore, the distance to the origin of the convex hull of a colorful choice in I_{NCP} will be the total weight of all unsatisfied clauses of the encoded assignment in I_{M2SAT} .

For each variable x_i , we introduce a color class $P_i = \{p_i, \overline{p_i}\}$ consisting of two points in \mathbb{R}^d that encode whether x_i is set to 1 or 0. We assign the *j*th dimension to the *j*th clause and set $(p_i)_j$ to $-nw_j$ if $x_i = 1$ satisfies the *j*th clause and w_j otherwise. Similarly, $(\overline{p_i})_j = -nw_j$ if $x_i = 0$ satisfies C_j and w_j otherwise. A colorful choice of these sets corresponds to the assignment of variables in I_{M2SAT} in which x_i is set to 1 if $p_i \in P_i$ was chosen and set to 0 if $\overline{p_i} \in P_i$ was picked. More formally, we define a mapping $g: \mathfrak{S}_{\text{NCP}} \to \mathfrak{S}_{M2SAT}$ between the solutions of the L-NCP instance and the M2SAT instance in the following way:

$$g(S_{\rm NCP})(x_i) = \begin{cases} 1 & \text{if } p_i \in S_{\rm NCP} \\ 0 & \text{if } \overline{p_i} \in S_{\rm NCP} \end{cases}$$

The idea of the construction is that in a colorful choice S the convex hull $\operatorname{conv}(S)$ contains the origin in the subspace spanned by the satisfied clauses. In the subspace corresponding to the unsatisfied clauses, the point in $\operatorname{conv}(S)$ closest to the origin has the weight of the *j*th clause as its *j*th coordinate. To make this work, we need some additional helper color classes. For each clause C_j , we have a color class $H_j = \{h_j\}$ with a single point, where

$$(h_j)_k = (d+1)\left((n+2) - \frac{d}{d+1}\right)w_j, \quad \text{if } k = j,$$

and w_k otherwise. Finally, the last helper color class $H_{d+1} = \{h_{d+1}\}$ again contains a single point, but this time all coordinates are set to the weights of the clauses, i.e., $(h_{d+1})_j = w_j$. See Fig. 1 for an example.

The remaining proof is divided into two parts: (i) First, we prove that for every colorful choice S_{NCP} of the L-NCP problem instance $\{P_1, \ldots, P_n, H_1, \ldots, H_{d+1}\}$, the cost $\mathfrak{C}_{\text{NCP}}(S_{\text{NCP}})$ is lower-bounded by total weight of the unsatisfied clauses in $g(S_{\text{NCP}})$.

(ii) Second, we show that this lower bound is tight, i.e., the distance of the convex hull of any colorful choice S_{NCP} to the origin is at most the total weight of the unsatisfied clauses in $g(S_{\text{NCP}})$.

$$p_{1}, \overline{p_{2}} = (-9, 6) \cdot \overline{p_{1}, p_{3}}, h_{3} = (3, 6) \\ \bullet \quad h_{1} = (39, 6) \\ \bullet \quad p_{2}, p_{3} = (3, -18) \\ \bullet \quad \bullet \quad h_{1} = (39, 6) \\ \bullet \quad h_{2} = (3, -18)$$

Figure 1: Construction of the point sets corresponding to the M2SAT instance $(x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_3)$ with weights 3 and 6, respectively.

Both claims together imply that $\mathfrak{C}_{\text{NCP}}(S_{\text{NCP}})$ equals the total weight of the unsatisfied clauses for the assignment $g(S_{\text{NCP}})$, which proves the theorem: consider some local optimum S_{NCP}^* of the L-NCP instance. By definition, the costs of all other colorful choices that can be obtained from S_{NCP}^* by exchanging one point with another of the same color are greater or equal to $\mathfrak{C}_{\text{NCP}}(S_{\text{NCP}}^*)$. That is, the total weight of the unsatisfied clauses in $g(S_{\text{NCP}}^*)$ cannot be decreased by flipping a variable, which is equivalent to $g(S_{\text{NCP}}^*)$ being a local optimum of the M2SAT instance.

(i) Let S_{NCP} be a colorful choice and assume some clause C_j is not satisfied by $g(S_{\text{NCP}})$. By construction, the *j*th coordinate of each point *q* in S_{NCP} is at least w_j . Thus, the *j*th coordinate of every convex combination of the points in S_{NCP} is at least w_j . This implies (i). (ii) Given a colorful choice S_{NCP} , we construct a convex combination of S_{NCP} that gives a point *p* whose distance to the origin is exactly the total weight of the unsatisfied clauses in $g(S_{\text{NCP}})$.

Let in the following part A_k denote the set of clauses C_j that are satisfied by k literals wrt $g(S_{\text{NCP}})$, for k = 0, 1, 2. As a first step towards constructing p, we show the existence of an intermediate point in the convex hull of the helper classes:

Lemma 3 There is a point $h \in \text{conv}(H_1, \ldots, H_{d+1})$ whose *j*th coordinate is $(n+2)w_j$ if $j \in A_2$ and w_j otherwise.

Proof. Take

$$h = \sum_{a \in A_2} \frac{1}{d+1} h_a + \left(1 - \frac{|A_2|}{d+1}\right) h_{d+1}$$

Then, for $j \in A_0 \cup A_1$, we have

$$(h)_{j} = \sum_{a \in A_{2}} \frac{1}{d+1} (h_{a})_{j} + \left(1 - \frac{|A_{2}|}{d+1}\right) (h_{d+1})_{j}$$
$$\stackrel{j \notin A_{2}}{=} \sum_{a \in A_{2}} \frac{1}{d+1} w_{j} + \left(1 - \frac{|A_{2}|}{d+1}\right) w_{j}$$
$$= w_{j}$$

And for $j \in A_2$, we have

$$(h)_{j} = \sum_{a \in A_{2}} \frac{1}{d+1} (h_{a})_{j} + \left(1 - \frac{|A_{2}|}{d+1}\right) (h_{d+1})_{j}$$
$$= \frac{1}{d+1} h_{j} + \sum_{a \in A_{2} \setminus \{j\}} \frac{1}{d+1} (h_{a})_{j} + \left(1 - \frac{|A_{2}|}{d+1}\right) (h_{d+1})_{j}$$
$$= \left((n+2) - \frac{d}{d+1}\right) w_{j} + \frac{d}{d+1} w_{j}$$
$$= (n+2)w_{j},$$

as desired.

Let $l_i \in P_i$ be the point from P_i in S_{NCP} . Consider

$$p = \sum_{i \in [n]} \frac{1}{n+1} l_i + \frac{1}{n+1} h$$

We show that $(p)_j$ is w_j for $j \in A_0$ and 0 otherwise. Let us start with $j \in A_0$. Since $g(S_{\text{NCP}})$ does not satisfy C_j , the *j*th coordinate of the points l_1, \ldots, l_n is w_j . Also, $(h)_j = w_j$, by Lemma 3. Thus, $(p)_j = w_j$. Consider now some $j \in A_1$ and let *b* be s.t. the point l_b corresponds to the single literal that satisfies C_j .

$$\begin{aligned} (p)_j &= \sum_{i \in [n]} \frac{1}{n+1} (l_i)_j + \frac{1}{n+1} (h)_j \\ &= \frac{1}{n+1} (l_b)_j + \sum_{i \in [n] \setminus \{b\}} \frac{1}{n+1} (l_i)_j + \frac{1}{n+1} (h)_j \\ &= \frac{-n}{n+1} w_j + \frac{n}{n+1} w_j = 0 \end{aligned}$$

And finally, consider some $j \in A_2$ and let b_1, b_2 be the indices of the two literals that satisfy C_j :

$$(p)_{j} = \sum_{i \in [n]} \frac{1}{n+1} (l_{i})_{j} + \frac{1}{n+1} (h)_{j}$$

= $\frac{1}{n+1} (l_{b_{1}})_{j} + \frac{1}{n+1} (l_{b_{2}})_{j} + \sum_{i \in [n] \setminus \{b_{1}, b_{2}\}} \frac{1}{n+1} (l_{i})_{j} + \frac{1}{n+1} (h)_{j}$
= $\frac{-2n}{n+1} w_{j} + \frac{n-2}{n+1} w_{j} + \frac{n+2}{n+1} w_{j} = 0$

This concludes the proof of (ii).

Remark. We have used the L_1 -norm to define $\mathfrak{C}_{\text{NCP}}$. The reduction easily extends to any L_p norm by replacing the occurrence of any clause weight in the coordinates of the created points with its *p*th root. Note that for $p \neq 1$ the cost functions do not longer coincide.

Theorem 4 G-NCP is NP-hard.

Proof. The proof of Theorem 2 can be adapted easily to reduce 3SAT to G-NCP: given a set of clauses C_1, \ldots, C_d , we set the weight of each clause to 1 and construct the same point sets as in the PLS reduction. Additionally, we introduce for each clause C_j a new helper color class $H'_j = \{h'_j\}$, where

$$(h'_i)_j = (d+1)\left((2n+2) - \frac{d}{d+1}\right)$$
 if $i = j$

and 1 otherwise. Let S now be any colorful choice and A = g(S) the corresponding assignment. As in the PLS-reduction, we define the sets A_k , k = 0, ..., 3, to contain all clauses that are satisfied by exactly k literals in the assignment A. Then, the following point h is contained in the convex hull of the helper points:

$$h = \sum_{a \in A_2} \frac{h_a}{d+1} + \sum_{a' \in A_3} \frac{h'_{a'}}{d+1} + \left(1 - \frac{|A_2|}{d+1}\right) h_{d+1}$$

Again, the convex combination

$$p = \sum_{i \in [n]} \frac{1}{n+1} l_i + \frac{1}{n+1} h$$

results in a point in the convex hull of S whose distance to the origin is the number of unsatisfied clauses, where $l_i \in P_i$ denotes the point from P_i that is contained in S. Together with Claim (i) from the proof of Theorem 2, 3SAT can be decided by knowing a global optimum S^* to the NCP problem: if the distance from $\operatorname{conv}(S^*)$ to the origin is 0, $g(S^*)$ is a satisfying assignment. If not, there exists no satisfying assignment at all. \Box

3 Conclusion

Motivated by the Colorful Carathéodory problem, we have studied the complexity of a generalization, the Nearest Colorful Polytope problem, in two settings: first, we have proved that the corresponding local search problem is PLS-complete by a reduction to Max2SAT. Using an adaptation of the PLS-reduction, we could prove that the problem becomes NP-hard if we restrict the solutions to global optima.

Although the PLS-completeness of the Nearest Colorful Polytope problem together with Bárány's proof indicate that PLS is the right complexity class to show hardness of the Colorful Carathéodory problem, there is a striking difference between the Colorful Carathéodory problem and any known PLS-complete problem: the costs of local optima are known a-priori. While a PLS-complete problem with this property would not lead to a contradiction, this creates a major stumbling block in the construction of a reduction.

References

- E. Aarts and J. K. Lenstra, editors. *Local search in combinatorial optimization*. Princeton University Press, 2003.
- [2] I. Bárány. A generalization of Carathéodory's theorem. Discrete Mathematics, 40(2-3):141–152, 1982.
- [3] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search? J. Comput. Syst. Sci., 37(1):79–100, 1988.
- [4] J. Matoušek. Lectures on discrete geometry. Springer, 2002.
- [5] W. Michiels, E. Aarts, and J. Korst. *Theoretical aspects of local search*. Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2007.
- [6] A. A. Schäffer and M. Yannakakis. Simple local search problems that are hard to solve. SIAM J. Comput., 20(1):56–87, 1991.