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Abstract

Let P1, . . . , Pd+1 ⊂ Rd be d-dimensional point sets such that the convex hull of each Pi contains the
origin. We call the sets Pi color classes, and we think of the points in Pi as having color i. A colorful
choice is a set with at most one point of each color. The colorful Carathéodory theorem guarantees the
existence of a colorful choice whose convex hull contains the origin. So far, the computational complexity
of finding such a colorful choice is unknown.

We approach this problem from two directions. First, we consider approximation algorithms: an
m-colorful choice is a set that contains at most m points from each color class. We show that for any
constant ε > 0, an dε(d + 1)e-colorful choice containing the origin in its convex hull can be found in
polynomial time. This notion of approximation has not been studied before, and it is motivated through
the applications of the colorful Carathéodory theorem in the literature. In the second part, we present a
natural generalization of the colorful Carathéodory problem: in the Nearest Colorful Polytope problem
(NCP), we are given sets P1, . . . , Pn ⊂ Rd that do not necessarily contain the origin in their convex hulls.
The goal is to find a colorful choice whose convex hull minimizes the distance to the origin. We show
that computing local optima for the NCP problem is PLS-complete, while computing a global optimum
is NP-hard.

1 Introduction

Let P ⊂ Rd be a point set. Carathéodory’s theorem [5, Theorem 1.2.3] states that if ~0 ∈ conv(P ),
there is a subset P ′ ⊆ P of at most d+1 points with ~0 ∈ conv(P ′). Bárány [2] gives a generalization
to the colorful setting:

Theorem 1.1 (Colorful Carathéodory Theorem [2]). Let P1, . . . , Pd+1 ⊂ Rd be point sets (the
color classes). If ~0 ∈ conv(Pi), for i = 1, . . . , d+ 1, there is a colorful choice C with ~0 ∈ conv(C).
Here, a colorful choice is a set with at most one point from each color class.

Proof sketch. Let C be some colorful choice. If ~0 ∈ conv(C), we are done. Otherwise, let x be
the point on conv(C) closest to the origin and let h be the hyperplane through x normal to the
segment ~0x. Since x is a convex combination of at most d points from C, there is a color class
Pi that does not contribute to x. Let p ∈ C be the point of color i in the colorful choice. As
~0 ∈ conv(Pi), there is a point p′ ∈ Pi that is separated from conv(C) by h, and conv(C \{p}∪{p′})
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is strictly closer to the origin. There are only finitely many colorful choices, so eventually we
must have ~0 ∈ conv(C). �

Theorem 1.1 implies Carathéodory’s theorem by setting P1 = · · · = Pd+1. Moreover, there
are many variants with weaker assumptions [6]. While Carathéodory’s theorem can be cast as
a linear system and thus be implemented in polynomial time, very little is known about the
algorithmic complexity of the colorful Carathéodory theorem [3]. This question is particularly
interesting because Sarkaria’s proof [11] of Tverberg’s theorem [13] gives a polynomial-time
reduction from computing Tverberg partitions to computing a colorful choice with the origin in
its convex hull. Both problems lie in Total Function NP (TFNP), the complexity class of total
search problems that can be solved in non-deterministic polynomial time. It is well known that
no problem in TFNP is NP-hard unless NP = coNP [4]. Recently, Meunier and Sarrabezolles [7]
have shown that a related problem is complete for a subclasses of TFNP: given d+ 1 pairs of
points P1, . . . , Pd+1 ∈ Qd and a colorful choice that contains the origin in its convex hull, it is
PPAD-complete [10] to find another colorful choice that contains the origin in its convex hull.

Since we have no exact polynomial-time algorithms for the colorful Carathéodory theorem,
approximation algorithms are of interest. This was first considered by Bárány and Onn [3] who
described how to find a colorful choice whose convex hull is “close” to the origin. Let ε, ρ > 0 be
parameters. We call a set ε-close if its convex hull has distance at most ε to the origin. Given sets
P1, . . . , Pd+1 ∈ Qd s.t. (i) each Pi contains a ball of radius ρ centered at the origin in its convex
hull, (ii) all points p ∈ Pi fulfill 1 ≤ ‖p‖ ≤ 2, and (iii) the points in all sets can be encoded using
L bits, one can find a colorful choice C that is ε-close to the origin in time poly(L, log(1/ε), 1/ρ)
on the Word-Ram with logarithmic costs. If 1/ρ = O(poly(L)), the algorithm actually finds a
colorful choice with the origin in its convex hull.

However, when using the colorful Carathéodory theorem in the proof of another statement, it
is often crucial that the convex hull of the colorful choice contains the origin. Being “close” is not
enough. On the other hand, allowing multiple points from each color class may have a natural
interpretation in the reduction. For example, this is the case in Sarkaria’s proof [11] of Tverberg’s
theorem and in the proof of the First Selection Lemma [5, Theorem 9.1.1]. This motivates a
different notion of approximation: we need a “colorful” set with the origin in its convex hull, but
we may take more than one point from each color. More formally, given a parameter m and sets
P1, . . . , Pd+1 ∈ Qd, find a set C s.t. ~0 ∈ conv(C) and s.t. for all Pi, we have |C ∩ Pi| ≤ m. In
contrast to the setting considered by Bárány and Onn, we have no general position assumption.
Surprisingly, this notion does not seem to have been studied before.

Coming from another direction, as a first step towards understanding what makes the problem
hard, we consider the Nearest Colorful Polytope (NCP) problem, a natural generalization inspired
by the proof of Theorem 1.1. Given color classes P1, . . . , Pn ⊂ Rd, not necessarily containing the
origin in their convex hulls, find a colorful choice whose convex hull minimizes the distance to
the origin. We study two variants: the local search problem, where we want to find a colorful
choice whose convex hull cannot be brought closer to the origin by exchanging a single point
with another point of the same color; and the global search problem, where we want to compute
a colorful choice with minimum distance to the origin. We refer to these problems as L-NCP
and G-NCP, respectively. L-NCP is particularly interesting since Bárány’s proof of the colorful
Carathéodory theorem gives a local search algorithm. The complexity of G-NCP was posed as
an open problem by Bárány and Onn [3]. This question was also answered independently by
Meunier and Sarrabezolles [7].
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1.1 Our Results
Given sets P1, . . . , Pn ⊂ Rd, we call a set C containing at most m points from each set Pi an
m-colorful choice. A 1-colorful choice is also called perfect colorful choice. All presented algorithms
are analyzed on the Real-Ram model with unit costs. We begin with an approximation algorithm
based on a simple dimension reduction argument. This leads to the following result:

Proposition 1.2. Let P1, . . . , Pbd/2c+1 ⊂ Rd be bd/2c + 1 sets of size at most d + 1 that each
contain the origin in their convex hulls. Then, a (dd/2e+ 1)-colorful choice containing the origin
in its convex hull can be computed in O(d5) time.

Generalizing the algorithm from Proposition 1.2, we can further improve the approximation
guarantee by repeatedly combining approximations for lower dimensional linear subspaces.

Theorem 1.3. Let P1, . . . , Pd+1 ⊂ Rd be sets of size at most d + 1 s.t. ~0 ∈ conv(Pi) for all
i = 1, . . . , d+ 1. Then, for any ε = Ω(d−1/3), an dε(d+ 1)e-colorful choice containing the origin
in its convex hull can be computed in dO((1/ε) log(1/ε)) time.

In particular, for any constant ε the algorithm from Theorem 1.3 runs in polynomial-time.
Given Θ(d2 log d) color classes, we can also improves the naive dO(d) algorithm asymptotically:

Theorem 1.4. Let P1, . . . , Pn ⊂ Rd be n = Θ(d2 log d) sets of size at most d+1 s.t. ~0 ∈ conv(Pi),
for i = 1, . . . , n. Then, a perfect colorful choice can be computed in dO(log d) time.

On the other hand, if we are given only two color classes, we can achieve a d − Θ(
√
d)

approximation guarantee:

Proposition 1.5. Let P,Q ⊂ Rd be two sets of size at most d+ 1 that both contain the origin in
their convex hulls. Then, a (d−Θ(

√
d))-colorful choice can be computed in O(d4) time.

On the hardness side, we show that a generalization of the colorful Carathéodory problem,
the local search nearest colorful polytope (L-NCP) problem, is complete for the complexity
class polynomial-time local search (PLS). PLS contains local-search problems for which a single
improvement step can be carried out in polynomial-time, but the total length of the search path
may be exponential. Using essentially the same reduction, we can also prove that finding a global
optimum for NCP (G-NCP) is NP-hard.

Theorem 1.6. L-NCP is PLS-complete.

Theorem 1.7. G-NCP is NP-hard.

2 Approximating the Colorful Carathéodory Theorem

Throughout the paper, we denote for a given point set P = {p1, . . . , pn} ⊂ Rd by

• span(P ) = {
∑n

i=1 αipi | αi ∈ R} its linear span and by span(P )⊥ = {v ∈ Rd | ∀p ∈
span(P ) : 〈v, p〉 = 0} the subspace orthogonal to span(P );

• aff(P ) = {
∑n

i=1 αipi | αi ∈ R,
∑n

i=1 αi = 1} its affine hull;

• pos(P ) = {
∑n

i=1 µipi | µi ≥ 0} all linear combinations with nonnegative coefficients;

• conv(P ) = {
∑n

i=1 λipi | λi ≥ 0,
∑n

i=1 λi = 1} its convex hull; and by

• dim(P ) the dimension of span(P ).
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Furthermore, we say that a set P ⊂ Rd is in general position if for every k ≤ d, no k + 2 points
lie in a k-flat and if no proper subset of P contains the origin in its convex hull. We also use the
following constructive version of Carathéodory’s theorem:

Lemma 2.1. Let P ⊂ Rd be a set of O(d) points that contains the origin in its convex hull. In
O(d4) time, we can find a subset P ′ ⊆ P of at most d+ 1 points in general position such that P ′
contains the origin in its convex hull.

2.1 Simple Approximations
Since there are no known approximation algorithms for computing m-colorful choices, even simple
ones are of interest to gain some intuition for the problem. It is a straightforward exercise to show
that a (d − 1)-colorful choice can be computed in polynomial-time. However, even m = d − 2
seems to be nontrivial.

In this section, we present two algorithms that both compute a (d+ 1)/2-colorful choice in
O(d5) time, but differ in the number of required color classes. The following lemma is the key
ingredient of both algorithms: it enables us to replace each color class Pi by two points v1, v2, so
that each point represents half of the points in Pi. We call the points v1, v2 representatives for Pi.
Now, a perfect colorful choice for the representatives will correspond to a d(d + 1)/2e-colorful
choice for the original points. The presented algorithms differ only in the way the perfect colorful
choice is computed for this special case of the colorful Carathéodory problem. The first one uses
basic linear algebra, while the second one is based on a simple dimension reduction argument.

Lemma 2.2. Let P ⊂ Rd, 2 ≤ |P | ≤ d+ 1, be a set in general position that contains the origin
in its convex hull. Then, for every partition of P into two sets P1, P2, there is a vector v 6= ~0 s.t.
v ∈ pos(P1) and −v ∈ pos(P2). This vector can be found in O(d3) time.

Proof. Write ~0 as ~0 =
∑

p∈P λpp, such that λp ≥ 0 for all p ∈ P and such that
∑

p∈P λp = 1.
The coefficients λp can be computed in O(d3) time. Since P is in general position, we have
λp > 0 for all p ∈ P . Set v =

∑
p∈P1

λpp. By construction, we have v 6= ~0, v ∈ pos(P1), and
−v ∈ pos(P2). �

In the first algorithm, we partition each set Pi into two sets of equal size and apply Lemma 2.2
to obtain d+ 1 representatives v1, . . . , vd+1. The set {v1, . . . , vd+1} must be linearly dependent,
so we can use a nontrivial ~0-combination to find a perfect colorful choice for the representatives.

Proposition 2.3. Let P1, . . . , Pd+1 ⊂ Rd be d+ 1 sets s.t. |Pi| ≤ d+ 1 and s.t. Pi contains the
origin in its convex hull, for i = 1, . . . , d+ 1. Then, a d(d+ 1)/2e-colorful choice can be computed
in O(d5) time.

Proof. First, prune each set Pi, i = 1, . . . , d + 1, with Lemma 2.1. This requires O(d5) time.
Assume w.l.o.g. that all sets still contain at least two points (since otherwise at least one set
contains the origin). Partition each set Pi arbitrarily into two sets Pi,1, Pi,2 of equal size and
let v1, . . . , vd+1 be the vectors obtained by applying Lemma 2.2 to the partitions. Since these
vectors are linearly dependent, there is a nontrivial linear combination of ~0: ~0 =

∑d+1
i=1 µivi. The

coefficients µi can be computed in O(d3) time by solving a linear equation system. For each
vector vi with µi > 0, take Pi,1 (since vi ∈ pos(Pi,1)), otherwise Pi,2 (since −vi ∈ pos(Pi,2)).
Figure 1a shows an example in two dimensions. The overall running time is dominated by the
initial pruning step. �

Lemma 2.2 can also be used to reduce the dimension by one. We repeat this until the
dimension is small enough, i.e., dd/2e, and then simply apply Lemma 2.1 in the low dimensional
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Fig. 1: (a) Example of Proposition 2.3 in two dimensions. The color classes are partitioned
into P1 = {p1}∪̇{p2, p3}, P2 = {q3}∪̇{q1, q2}, and P3 = {r1}∪̇{r2, r3}. The set C =
{p1}∪̇{q3}∪̇{r2, r3} is a 2-colorful choice. (b) Example of Proposition 1.2 in two dimensions.
The representative v is computed for the partition P = {p2, p3}∪̇{p1}. W.l.o.g. assume
v lies on the x-axis. The set Q is a recursively computed approximation that contains
the origin in its convex hull if projected onto the y-axis. The set C = Q ∪ {p2, p3} is a
2-colorful choice containing the origin in its convex hull.

space. This algorithm requires only bd/2c+ 1 color classes instead of d+ 1. We will generalize it
in the next section.

Proof of Proposition 1.2. We prune P1 with Lemma 2.1. If |P1| = 1, we have P1 = {~0}, and P1
is a valid approximation. If |P1| ≥ 2, we partition P1 arbitrarily into two sets P1,1, P1,2 of equal
size. We apply Lemma 2.2 to obtain a vector v. We project the remaining color classes onto the
orthogonal subspace span(v)⊥ and recursively compute a (dd/2e+ 1)-colorful choice C̃ for the
projection. Let C ′ be the d-dimensional point set corresponding to C̃. If the convex hull of C ′
intersects pos(v), we set C = C ′ ∪ P1,2 (since −v ∈ pos(Pi,2)), otherwise, we set C = C ′ ∪ Pi,1
(since v ∈ pos(Pi,1)). In both cases, C is a (dd/2e+ 1)-colorful choice with the origin in its convex
hull. See Figure 1b. If only one color is left, i.e., if we are in dimension d− bd/2c = dd/2e, we
prune this color with Lemma 2.1 and we return the resulting set of size at most dd/2e+ 1.

Each invocation of Lemma 2.1 and of Lemma 2.2 takes O(d4) time. The recursion depth is
bounded by bd/2c+ 1, which results in a total running time of O(d5), as claimed. �

2.2 Approximation by Rebalancing
The algorithm from Proposition 1.2 prunes half of the points from each color class in a complete
run. We generalize this approach in two respects: first, we repeatedly prune points to improve
the approximation guarantee. Second, we reduce the dimensionality in each step by more than
one to improve the running time.

Let P1, . . . , Pd+1 ⊂ Rd be the color classes and dε(d + 1)e be the desired approximation
guarantee. Throughout the execution of the algorithm, we maintain a temporary approximation
C ⊂ P1 ∪ · · · ∪Pd+1 that contains the origin in its convex hull, but may have more than dε(d+ 1)e
points of the same color. Initially, C is a complete color class. Using the following lemma, we can
replace a single point in C by an approximate colorful choice for the orthogonal space span(C)⊥.
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Lemma 2.4. Let C ⊂ Rd, |C| = k ≤ d+ 1, be a set in general position that contains the origin
in its convex hull. Furthermore, let Q ⊂ Rd be a set of size O(d) whose orthogonal projection
onto span(C)⊥ contains the origin in its convex hull. Then, there is a point c ∈ C computable in
O(d4) time s.t. ~0 ∈ conv(Q ∪ C \ {c}).

Proof. Write Q as Q = {q1, . . . , ql}. Each qi can be expressed as q̃i + ĉi, where q̃i denotes
the orthogonal projection of qi onto span(C)⊥ and ĉi ∈ span(C). By our assumption, the
origin is a convex combination of q̃1, . . . , q̃l: ~0 =

∑l
i=1 λiq̃i, where λi ≥ 0 and

∑l
i=1 λi = 1.

Consider the convex combination q =
∑l

i=1 λiqi of points in Q with the same coefficients. Since
q =

∑l
i=1 λiqi =

∑l
i=1 λi(q̃i + ĉi) =

∑l
i=1 λiĉi, q is contained in span(C).

By our assumption, we have ~0 ∈ conv(C). Since C is in general position, the following lemma
implies that pos(C) = span(C):

Lemma 2.5. Let C ⊂ Rd be a set in general position. Then, ~0 ∈ conv(C) if and only if
span(C) ⊆ pos(C).

Proof. “⇒” Write ~0 as ~0 =
∑

ci∈C λici, where
∑

ci∈C λi = 1 and all λi > 0. The last part
holds due to general position. Thus, for all ci ∈ C, the point −ci can be expressed as a convex
combination of C\{ci}. Hence, span(ci) is contained in pos(C) for all i and thus span(C) ⊆ pos(C).
“⇐” By the assumption, the origin can be expressed as a positive combination of the points in C.
Scaling the coefficients so that they sum up to 1 concludes the proof. �

Thus, there are k − 1 points cj1 , . . . , cjk−1 in C s.t. −q ∈ pos(cj1 , . . . , cjk−1). We can take
c ∈ C as the single point that does not appear in cj1 , . . . , cjk−1 .

This point can be found in O(d4) time by solving k ≤ d+1 linear equation systems L1, . . . , Lk,
where Lj is defined as

∑
ci∈C,i 6=j αici = −q. Since C is in general position, all (k − 1)-subsets of

C are a basis for span(C). Thus, the linear systems have unique solutions. Furthermore, because
C contains the origin in its convex hull, one of the linear systems has a solution with no negative
coefficients. �

Unfortunately, we cannot control which point is replaced when applying Lemma 2.4. We
always want to replace a point whose color appears more than dε(d+ 1)e times in C to reduce
the maximum number of points that C contains from one color. Generalizing Lemma 2.2, the
following lemma enables us to compute representatives for partitions of arbitrary size. Instead of
applying Lemma 2.4 to C, we replace one of the representatives for C. By choosing the partition
for the representatives appropriately, we can influence the color of the removed points.

Lemma 2.6. Let C ⊂ Rd, |C| ≤ d+ 1, be a set in general position that contains the origin in
its convex hull and let C1, . . . , Cm be a partition of C. Then, we can find in O(d3) time a set
C ′ = {c′1, . . . , c′m} ⊂ Rd with the following properties:

1. ∀i = 1, . . . ,m: c′i ∈ pos(Ci) \ {~0}

2. ~0 ∈ conv(C ′)

3. dim(C ′) = m− 1

We call the points in C ′ representatives for C w.r.t. the partition C1, . . . , Cm.

Proof. Since C contains the origin in its convex hull, we can write ~0 as ~0 =
∑

c∈C λcc, where all
λc > 0, since C is in general position. Define c′j as c′j =

∑
c∈Cj

λcc for all i = 1, . . . ,m. Properties
1. and 2. can be easily verified for the set C ′ = {c′1, . . . , c′m}. Furthermore, c′1 can be expressed as
a linear combination of the other points in C ′: c′1 = −(c′2 + · · ·+ c′m). Thus, dim(C ′) < m. On
the other hand, we have dim(C ′) ≥ m− 1 due to general position. This proves Property 3. �
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Now, we are ready to put everything together. The algorithm repeatedly replaces points in
C by a recursively computed approximate colorful choice for a linear subspace. We are given
as input the color classes P1, . . . , Pd+1 ⊂ Rd, each containing the origin in its convex hull, a
base case threshold d0 ∈ N and two parameter functions M : N0 → N and D : N0 → N. The
first function returns for a given recursion depth the desired approximation guarantee. After
completion, the algorithm outputs anM(0)-colorful choice. The second function, D : N0 → N,
controls the dimension reduction. It returns for a given recursion depth j the desired dimension
of the problem. We require that the parameter functions fulfill the following conditions:

1. M and D are strictly decreasing and can be computed in O(d4) time;

2. D(0) = d; and

3. for all D(j) > d0, the following inequalities hold⌊
D(j) + 1

M(j)−M(j + 1)

⌋
≤ D(j)−D(j + 1) ≤M(j).

We call a pair of parameter functions feasible if the above requirements hold for this pair.
Suppose we are at recursion depth j. That is, the input points are D(j) dimensional and we

want to compute an M(j)-colorful choice. If D(j) is less than our base case threshold d0, we
compute an approximation by brute force. Otherwise, we initialize the temporary approximation
C with a complete color class and prune it with Lemma 2.1. As long as C is not an M(j)-
colorful choice, we repeat the following steps: we partition C into k = D(j) − D(j + 1) + 1
sets C1, . . . , Ck, where the points from each color in C are distributed evenly among the k sets.
Let ni = |Pi ∩ C| denote the number of points from Pi in C. Since k ≤ M(j) + 1, each set
in the partition contains at least one point from each color class Pi for which ni ≥ M(j) + 1.
Applying Lemma 2.6, we compute representatives C ′ = {c′1, . . . , c′k} for this partition. Note that
dim(C ′) = k − 1 and that dim(C ′)⊥ = D(j) − k + 1 = D(j + 1). We call a color class Pi light
if ni ≤M(j)−M(j + 1); otherwise we call Pi heavy. We find D(j + 1) light color classes and
project these orthogonally onto span(C ′)⊥. Let P̃j1 , . . . , P̃jD(j+1)+1 denote the projections. Next,
we recursively compute anM(j + 1)-colorful choice Q̃ for the space orthogonal to span(C ′) with
(P̃j1 , . . . , P̃jD(j+1)+1 , d0,M,D) as input. Let Q be the point set whose projection gives Q̃. Using
Lemma 2.4, we compute a point c′j s.t. conv(Q ∪ C ′ \ c′j) contains the origin. We replace the
subset Cj of C by Q and prune C again with Lemma 2.1. Since each representative c′i is contained
in the cone pos(Ci), Q∪C \Cj still contains the origin in its convex hull and hence the invariant
is maintained. Thus, in one iteration of the algorithm, at least one point from each heavy color
class is replaced by points from light color classes. This is repeated until no heavy color classes
remain in C. See Algorithm 2.1 for pseudocode.

Theorem 2.7. Let P1, . . . , Pd+1 ⊂ Rd be sets s.t. |Pi| ≤ d + 1 and s.t. ~0 ∈ conv(Pi), for
i = 1, . . . , d+ 1. Furthermore, let d0 ∈ N be the base case threshold and M,D : N0 → N a pair
of feasible parameter functions. On input (P1, . . . , Pd+1, d0,M,D), Algorithm 2.1 returns an
M(0)-colorful choice. The running time is given by the following recurrence relation:

T (j) ≤
{
O(dd0

0 ), if D(j) ≤ d0, and
O(D(j))T (j + 1) +O(D(j)5), otherwise.

Proof. We prove correctness by showing that the algorithm respects the parameter functions D
andM. In particular, we prove
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Algorithm 2.1: ε(d+ 1)-apx by Rebalancing
input: P1, . . . , Pd′+1 ⊂ Rd′ s.t. ~0 ∈ conv(Pi) for all i = 1, . . . , d′ + 1, base case threshold

d0 ∈ N, approximation parameter functionM : N0 → N, dimension parameter
function D : N0 → N, recursion depth j (initially 0),

1 if d′ ≤ d0 then
2 return brute force computed perfect colorful choice
3 C ← P1
4 Prune C with Lemma 2.1.
5 d′′ ← D(j + 1); k ← d′ − d′′ + 1
6 while C is not anM(j)-colorful choice do
7 Partition C into k sets C1, . . . , Ck s.t. for all color classes Pi and all pairs of indices

1 ≤ l1, l2 ≤ k, we have |#(Pi ∩ Cl1)−#(Pi ∩ Cl2 |)| ≤ 1.
8 Apply Lemma 2.6 to C1, . . . , Ck. Let C ′ = {c′1, . . . , c′k} be the set of the representatives.
9 Find d′′ + 1 color classes Pj1 , . . . , Pjd′′+1 s.t. |C ∩ Pji

| ≤ M(j)−M(j + 1).
10 for i = 1 to d′′ + 1 do
11 P̃ji ← orthogonal projection of Pji onto span(C ′)⊥

12 Q← recurse(P̃j1 , P̃j2 , . . . , P̃jd′′+1 , d0,M, D, j + 1)
13 Apply Lemma 2.4 to C ′ and Q to find a point c′i ∈ C ′ s.t. ~0 ∈ conv(Q ∪ C ′ \ {c′i}).
14 C ←

(⋃k+1
j=1,j 6=i Cj

)
∪Q

15 Prune C with Lemma 2.1.
16 return C

(i) the dimension in the jth recursion is D(j); and

(ii) in the jth recursion, the resulting colorful choice is anM(j)-colorful choice.

(i) By our assumption, D(0) = d holds initially. Assume now that we are in recursion
level j and that the input points are D(j) dimensional. In line 11, the point sets for the
subproblem are projected onto span(C ′)⊥. By Lemma 2.6, we have dim(C ′) = k − 1 and thus
dim(span(C ′)⊥) = D(j)−k+1 = D(j+1), as desired. Since D is strictly decreasing, the recursion
depth is finite.

(ii) We prove the claim by induction on the recursion depth j. By (i), the base case (i.e.,
D(j) ≤ d0) is reached eventually. The claim trivially holds in the base case, since a perfect
colorful choice is always a valid approximation, regardless ofM. Assume now that the current
recursion depth is j and that the claim holds for all j′ > j. Let C(t) denote the set C after t
iterations of the while-loop in the jth recursion. We show the following invariant:

(α) ~0 ∈ conv(C(t)),

(β) for all color classes Pi, i = 2, . . . , d+ 1, we have |C(t) ∩ Pi| ≤ M(j), and

(γ) |C(t−1) ∩ P1| > |C(t) ∩ P1|, for t ≥ 1.

The invariant implies that the while-loop terminates and anM(j)-colorful choice is returned.
Before the first iteration, the invariant holds since C(0) = P1. Assume we are now in iteration

t and the invariant holds for all previous iterations. Due to Lemmas 2.6 and 2.4, we have
~0 ∈ conv(C(t)) and thus Property (α) holds. By the induction hypothesis, the recursively
computed set Q in line 12 is aM(j + 1)-colorful choice. Since we use only light color classes in
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the recursion, adding the points from Q to C(t) does not violate Property (β) of the invariant.
It remains to show that we can always find D(j + 1) + 1 light color classes. Since C is pruned
to at most D(j) + 1 points at the end of each while-loop iteration, the number of heavy color
classes is upper bounded by

⌊
D(j)+1

M(j)−M(j+1)

⌋
. This is at most D(j)−D(j+ 1) by our assumptions.

Therefore, there are always at least D(j + 1) + 1 light color classes.
Finally, we need to check that the number of points from P1 in C(t) is strictly less than in

C(t−1). By our assumptions, M(j) + 1 ≥ D(j) − D(j + 1) + 1 = k. Since C(t−1) was not a
M(j)-colorful choice (otherwise the while-loop would have terminated), C(t−1) contains at least
M(j) + 1 points from P1 and thus each set Ci in line 7 contains at least one point from P1. Since
one of these sets is removed in line 14 and Q does not contain the color P1, Property (γ) of the
invariant also holds.

We now analyze the running time. During each iteration of the while-loop, the maximum
number of points from each color class is reduced by one until the desired approximation guarantee
is reached. Thus, the total number of iterations is bounded by D(j) + 1−M(j) = O(D(j)). Each
iteration of the while-loop requires O(D(j)4) time. The recursion stops when the dimensionality
is at most d0. In this case, we compute a perfect colorful choice by brute force in O(dd0

0 ) time.
Thus, we get the claimed recurrence relation:

T (j) ≤
{
O(dd0

0 ), if D(j) ≤ d0, and
O(D(j))T (j + 1) +O(D(j)5), otherwise.

�

Proof of Theorem 1.3. We use Algorithm 2.1 with parameter functionsM(j) = dε(1−ε)j/2(d+1)e
and D(j) = d(1− ε)j(d+ 1)e. In particular, we reduce the dimension by ε(d+ 1) in each step
of the recursion. However, in the jth recursion, we do not compute a dε(D(j) + 1)e-colorful
choice, but a d(1− ε)−j/2εD(j)e-colorful choice. This “slack” increases throughout the recursion.
Eventually, the dimension is smaller than the desired approximation guarantee. Then, pruning C
with Lemma 2.1 in line 4 already gives a valid approximation.

We first check that M and D are feasible: 1. and 2. hold trivially. It remains to prove
Condition 3. We have⌊

D(j) + 1
M(j)−M(j + 1)

⌋
=
⌊

d(1− ε)j(d+ 1)e+ 1
dε(1− ε)j/2(d+ 1)e − dε(1− ε)(j+1)/2(d+ 1)e

⌋
≤ (1− ε)j(d+ 1) + 2
ε(1− ε)j/2(d+ 1)− ε(1− ε)(j+1)/2(d+ 1)− 1

≤ (1− ε)j/2(d+ 1)
ε2(1− ε)j/2(d+ 1)

[
1−
√

1− ε− 1
ε(1−ε)j(d+1)

]
≤ 1
ε2
[

ε
2 −

1
εD(j)−1

]
and

D(j)−D(j + 1) = d(1− ε)j(d+ 1)e − d(1− ε)j+1(d+ 1)e
≥ ε(1− ε)j(d+ 1)− 1
≥ D(j)− 2.
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Furthermore, for D(j) ≥ 4(1 + ε)/ε3, we have

1
ε2
[

ε
2 −

1
εD(j)−1

] ≤ D(j)− 2.

So for D(j) = Ω(1/ε3), we have⌊
D(j) + 1

M(j)−M(j + 1)

⌋
≤ D(j)−D(j + 1).

Thus, Condition 3. holds if d0 = Ω(1/ε3).
It remains to analyze the running time. The recursion stops as soon asM(j) ≥ D(j)+1. Then,

the while-loop is skipped since pruning P1 with Lemma 2.1 already gives a valid approximation.
Since M(j) ≥ ε(1 − ε)j/2(d + 1) and 3(1 − ε)j(d + 1) ≥ D(j) + 1, we have M(j) ≥ D(j) + 1
for j = O((1/ε) log(1/ε)), using the fact that − log(1 − ε) ≥ ε. Thus, we obtain the following
recurrence relation for the running time:

T (j) ≤
{
O(d4), if j = Ω(ε−1 log ε−1)
O(d(1− ε)j(d+ 1)e)T (j + 1) +O(D(j)5), otherwise.

This solves to the claimed running time dO((1/ε) log(1/ε)). �

2.3 Varying the Number of Color Classes
So far, we assumed that we have d+ 1 color classes as input. Now, we explore the consequences of
varying this parameter. First, we show that given Ω(d2 log d) color classes, a generalization of the
algorithm from Proposition 2.3 can compute a perfect colorful choice in time dO(log d), improving
the brute force dO(d) algorithm asymptotically. Second, we look at the setting where we have
only two color classes. In this case the colorful Carathéodory theorem guarantees the existence of
a d(d+ 1)/2e-colorful choice that contains the origin in its convex hull. We show how to compute
a (d−Θ(

√
d))-colorful choice in time O(d4).

We begin with the proof of Theorem 1.4. The algorithm follows the structure of Miller and
Sheehy’s algorithm for computing approximate Tverberg partitions [9]. We repeatedly combine
d + 1 m-colorful choices (for some m) to one dm/2e-colorful choice. Eventually, we obtain a
perfect colorful choice.

Lemma 2.8. Let C1, . . . , Cd+1 ⊂ Rd be m-colorful choices of size at most d + 1. Then, a
dm/2e-colorful choice can be computed in O(d5) time.

Proof. Similar to the proof of Proposition 2.3, we partition each color class Ci (i = 1, . . . , d+ 1)
into two sets Ci,1, Ci,2 of equal size, however this time not arbitrary: for each color Pj that
appears in Ci, the points in Ci ∩ Pi are distributed evenly among both sets Ci,1 and Ci,2. Now,
the proof of Proposition 2.3 states that we can find in O(d5) time a set C that contains the origin
in its convex hull and that contains exactly one of the two sets Ci,1, Ci,2, for i = 1, . . . , d + 1.
Since all sets Ci are m-colorful choices, C is a dm/2e-colorful choice. �

Proof of Theorem 1.4. Let A be an array of size k = Θ(log d). We store in A approximate colorful
choices, where all approximate colorful choices in one cell of A have the same approximation
guarantee. We maintain the following invariant: if all sets in A[i− 1] are m-colorful choices, then
all sets in A[i] are dm/2e-colorful choices. Furthermore, each color appears only in a single set.
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Initially, A[0] contains all Θ(d2 log d) color classes. The invariant holds since all other cells of
A are empty. Let ci denote the approximation guarantee of the colorful choices in A[i]. We have
c0 = d+ 1 since each color class is trivially a (d+ 1)-colorful choice and thus c1 = d(d+ 1)/2e,
c2 = dc1/2e = dd(d+ 1)/2e/2e, and so on. While we have not computed a perfect colorful choice,
we repeat the following steps: let i be the maximum index s.t. A[i] contains at least d+ 1 sets
and let C1, . . . , Cd+1 be d + 1 arbitrary sets from A[i]. We apply Lemma 2.8 to obtain one
ci+1-colorful choice C. Let C ′ be the set that we obtain by pruning C with Lemma 2.1. If C ′ is a
perfect colorful choice, we return it. Otherwise, we add it to A[i+ 1]. Furthermore, we add all
colors that were removed during the pruning, i.e., colors that appear in C but not in C ′, to A[0]
as these colors do not appear in any set stored in A. Thus, the invariant is maintained.

We claim that a combination of d+ 1 sets in A[k] for k = dlog(d+ 1)e+ 1 results in a perfect
colorful choice. We have

cj = d. . . dd(d+ 1) /2e/2e . . . e︸ ︷︷ ︸
k times

≤ d+ 1
2k

+
k−1∑
i=0

2−i ≤ d+ 1
2k

+ 2.

Thus, sets in A[dlog(d+ 1)e] are 3-colorful choices, sets in A[dlog(d+ 1)e+ 1] = A[k] are 2-colorful
choices, and the combination of d+ 1 sets in A[k] gives a perfect colorful choice.

It remains to show that we can always find an index i s.t. A[i] contains at least d+ 1 sets.
Suppose there is no such index. Then, each cell A[i] contains at most d sets and each set contains
at most d colors since it is not a perfect colorful choice. Hence, at most d2k = d2(dlog(d+ 1)e+ 1)
colors can appear in A. Thus, if we have d2k + 1 = Θ(d2 log d) colors, progress is always possible.

Let us consider the running time. Let T (i) denote the time to compute a set in level i of A.
One combination step takes O(d5) time, both for the applications of Lemmas 2.8 and 2.1. To
compute a set in level i, we have to compute d+ 1 sets in level i− 1. This results in the following
recurrence relation:

T (i) =
{
O(1), if i = 0
(d+ 1)T (i− 1) +O(d5), otherwise.

Thus, computing one set in level k + 1 takes dO(log d) time. �

Proof of Proposition 1.5. Let P and Q be the two color classes. Let k be a parameter to be
determined later. We prune P with Lemma 2.1 and partition it into k sets P1, . . . , Pk of equal
size. We apply Lemma 2.6 to obtain representatives P ′ = {p′1, . . . , p′k} for these sets and project
Q onto the (d − k + 1)-dimensional subspace span(P ′)⊥. Again, we prune Q with Lemma 2.1
and apply Lemma 2.4 to replace one point p′i of P ′ with Q. Thus, the set C =

⋃k
j=1,j 6=i Pi ∪Q

contains the origin its convex hull and has at most max{d(d+ 1)(1− 1/k)e, d− k + 1} points of
each color. Setting k = Θ(

√
d) gives the result. �

3 The Nearest Colorful Polytope Problem

The complexity class Polynomial-Time Local Search (PLS) contains local search problems for
which a single improvement step can be carried out in polynomial-time. In contrast to complexity
classes for decision problems such as P and NP, the existence of a solution (a local optimum)
to a PLS problem is always guaranteed. Instead, the difficulty lies in finding the solution.
Mathematically, a PLS problem A is a relation A ⊆ I ×S, where I is the set of problem instances
and S is the set of candidate solutions. The relation A is in PLS if:
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• problem instances I ∈ I and candidate solutions s ∈ S are polynomial-time verifiable and
the size of the valid candidate solutions for an instance I is polynomial in the size of I;

• there is a polynomial-time computable function B : I → S that returns some candidate
solution (the base solution) for each instance;

• there is a polynomial-time computable function C : I × S → N that assigns costs to each
instance-solution pair;

• there is a polynomial-time computable neighborhood function N : I × S → 2S assigning
each candidate solution a set of neighboring candidate solutions; and

• for every instance I ∈ I, A contains exactly the pairs (I, s) so that s is a local optimum
for I; i.e., all elements in N (I, s) have smaller costs in a maximization problem and larger
costs in a minimization problem.

The computational problem modeled by A is: given I ∈ I, find an s ∈ S s.t. (I, s) ∈ A. The
following algorithm is called the standard algorithm: start with the base solution B(I) and use N
to improve until a local optimum is reached. Each iteration takes polynomial time, but the total
number of iterations may be exponential. There are examples where it is PSPACE-hard to find
the solution given by the standard algorithm [1, Chapter 2].

To define hardness with respect to PLS, we need an appropriate reduction concept. A PLS-
reduction from a PLS-problem A to a PLS-problem B is given by two polynomial-time computable
functions f : IA → IB and g : IA × SB → SA such that f maps A-instances to B-instances
and g maps local optima for B to local optima for A. Thus, if A is PLS-reducible to B, we can
convert any algorithm for B into an algorithm for A with polynomial-time overhead. We call B
PLS-complete if all problems in PLS are PLS-reducible to B.

Like PPAD, PLS is a subset of the class Total Function NP (TFNP). TFNP contains search
problems whose solution can be verified in polynomial time. No problem in TFNP can be NP-hard
unless NP = coNP [4]. On the other hand, it is not believed that PLS-complete problems can be
solved in polynomial-time, although this would not break any assumptions on complexity classes.
For more information see one of the several main publications on the topic [1, 8, 12, 4]. In the
language of PLS, L-NCP is defined as follows:

Definition 3.1 (L-NCP).

Instances INCP. Set families P = {P1, . . . , Pn} in Rd, where each Pi ⊂ Rd is a color.

Solutions SNCP. All perfect colorful choices, i.e., sets with exactly one point of each color.

Cost function CNCP. Let SNCP be a colorful choice. Then, C(SNCP) = ‖ conv(SNCP)‖1, where
‖ conv(SNCP)‖1 = min{‖q‖1 | q ∈ conv(SNCP)}. We want to minimize CNCP.

Neighborhood NNCP. The neighbors N (SNCP) of a colorful choice SNCP are all colorful choices
that can be obtained by swapping one point with another point of the same color.

We reduce the following PLS-complete problem [12, Corollary 5.12] to L-NCP:

Definition 3.2 (Max-2SAT/Flip).

Instances IM2SAT. All weighted 2-CNF formulas
∧d

i=1 Ci, where each clause Ci is the disjunction
of at most two literals and has weight wi ∈ N+.

Solutions SM2SAT. Let x1, x2, . . . , xn be the variables appearing in the clauses. Then, every
complete assignment A : {x1, . . . , xn} → {0, 1} of these variables is a solution.
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Cost function CM2SAT. The cost of an assignment is the sum of the weights of all satisfied clauses.
We want to maximize the cost function.

Neighborhood NM2SAT. The neighbors N (A) of an assignment A are all assignments obtained by
flipping (i.e., negating) a single variable in A.

Proof of Theorem 1.6. Let IM2SAT = (C1, . . . , Cd, w1, . . . , wd, x1, . . . , xn) be an instance of M2SAT.
We construct an instance INCP of L-NCP in which each colorful choice encodes an assignment to
the variables in IM2SAT. Furthermore, the distance to the origin of the convex hull of a colorful
choice in INCP will be the total weight of all unsatisfied clauses of the encoded assignment for
IM2SAT.

For each variable xi, we introduce a color class Pi = {pi, pi} consisting of two points in Rd

that encode whether xi is set to 1 or 0. We assign the jth dimension to the jth clause and set
(pi)j = −nwj , if xi = 1 satisfies clause j, and (pi)j = wj , otherwise. Similarly, (pi)j = −nwj ,
if xi = 0 satisfies Cj , and (pi)j = wj otherwise. A colorful choice S of P1, . . . , Pn corresponds
to the assignment in IM2SAT where xi is 1 if pi ∈ S and 0 if pi ∈ S. More formally, we define a
mapping g : IM2SAT × SNCP → SM2SAT between the solutions of the L-NCP instance and the
M2SAT instance in the following way:

g(IM2SAT, SNCP)(xi) =
{

1, if pi ∈ SNCP
0, if pi ∈ SNCP.

The main idea is to construct an instance of L-NCP in which the convex hull of a colorful
choice S contains the origin if projected onto the dimensions corresponding to the satisfied clauses.
Furthermore, if projected onto the subspace corresponding to the unsatisfied clauses, the distance
of conv(S) to the origin will be equal to the total weight of those clauses.

We introduce additional helper color classes to decrease the distance to the origin in dimensions
that correspond to satisfied clauses. In particular, we have for each clause Cj a color class
Hj = {hj} consisting of a single point, where

(hj)k =
{

(d+ 1)
(

(n+ 2)− d
d+1

)
wj , if k = j

wk, otherwise.

The last helper color class Hd+1 = {hd+1} again contains a single point, but now all coordinates
are set to the clause weights, i.e., (hd+1)j = wj for j = 1, . . . , d. See Fig. 2.

x

y

p1, p2 = (−9, 6)

p2, p3 = (3,−18)

p1, p3, h3 = (3, 6) h1 = (39, 6)

h2 = (3, 78)

Fig. 2: Construction of the point sets corresponding to the M2SAT instance (x1 ∨ x2) ∧ (x2 ∨ x3)
with weights 3 and 6, respectively.
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The remaining proof is divided into two parts: (i) for every colorful choice SNCP of the L-NCP
problem instance {P1, . . . , Pn, H1, . . . ,Hd+1}, the cost CNCP(SNCP) is lower-bounded by the total
weight of unsatisfied clauses in g(SNCP); and (ii) this lower bound is tight, i.e., the distance of
the convex hull of any colorful choice SNCP to the origin is at most the total weight of unsatisfied
clauses in g(SNCP).

Both claims together imply that CNCP(SNCP) equals the total weight of unsatisfied clauses for
the assignment g(SNCP), which proves the theorem: consider some local optimum S∗NCP of the
L-NCP instance. By definition, the costs of all other colorful choices that can be obtained from
S∗NCP by exchanging one point with another of the same color are greater or equal to CNCP(S∗NCP).
That is, the total weight of unsatisfied clauses in g(S∗NCP) cannot be decreased by flipping a
variable, which is equivalent to g(S∗NCP) being a local optimum of the M2SAT instance.

(i) Let SNCP be a colorful choice and assume some clause Cj is not satisfied by g(SNCP). By
construction, the jth coordinate of each point q in SNCP is at least wj . Thus, the jth coordinate
of every convex combination of the points in SNCP is at least wj . This implies (i).

(ii) Given a colorful choice SNCP, we construct a convex combination of SNCP that gives a
point p whose distance to the origin is exactly the total weight of unsatisfied clauses in g(SNCP).
Let in the following part Ak denote the set of clauses Cj that are satisfied by k literals w.r.t.
g(SNCP), for k = 0, 1, 2. As a first step towards constructing p, we show the existence of an
intermediate point in the convex hull of the helper classes:

Lemma 3.3. There is a point h ∈ conv(H1, . . . ,Hd+1) whose jth coordinate is (n + 2)wj if
j ∈ A2 and wj otherwise.

Proof. Take h =
∑

a∈A2

1
d+1ha +

(
1− |A2|

d+1

)
hd+1. Then, for j ∈ A0 ∪A1, we have

(h)j =
∑

a∈A2

1
d+ 1(ha)j +

(
1− |A2|

d+ 1

)
(hd+1)j

j /∈A2=
∑

a∈A2

1
d+ 1wj +

(
1− |A2|

d+ 1

)
wj = wj .

And for j ∈ A2, we have

(h)j =
∑

a∈A2

1
d+ 1(ha)j +

(
1− |A2|

d+ 1

)
(hd+1)j

= 1
d+ 1hj +

∑
a∈A2\{j}

1
d+ 1(ha)j +

(
1− |A2|

d+ 1

)
(hd+1)j

=
(

(n+ 2)− d

d+ 1

)
wj + d

d+ 1wj = (n+ 2)wj ,

as desired. �

Let li ∈ Pi be the point from Pi in SNCP. Consider p =
∑n

i=1
1

n+1 li + 1
n+1h. We show that

(p)j = wj , for j ∈ A0, and (p)j = 0, otherwise. Let us start with j ∈ A0. Since g(SNCP) does
not satisfy Cj , the jth coordinate of the points l1, . . . , ln is wj . Also, (h)j = wj , by Lemma 3.3.
Thus, (p)j = wj . Consider now some j ∈ A1 and let b be s.t. the point lb corresponds to the
single literal that satisfies Cj .

(p)j =
n∑

i=1

1
n+ 1(li)j + 1

n+ 1(h)j

= 1
n+ 1(lb)j +

n∑
i=1,i6=b

1
n+ 1(li)j + 1

n+ 1(h)j = −n
n+ 1wj + n

n+ 1wj = 0.
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Finally, consider some j ∈ A2 and let b1, b2 be the indices of the two literals that satisfy Cj :

(p)j =
n∑

i=1

1
n+ 1(li)j + 1

n+ 1(h)j

= 1
n+ 1(lb1)j + 1

n+ 1(lb2)j +
n∑

i=1,i/∈{b1,b2}

1
n+ 1(li)j + 1

n+ 1(h)j

= −2n
n+ 1wj + n− 2

n+ 1wj + n+ 2
n+ 1wj = 0

This concludes the proof of (ii). �

Proof of Theorem 1.7. The proof of Theorem 1.6 can be adapted easily to reduce 3SAT to G-NCP:
given a set of clauses C1, . . . , Cd, we set the weight of each clause to 1 and construct the same
point sets as in the PLS reduction. Additionally, we introduce for each clause Cj a new helper
color class H ′j = {h′j}, where

(h′i)j =
{

(d+ 1)
(

(2n+ 2)− d
d+1

)
, if i = j, and

1, otherwise.

Let S now be any colorful choice and A = g(S) the corresponding assignment. As in the PLS-
reduction, we define the sets Ak, k = 0, . . . , 3, to contain all clauses that are satisfied by exactly
k literals in the assignment A. Then, the following point h is contained in the convex hull of the
helper points:

h =
∑

a∈A2

ha

d+ 1 +
∑

a′∈A3

h′a′

d+ 1 +
(

1− |A2|
d+ 1

)
hd+1.

Again, the convex combination p =
∑n

i=1
1

n+1 li + 1
n+1h results in a point in the convex hull of

S whose distance to the origin is the number of unsatisfied clauses, where li ∈ Pi denotes the
point from Pi that is contained in S. Together with Claim (i) from the proof of Theorem 1.6,
3SAT can be decided by knowing a global optimum S∗ to the NCP problem: if the distance from
conv(S∗) to the origin is 0, g(S∗) is a satisfying assignment. If not, there exists no satisfying
assignment at all. �

4 Conclusion

We have proposed a new notion of approximation for the colorful Carathéodory theorem and
presented an abstract approximation scheme. By choosing the parameters carefully, we could
obtain a polynomial-time algorithm that computes dε(d+1)e-colorful choices for any constant ε > 0.
One of the key motivations for studying this kind of approximation was the tight connection to
approximating Tverberg’s theorem. Unfortunately, if we convert the algorithm from Theorem 1.3
to an approximation algorithm for Tverberg using Sarkaria’s proof, we obtain an algorithm
with a trivial approximation guarantee. The approximation guarantee of the algorithm from
Theorem 1.3 is right at the threshold to get a nontrivial Tverberg approximation algorithm: any
efficient algorithm computing an do(1)-colorful choice would result in an efficient approximation
algorithm for Tverberg’s theorem with a nontrivial approximation guarantee. This is particularly
interesting as no nontrivial efficient approximating algorithm for Tverberg’s theorem is known.
The existence of such an algorithm was conjectured by Miller and Sheehy [9]. However, it does
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not seem possible to get an approximation algorithm for Tverberg that is polynomial in d and
linear in the number of points with this approach, as in this case even pruning the color classes
with Carathéodory’s theorem would require too much time.

In the second part, we have studied the complexity of a natural generalization of the colorful
Carathéodory theorem, the Nearest Colorful Polytope problem, in two settings: first, we have
proved that the corresponding local search problem is PLS-complete by a reduction to Max2SAT.
Using an adaptation of the PLS-reduction, we could prove that the problem becomes NP-hard if
we restrict the solutions to global optima. Although the PLS-completeness of the Nearest Colorful
Polytope problem together with Bárány’s proof indicate that PLS is the right complexity class
to show hardness of the Colorful Carathéodory problem, there is a striking difference between
the Colorful Carathéodory problem and any known PLS-complete problem: the costs of local
optima are known a-priori. While a PLS-complete problem with this property would not lead to
a contradiction, this creates a major stumbling block in the construction of a reduction.
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