
Algorithms for Tolerant Tverberg Partitions

Wolfgang Mulzer? and Yannik Stein??

Institut für Informatik, Freie Universität Berlin
Takustr. 9, 14195 Berlin, Germany

{mulzer, yannikstein}@inf.fu-berlin.de

Abstract. Let P be a d-dimensional n-point set. A partition T of P is
called a Tverberg partition if the convex hulls of all sets in T intersect in
at least one point. We say that T is t-tolerant if it remains a Tverberg
partition after deleting any t points from P . Soberón and Strausz proved
that there is always a t-tolerant Tverberg partition with dn/(d+1)(t+1)e
sets. However, no nontrivial algorithms for computing or approximating
such partitions have been presented so far.
For d ≤ 2, we show that the Soberón-Strausz bound can be improved, and
we show how the corresponding partitions can be found in polynomial
time. For d ≥ 3, we give the first polynomial-time approximation algo-
rithm by presenting a reduction to the regular Tverberg problem (with
no tolerance). Finally, we show that it is coNP-complete to determine
whether a given Tverberg partition is t-tolerant.

Keywords: Tverberg partition; tolerant Tverberg partition; high-dimensional
approximation; coNP-completeness.

1 Introduction

Let P ⊂ Rd be a point set of size n. A point c ∈ Rd has (Tukey) depth m with
respect to P if every closed half-space containing c also contains at leastm points
from P . A point of depth dn/(d + 1)e is called a centerpoint for P . The well-
known centerpoint theorem [10] states that every point set has a centerpoint.
Centerpoints are of great interest since they constitute a natural generalization of
the median to higher-dimensions and are invariant under scaling or translations
and robust against outliers.

Chan [1] described a randomized algorithm that finds a d-dimensional center-
point in expected time O(nd−1). In fact, Chan solves the seemingly harder prob-
lem of finding a point with maximum depth, and he conjectures that his result is
optimal. Since this is infeasible in higher dimensions, approximation algorithms
are of interest. Already in 1993, Clarkson et al. [2] developed a Monte-Carlo
algorithm that finds a point with depth Ω(n/(d + 1)2) in time O(d2(d log n +
log(1/δ))log(d+2)), where δ is the error-probability. Teng [15] proved that it is
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coNP-complte to test whether a given point is a centerpoint. Thus, we do not
know how to verify efficiently the output of the algorithm by Clarkson et al.
For a subset of centerpoints, Tverberg partitions [16] provide polynomial-time
checkable proofs for the depth: a Tverberg m-partition for a point set P ⊂ Rd is
a partition P = T1∪̇T2∪̇ · · · ∪̇Tm of P into m sets such that

⋂m
i=1 conv(Ti) 6= ∅.

Each half-space that intersects
⋂m

i=1 conv(Ti) must contain at least one point
from each Ti, so each point in

⋂m
i=1 conv(Ti) has depth at least m. Tverberg’s

theorem states that depth m = dn/(d + 1)e can always be achieved. Thus,
there is always a centerpoint with a corresponding Tverberg partition. Miller
and Sheehy [7] developed a deterministic algorithm that computes a point of
depth dn/2(d + 1)2e in time nO(log d) together with a corresponding Tverberg
partition. This was recently improved by Mulzer and Werner [9]. Through re-
cursion on the dimension, they can find a point of depth dn/4(d + 1)3e and a
corresponding Tverberg partition in time dO(log d)n.

(a) 0-tolerant Tverberg 5-partition (b) 1-tolerant Tverberg 3-partition

Fig. 1. (a) A regular Tverberg partition for 13 points. One set of the partition consists
of a single point. The removal of any point would separate the convex hulls. (b) A
1-tolerant Tverberg partition for the same point set. The Tverberg partition is not
2-tolerant since the removal of both white points would separate the convex hulls.

Let T be a Tverberg m-partition for P . If any nonempty subset R ⊂ P is
removed from P , we no longer know if

⋂m
i=1 conv(Ti \R) 6= ∅. In the worst-case,

the maximum number of sets in T whose convex hulls still have a nonempty
intersection is m − |R|. Thus, after removing only m points, the convex hulls
of sets in T could be pairwise disjoint and do not longer serve as a depth-
certificate for points in the intersection of the convex hulls. In order to give
stronger guarantees if points are removed, we study Tverberg partitions that
remain Tverberg partitions even after removing t arbitrary points from P . We
call a Tverberg partition t-tolerant if

⋂m
i=1 conv(Ti \ R) is nonempty for any

subset R ⊂ P of size at most t. To distinguish tolerant Tverberg partitions
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from Tverberg partitions with no tolerance, we call the latter regular Tverberg
partitions. Furthermore, we say that a set R separates the convex hulls of the
sets in T if

⋂m
i=1 conv(Ti \ R) = ∅. See Figure 1 for two examples. In 1972,

Larman [5] proved that every set of size 2d + 3 admits a 1-tolerant Tverberg
2-partition. This was motivated by a problem proposed by McMullen: find the
largest number n such that any n-point set can be made convex by applying a
permissible projective transformation. Here, permissible means that no point in
the set is mapped to a point at infinity. Larman also showed that there are sets
of size d + Θ(

√
d) that do not have a 1-tolerant Tverberg 2-partition if d ≥ 2.

This lower bound was later improved by Ramírez Alfonsín [11] to 5/3d + 4/3
for d ≥ 4. García-Colín [4] generalized Larman’s upper bound, showing that
sets of size (t+ 1)(d+ 1) + 1 always have a t-tolerant Tverberg 2-partition, and
asked for a general bound to guarantee the existence of t-tolerant Tverberg m-
partitions. Later, Montejano and Oliveros [8] conjectured that every set of size
(t + 1)(m − 1)(d + 1) + 1 admits a t-tolerant Tverberg m-partition. This was
proved by Soberón and Strausz [14] who adapted Sarkaria’s proof of Tverberg’s
theorem [12] to the tolerant setting:

Theorem 1.1 (Soberón-Strausz-Theorem [14]). Let P ⊂ R be a set of size
(t + 1)(m − 1)(d + 1) + 1. Then, there exists a t-tolerant Tverberg m-partition
for P .

Equivalently, for all n-point sets there exists a t-tolerant Tverberg dn/(d +
1)(t+ 1)e-partition.

Soberón and Strausz [14] also conjectured this bound to be tight. A lower
bound was recently proven by Soberón [13]: at least m(bd/2c+ t+1) points are
necessary to guarantee the existence of a t-tolerant Tverberg m-partition.

So far, no exact or approximation algorithms for tolerant Tverberg partitions
appear in the literature.

Our contribution. In Section 2, we consider the problem of computing toler-
ant Tverberg partitions in low dimensions. We present an algorithm for the
one-dimensional case and use a dimension-reduction argument to extend the
algorithm to multidimensional input:

Theorem 1.2. Given a set P ⊂ Rd of size 2d−1(m(t + 2) − 1), a t-tolerant
Tverberg m-partition for P can be computed in time O(2d−1dmt+mt log t).

For d = 1, the bound on the number of points is tight and improves the Soberón-
Strausz bound from Theorem 1.1 by t(m−2). For d = 2, the new bound improves
the bound by Soberón and Strausz for large enough m and t.

For higher dimensions, we describe in Section 3 an approximation-preserving
reduction to the regular Tverberg problem based on a lemma by García-Colín.
Thus, we can apply existing and possible future algorithms for the regular Tver-
berg problem in the tolerant setting:

Proposition 1.3. Let P ⊂ Rd and let A be an algorithm that computes a regular
Tverberg m-partition for any point set of size nA(m) in time TA(m). Then, a
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(b|P |/nA(m)c − 1)-tolerant Tverberg m-partition for P can be computed in time
O (TA(m) · |P |/nA(m)).

Finally, we show in Section 4 that it is coNP-complete to determine whether
a given Tverberg partition has tolerance t if the dimension is part of the input:

Theorem 1.4. TestingTolerantTverberg is coNP-complete.

This holds even if we restrict the input to Tverberg partitions of size 2.

2 Low Dimensions

We start with an algorithm for the one-dimensional case that yields a tight
bound. This can be bootstrapped to higher dimensions with a lifting approach
similar to the algorithm by Mulzer and Werner [9]. In two dimensions, we also
get an improved bound if the size of the desired partition and the tolerance is
large enough.

2.1 One Dimension

Let P ⊂ R with |P | = n, and let T = {T1, T2, . . . , Tm} be a t-tolerant Tverberg
m-partition of P . By definition, there is no subset R ⊂ P, |R| = t whose removal
separates the convex hulls of the sets in T . Bounding the size of the sets in T
gives us more insight into the structure.

Lemma 2.1. Let P ⊂ R with |P | = n and let T = {T1, T2, . . . , Tm} be a t-
tolerant Tverberg m-partition of P . Then,

(i) for i = 1, . . . ,m, we have |Ti| ≥ t+ 1; and
(ii) for i, j = 1, . . . ,m, i 6= j, we have |Ti ∪ Tj | ≥ 2t+ 3.

Proof. (i) Suppose |Ti| ≤ t. After removing Ti from P , the intersection of the
convex hulls of the sets in T becomes empty, and T would not be t-tolerant.

(ii) Suppose there are Ti, Tj ∈ T with |Ti ∪ Tj | ≤ 2t + 2. By (i), we have
|Ti| = |Tj | = t+1. Let pmin = min(Ti∪Tj) and assume w.l.o.g. that pmin ∈ Ti
(see Figure 2). Then |Ti \ {pmin}| = t, and removing the set Ti \ {pmin}
separates the convex hulls of Ti and Tj . This again contradicts T being
t-tolerant.

Lemma 2.1 immediately implies a lower bound on the size of any point set
that admits a t-tolerant Tverberg m-partition.

Corollary 2.2. Let P ⊂ R with |P | < m(t + 2) − 1. Then P has no t-tolerant
Tverberg m-partition.
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Ti

pmin

Tj

Fig. 2. The convex hulls of two sets of size t+1 can be separated by removing t points.

Now what happens for |P | = m(t+2)−1? Note that for t > 0 and m > 2, we
have m(t+2)−1 < 2(t+1)(m−1)+1, the bound by Soberón and Strausz. Thus,
proving that a t-tolerant Tverberg m-partition exists for any one-dimensional
point set of size m(t + 2) − 1 would disprove the conjecture by Soberón and
Strausz.

Let P ⊂ R be of size m(t+2)− 1. By Lemma 2.1, in any t-tolerant Tverberg
partition of P , one set has to be of size t + 1 and all other sets have to be of
size t + 2. Let T = {T1, . . . , Tm} be a Tverberg m-partition of P such that T1
contains every mth point of P and each other set Ti (i ≥ 2) has one point in
each interval defined by the points of T1; see Fig. 3 for m = 3 and t = 2. Note
that |T1| = t + 1 and |Ti| = t + 2 for i ≥ 2. We will show that T is t-tolerant.
Intuitively, T maximizes the interleaving of the sets, making the convex hulls
more robust to removals.

T1

p3 p6 p9

T3

T2

Fig. 3. A 2-tolerant Tverberg 3-partition for 11 (= 3(2 + 2)− 1) points.

Lemma 2.3. Let P ⊂ R with |P | = m(t+ 2)− 1, and let T = {T1, . . . , Tm} be
an m-partition of P . Suppose that |T1| = t+1, and write T1 = (p1, p2, . . . , pt+1),
sorted from left to right. Suppose that each interval I ∈ {(−∞, p1), (p1, p2),
. . .,(pt+1,∞)} contains one point from each Ti, for i = 2, . . . ,m. Then T is a
t-tolerant Tverberg m-partition for P .

Proof. Suppose there exist Ti, Tj ∈ T , i 6= j, and a subset R ⊂ P of size t
such that removing R from P separates the convex hulls of Ti and Tj . Let h
be a point that separates conv(Ti \ R) and conv(Tj \ R). Define a = max{p ∈
T1 | p ≤ h} and b = min{p ∈ T1 | p > h}, where a = −∞ if all points in
T1 are greater than h and b = +∞ if all points in T1 are less than h. Let
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T≤ai = {p ∈ Ti | p ≤ a} and T≥bi = {p ∈ Ti | p ≥ b}, and define T≤aj , T≥bj

similarly. Since removing R separates the convex hulls of Ti and Tj at h, R
must contain either T≤ai ∪ T≥bj or T≥bi ∪ T≤aj . Figure 4 shows the situation. By
construction, we know that |T≤ai | = |T

≤a
j | = |T

≤a
1 | and |T

≥b
i | = |T

≥b
j | = |T

≥b
1 |.

We thus have t ≥ |R| ≥ |T≤ai ∪ T≥bj | = |T
≤a
j ∪ T≥bi | = |T

≤a
1 ∪ T≥b1 |. However,

since |T≤a1 ∪ T≥b1 | = |T1| = t+ 1, this is a contradiction.
Thus, even after removing t points, the convex hulls of the sets in T intersect

pairwise. Helly’s theorem [6] now guarantees that the convex hulls of all sets in
T have a common intersection point. Hence, T is t-tolerant.

T≤a
i T≥b

i

T≤a
j T≥b

j

ha b

Fig. 4. The convex hulls of two elements in T are separated after the removal of
R. Crosses mark removed points (i.e., points in R). Points not used in the proof of
Lemma 2.3 are left out for clarification.

Lemma 2.3 immediately gives a way to compute a t-tolerant Tverberg m-
partition in O(mt logmt) time for |P | = m(t + 2) − 1 by sorting P . However,
it is not necessary to know the order of all of P . Algorithm 1 exploits this fact
to improve the running time. It repeatedly partitions the point set until it has
selected all points whose ranks are multiples of m. These points form the set T1.
Initially, the set Q contains only the input P (line 4). In lines 6–10, we select
from each set in Q an element whose rank is a multiple of m (line 8) and we
split the set at this element. Here, select(P, k) is a procedure that returns the
element with rank k of P . After termination of both loops in lines 5–11, all
remaining sets in Q correspond to points in P between two consecutive points
in T1. In lines 12–14, the points in the sets in Q are distributed equally among
the elements Ti (i ≥ 2) of the returned partition.

Theorem 2.4. Let P ⊂ R be a set of size m(t + 2) − 1. On input (P,m),
Algorithm 1 returns a t-tolerant Tverberg partition for P in time O(mt log t).

Proof. After each complete run of the inner for-loop (lines 6–10), each element
P ′ ∈ Q has size strictly less than r: initially, Q contains only P and r is strictly
greater than |P |/2. Hence, both new sets added to Q in line 9 are of size strictly
less than r. Since r is halved after each run (line 11), the invariant is maintained.

We will now check that Lemma 2.3 applies. We only split the sets in Q at
elements whose rank is a multiple of m, so the ranks do not change modulo m.
By the invariant, after the termination of the outer while-loop in lines 5–11, each
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Algorithm 1: 1d-tolerant-Tverberg
input : P ⊂ R, size of partition m

1 r ← m;
2 while r ≤ |P |/2 do
3 r ← 2 · r;
4 Q← {P}; T1, T2, . . . , Tm ← ∅, ∅, . . . , ∅;
5 while r ≥ m do
6 foreach P ′ ∈ Q with |P ′| ≥ r do
7 remove P ′ from Q;
8 pr ← select(P ′, r);
9 Q← Q ∪ {{p′ ∈ P ′ | p′ < pr}, {p′ ∈ P ′ | p′ > pr}};

10 T1 ← T1 ∪ {pr};
11 r ← r/2;
12 foreach P ′ ∈ Q do
13 foreach j ∈ {2, 3, . . . ,m} do
14 remove any point from P ′ and add it to Tj ;
15 return {T1, T2, . . . , Tm};

set in Q has size strictly less than m. Thus, T1 contains the points in P whose
rank is a multiple of m and each set P ′ ⊂ P in Q contains all points between two
consecutive points in T1. Since these are distributed equally among T2, . . . , Tm,
Lemma 2.3 now shows the correctness of the algorithm.

Let us consider the running time. Computing the initial r in lines 1–3 requires
O(log(|P |/m)) = O(t) time. The split-element in line 8 can be found in time
O(|P ′|) [3]. Thus, since the sets are disjoint, one iteration of the outer while-
loop requires O(|P |) time, for a total of O(log(|P |/m)|P |) = O(log(t)mt). By
the same argument, both for-loops in lines 12–14 require linear time in the size
of P . This results in a total time complexity of O(mt log t), as claimed.

2.2 Higher Dimensions

We use a lifting argument [9] to extend Algorithm 1 to higher-dimensional input.
Given a point set P ⊆ Rd of size n, let h be a hyperplane that splits P evenly
(if n is odd, h contains exactly one point of P ). We then partition P into bn/2c
pairs (p−i , p

+
i ), where p

−
i ∈ h− and p+i ∈ h+. We obtain a (d − 1)-dimensional

point set with bn/2c elements by mapping each pair to the intersection of the
connecting line segment with h.

Let qi = p+i p
−
i ∩h be the mapped point for (p−i , p

+
i ) and T ′ = {T ′1, . . . , T ′m} a

t-tolerant Tverbergm-partition ofQ = {q1, . . . , qbn/2c}. We obtain a Tverbergm-
partition T with tolerance t for P by replacing each qi in T ′ by its corresponding
pair (p−i , p

+
i ). Thus, we can repeatedly project the set P until Algorithm 1 is

applicable. Then, we lift the one-dimensional solution back to higher dimensions.
Algorithm 2 follows this approach. For d = 1, Algorithm 1 is applied (lines 1–

2). Otherwise, we take an appropriate hyperplane orthogonal to the xd-axis and
compute the lower-dimensional point set (lines 3–7). This is always possible
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since we can assume w.l.o.g. that all points have distinct xd coordinates by a
simple rotation argument. Finally, the result for d− 1 dimensions is lifted back
to d dimensions (lines 10–11). Using Theorem 2.4, it is easy to show that

Algorithm 2: DimReduct-Tolerant-Tverberg
input : point set P ⊂ Rd, tolerance parameter t, size of partition m
output: t-tolerant Tverberg partition for P of size m

1 if d = 1 then
2 return 1d-tolerant-Tverberg (P,m)

3 h← hyperplane that halves P according to the xd-coordinate;
4 foreach i ∈ {1, 2, . . . , |P ∩ h−|} do
5 p−i ← remove any point from P that belongs to P ∩ h−;
6 p+i ← remove any point from P that belongs to P ∩ h+;
7 qi ← first d− 1 coordinates of p−i p

+
i ∩ h;

8 Q← {q1, q2, . . . , q|P∩h−|};
9 {T ′1, T ′2, . . . , T ′m} ← DimReduct-Tolerant-Tverberg(Q, t,m);

10 foreach j ∈ {1, 2, . . . ,m} do
11 Tj ← {p−i , p

+
i | qi ∈ T ′j};

12 return {T1, T2, . . . , Tm};

Algorithm 2 achieves the bounds claimed in Theorem 1.2:

Theorem 2.5 (Theorem 1.2 restated). Given a set P ⊂ Rd of size 2d−1(m(t+
2)−1), a t-tolerant Tverberg m-partition for P can be computed in time O(2d−1dmt+
mt log t).

Proof. Since the size of P halves in each recursion step, 2d−1(m(t+2)−1) points
suffice to ensure that Algorithm 1 can be applied to m(t + 2) − 1 points in the
base case. Each projection and lifting step can be performed in linear time, using
a median computation. Since the size of the point set decreases geometrically,
the total time for projection and lifting is thus O(2d−1dmt). Since Algorithm 1
has running time O(mt log t), the result follows.

For d ≥ 3, the bound from Proposition 1.2 is worse than the Soberón-Strausz
bound. However, in two dimensions, we have

22−1(m(t+ 2)− 1) < (2 + 1)(m− 1)(t+ 1) + 1⇔ m/(m− 3) < t

This holds for instance if m ≥ 4∧ t ≥ 5 or m ≥ 7∧ t ≥ 2. Thus, Algorithm 2
gives a strict improvement over the Soberón-Strausz bound for large enough m
and t.

3 Reduction to the Regular Tverberg Problem

We now show how to use any algorithm that computes approximate regular
Tverberg partitions in order to find tolerant Tverberg partitions. For this, we
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must increase the tolerance of a Tverberg partition. In the following, we show
that one can merge elements of several Tverberg partitions for disjoint subsets
of P to obtain a Tverberg partition with higher tolerance for the whole set P .
The following lemma is also implicit in the Ph.D. thesis of García-Colín [4].

Lemma 3.1. Let T1, . . . , Tk be Tverberg m-partitions for disjoint point sets P1,
. . .,Pk ⊂ Rd. Let Ti,j be the jth element of Ti and ti ≥ 0 the tolerance of Ti.
Then, T = {Tj =

⋃k
i=1 Ti,j | j ∈ {1, 2, . . . ,m}} is a Tverberg m-partition of

P =
⋃k

j=1 Pi with tolerance t =
∑k

i=1 ti + k − 1.

Proof. Take R ⊆ P with |R| = t. As t =
∑k

i=1 ti+k− 1 <
∑k

i=1(ti+1), there is
an i with |Pi ∩ R| ≤ ti. Since Ti is ti-tolerant, we have

⋂m
j=1 conv(Ti,j \ R) 6= ∅.

Because each Ti,j is contained in the corresponding set Tj of T , the convex hulls
of the elements in T still intersect after the removal of R.

From a mathematical perspective, the main motivation for introducing tol-
erance to Tverberg partitions is the possibility to achieve better bounds than by
just combining regular Tverberg partitions. This provides deeper insight in the
intersection pattern of convex sets. Nevertheless, Lemma 3.1 is interesting from
an algorithmic viewpoint as it enables us to benefit from existing approximation
algorithms for regular Tverberg partitions by implying a simple algorithm: com-
pute regular Tverberg partitions for disjoint subsets of P and then merge them
using Lemma 3.1. This proves Proposition 1.3:

Proposition 3.2 (Proposition 1.3 restated). Let P ⊂ Rd and let A be an
algorithm that computes a regular Tverberg m-partition for any point set of size
nA(m) in time TA(m). Then, a (b|P |/nA(m)c − 1)-tolerant Tverberg m-partition
for P can be computed in time O (TA(m) · |P |/nA(m)).

Proof. We split P into b|P |/nAc disjoint sets and use A to obtain for each subset
a regular Tverberg partition. Applying Lemma 3.1, we obtain a (b|P |/nAc − 1)-
tolerant Tverberg m-partition. Since the merging step in Lemma 3.1 takes linear
time in |P |, the total running time is O (TA(m) · |P |/nA(m)), as claimed.

Table 1 shows specific values for Proposition 1.3 applied to Miller & Sheehy’s
and Mulzer & Werner’s algorithm.

Algorithm Tolerance Running time

Proposition 1.3 with Miller-Sheehy b|P |/2m(d+ 1)2c − 1 mO(log d)dO(log d)|P |

Proposition 1.3 with Mulzer-Werner b|P |/4m(d+ 1)3c − 1 dO(log d)|P |

Table 1. Proposition 1.3 applied to existing approximation algorithms for the regular
Tverberg problem.
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Remark 3.3. Lemma 3.1 gives a quick proof of a slightly weaker version of the
Soberón-Strausz bound: partition P into t + 1 disjoint sets of size at least
b|P |/(t + 1)c. By Tverberg’s theorem, for each subset there exists a Tverberg
partition with no tolerance of size db|P |/(t + 1)c/(d + 1)e. Using Lemma 3.1,
we obtain a t-tolerant Tverberg partition of size db|P |/(t + 1)c/(d + 1)e ≥
d|P |/(t + 1)(d + 1)e − 1 of P , which is at most one less than the Soberón-
Strausz bound. This weaker bound was also stated by García-Colín [4]. Again, as
already mentioned after Lemma 3.1, this is interesting mostly from an algorith-
mic perspective since it implies that computing slightly worse tolerant Tverberg
partitions than guaranteed by the Soberón-Strausz bound is polynomial-time
equivalent to computing regular Tverberg partitions.

4 Hardness of Tolerance Testing

Teng [15] proved that deciding whether a point is a centerpoint (TestingCenter)
is coNP-complete. We show the same for deciding whether a Tverberg partition is
t-tolerant (TestingTolerantTverberg) by a reduction from TestingCen-
ter. The problems are formally defined as follows:

Problem 4.1 (TestingCenter).

Given a point set P ⊂ Rd, and a centerpoint candidate c ∈ Rd, where d is
part of the input.

Decide whether c is a centerpoint of P .

Problem 4.2 (TestingTolerantTverberg).

Given a point set P ⊂ Rd, a partition T of P , and a conjectured tolerance
t ∈ N, where d is part of the input.

Decide whether T is a t-tolerant Tverberg partition of P .

Note that the size of the partition T in the definition of TestingToler-
antTverberg can be constant.

The following lemma is folklore. We include the proof for completeness. It is
used in the reduction to connect the tolerance of a Tverberg partition with the
depth of points in the intersection of the convex hulls.

Lemma 4.3. Let P ⊂ Rd and let c ∈ Rd. Then c has depth t+1 w.r.t. P if and
only if for all subsets R ⊂ P with |R| ≤ t, we have c ∈ conv(P \R).

Proof. We prove both directions by showing the contrapositive.
“⇒” Suppose there is some R ⊂ P, |R| ≤ t with c /∈ conv(P \R). Then, there

is a half-space h+ that contains c but no points from conv(P \R). Thus, c ∈ h+
and |P ∩ h+| ≤ |R| ≤ t, and hence c has depth at most t w.r.t. P .

“⇐” Assume c has depth t′ ≤ t w.r.t. P . Let h+ be a half-space that contains
c and t′ points from P . Set R = h+ ∩ P . Then, |R| ≤ t and c /∈ conv(P \R).

We are now ready to prove Theorem 1.4:
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Theorem 4.4 (Theorem 1.4 restated). TestingTolerantTverberg is
coNP-complete.

Proof. We first check that TestingTolerantTverberg is indeed contained in
coNP. Let T be a Tverberg partition of P ⊂ Rd that is claimed to have tolerance
t. A witness to T not being a t-tolerant Tverberg partition is a subset R ⊆ P
of size at most t such that

⋂
Ti∈T conv(Ti \ R) = ∅. Checking if R is a witness

reduces to testing the feasibility of the linear program defined by the following
constraints for each element Ti in T :

αi,1 pi,1 + αi,2 pi,2 + · · ·+ αi,|Ti\R| pi,|Ti\R| − x = 0

αi,1 + αi,2 + · · ·+ αi,|Ti\R| = 1

∀j ∈ {1, 2, . . . , |Ti \R|} : αi,j ≥ 0 ,

where pi,j denotes the jth point in Ti \R. The linear program is feasible if and
only if

⋂
Ti∈T conv(Ti \ R) 6= ∅, i.e., if R is not a witness. Since the number of

constraints and variables is polynomial in the input size, feasibility checking of
the above linear program can be carried out in polynomial time.

Let (P ⊂ Rd, c ∈ Rd) be an input to TestingCenter. We embed the vector
space Rd in Rd+1 by identifying it with the hyperplane h : xd+1 = 0. Define
t = d|P |/(d + 1)e − 1 and let ` be the line that is orthogonal to h and passes
through c. Furthermore, let T− and T+ be sets of t+1 arbitrary points in `∩h−
and ` ∩ h+, respectively. Set T = T− ∪ T+. We claim that {P, T} is a Tverberg
2-partition for P ∪ T with tolerance t if and only if c is a centerpoint of P ; see
Figure 5.

“⇒” Assume {P, T} is a t-tolerant Tverberg 2-partition. By construction of
T , we have conv(P ) ∩ conv(T ) = {c}. Thus, c lies in the intersection of both
convex hulls even if an arbitrary subset of size at most t is removed. Lemma 4.3
implies that c has depth t+ 1 = d|P |/(d+ 1)e w.r.t. P , so c is a centerpoint for
P .

“⇐” Assume c is a centerpoint for P . By definition, c has depth at least
d|P |/(d+1)e = t+1 w.r.t. P . Lemma 4.3 then implies that c is contained in the
convex hull of P even if any t points from P are removed. Since T contains t+1
points on both sides of a line through c, c is also contained in conv(T ) if any t
points from T are removed. Thus, {P, T} is a t-tolerant Tverberg 2-partition for
P ∪ T .

5 Conclusion

We have shown that for each set P ⊂ R of size m(t+2)−1, a t-tolerant Tverberg
partition of sizem can be found in timeO(mt log t). The bound on the size of P is
tight, and it improves the Soberón-Strausz bound in one dimension. Combining
this with a lifting method, we could also get improved bounds in two dimensions
and an efficient algorithm for tolerant Tverberg partitions in any fixed dimension.
However, the running time is exponential in the dimension.
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h : xd+1 = 0

ℓ
T+T−

c

Fig. 5. Reduction of TestingCenter to TestingTolerantTverberg

This motivated us to look for a way of reusing the existing technology for
the regular Tverberg problem. We have presented a reduction to the regular
Tverberg problem that enables us to reuse the approximation algorithms by
Miller & Sheehy and Mulzer & Werner.

Finally, we proved that testing whether a given Tverberg partition is of
some tolerance t is coNP-complete. Unfortunately, this does not imply anything
about the complexity of finding tolerant Tverberg partitions. It is not even clear
whether computing tolerant Tverberg partitions is harder than computing regu-
lar Tverberg partitions. However, we could show that computing tolerant Tver-
berg partitions with smaller tolerance than guaranteed by the Soberón-Strausz
bound is polynomial-time equivalent to computing regular Tverberg partitions.

It remains open whether the bound by Soberón and Strausz is tight for d > 2.
We believe that our results in one and two dimensions indicate that the bound
can be improved also in general dimension. Another open problem is finding
a pruning strategy for tolerant Tverberg partitions. By this, we mean an al-
gorithm that efficiently reduces the sizes of the sets in a t-tolerant Tverberg
partition without deteriorating the tolerance. Such a pruning strategy could be
used to improve the quality of our algorithms. In Miller & Sheehy’s and Mulzer
& Werner’s algorithms, Carathéodory’s theorem was used for this task. Unfor-
tunately, this result does not preserve the tolerance of the pruned partitions.
The generalized tolerant Carathéodory theorem [8] also does not seem to help.
It remains an interesting problem to develop criteria for superfluous points in
tolerant Tverberg partitions.

Acknowledgments. We would like to thank the anonymous reviewers for their
helpful and detailed comments that helped to improve the quality of the paper.
In particular, we would like to thank an anonymous referee for pointing out that
the algorithm in Proposition 1.3 could be greatly simplified.
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