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ABSTRACT 
Introducing a middleware abstraction layer into wireless 
sensor networks is a widely accepted solution to facilitate 
application programming and allow network organization.  
In this paper, we argue that although an event-based 
approach is the most obvious solution, it also provides the 
most natural way to address software development in 
wireless sensor networks. As a proof of concept, we 
introduce FACTS, a very flexible middleware framework 
able to provide support for a wide range of different 
applications. The objective is to combine advantages of 
event-centric processing and rule-based execution while 
preserving low resource usage.  

Keywords 
Wireless sensor networks, middleware, event-centric 
architecture, rule-based language, qualitative simulation  

1. INTRODUCTION 
Wireless sensor networks (WSN) comprise a variety of 
features that make software development in this domain 
rather challenging. Dealing with embedded devices in large 
numbers, each of which is prone to error and very restricted 
in terms of energy, memory and processing power 
introduces a burden upon the application development. 
Moreover, the distribution of nodes and their shared 
communication medium call for multi-hop routing 
algorithms and distributed coordination among them. The 
introduction of a middleware layer can alleviate problems 
arising from both complex communication and data sharing 
methods as well as those that originate at the underlying 
software layer. 
Since the deployment of a middleware layer inevitably  
consumes memory, a decision whether to use this kind of 
abstraction has to be deliberated carefully. The more 
generic such a middleware layer, the more likely it is to be 
used in diverse application scenarios. Furthermore, a clear 
abstraction model able to combine benefits for supporting 
both distribution issues and embedded programming is 
needed. A number of solutions have already been 
suggested, ranging from tiny enhancements for 

programming [1] to full-fledged middleware architectures 
with rich sets of services [2, 6, 9].  
In the latest discussions it has been argued, that event-
driven programming is rather complicated from an 
application programmers’ point of view. Asynchronous 
wake-ups related to the occurrence of state changes, the 
need for non-blocking calls to enable execution and 
coordination of multiple events, and the necessary means to 
maintain state seem backward to ‘usual’ imperative 
programming. On the other hand, an event-driven paradigm 
suites the application domain best: sensor nodes are 
supposed to detect certain changes in their environment, 
react to them appropriately and remain in low-power mode 
in case of absence of events or tasks. Hence, a triggered 
action, thus a push mechanism, is a more natural way to 
think of programming for sensor networks.  
The middleware architecture we introduce in this paper 
provides a powerful mental model that emphasizes the use 
of trigger mechanisms and actions. Combining the 
advantages of virtual machines, grouping facilities and 
modularity-based approaches as described in [10], and 
inspired by expert-systems [12], our main abstraction are 
rules, facts and functions. In this context information – 
which is everything ranging from sensor readings to 
temporary variables – is represented as facts, which are 
stored in a fact repository and processed by rules. In other 
words, rules encode the information processing relevant to 
a specific application and are written in a high-level 
language consisting of the triggering conditions and the 
actions to be taken accordingly. In contrast to inference 
engines using backward chaining, our rule engine, which is 
the scheduling entity for rules, uses forward chaining in 
order to provide event-like semantics. Rules may also call 
functions that hook into the firmware or operating system 
of the sensor node and perform resource critical operations 
in a fast and memory-efficient manner.  
Facts, rules and functions are local to each node of the 
sensor network and each node runs its own rule engine. 
However, facts are also used as the key abstraction for 
transmitting information from one node to another, to the 
entire sensor network, or to a distinct subgroup. Hence, one 
can think of it as a node sending one of the facts from its 
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own fact repository to another node, which in turn adds it 
to its fact repository. Due to the reception of the fact on its 
radio interface, the middleware is aware of not being the 
owner or originator of this fact. However, there is no 
further distinction made between locally created facts and 
those received from other nodes over the network.  
The rest of this paper is organized as follows: First, we 
estimate FACTS concepts in the context of current research 
activities. Section 3 describes the main architecture of 
FACTS in detail and discusses design considerations, 
before introducing the prototype implementation in Section 
4. A coverage algorithm is given in our rule language to 
present the expressiveness of our programming abstraction 
in Section 5, and give a first impression of the overall 
system in practical use. A conclusion and outlook on future 
work concludes this paper and once again summarizes the 
contributions of our work.  
 

2. RELATED WORK 
A number of approaches resemble FACTS in certain 
aspects. The SWARMS project [13] makes use of a 
distributed virtual shared information space (dvsIS), an 
adaptation of the Linda tuplespace, to share global state 
among all nodes. The idea of SWARMS is to provide 
global coordination, having the sensor nodes of the 
network behave like members of a swarm. Elements of this 
space are qualified by XML tags, and are distributed 
among swarm members. Our fact repository is 
implemented to enable distributed shared memory, so 
applications may use this in case they can benefit from it. 
Otherwise, it functions as local memory for state, data and 
variables, and is thus the central coordination entity for 
nodes. This concept of variable usage is a lot more flexible, 
since it allows for application specific tuning instead of 
predefined functionality.  
The Generic Role Assignment (GRA) project [4] makes 
use of rules to encode node behavior. An algorithm is 
implemented by specifying a set of roles a node can assign 
to itself depending on its local state and that of neighboring 
nodes.  Therefore, a change in state may inherently result in 
a re-evaluation process of roles of a potentially large set of 
nodes, and hence lead to massive communication between 
nodes for coordination. Our approach also relies on stateful 
information, but decisions on event occurrence or state 
changes have to be implemented by the programmer 
explicitly, leading to a more controllable communication 
pattern. Although GRA allows a higher abstraction from 
communication issues, we believe that the domain of WSN 
does not allow making such subsumptions for developers. 
The introduction of new languages to implement 
applications for WSN can be widely observed [3, 7, 11]. 
Design goals combine offering a high-level language 
construction tailored to domain specific needs and allowing 
interpreted, dense byte-code to be deployed on the nodes.  

Furthermore, interpretation of code may serve in acquiring 
modularity of software components.  
 

3. FACTS ARCHITECTURE 
 
The architecture of FACTS will be introduced in the 
following pages. To emphasize the issues that were 
considered during the construction process, they will be 
briefly presented in a motivating section. 

3.1 Motivation 
The main criteria for the design of our middleware 
architecture are summarized in the following key points: 
 

• Event-centric architecture 
• Rule-based language capturing trigger/action 

semantics 
• Minimalistic architecture, able to be enhanced at 

runtime according to application-specific services 
• Support for distributed shared memory to enable 

grouping algorithms 
• Support for cross-layer optimization  

 
To reflect the event-centric domain of networked sensors 
and benefit from the inherent data compression of an event 
concept, the middleware design uses the primary 
abstraction of events which trigger actions. The overall 
system can therefore be implemented in a resource-aware 
manner, allowing nodes to switch to low-power mode in 
case of absence of events. The formalization of rules is a 
natural way to express actions triggered by changes either 
in a node’s environment or internal state, or by any 
combination of both. Therefore we chose to make explicit 
use of these semantics and defined a suitable language that 
is concise and powerful, but also small in terms of memory 
consumption.  
As the goal is to allow sets of basic services, depending on 
the envisioned application domain, to be implemented and 
added to the middleware on demand. Hence, a modular 
design to obtain a highly flexible framework is also a key 
design aspect. Furthermore, the ability to easily share data 
among nodes for coordination algorithms has been proven 
useful in WSNs [5]. Our fact repository with its ability to 
act as a distributed shared memory supports software 
relying on any kind of grouping or clustering mechanism. 
These features are not explicitly provided by FACTS to 
prevent the pollution of memory with unnecessary services, 
but can be added in a set of a few rules.  
Not only data sharing among different nodes of a network 
can be realized through the use of the fact repository as 
central data entity on a node. Algorithms operating on 
different layers according to the ISO/OSI layering model 
can also exchange information to use it as means to 



coordinate and tune themselves, enabling network 
optimization based on cross-layering.  
The middleware architecture of FACTS as shown in Figure 
1 has been designed to provide a highly flexible framework 
to cope with the limited resources inherent to the 
application domain of wireless sensor networks, but 
nevertheless equip a developer with a clear mental model. 
The fundamental concepts are introduced in following 
sections.  
 

3.2 Rules 
Rules are used to express algorithms and reactions to 
external events in the system. A rule is a named structure 
containing both a set of conditions and an ordered list of 
statements. A rule fires, i.e. the rule engine executes the 
statements belonging to the rule, if all conditions evaluate 
as true according to the facts in the fact repository. More 
precisely, a rule fires if all the conditions are true and at 
least one of the facts mentioned in these conditions is 
tagged as modified. This ensures that the system processes 
changes in the fact repository in an event-like manner. 
Furthermore, a rule also has a priority which defines 
exactly when during one complete run of the rule engine 
the conditions of the rule are checked against the fact 
repository, and based on this it is decided whether the rule 
should  fire or not. Multiple rules can have the same 
priority, but for these rules the system does not provide a 
guarantee on the order in which they are executed. 
  
Conditions have one of two forms: 
Exists: This condition checks whether one particular fact 
exists in the fact repository. 
Eval: An eval condition checks, whether a boolean 
expression is true given the data found in the fact 

repository. Statements modify the fact repository or 
generally interact with the rest of the system. 

Figure 1: Component diagram of FACTS architecture: Low-level events start execution by creation of new facts (1), 
           which trigger  the rule engine (2) to match rules against fact repository (3) and eventually fires rules (4). 

 

Available statements include: 
Define: Adds a new fact to the local fact repository and 
initializes its properties. 
Retract: Removes one or more facts from the local fact 
repository. 
Set: Changes the value an existing property of one or more 
facts in the local fact repository or adds a new property. 
Send: Transmits one or more facts in the local fact 
repository to other nodes in the sensor network. 
Call: Calls a function implemented in native code and made 
available by the underlying software layer. 
An example on how to use these operators to implement a 
typical algorithm for WSNs is given in Section 5. 
 
3.3 Facts 
Facts are the central means of representing any kind of data 
in the system. They are structured as a named set of key-
value tuples. Multiple facts with the same name may be 
present in each local fact repository without disturbing the 
system. Keys are unique for each facts, values typed. A 
specific key-value tuple is called a property of a fact, with 
available types of values being bool, int, float, and string. 
Every fact has a few predefined properties which are 
updated by the system and available to the programmer as 
read-only values. More precisely, the keys and types of 
these hard encoded properties are: 
(int) owner: The network wide unique ID of the sensor 
node that was the last to modify this fact by either creating 
it, adding a new property, or modifying an existing 
property. 
(int) time: The time at which the fact was last modified. 
Note that this merely is the perception of the current time 



of the modifying node, which may well be out of sync with 
the rest of the sensor network or otherwise inaccurate. 
(string) id: The network wide unique ID of this fact. It is 
implemented as the dot-separated concatenation of the ID 
of the owning sensor node (which is unique in the sensor 
network) and the time of last modification (which is unique 
on the local node, that sets itself as the owner upon 
modifying the fact in question).  
(bool) modified: This boolean flag indicates whether a fact 
has been modified by either another rule or some external 
system-generated event during or since the last run of the 
rule engine. As rules only fire when at least one of the facts 
referenced in their conditions has been modified, this 
property is useful for working on only those facts out of a 
potentially larger set that have caused the rule to fire and 
hence might require processing. The modified flag of all 
facts is cleared every time an entire run of the rule engine 
has been completed successfully. 
 
As facts are dynamically added to the fact repository at 
runtime and as only facts marked as modified trigger the 
execution of rules, modified facts appear as events in the 
system to the application-level programmer, thus allowing 
for event-centric programming. Furthermore, facts are also 
the central means of transmitting information between 
nodes of the sensor network: The Send statement in a rule 
allows for one or multiple facts to be transmitted to another 
node or to be broadcasted to the entire network, possibly 
utilizing multi-hop forwarding by other nodes. 
 

3.4 Functions 
A function is a chunk of machine code that interacts with 
the firmware or operating system of the sensor node, and 
provides an interface that can be invoked by the rule 
engine. As such, its main purpose is to provide hooks for 
the rules to interact with the software layer below the 
middleware and to allow for efficient implementation of 
algorithms featuring critical performance considerations. 
 

3.5 Derived Concepts 
Complementing the basic components of the distributed 
expert system, the following concepts are helpful to fully 
understand and communicate about the system: 
 

3.5.1 Slots 
A slot is the primary means for addressing facts and their 
property values in the fact repository. It is a tuple 
consisting of two patterns, one identifying the fact and one 
identifying the property key, and a list of conditions that 
further specify which subset of the fact repository is to be 
addressed. The property key pattern may be omitted if only 
the fact itself, rather than one of its properties, is of 
interest. 

3.5.2 Rulesets 
A ruleset is the construct equivalent to a component in 
other middleware architectures. It is a set of rules and 
related facts that together provide a certain services in the 
system. Rulesets have a well-defined interface in terms of a 
set of facts that trigger the execution of their rules. They 
encapsulate locally used rules and facts in their own 
namespace which is implemented as dot-separated prefix to 
the name of the fact it contains. 
Rulesets may explicitly provide services as identified by a 
well-known descriptor, or require them to be present on a 
local system when being installed. This allows for the 
construction of a dependency graph at compile time and 
possibly for automatic loading of rulesets at runtime. On 
the downside, one has to be aware of possible excessive 
resource usage in case of automated functions, a drawback 
that should be investigated extensively at design time. 
Experiences gained by implementing a few common 
algorithms typical for wireless sensor networks show that a 
ruleset is typically in the magnitude of ten to twenty rules 
and a similar amount of facts. Of course, these numbers are 
merely rough estimates and vary depending on the 
complexity of the functionality to be implemented. The 
possibility to add such ruleset-like library functions to the 
system according to application needs once again 
emphasizes the powerful and adaptable design of FACTS. 
 

3.5.3 Globally Shared Information Space 
Facts have an unique ID that is the concatenation of the ID 
of the owning node and the time when the fact was last 
modified. Only one fact can be modified on a node at any 
given time. The fact repository may thus contain various 
facts from different nodes, being the knowledge base of the 
node owning it. This knowledge is composed of 
information about its current state, events it has spotted in a 
certain time interval or communicated details of 
neighboring or potentially reachable nodes in the network. 
 

3.6 Design Details and Considerations 
The concepts as described above were only rough sketches 
when the work of formalization was begun. Several 
decisions were made during the design phase of the project, 
which eventually led to the final semantics of our system. 
This section lists important details of our design and the 
considerations details that led to these decisions.  
 

3.6.1 Sets of Facts 
As facts are addressed by their name – which is not 
required to be unique – evaluating a slot against the fact 
repository may result in a set of multiple matching facts. 
Hence, a condition or statement that takes a slot as a 
parameter may either process a single fact or a set of facts 
depending on the content of the fact repository at runtime. 



For a condition to return true when evaluated against a 
given fact repository, it is sufficient if at least one of the 
facts matched by the slot satisfies the constraints stated in 
the condition. A statement however will be executed 
separately for every single fact matched by the slot, which 
will lead to multiple executions of the same rule. In case of 
a statement containing multiple slots, the statement is 
applied sequentially to all possible combinations of the 
matching facts, i.e. the cross product of the respective sets 
of facts. If only one specific fact is to be processed, this can 
either be achieved by carefully naming the facts, or by 
providing more specific constraints in the form of 
conditions as additional parameter of the slot as explained 
in the following section. 
 

3.6.2 Filtering Facts for Processing by a Statement 
Apart from addressing a fact by its name, a slot is 
frequently required to be more specific about exactly which 
fact from a potentially large set of matching facts to work 
with. In order to do so, a slot can filter the set of all facts 
with matching names by providing further constraints on 
the required values of properties of selected facts. This is 
done in the form of a list of conditions that can be specified 
as additional parameter for slot refinement. Obviously, the 
result includes only that subset of facts where all conditions 
on slot parameterization are met. It is up to the application-
level programmer to ensure that the properties of facts 
differ enough for selection to isolate a specific single fact 
in case this is required by the application. The system 
supports this by providing an unique ID for each fact in the 
fact repository and therefore making any fact directly 
accessible via the read-only id property. 
An alternative design would have been to implement 
implicit filtering of the facts based on the conditions of the 
rule in question. While this would allow for a simpler 
syntax, there are several disadvantages: 
 

• Statements may access facts that are not 
referenced in the conditions. Adding conditions 
for filtering purposes alone would bloat the 
application-level code. 

• Questions would arise on the proper order 
concerning statement processing: All statements 
could be executed sequentially for all matching 
facts (horizontal execution), but with the same 
logical implication each single statement could 
also be applied to each matching fact before 
executing the following (vertical execution). None 
of these two options seems intuitive enough to be 
acceptable by an application-level programmer or 
preferable due to its inherent properties.  

• Statements would have different semantics 
depending on which rule they appear in. This 
would not only be confusing but also violate the 

idea of strict decoupling of conditions and 
statements within a rule, as detailed in the next 
section. 

 

3.6.3 Separation of Conditions and Statements 
Even when associated with the same rule, conditions and 
statements are clearly separate entities. Conditions are 
specified to only take care of firing a rule and should not 
result in unintentional side effects. On the other hand, 
statements only alter the fact repository or interact with the 
system, thus can be totally ignored by the rule engine when 
determining whether to fire rules. Clearly, statements do 
have exactly the same semantics independent of the calling 
rule. However, this also implies that the filtering of exactly 
which facts to process needs to be done for each statement 
separately, and hence is independent of the conditions of 
the rule. 
 

3.6.4 Adjusting Ownership of Modified Facts 
Whenever a node changes the properties of a local fact, the 
owner property of the fact is set to the ID of modifying 
node. The goal is to keep the global namespace of facts 
intact and to ensure that sensor readings processed within 
the sensor network are clearly marked as such. If the 
original fact is to be preserved while processing, a copy 
needs to be made beforehand. The copy is then owned by 
the local node and can therefore safely be modified. In case 
only changes to facts owned by the local node are intended, 
one has to add a filtering condition to slots which state that 
only facts whose owner property matches the ID of the 
local node are to be processed. 
An alternative solution proposes facts to be owned by the 
local node exclusively, i.e. independent of any filters. 
Updates would then result in changes just in case the 
current executing entity is also the owner of the fact and 
otherwise leave the fact untouched as read-only. It turned 
out that while allowing for the same functionality to be 
implemented, these semantics resulted in bloated code 
because of bad interaction with sending facts across the 
network: In this case, facts can be seen as packets, and  
packet properties, thus facts properties, needed to be 
updated slightly for each hop they travel on the network. 
Having to make a copy before being able to process a 
packet would not only waste memory but also result in 
unreadable code. 
 

3.6.5 Usage of  Local Variables 
Unlike JESS [12], a reference expert system we examined 
tor language formalization, our system does not support the 
notion of local variables to which a specific fact can be 
bound within a rule. We consider binding facts to variables 
at runtime to be too expensive in terms of memory usage 
for an embedded system. As proven above the syntax of 



filtering on slots is able to provide the same functionilty, 
while lowering system overhead for memory management.  
Due to this optimization it will be possible to give bounds 
on memory consumption of a future implementation even 
at compile time. 
 

4. PROTOTYPE IMPLEMENTATION 
FACTS as introduced in the previous sections was first 
implemented as purely functional prototype in the Haskell 
programming language. The following section explain the 
reasons why this somewhat unusual approach was taken, 
gives an overview of the implementation and presents 
relevant code fragments. 
 

4.1 Rationale 
As [14] points out, a functional design or a prototype can 
be most useful even if the ultimate goal is an imperative 
solution. In our case the advantages were as follows: 
 

• Initially, the basic concepts were not well 
understood beyond traditional event-centric 
architectures and their exact semantics changed 
rapidly while new requirements and 
interdependencies were discovered. During this 
phase of rapid iterative prototyping, the emphasis 
on concise functional definitions helped the 
project to stay coherent. 

• The definitions of functions obtained from the 
prototype can serve as formal specification of the 
system. Also, the definitions of the data types can 
be used as basis for a grammar. Eventually this 
approach can lead to the construction of a 
compiler for this grammar able to translate human 
readable rule definitions into an intermediate 
format or byte-code, suitable for deployment in 
the sensor network. 

• Higher order function and their capability of using 
functions as parameters makes the code base very 
compact and easy to maintain, while at the same 
time preserving type safety. 

 
The availability of our  functional prototype allows to run 
test cases and check the semantics of the system very early 
in the development process. The result is a smooth 
codebase without known inconsistencies or dead code. 
Furthermore, the codebase is perfect in the respect that 
nothing can we removed without losing functionality. 
 

4.2 Overview 
The core of our system is implemented as a Haskell 
module. Its public interface contains constructors for the 
condition and statement primitives and functions to create 
rule, fact and function entities as well as slots and rulesets. 

For evaluation purposes we also implemented functions to 
construct a sensor node and set up a sensor network. and 
based on these run a simulation. Using these mechanisms a 
core set of rulesets has been implemented as additional 
Haskell modules and is available to be used in test runs of 
the system. 
Following the functional paradigm, the simulation runs by 
iteratively transforming the current state of the sensor 
network – including all nodes and their respective rule and 
fact repositories – into the subsequent state. For all nodes 
the conditions of their local rules are checked against the 
fact repositories and the statements are executed if the 
given facts suffice for the rule to fire. In order to implement 
unique IDs of facts the simulation environment provides a 
timer counter that is increment whenever a fact is modified 
and set to an steadily increasing well known value after a 
complete run of the simulated rule engines on all nodes has 
been completed. The current notion of time of the sensor 
nodes is thus known for each simulation step which allows 
for the simulation to supports the injection of facts to the 
fact repositories of one specific are all sensor nodes. As 
external events appear to the rule engines as new facts in 
their repositories, the injection method can be used to 
simulate sensor readings at certain points in time during the 
deployment of the sensor network. 
 

4.3 Relevant Code Fragments 
Listing 1 is a shortened version of the main “loop” of the 
functional simulation. 
 
1 processState :: [Event] -> State -> State 
2 processState events state = 
3   (State (step + 1) nextStepTime   
4   (Network (map cleanNode newNodes))) 
5   where 
6     nextStepTime =  
7       time + simulationStepTime 
8     (State step time network) = 
9       state (State _ newTime 
10    (Network newNodes)) = 
11      processNetwork (processEvents  
12      state currentEvents) network 
13    currentEvents =  
14      filter (\(Event eventStep _ _) -> 
15      (eventStep 15 == step)) events 
 

 Listing 1: Main loop of functional simulation 
 

A simulation step is broken down into several operations: 
In lines 13 to 15 the events for the current simulation step 
are filtered out of the global event list. Lines 10 to 12 first 
process these events by updating the state of the network 
accordingly, The new state is then used as input for the 
central processing of the network in the same line. It results 
in a new list of nodes the facts of which have their 
modified property cleaned up in line 4 as a final 



operation. Together with the calculation of the time for the 
next simulation step in lines 6 and 7 this concludes the 
transformation of the current state. 
Listing 2 shows the complete logic that decides whether to 
fire a rule or not and updates the simulated state of the 
sensor network accordingly. 
 
1 applyRule :: State -> MAC -> Rule -> State 
2 applyRule state mac 
3   (Rule name _ conditions statements) 
4   | oneFactIsModified &&  
5     allConditionsAreTrue = 
6     foldl (\state -> applyStatement state 
7     mac) state statements 
8   | otherwise = state 
9   where 
10    oneFactIsModified = or (map 
11      (checkFacts facts) conditions) 
12    allConditionsAreTrue = and (map 
13      (checkCondition facts) conditions) 
14    facts = getFacts state mac 
 
 Listing 2: Determination of rule execution 
 

Taking the MAC address as ID of the current sensor node 
and the rule to be applied to its fact repository as additional 
parameters, this function can be broken down into the 
following operations: As can be seen in lines 4 and 5, a rule 
fires only if at least one fact is tagged as modified and all 
conditions of the rule evaluate as true. If this is the case, a 
rule is applied by folding its statements into the current 
state of the simulation in lines 6 and 7, otherwise the state 
is returned unchanged in line 8 as the rule did not fire. The 
calculations whether a fact referenced in the conditions has 
been modified and whether all conditions are true state 
lines 10 to 13 respectively. 
 

5. EXAMPLE: COVERAGE 
The goal of the coverage algorithm in a wireless sensor 
network scenario is to determine which areas of a 
geographic region are covered by the sensor network, and 
where redundant information can be gained. The collected 
information may be used to selectively power down sensor 
nodes in order to extend the total lifetime of the sensor 
network, a situation applying usually to densely deployed 
networks. 
A partial listing of the rule-based implementation of the 
coverage algorithm is given in listing 3. Following name of 
the rule, conditions are listed prefixed with “<-” and 
statements with “->”. 
 
1  sendRange  
2  <- Exists Timer.expiredSlot 
3  -> Retract Timer.expiredSlot 
4  -> Define "rangeFact" 
5  -> Set ("rangeFact" "xMin") 
6       (posXSlot - System.txRadiusSlot) 
7  -> Set ("rangeFact" "xMax") 

8       (posXSlot + System.txRadiusSlot) 
9  -> Set ("rangeFact" "yMin") 
10      (posYSlot -  System.txRadiusSlot) 
11 -> Set ("rangeFact" "yMax") 
12      (posYSlot + System.txRadiusSlot) 
13 -> Send 0 System.txPowerSlot 
14      ("rangeFact" [(("rangeFact" "owner") 
15      == nodeIDSlot)]) 
16 -> Define "rangeSendFact" 
17 
18 xyMinCovered  
19 <- Exists "rangeSendFact"  
20 <- Eval ((posXSlot - System.txRadiusSlot) 
21      < ("rangeFact" "xMin")) 
22 <- Eval ((posYSlot - System.txRadiusSlot) 
23      < ("rangeFact" "yMin")) 
24 -> Define "xyMinCoveredFact" 
25 
26 determineCoverage  
27 <- Exists xyMinCoveredFact" 
28 <- Exists "xMaxYMinCoveredFact" 
29 <- Exists "xyMaxCoveredFact" 
30 <- Exists "xMinYMmaxCoveredFact" 
31 -> Define "coveredFact" 
  
 Listing 3: Coverage algorithm in rules 
 

As a first step and firing when a timer has expired, the 
sendRange-rule removes the timer fact that caused it to 
fire from the fact repository in line 3. It then proceeds to 
calculate the range it expects to cover and stores this 
information in a fact in lines 4 to 12. Note that establishing 
the position of the node is not in the scope of the coverage 
algorithm. In lines 13 to 15 the newly created rangeFact 
is broadcasted to the neighboring nodes. Each node has to 
take care however, to only send the fact that it created 
locally as otherwise it would re-broadcast the equally 
named facts that it received from its neighbors. Finally, the 
node changes its state by defining a fact which indicates 
that range information has been sent in line 16. 
 
In the next stage, the node then waits for the rangeFacts 
of its neighbors. Upon reception of a matching fact, the 
xyMinCovered-rule inspects the data in lines 20 to 23 and 
fires if the covered area as reported by the fact overlaps 
with its own. The result is stored in the 
xyMinCoveredFact. Similar rules for the 
xMaxYMinCoveredFact, xyMaxCoveredFact and 
xMinYMmaxCoveredFact have been omitted for brevity. 
Finally as a last step, the determineCoverage-rule 
checks whether all four sides of a nodes area are covered 
by other nodes in lines 27 to 30, and if this is the case, 
stores this information in the coveredFact. After this 
process has been completed for all nodes, each node knows 
whether it is the only node of sensor network to cover one 
particular geographic region or not and can act accordingly 
in the future. 



The example of the coverage algorithm illustrates how our 
middleware provides intuitive event-like semantics and 
abstraction from low-level communication details. 
Furthermore, it shows how remote data transparently 
becomes available for local processing while still 
preserving the semantics of global adressability. 
 

6. CONCLUSION 
In this paper we presented the fundamental concepts and 
the prototype implementation of our middleware approach 
FACTS, which is able to provide a highly flexible 
framework for applications in wireless sensor networks. 
The goal is to alleviate challenges in programming arising 
from the underlying embedded hardware, asynchronous 
event-handling, and distribution issues of sensor nodes by 
introducing a rule-based programming environment. 
To determine the state of each single node, as well as to 
coordinate groups of dedicated nodes in a simple way, 
FACTS uses a single data management facility, the fact 
repository. This may serve as distributed shared memory, 
as well as to maintain state and temporal data. Rules can be 
specified to implement algorithms and take care of  
processing of sensor data. With its modular design the 
overall system is aimed to be especially suitable for the 
restricted resources of wireless sensor networks and allows 
for application specific adaptations, envisioned to be 
performed even once deployed.  
 

7. FUTURE WORK 
After establishing the semantics of the FACTS system and 
small-scale qualitative simulations, there are two major 
directions in which to proceed: 
 
On the implementation side, we will replace our functional 
prototype and custom made simulation environment with 
an imperative implementation that can run on both more 
widely used network simulators and eventually on a real-
world sensor network platform. We plan to enrich our 
current qualitative data with quantitative measurements and 
finally verify our findings in real-world scenarios. 
 
On the application-level side, we plan to extend to 
functionality of our middleware by implementing more 
algorithms and services commonly used in wireless sensor 
networks in the form of rulesets. This will lead to questions 
about the dependencies between rulesets and their 
interactions at runtime. We envision that rulesets will 
eventually be used as drop-in components for sensor 
networks that extend the capabilities of a deployed wireless 
sensor network while making these advantages 
transparently available to the application that runs on the 
middleware. 
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