
CHAPTER III

Banach spaces which are M-ideals
in their biduals

III.1 Examples and stability properties

In this section we begin our study of Banach spacesX which areM -ideals in their biduals.
The reason for the rich theory of these spaces is mainly their nice stability behaviour
(Theorem 1.6) and the natural L-decomposition of X∗∗∗ (Proposition 1.2).

We write iX for the isometric embedding of a Banach space X into its bidual X∗∗.
However, in most of the following we will simply regard X as a subspace of X∗∗.

Definition 1.1 Let X be a Banach space.
(a) X is called an M -embedded space if X is an M -ideal in X∗∗.
(b) X is called an L-embedded space if X is an L-summand in X∗∗.

Remarks: (a) These names are chosen to reflect the M -(L-)type embedding of X in
X∗∗.
(b) Since by Theorem I.1.9 M -summands in dual spaces are w∗-closed, no nonreflexive
Banach space X can be anM -summand in X∗∗, that is nonreflexiveM -embedded spaces
are proper M -ideals (cf. Definition II.3.1).
(c) Because of the following we can (should it be necessary) restrict ourselves to real
spaces.

If X is a complex Banach space, then X is M- (L-)embedded if and only if
XR, i.e. X considered as a real Banach space, is M- (L-)embedded.

[Proof: The mapping X∗ −→ (XR)∗, x∗ �−→ Re x∗ is an R-linear isometry, hence
(X∗)R ∼= (XR)∗. Applying this also to X∗∗ yields

(X∗∗)R ∼= ((X∗)R)∗ ∼= (XR)∗∗.
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102 III. Banach spaces which are M -ideals in their biduals

Since the isomorphism between (X∗∗)R and (XR)∗∗ maps XR onto iXR(XR) we get the
claim by Proposition I.1.23.]

Recall for the following that the natural projection from the third dual X∗∗∗ of a Banach
space X onto iX∗(X∗) is the mapping πX∗ := iX∗ ◦ iX∗.

Proposition 1.2 For a Banach space X the following are equivalent:
(i) X is an M -ideal in X∗∗.
(ii) The natural projection πX∗ from X∗∗∗ onto iX∗(X∗) is an L-projection.

Proof: (ii) ⇒ (i): Since the kernel of πX∗ is X⊥, we have X∗∗∗ = X∗ ⊕1 X
⊥.

(i) ⇒ (ii): By assumption X⊥ is the kernel of an L-projection P in X∗∗∗. Since πX∗ is
a contractive projection with kernel X⊥ we get by Proposition I.1.2 that P = πX∗ . 2

For easy reference we state:

Corollary 1.3 If X is an M -embedded space, then X∗ is an L-embedded space.

The converse of this statement is not true (consider e.g. X = c; cf. also Proposition 2.7).
In Proposition IV.1.9 we will characterise those L-embedded spaces which are duals of
M -embedded spaces.

Banach spaces which are M -ideals in their biduals appear naturally among classical
spaces. In the following we will give examples of sequence spaces, function spaces, op-
erator spaces, and spaces of analytic functions which are M -embedded. The underlying
idea in most of the examples is that there is a “o(·)-O(·)” relation between the elements
of X and those of X∗∗. (o and O are to denote the usual Landau symbols.) In this
case the proofs use the 3-ball property with the following idea: Suppose X is a space of
functions on some set S which we would like to prove to be M -embedded. To find y ∈ X
for given x∗∗ ∈ BX∗∗ , xi ∈ BX , (i = 1, 2, 3) and ε > 0 such that ‖x∗∗ + xi − y‖ ≤ 1 + ε
choose a subset K ⊂ S with |xi| < ε off K (the o-condition) and try to define y = x∗∗ on
K and y = 0 elsewhere. This idea works perfectly well for c0(S) which will turn out to
be the archetype of an M -embedded space, but it needs some work to adapt it to other
examples. Also, it is sufficient to assume that the xi lie in some dense subset of BX ,
since we have an ε > 0 at our disposal.
Since not all of the following spaces are equally well-known let us recall some definitions
first.

The Orlicz spaces hM and �M , HM (I) and LM (I). LetM : R+ → R+ be a continu-
ous convex function such thatM(0) = 0. We shall also assume thatM is nondegenerate,
i.e. M(t) > 0 if t > 0. The Orlicz sequence space �M consists of all sequences (xn) for
which ∞∑

n=1

M

( |xn|
ρ

)
<∞ for some ρ > 0 ,
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hM denotes the subspace of �M where
∞∑
n=1

M

( |xn|
ρ

)
<∞ for all ρ > 0.

�M is a Banach space under the (Luxemburg) norm

‖x‖M = inf
{
ρ > 0

∣∣∣∣∣
∞∑
n=1

M

( |xn|
ρ

)
≤ 1

}
.

(Actually, the infimum is attained.) Under suitable conditions (hM )∗∗ is canonically
isometric with �M , namely if the conjugate function M∗ satisfies the ∆2-condition at
zero, which is lim supt→0 M

∗(2t)/M∗(t) < ∞. The conjugate function is defined by
M∗(u) = max{tu−M(t) | 0 < t <∞}. We refer to Chapter 4 of [421] for these notions,
basic facts (to be used below without further comment) and nontrivial results on Orlicz
sequence spaces.
In the case of function spaces the investigations can be reduced to the intervals I = (0, 1)
resp. I = (0,∞) equipped with Lebesgue measure. For an Orlicz function M as above,
the Orlicz spaces LM (I) and HM (I) are defined by

LM (I) =
{
f

∣∣∣∣ ∫
I

M

( |f(s)|
ρ

)
ds <∞ for some ρ > 0

}
,

HM (I) =
{
f

∣∣∣∣ ∫
I

M

( |f(s)|
ρ

)
ds <∞ for all ρ > 0

}
.

The norm in LM is of course

‖f‖M = inf
{
ρ > 0

∣∣∣∣ ∫
I

M

( |f(s)|
ρ

)
ds ≤ 1

}
.

The relevant ∆2-conditions have to be checked at ∞ if I = (0, 1) and at both zero and
∞ if I = (0,∞). If M∗ satisfies the ∆2-condition, then (HM )∗∗ = LM , and HM = LM
if (and only if) M satisfies the ∆2-condition (cf. [422, p. 120]).

The Lorentz spaces d(w, 1) and L p,1
. Let w = (wn) be a decreasing sequence of real

numbers such that w1 = 1, wn → 0 and
∑∞

n=1 wn = ∞. The Lorentz sequence space
d(w, 1) consists of all sequences (un) such that

‖(un)‖w,1 = sup
π

∞∑
n=1

|uπ(n)|wn <∞

where π ranges over all the permutations of N. In the case wn = n
1
p−1 (1 < p ≤ ∞)

this space is known as � p,1. Under the canonical duality the dual of d(w, 1) can be
represented as the space of sequences (xn) for which

∑
xnun is absolutely convergent

for all (un) ∈ d(w, 1). This implies (xn) ∈ c0. If (x∗n)1 denotes the nonincreasing
1We adopt here the symbol x∗

n and f∗ for the decreasing rearrangement of a sequence or a function
since it is commonly used in the literature. No confusion should arise with the notation x∗ used in this
book to denote an element of the dual space X∗.
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rearrangement of the sequence of moduli (|xn|), the dual norm can be calculated as
follows:

‖(xn)‖ = sup
n

∑n
j=1 x

∗
j∑n

j=1 wj

It is also known that the subspace d(w, 1)∗ of d(w, 1)∗ consisting of all sequences for
which

lim
n

∑n
j=1 x

∗
j∑n

j=1 wj
= 0

is a predual of d(w, 1), which we call the canonical predual. Moreover, d(w, 1)∗ coincides
with the closed linear span of the unit vectors en in d(w, 1)∗. (All the results mentioned
above can be found e.g. in [241].)
For Lorentz function spaces let I be one of the intervals (0, 1) or (0,∞) equipped with
Lebesgue measure. Although the following could be done for the spaces L(W, 1) consid-
ered in [422, p. 120], we confine ourselves to L p,1.
For a measurable function f on I let f∗ be its nonincreasing rearrangement and f∗∗ its
maximal function

f∗∗(t) =
1
t

∫ t

0

f∗(s) ds.

If
‖f‖p,1 = 1

p

∫
I

s
1
p f∗(s)

ds

s
,

then Lp,1(I) = {f | ‖f‖p,1 <∞}, and ‖ . ‖p,1 is a complete norm on L p,1. If 1 < p <∞
and 1/p+ 1/q = 1, then the dual of L p,1 coincides with the “weak Lq-space” Lq,∞, and
the dual norm is

‖f‖q,∞ = sup
t
t

1
q f∗∗(t).

(See Lorentz’ paper [425] where Lp,1 is denoted by Λ( 1p ) and L
q,∞ by M( 1p ), or compare

Chapter IV.4 of the monograph [70].) It is known that the closure of the set of bounded
functions whose support has finite measure in (L p,1)∗ = Lq,∞ is a predual of L p,1; this
follows for instance from Theorem I.4.1 in [70]. We denote this closure by (L p,1)∗ and
call it the canonical predual of L p,1.

The Banach algebra H∞
and the Hardy spaces Hp

. If F is a bounded analytic
function on the open unit disk D , then a well-known result in complex variables asserts
that

lim
r→1

F (rz) =: f(z)

exists for almost every z ∈ T. The mapping which assigns to each such F its boundary
function f ∈ L∞(T) then identifies the space H∞(D ) isometrically with a closed subalge-
bra of L∞(T) which is denoted by H∞. (Often we shall not explicitly distinguish between
H∞(D ) and H∞.) Also, H∞ is the weak∗ closed linear span of the functions 1, z, z2, . . .
in L∞(T). Likewise the boundary function f is known to exist almost everywhere if F
is an analytic function on D subject to the growth condition

sup
r<1

(
1
2π

∫ 2π

0

|F (reit)|pdt
)1/p

=: ‖F‖p <∞,
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and ‖F‖p coincides with the norm of f in Lp(T). These boundary functions make up a
closed subspace of Lp(T) denoted by Hp, which is called a Hardy space.
Under the duality 〈f, g〉 = ∫ fg dt/2π the dual of H1

0 = {f ∈ H1| f(0) = 0} is isometric
with the quotient space L∞(T)/(H1

0 )⊥ = L∞(T)/H∞. On the other hand, H1
0 is isomet-

ric with the dual of the quotient space C(T)/A by the classical F. and M. Riesz theorem.
(Here A denotes the disk algebra.) Consequently L∞(T)/H∞ “is” the bidual of C(T)/A,
and the canonical copy of C(T)/A in its bidual is the quotient space (H∞+C(T))/H∞.
To see this one has to take into account that the distance of a continuous function to A
is the same as its distance to H∞. (We remark in passing that this distance formula and
hence the identification of the canonical copy of C(T)/A in L∞(T)/H∞ is the essence of
Sarason’s proof that H∞+C(T) is closed in L∞(T), cf. [169, p. 163] or [243, p. 376].) For
a detailed discussion of the above facts and more information we refer to the monographs
[169], [180] or [243]. We also point out that it is convenient in this setting to abbreviate
C(T) by C and L∞(T) by L∞.

The spaces of analytic functions with weighted supremum norm A0(φ) and

A∞(φ). We denote by D the open unit disk and let φ : [0, 1]→ R be a positive continuous
decreasing function such that φ(0) = 1 and φ(1) = 0. We define

A∞(φ) = {f : D → C | f analytic, ‖f‖φ = sup
z∈D

|f(z)| · φ(|z|) <∞},

A0(φ) = {f ∈ A∞(φ) | lim|z|→1
|f(z)| · φ(|z|) = 0}.

These are Banach spaces under the norm ‖ . ‖φ, and A∞(φ) is canonically isometric with
A0(φ)∗∗ ([539] or [78]).

The Bloch spaces B0 and B. These are the spaces

B = {f : D → C | f analytic, f(0) = 0, ‖f‖ = sup
z∈D

|f ′(z)| · (1− |z|2) <∞},

and
B0 = {f ∈ B | lim

|z|→1
|f ′(z)| · (1− |z|2) = 0}

(the “little Bloch space”). That B is the bidual of B0 and more information on Bloch
functions and the Bloch spaces can be found in the surveys [37] and [131].

Examples 1.4 The following spaces are M -embedded spaces:
(a) c0 (more generally c0(Γ)).
(b) The Orlicz sequence space hM if M∗ satisfies the ∆2-condition at zero while M

fails it.
(c) The canonical predual d(w, 1)∗ of the Lorentz sequence space d(w, 1).
(d) The Orlicz function space HM (I) if M∗ satisfies the appropriate ∆2-condition

while M fails it.
(e) The canonical predual (L p,1)∗ of the Lorentz function space L p,1.
(f) K(H) if H a Hilbert space.
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(g) K(� p, � q) if 1 < p ≤ q <∞.
(h) C(T)/A where T denotes the unit circle and A the disk algebra.
(i) The weighted spaces of analytic functions A0(φ).
(j) The little Bloch space B0.

Proof: All arguments except that for (h) use the restricted 3-ball property (Theo-
rem I.2.2) with the idea outlined on page 102.

(a) This is immediate; see also Example I.1.4(a).
(b) By what was said above the bidual of hM is �M in this situation. (The assumption on
M is made only to exclude the reflexive case.) Suppose x∗∗ ∈ B�M , i.e.

∑
M(|x∗∗(n)|) ≤

1, xi ∈ BhM (i = 1, 2, 3) and ε > 0 are given. There is no loss of generality in assuming
‖xi‖ < 1 and xi(n) = 0 for n > n0, since such sequences are dense in the unit ball of
hM . Then

∑n0
n=1M(|xi(n)|) < 1. Choose m0 > n0 such that

n0∑
n=1

M(|xi(n)|) +
∞∑

n=m0

M(|x∗∗(n)|) ≤ 1.

Put y(n) = x∗∗(n) for n < m0 and y(n) = 0 otherwise. Then y ∈ hM and

∑
M(|x∗∗(n) + xi(n)− y(n)|) =

n0∑
n=1

M(|xi(n)|) +
∞∑

n=m0

M(|x∗∗(n)|) ≤ 1,

hence ‖x∗∗ + xi − y‖ ≤ 1.
(c) We have already remarked that the bidual of d(w, 1)∗ can canonically be identified
with d(w, 1)∗ and that lin (en) is dense in d(w, 1)∗. Given x∗∗ = (a(n)) ∈ Bd(w,1)∗,
xi = (xi(n)) ∈ Bd(w,1)∗ with finite support, and ε > 0 we first show the existence of
y ∈ d(w, 1)∗ with ‖x∗∗ + xi − y‖ ≤ 1 + ε under the additional assumption

max{j | x∗i (j) �= 0} =: ki = k for all i

and
k∑
j=1

x∗i (j) ≤
k∑
j=1

a∗(j) for all i.

Pick N such that xi(n) = 0 for n > N and

|a(n)| ≤ min{δ, a∗(k)} for n > N,

where δ = mini x∗i (k). Then define the sequence y = (y(n)) by y(n) = a(n) if n ≤ N and
y(n) = 0 otherwise. If zi(n) = a(n) + xi(n)− y(n), then

z∗i (j) = x∗i (j) for j ≤ k,

z∗i (j) ≤ a∗(j) for j > k
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by construction. Hence ∑n
j=1 z

∗
i (j)∑n

j=1 w(j)
≤ 1 if n ≤ k,

since ‖xi‖ ≤ 1, and for n > k we have by the second part of our assumption∑n
j=1 z

∗
i (j)∑n

j=1 w(j)
≤
∑n

j=1 a
∗(j)∑n

j=1 w(j)
≤ ‖x∗∗‖ ≤ 1,

hence ‖x∗∗ + xi − y‖ ≤ 1.
To dispose of the extra assumption we may clearly demand x∗∗ �∈ d(w, 1)∗ (because
otherwise one could trivially choose y = x∗∗). In this case we cannot have x∗∗ ∈ � 1

either. Hence we find l ≥ ki such that

ki∑
j=1

x∗i (j) <
l∑

j=1

a∗(j). (∗)

We now modify xi as follows: If xi(n) �= 0, then let ξi(n) = xi(n). At l−ki indices where
xi(n) = 0 let ξi(n) = η (here η > 0 is a small number to be specified in a moment);
otherwise let ξi(n) = 0. The number η should be chosen so small that ‖xi − ξi‖ ≤ ε and

l∑
j=1

ξ∗i (j) ≤
l∑

j=1

a∗(j)

hold; this is possible by (∗). By the first part of the proof, some y ∈ d(w, 1)∗ such that∥∥∥∥x∗∗ + ξi
1 + ε

− y

∥∥∥∥ ≤ 1
exists, hence ‖x∗∗ + xi − y‖ ≤ 1 + 2ε.
(d) The idea of the proof is the same as in part (e) below, while the details, which we
leave to the reader, follow – mutatis mutandis – the proof of part (b).
(e) We have already pointed out that the bidual is the space

Lq,∞(I) = {f | ‖f‖q,∞ <∞}
where 1/p + 1/q = 1. We first deal with the case I = (0, 1). Suppose f ∈ Lq,∞,
‖f‖q,∞ ≤ 1, bounded functions gi with ‖gi‖q,∞ ≤ 1 and some ε > 0 are given. (The
boundedness assumption may be imposed on the gi since the bounded functions form
a dense subspace of (Lp,1)∗.) The idea is to define the function g by χ{|f |≤r} · f for
sufficiently large r.
Since the gi and hence the g∗∗i are bounded, there exists some t1 > 0 such that

t
1
q · g∗∗i (t) ≤ ε for t ≤ t1,

whereas
t

1
q · g∗∗i (t) ≤ 1 for t > t1
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anyway. Next we choose t0 ≤ t1 such that∫ t0

0

f∗(s) ds ≤ ε t
1
p

1 ,

and finally let r = f∗(t0). Then g = χ{|f |≤r} · f is bounded and hence in (L p,1(0, 1))∗.
By the subadditivity of the maximal operator (φ+ψ)∗∗ ≤ φ∗∗+ψ∗∗ [70, Theorem II.3.4]
we have

‖f + gi − g‖q,∞ ≤ sup
t

(
t

1
q · g∗∗i (t) + t

1
q · (f − g)∗∗(t)

)
and for t > t1 one computes

t
1
q · (f − g)∗∗(t) = t−

1
p

∫ t

0

(f − g)∗(s) ds

≤ t
− 1

p

1

∫ t0

0

(f − g)∗(s) ds

≤ ε

by the choice of t0. Since for t ≤ t1

t
1
q · (f − g)∗∗(t) ≤ ‖f − g‖q,∞ ≤ ‖f‖q,∞ ≤ 1,

these estimates, together with the ones for g∗∗i , prove the inequality

‖f + gi − g‖q,∞ ≤ 1 + ε.

In the case of the infinite interval (0,∞) one has to combine the above approach (at 0)
with the method of part (c) (at ∞) to accomplish the proof. We omit the details. (Note
that L p,1(0, 1) and L p,1(0,∞) are not even isomorphic for 1 < p <∞ [111].)
(f) It is well known that the bidual of K(H) is L(H) (see for example [592, p. 64] or [158,
p. 247]). Hence the result follows from the coincidence of M -ideals and closed two-sided
ideals in C∗-algebras: Theorem V.4.4.
(g) In Example VI.4.1 we will prove that K(� p, � q) in an M -ideal in L(� p, � q). This,
however, is our assertion since the latter space is the bidual of K(� p, � q) [158, p. 247].
(The condition p ≤ q in (g) is imposed only to assure nontrivial, meaning nonreflexive
examples; see [158, p. 248].)
(h) As mentioned above we will abbreviate C(T) by C and L∞(T) by L∞. To show
that X = C/A = (H∞ + C)/H∞ is an M -embedded space we will prove that X⊥ is an
L-summand in X∗∗∗. Let K denote the maximal ideal space of L∞. In the following we
identify, using the Gelfand transform f �→ f̂ , H∞ and C with proper closed subalgebras
of C(K) (∼= L∞). Then our problem is to find an L-projection from from X∗∗∗ ∼= (H∞)⊥

(⊂M(K)) onto X⊥ ∼= (H∞ + C)⊥.
To exhibit such a projection, the basic idea is this. Let us denote by m the normalized
Lebesgue measure on T. Then there is, by the Riesz representation theorem, a uniquely
determined probability measure m̂ ∈M(K) satisfying∫

T

f dm =
∫
K

f̂ dm̂ ∀f ∈ L∞.
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The Lebesgue decomposition µ = µa+µs with respect to m̂ gives rise to an L-projection
P : µ �→ µs acting on M(K) (Example I.1.6(b)). We intend to show that (H∞)⊥ is an
invariant subspace of P and that P maps (H∞)⊥ onto (H∞ +C)⊥ which clearly settles
our problem. For this the use of an abstract F. and M. Riesz theorem will turn out to
be instrumental.
We will now give the details of this argument. The F. and M. Riesz theorem we have in
mind reads as follows [95, Th. 4.2.2, Cor. 4.2.3] (a more general version can be found in
[239, Th. II.7.6, Cor. II.7.9]):

Theorem (Abstract F. and M. Riesz theorem) Let B be a function algebra on
the compact space K and φ be a multiplicative linear functional which admits
a unique representing measure σ on K. Writing the Lebesgue decomposition
of a measure µ ∈M(K) with respect to σ as µ = µa + µs one obtains:

(a) If µ ∈ B⊥, then µa, µs ∈ B⊥.
(b) If µ ∈ B⊥

φ := (kerφ)
⊥, then µs ∈ B⊥ and µa ∈ B⊥

φ .

We shall apply this theorem to the algebra H∞ (strictly speaking to its image under the
Gelfand transform) with the above K and the functional

φ(f) =
∫
T

f dm.

Since φ(f) = F (0) if f is the boundary function of the bounded analytic function F on
D , φ is clearly multiplicative. Moreover, m̂ represents φ by definition, and m̂ is unique
with respect to this property as shown for instance in [95, Lemma 4.1.1], [239, p. 38] or
[243, p. 201]. (The crucial property to be used there is that H∞ is a so-called logmodular
algebra, see [239, p. 37] or [243, p. 66].) Part (a) of the above theorem now assures that
P ((H∞)⊥) ⊂ (H∞)⊥.
It is left to show that P ((H∞)⊥) = (H∞+C)⊥. Since P ((H∞)⊥) =Msing(K)∩ (H∞)⊥

(compare Lemma I.1.15) this amounts to showing that

(H∞)⊥ ∩Msing(K) = (H∞)⊥ ∩ C⊥.

To see “⊂” let µ ∈ (H∞)⊥ be m̂-singular. It will be convenient to denote the function
z �→ zk (z ∈ T, k ∈ Z) simply by zk. In the notation of part (b) of the abstract
F. and M. Riesz theorem the measure ẑ−1µ belongs to (H∞)⊥φ (since µ ∈ (H∞)⊥) so

that by m̂-singularity (ẑ−1µ)s = ẑ−1µ ∈ (H∞)⊥. Continuing inductively we find that
ẑ−kµ ∈ (H∞)⊥ for all k ∈ N, hence in particular

∫
ẑ−k dµ = 0. Since

∫
ẑn dµ = 0 for

n ∈ N0 anyway, the density of lin {zk | k ∈ Z} (= the trigonometric polynomials) in
C = C(T) shows the desired inclusion.
For the proof of “⊃” take µ ∈ (H∞)⊥ with

∫
ĝ dµ = 0 for all g ∈ C. We want to show

that its absolutely continuous part µa vanishes. By P -invariance of (H∞)⊥ we have
µs ∈ (H∞)⊥, so the inclusion already proved shows that

∫
ĝ dµs = 0 for all g ∈ C.

Then by assumption this holds also for µa = µ − µs. Thus, writing µa = fm̂ for some
f ∈ L1(m̂), we obtain ∫

ĝfdm̂ = 0 for all g ∈ C.
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Since the Gelfand transform of L∞ extends uniquely to an isometric isomorphism between
L1(T,m) and L1(K, m̂) (see [243, p. 202]) this allows us to conclude f = 0.
(i) Let f ∈ A∞(φ), gi ∈ A0(φ) with norm ≤ 1, and ε > 0 be given. For r < 1 let
fr(z) = f(rz). Then fr ∈ A0(φ), ‖fr‖φ ≤ ‖f‖φ (since φ is decreasing) and limr→1 fr = f
uniformly on compact subsets of D .
First choose 91 < 1 such that

|gi(z)| · φ(|z|) ≤ ε for |z| ≥ 91

and then r1 < 1 with
sup

|z|≤�1
|f(z)− fr1(z)| ≤ ε.

Since fr1 ∈ A0(φ), we have for some 92 > 91

|fr1(z)| · φ(|z|) ≤ ε for |z| ≥ 92

so that
|f(z)− fr1(z)| · φ(|z|) ≤ 1 + ε for |z| ≥ 92.

In the next step we pick r2 ≥ r1 such that

sup
|z|≤�2

|f(z)− fr2(z)| ≤ ε.

In this way we find increasing sequences (9k) and (rk) such that |f(z)− frk
(z)| ·φ(|z|) ≤

1 + ε for all z except in the annulus 9k < |z| < 9k+1. Now fix an integer m ≥ 2/ε and
let h = 1

m

∑m
k=1 frk

. Then h ∈ A0(φ), and we claim

|f(z) + gi(z)− h(z)| · φ(|z|) ≤ 1 + 3ε for all z ∈ D .

If |z| ≤ 91, this is clear since ‖gi‖φ ≤ 1 and |f(z) − frk
(z)| ≤ ε for all k. Otherwise,

we have |gi(z)| · φ(|z|) ≤ ε and |f(z)− frk
(z)| · φ(|z|) ≤ 1 + ε for all but possibly one k.

However, by what was noted above ‖f − frk
‖φ ≤ 2 holds anyway so that

|f(z)− h(z)| · φ(|z|) ≤ m− 1
m

(1 + ε) +
1
m
· 2 ≤ 1 + 2ε.

(j) This is a special case of (i) since B0 is isometric (by f �→ f ′) to A0(φ) with the weight
function φ(r) = 1− r2. 2

Remarks: (a) The induction argument used in the proof of the part (h) above is similar
to the one employed in [239, Th. 7.10, p. 45] to deduce the classical F. and M. Riesz
theorem from the general one.
(b) We shall later obtain several proofs of the fact that C(T)/A is M -embedded as
consequences of more general results; see Remark 1.8 and Example IV.4.11. Although
the above proof is not the shortest possible, it is very natural if one adopts the idea
(compare I.1.15 and I.1.16) that the desired L-projection should be the restriction of
an L-projection of the superspace M(K) leaving the subspace (H∞)⊥ invariant. The
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abstract F. and M. Riesz theorem is in fact a statement about invariant subspaces of
L-projections so that its use above seems quite appropriate.
(c) We will give more examples of Banach spaces which are M -ideals in their biduals in
the Notes and Remarks section.

Some consequences of general results on M -embedded spaces for concrete examples will
be explicitly noted in the following sections. We start with the answer to a question of
Sarason and Adamjan, Arov and Krein; cf. [38, p. 608].

Corollary 1.5 H∞ + C is proximinal in L∞.

Although H∞+C is not an M -ideal in L∞ (because it contains the constant functions),
so that Proposition II.1.1 is not applicable right away, we will derive this by M -ideal
methods.

Proof: It was noted above that the canonical copy of C/A in its bidual is (H∞+C)/H∞.
So this space is, as an M -ideal, proximinal in L∞/H∞ by Proposition II.1.1. Combined
with the following elementary observation

If X is a Banach space and E and F are subspaces with E ⊂ F ⊂ X such that
F/E is proximinal in X/E and E is proximinal in X, then F is proximinal
in X.

and the fact that H∞ is proximinal in L∞ (as a w∗-closed subspace), this yields the
claim. 2

The next theorem describes the hereditary properties of M -embedded spaces.

Theorem 1.6 The class of M -embedded Banach spaces is stable by taking
(a) subspaces,
(b) quotients,
(c) c0-sums.

Proof: (a) For a subspace Y of X we have to show by Proposition 1.2 that πY ∗ is an
L-projection. Denote by i : Y −→ X the inclusion mapping and recall that πY ∗i∗∗∗ =
i∗∗∗πX∗ . Moreover, given y∗∗∗ ∈ Y ∗∗∗ one can find x∗∗∗ ∈ X∗∗∗ with i∗∗∗x∗∗∗ = y∗∗∗ and
‖x∗∗∗‖ ≤ ‖y∗∗∗‖. For y∗∗∗ and x∗∗∗ as above we have (using that πX∗ is an L-projection)

‖y∗∗∗‖ ≤ ‖πY ∗y∗∗∗‖+ ‖y∗∗∗ − πY ∗y∗∗∗‖
= ‖πY ∗i∗∗∗x∗∗∗‖+ ‖i∗∗∗x∗∗∗ − πY ∗i∗∗∗x∗∗∗‖
= ‖i∗∗∗πX∗x∗∗∗‖+ ‖i∗∗∗x∗∗∗ − i∗∗∗πX∗x∗∗∗‖
≤ ‖i∗∗∗‖ (‖πX∗x∗∗∗‖+ ‖x∗∗∗ − πX∗x∗∗∗‖)
= ‖x∗∗∗‖
≤ ‖y∗∗∗‖.

This shows that πY ∗ is an L-projection.
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(b) Replace i in the above proof by the quotient map q : X −→ X/Y and note that q∗∗∗

is isometric.
(c) If Xi (i ∈ I) are M -embedded spaces and X is the c0-sum (⊕

∑
Xi)c0(I) then X

∗∗ =
(⊕∑X∗∗

i )�∞(I). Direct verification of the 3-ball property shows the claim. 2

Remarks 1.7 (a) Although subspaces and quotients of M -embedded spaces are again
M -embedded, this property is not a 3-space property, i.e.

Y a subspace of X, Y and X/Y M -embedded =⇒/ X M -embedded.

[Consider e.g. X = c0 ⊕1 c0 and Y = c0 × {0}. Since X∗∗ has a nontrivial L-summand,
it can’t contain a nontrivial M -ideal by Theorem I.1.8.]
(b) The property of being an M -embedded space is clearly not isomorphically invariant,
however it is invariant under almost isometric isomorphism. Recall that the Banach-
Mazur distance of two Banach spaces X and Y is defined as d(X,Y ) = inf{‖T ‖‖T−1‖ |
T : X → Y isomorphism} and that X and Y are said to be almost isometric if d(X,Y ) =
1.

If X is an M -embedded space and Y a Banach space with d(X,Y ) = 1, then
Y is M -embedded.

[This is straightforward using the 3-ball property.]

Remark 1.8 The stability property ofM -embedded spaces combined with the theorems
of Nehari and Hartman (see below) immediately gives a second proof of Example 1.4(h):
Recall that an operator T ∈ L(H2) is called a Hankel operator on the Hardy space
H2 if there is a sequence (an)n∈N0 such that tij := 〈Tγj, γi 〉 = ai+j , where i, j ∈ N0

and γk(z) = zk, k ∈ Z. [The harmonic analysis type notation γk for the natural basis
vectors is convenient also here; cf. Section IV.4.] The condition on T is easily seen to be
equivalent to S∗T = TS, where S denotes the unilateral shift on H2, i.e. Sγi = γi+1,
and S∗ is its Hilbert space adjoint.
To give the precise statements of the quoted theorems we need some more notation:
For f ∈ L∞(T) we write Mf for the corresponding multiplication operator Mfg := fg
on L2(T). Further, J ∈ L(L2(T)) is the complex conjugation Jf = f , P denotes the
orthogonal projection from L2(T) onto H2 and i : H2 −→ L2(T) the inclusion map.
Finally, we let H∞

0 = {zf | f ∈ H∞} ∼= {f ∈ H∞(D ) | f(0) = 0}.
Theorem (Nehari and Hartman)

(a) The mapping

H : L∞/H∞
0 −→ L(H2)

f +H∞
0 �−→ Hf := PJMf i

is an isometric isomorphism onto the space of Hankel operators on H2.

(b)
d(Hf ,K(H2)) = d(f,H∞

0 + C)

In particular: Hf is a compact operator iff f ∈ H∞
0 + C.



III.1 Examples and stability properties 113

By the above the restriction of H to C/A0
∼= (H∞

0 +C)/H∞
0 is an isometry into K(H2),

so C/A0 is an M -embedded space by Theorem 1.6(a) and Example 1.4(f). Observing
that the isometrical isomorphism Mγ1 : C(T) −→ C(T) maps A onto A0, we obtain
Example 1.4(h). (We refer to the survey article [505] and the books [474] and [506]
for a detailed exposition of the theory of Hankel operators. We explicitly mention the
remarkably simple geometric proof of the above theorem due to Parrot which is outlined
in [505, p. 430–432].)

We will complete our discussion of the stability properties of M -embedded spaces by
showing that this is in fact a separably determined property of a Banach space. To show
this we need a proposition which is of independent interest.

Proposition 1.9 For a Banach space X, the following assertions are equivalent:
(i) X is an M -ideal in its bidual.
(ii) For all x ∈ BX , all sequences (xn) in BX , all weak ∗ cluster points x∗∗ of (xn)

and all ε > 0 there is some u ∈ co {x1, x2, . . .} such that

‖x+ x∗∗ − u‖ ≤ 1 + ε.

(iii) For all x ∈ BX , all sequences (xn) in BX and all ε > 0 there is some n ∈ N and
there are u ∈ co {x1, . . . , xn}, t ∈ co {xn+1, xn+2, . . .} such that

‖x+ t− u‖ ≤ 1 + ε.

(iv) For all x ∈ BX and all x∗∗ ∈ BX∗∗ there is a net (xα) in BX weak ∗ converging
to x∗∗ such that

lim sup ‖x+ x∗∗ − xα‖ ≤ 1.
Proof: (i) ⇒ (ii): If this were false, then the inequality ‖x + x∗∗ − u‖ > 1 + ε would
hold for all u ∈ A := co {x1, x2, . . .}. Consequently, A and the ball BX∗∗(x+x∗∗, 1+ε/2)
could strictly be separated by some x∗∗∗ ∈ X∗∗∗, with ‖x∗∗∗‖ = 1 say. By assumption
we have a decomposition

x∗∗∗ = x∗ + x∗∗∗s ∈ X∗ ⊕X⊥, ‖x∗∗∗‖ = ‖x∗‖+ ‖x∗∗∗s ‖.
Hence

1 +
ε

2
≤ Re x∗∗∗(u− (x+ x∗∗))

≤ |x∗(x)| + |x∗(x∗∗ − u)|+ |x∗∗∗s (x∗∗)|
≤ max{‖x‖, ‖x∗∗‖}(‖x∗‖+ ‖x∗∗∗s ‖) + |x∗(x∗∗ − u)|
≤ 1 + |x∗(x∗∗ − u)|

for all u ∈ A; however |x∗(x∗∗ − xn)| < ε/2 for some n since x∗∗ is a weak∗ cluster point
of the sequence (xn). This leads to a contradiction.
(ii) ⇒ (iii): Let x∗∗ be a weak∗ cluster point of the sequence (xn). We apply (ii) to
obtain ‖x + x∗∗ − u‖ ≤ 1 + ε/3 for some u ∈ co {x1, x2, . . .}, say u ∈ co {x1, . . . , xn}.
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Suppose that ‖x+ t− u‖ > 1+ ε holds for each t ∈ co {xn+1, xn+2, . . .} =: A. Again this
implies that A and BX(u−x, 1+ ε/2) can strictly be separated. Thus, for some x∗ ∈ X∗

with ‖x∗‖ = 1
1 + ε/2 ≤ Re x∗(t− (u − x)) ∀t ∈ A.

But since x∗∗ ∈ A
w∗
, this yields

1 +
ε

2
≤ Re x∗(x + x∗∗ − u)

≤ ‖x+ x∗∗ − u‖

≤ 1 +
ε

3
,

a contradiction.
(iii) ⇒ (iv): Again we argue by contradiction. Suppose that for some x ∈ BX , x∗∗ ∈
BX∗∗ there is no such net. Consequently there is, for some ε > 0, a convex weak∗

neighbourhood V of x∗∗ such that

‖x+ x∗∗ − v‖ > 1 + ε ∀v ∈ V. (1)

Pick x1 ∈ V ∩ BX and put B1 = −x + x1 + (1 + ε)BX∗∗ . This is a weak∗ compact set
not containing x∗∗ (by (1)), so there is a convex weak∗ neighbourhood W1 ⊂ V of x∗∗

such that W1 ∩B1 = ∅. This means
‖x+ w − x1‖ > 1 + ε ∀w ∈W1.

Next choose x2 ∈W1 ∩BX , put B2 = −x+ co {x1, x2}+ (1 + ε)BX∗∗ and find a convex
weak∗ neighbourhood W2 ⊂W1 of x∗∗ satisfying W2 ∩B2 = ∅, i.e.

‖x+ w − u‖ > 1 + ε ∀w ∈ W2, u ∈ co {x1, x2}.
Continuing in this manner, we inductively define a sequence of points (xn) in BX and
a sequence of convex weak∗ neighbourhoods V ⊃ W1 ⊃ W2 ⊃ . . . such that xn+1 ∈ Wn

and
‖x+ w − u‖ > 1 + ε ∀w ∈Wn, u ∈ co {x1, . . . , xn}.

for all n ∈ N. This is a contradiction to (iii), since co {xn+1, xn+2, . . .} ⊂Wn.
(iv) ⇒ (i): We shall verify that the canonical projection from X∗∗∗ onto X∗ is an L-
projection. To this end decompose a given x∗∗∗ ∈ BX∗∗∗ into x∗∗∗ = x∗+x∗∗∗s ∈ X∗⊕X⊥.
For an arbitrary ε > 0 pick x ∈ BX , x∗∗ ∈ BX∗∗ such that Re x∗(x) ≥ ‖x∗‖ − ε and
Re x∗∗∗s (x∗∗) ≥ ‖x∗∗∗s ‖ − ε. By (iv) there is a net (xα) such that, for sufficiently large α,

|x∗(x∗∗ − xα)| ≤ ε and ‖x+ x∗∗ − xα‖ ≤ 1 + ε.

This yields

‖x‖+ ‖x∗∗∗s ‖ − 2ε ≤ Re (x∗(x) + x∗∗∗s (x∗∗))

≤ Re 〈x∗ + x∗∗∗s , x+ x∗∗ − xα〉+ ε

≤ ‖x∗∗∗‖ · (1 + ε) + ε
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so that in fact ‖x∗‖+ ‖x∗∗∗s ‖ = ‖x∗∗∗‖. 2

We remark that condition (iv) has implicitly appeared in the discussion of our examples
at the beginning of this section. From a conceptual point of view, condition (iii) is
the most interesting one. First of all, it is formulated in terms of X alone; no a priori
knowledge of the bidual space is needed. (However, applying (iii) in concrete instances
seems to be technically unpleasant.) As part (iii) involves just sequences so that only
separable subspaces have to be checked, we immediately get:

Corollary 1.10 A Banach space is an M -ideal in its bidual if and only if every separable
subspace is.

In the remainder of this chapter we will present several properties ofM -embedded spaces.
These results can be thought of as giving necessary conditions on a Banach space to be
M -embedded. Let us conclude this first section with the reference to Proposition VI.4.4
where we will show that X is necessarily M -embedded if K(X) is an M -ideal in L(X).

III.2 Isometric properties

The first group of results in the following section is devoted to the study of surjective
isometries and contractive projections in M -embedded spaces and their duals. After this
we collect what is known about representation and characterisation of these spaces. At
the end various other isometric properties – such as unique preduals and renormings –
are discussed.

Proposition 2.1 If X is an M -ideal in its bidual, then πX∗∗ is the only contractive
projection from X(4) onto X∗∗.

Proof: We will show the following stronger statement:

‖x∗∗‖ ≤ ‖x(4) + x∗∗‖ ∀ x∗∗ ∈ X∗∗ implies x(4) ∈ X∗⊥. (∗)
This shows the claim, because, for a contractive projection P from X(4) onto X∗∗ and
x(4) ∈ ker P , (∗) yields x(4) ∈ X∗⊥, therefore ker P ⊂ X∗⊥, hence P = πX∗∗ .
To prove (∗) observe first that by assumption we have X∗∗∗ = X∗ ⊕1 X

⊥, hence X(4) =
X∗⊥ ⊕∞ X⊥⊥. Since X ⊂ X⊥⊥ we have in particular

‖x∗⊥ + x‖ = max{‖x∗⊥‖, ‖x‖} for x∗⊥ ∈ X∗⊥, x ∈ X.
Under the hypothesis of (∗) we now decompose x(4) = x∗⊥−y∗∗ ∈ X∗⊥⊕X∗∗ and easily
get

‖y∗∗ + x∗∗‖ ≤ ‖x∗⊥ + x∗∗‖ ∀x∗∗ ∈ X∗∗. (†)
Assuming y∗∗ �= 0 we find n ∈ N such that n ‖y∗∗‖ > ‖x∗⊥‖. By Goldstine’s theorem
and w∗-lower semicontinuity of the norm, there is a net (yα) in X such that yα −→ ny∗∗

with respect to σ(X∗∗, X∗) and ‖x∗⊥‖ ≤ ‖yα‖ ≤ n ‖y∗∗‖. But then by (†)
‖y∗∗ + yα‖ ≤ ‖x∗⊥ + yα‖ = max{‖x∗⊥‖, ‖yα‖} = ‖yα‖ ≤ n‖y∗∗‖,
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hence (passing to the limit)
‖y∗∗ + ny∗∗‖ ≤ n‖y∗∗‖,

a contradiction. 2

We remark that Proposition 2.1 finds its proper place among Godefroy’s general results
on uniqueness of preduals (in particular it is a consequence of Theorem 3.1 below and
[258, Th. II.1 and Ex. II.2.3.b]). However the above direct proof using the geometric
assumption is also interesting.

Proposition 2.2 Let X be a Banach space which is an M -ideal in its bidual. Then
every surjective isometry I of X∗∗ is the bitranspose of a surjective isometry of X.

Proof: Let such an I : X∗∗ −→ X∗∗ be given. As easily seen P := I∗∗−1πX∗∗I∗∗

is a contractive projection of X(4) onto X∗∗, hence P = πX∗∗ by Proposition 2.1. But
then πX∗∗I∗∗ = I∗∗πX∗∗ , which is known to imply the w∗-continuity of I. Consequently
I = J∗ for some surjective isometry J : X∗ −→ X∗. To show the claim it is enough to
prove that I(X) = X , which by the Hahn-Banach theorem means I∗(X⊥) = X⊥. But
I∗ = J∗∗ is a surjective isometry of X∗∗∗ which maps the L-summand X∗ onto itself;
therefore it also maps the complementary L-summand X⊥ onto itself. 2

In our next theorem we collect some results on the M -structure of M -embedded spaces.
Recall from Definition I.3.7 that we denote by Z(X) the centralizer of a Banach space
X .

Theorem 2.3 Suppose X is an M -ideal in X∗∗.
(a) Every M -ideal J in X is an M -summand.
(b) If X has no nontrivial M -summands, then every nontrivial M -ideal of X∗∗ con-

tains X.
(c) Every M -projection in X∗∗ is the bitranspose of an M -projection in X (in par-

ticular, every L-projection in X∗ is w∗-continuous).
(d) Z(X) ∼= Z(X∗∗).

Proof: (a) Let P be the M -projection in X∗∗ onto J⊥⊥. Since M -ideals are left
invariant under M -projections (Lemma I.3.5) P |X is an M -projection in X onto J⊥⊥ ∩
X = J (see Lemma I.1.15).
(b) Let J be a nontrivial M -ideal in X∗∗. Then J ∩X is an M -ideal in X (see Propo-
sitions I.1.11 and I.1.17), hence an M -summand by part (a). The assumption gives that
J ∩X equals {0} or X . We will show that the first case cannot arise. In fact, then J and
X are complementary M -summands in J ⊕X by Proposition I.1.11(c). If now J �= {0}
there is an x∗∗ ∈ J ∩ (X∗∗ \X), so PX(x∗∗) is a closed ball in X with radius d(x∗∗, X)
– see the introduction to Section II.1. But

For every Banach space X and x∗∗ ∈ X∗∗\X the set PX(x∗∗) has no interior
points relative to X.
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[Proof: Assuming that this is not the case, we may suppose after a suitable translation
that 0 is an interior point of PX(x∗∗), i.e. there is a δ > 0 such that y ∈ X and ‖y‖ < δ
imply ‖x∗∗−y‖ = ‖x∗∗‖ (= d(x∗∗, X)). Take x∗ ∈ SX∗ with Re x∗∗(x∗) > ‖x∗∗‖−δ/4 and
x ∈ SX with Re x∗(x) > 1/2. For xδ := (δ/2)x we have ‖xδ‖ = δ/2 and Re x∗(xδ) > δ/4.
So

‖x∗∗ + xδ‖ ≥ |(x∗∗ + xδ)(x∗)| ≥ Re x∗∗(x∗) + Re x∗(xδ) > ‖x∗∗‖
gives a contradiction with y = −xδ.]
This shows that J = {0} if J ∩X = {0}, so that J ∩X = X as claimed.
(c) If P is anM -projection in X∗∗, then I := 2P − IdX∗∗ is a surjective isometry of X∗∗,
hence I = I0

∗∗ for some surjective isometry I0 of X by Proposition 2.2. It easily follows
that P is the bitranspose of an M -projection in X .
(d) Recall from Theorem I.1.10 that PM (E) denotes the set ofM -projections of a Banach
space E. By part (c) the isometric injection φ : L(X) −→ L(X∗∗), T �−→ T ∗∗ maps
PM (X) onto PM (X∗∗), i.e.

PM (X∗∗) = φ (PM(X)) ⊂ φ
(
lin PM (X)

)
.

Hence by Theorem I.3.14(c)

Z(X∗∗) = lin PM (X∗∗) ⊂ φ
(
lin PM (X)

) ⊂ φ (Z(X)) .

But the converse inclusion φ (Z(X)) ⊂ Z(X∗∗) is true in arbitrary Banach spaces X by
Corollary I.3.15(a). 2

Remarks: (a) Part (c) of the above theorem shows that in the situation of (b) X∗∗

has no nontrivial M -summands. However, there may be proper M -ideals between X
and X∗∗. Take for example X = K(H), H a nonseparable Hilbert space. Then X has
no nontrivial M -ideals (Corollary VI.3.7) but J := {T ∈ L(H) | ranT separable} is
a closed two-sided ideal, hence an M -ideal (Theorem V.4.4) in L(H) = K(H)∗∗ and
X $ J $ X∗∗. In Corollary 2.12 we will see that also for separable M -embedded spaces
X there may exist M -ideals between X and X∗∗. We remark that L(� p), 1 < p < ∞,
contains no other M -ideals than K(� p) as will be shown in Corollary V.6.6.
(b) The above-mentioned examples also serve to show that there are Banach spaces
with a trivial centralizer containing nontrivial M -ideals. (For the centralizer of L(H) cf.
Theorem V.4.7 or Theorem VI.1.2.)
(c) We refer to Lemma 4.1 for another result on the continuity of contractive projections
in the dual of an M -embedded space.

Lemma 2.4 Let X be a Banach space and recall that πX∗ denotes the natural projection
from X∗∗∗ onto X∗, i.e. πX∗ = iX∗ ◦ iX∗. The following are equivalent:

(i) πX∗ is the only contractive projection P in X∗∗∗ with kerP = X⊥.
(ii) The only operator T ∈ L(X∗∗) such that ‖T ‖ ≤ 1 and T |X = IdX is T = IdX∗∗ .

(iii) For every surjective isometry U of X, the only T ∈ L(X∗∗) such that ‖T ‖ ≤ 1
and T |X = U is T = U∗∗.

Banach spaces which are M -ideals in their biduals have these properties.
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Because of (iii) a space X fulfilling one (hence all) of the above statements is said to have
the unique extension property.

Proof: The last statement follows from Proposition I.1.2 and Proposition 1.2.
(i) ⇒ (ii): With T as in (ii) define P := T ∗πX∗ . Since Tx = x for x ∈ X one gets
T ∗x∗ − x∗ ∈ X⊥ for x∗ ∈ X∗. It is then easy to show that P is a projection with
kerP = X⊥; of course ‖P‖ ≤ 1. By assumption x∗ = πX∗x∗ = Px∗ = T ∗πX∗x∗ = T ∗x∗,
which shows Tx∗∗ = x∗∗.

(ii) ⇒ (i): With P as in (i) define T :=
(
P |X

)∗
iX∗∗ . Since kerP = X⊥ one gets

Px∗|X = x∗|X and this easily yields T |X = IdX ; of course T ∈ L(X∗∗) and ‖T ‖ ≤ 1.
The assumption then shows Px∗ = x∗. Therefore P and πX∗ have the same ranges and
kernels, so they coincide.
(iii) ⇒ (ii): Obvious.
(ii) ⇒ (iii): With U and T as in (iii) define V := (U∗∗)−1T . Then ‖V ‖ ≤ 1 and
V |X = IdX , hence V = IdX∗∗ by assumption. 2

We refer to [269] for more information on the unique extension property. It is custom
made for proving

Proposition 2.5 If X is a Banach space with the unique extension property and X has
the MAP [MCAP], then X∗ has the MAP [MCAP] with adjoint operators.
In particular: If X is an M -embedded space with the MAP [MCAP], then X∗ has the
MAP [MCAP].

Proof: In the proof we use the symbols sop and wop for the strong and the weak operator
topology.
Let (Kα) be a net in the unit ball of F (X) [K(X)] which converges to IdX in the strong
operator topology, in particular Kα

wop−→ IdX . We claim

K∗
α

wop−→ IdX∗ , i.e. x∗∗(K∗
αx

∗) −→ x∗∗(x∗) for all x∗ ∈ X∗, x∗∗ ∈ X∗∗.

We will show that every subnet (K∗
β) has a subnet (K

∗
γ) such that K

∗
γ

wop−→ IdX∗ . Indeed,
since (X∗⊗̂πX∗∗)∗ ∼= L(X∗∗), there is by w∗-compactness of BL(X∗∗) some T ∈ L(X∗∗)

with ‖T ‖ ≤ 1 and a subnet such that K∗∗
γ

w∗−→ T , in particular(
K∗∗
γ x∗∗

)
(x∗) −→ (Tx∗∗) (x∗) for x∗ ∈ X∗, x∗∗ ∈ X∗∗. (∗)

Using this for x∗∗ = x ∈ X we find by the wop-convergence of (Kα) that Tx = x. By the
unique extension property we have T = IdX∗∗ , hence (∗) shows our claim.
To finish the proof recall that the topologies wop and sop yield the same dual space (e.g.
[178, Theorem VI.1.4]), so

IdX∗ ∈ cowop(K∗
α) = co

sop(K∗
α) ⊂ BF (X∗)

sop
[
BK(X∗)

sop
]
. 2

We remark that the MAP passes fromX∗ toX [158, Cor. 9, p. 244], but the corresponding
statement for the MCAP does not hold, as was recently shown by P. Casazza.



III.2 Isometric properties 119

Except Proposition 1.9 there is no internal characterisation known – neither isometric,
nor isomorphic – of Banach spaces which areM -ideals in their biduals (in contrast to what
has been shown in Theorem II.3.10 and Theorem II.4.9 for proper M -ideals). However,
the following proposition presents a general decomposition procedure for M -embedded
spaces. We are also able to characterise the M -embedded spaces in some classes of
Banach spaces completely (see Theorem 3.11 for an isomorphic result in this vein).

Proposition 2.6 Let X be a Banach space which is an M -ideal in its bidual. Then
there exists a set I and Banach spaces Xi ( i ∈ I) which are M-ideals in their biduals
and contain no nontrivial M-ideals such that X ∼= (⊕∑Xi)c0(I).

Proof: For p ∈ exBX∗ denote by Np the intersection of all w∗-closed L-summands
of X∗ containing p. By Proposition I.1.11 Np is the smallest w∗-closed L-summand
containing p. Note that every L-summand of X∗ is w∗-closed by Theorem 2.3(c). Then

(1) Np = Nq or Np ∩Nq = {0} for p, q ∈ exBX∗ .

(2) Mp, the (w∗-closed) L-summand complementary to Np is a maximal proper
L-summand in X∗.

[To see (1) use Lemma I.1.5 and the Krein-Milman theorem. Further, assuming X∗ =
Np ⊕1 Mp = N ⊕1 M with Mp ⊂ M one gets Np ⊃ N by Theorem I.1.10. Part (1)
quickly shows that N = {0} or N = Np.]
By (1) an equivalence relation is defined on exBX∗ by p ∼ q if Np = Nq. Put
I = exBX∗/∼ and Xi = (Mp)⊥ for p ∈ i. By the above (Xi)i∈I is a family of min-
imal nontrivial M -summands in X with pairwise trivial intersection. Thus we have an
isometric embedding of c00(I,Xi) into X (where c00(I,Xi) denotes the space of “se-
quences” of finite support), hence of c0(I,Xi) into X . But c0(I,Xi) ∼= lin

⋃
Xi is an

M -ideal in X (Proposition I.1.11(a)), hence an M -summand by Theorem 2.3(a). The
assumption of a proper inclusion of this embedding would give

{0} $
(
lin
⋃

Xi

)⊥
=
(⋃

Xi

)⊥
=
⋂

Xi
⊥ =

⋂
Mp

so that
⋂
Mp is a nontrivial w∗-closed L-summand which contains no extreme point of

BX∗ : a contradiction. By Theorems 2.3(a) and 1.6(a), the Xi are as desired. 2

Proposition 2.7 For an L1-predual space X the following assertions are equivalent:
(i) X is an M -ideal in X∗∗.
(ii) X ∼= c0(I) for some set I.

Proof: (ii) ⇒ (i): Example 1.4(a).
(i) ⇒ (ii): Since X∗ is isometric to L1(µ) we have X∗∗ ∼= C(K) for some compact space
K, so X , being an M -ideal in X∗∗, is of the form JD ∼= C0(K \ D) for some closed
subset D of K (Example I.1.4(a)). For every closed subset A of K \D the M -ideal JA
– considered in C0(K \D) – is an M -summand by Theorem 2.3(a), hence A is open by
Example I.1.4(a). So I := K \D is discrete. 2



120 III. Banach spaces which are M -ideals in their biduals

As an application we get the following Banach space result:

Corollary 2.8 Let X be a Banach space. Then d(X, c0) = 1 implies X ∼= c0.

Proof: The assumption implies d(X∗, � 1) = 1 and, as easily seen, this yields that X∗

is an L1,1+ε-space for all ε > 0. Corollary 5 to Theorem 7.1 in [418] entails X∗ ∼= L1(µ)
for some measure space (S,Σ, µ). But X is an M -embedded space by Remark 1.7(b), so
Proposition 2.7 implies X ∼= c0(I) for some set I. Clearly, I is countable by separability.

2

We remark that it is possible to find two equivalent norms | . |1 and | . |2 on c0 such that
d ((c0, | . |1), (c0, | . |2)) = 1 but (c0, | . |1) �∼= (c0, | . |2)

(see [483, p. 230] or Proposition 2.13 below). The above corollary shows that this cannot
be achieved with the natural norm ‖ . ‖∞ on c0.

We now turn to a “noncommutative” analogue of Proposition 2.7.

Proposition 2.9 Let A be a C∗-algebra. Then the following assertions are equivalent:
(i) A is an M -ideal in A∗∗.
(ii) A is isometrically ∗-isomorphic to the c0-sum of algebras of compact operators

on some Hilbert spaces.

Note that by Theorem V.1.10 and Theorem V.4.4 below, (i) admits the following refor-
mulation in purely algebraic terms:
(i∗) A is a two-sided ideal in its enveloping von Neumann algebra.

Another algebraic characterisation of M -embedded C∗-algebras, proved in [76, Theo-
rem 5.5] (and in part below as well) is:
(iii) Every maximal commutative C∗-subalgebra of A is generated by its minimal pro-

jections.

Proof: (ii) ⇒ (i): This implication follows from Theorem 1.6(c) and Example 1.4(f).
(i)⇒ (ii): By Proposition 2.6 there is no loss of generality in assuming that A contains no
nontrivialM -ideals; that is we may suppose, anticipating Theorem V.4.4, that A contains
no nontrivial closed two-sided ideals. In this case we shall show that A is isometrically
and algebraically ∗-isomorphic to the C∗-algebra K(H) for some Hilbert space, thus
settling our claim. (To show the isomorphism in (ii) to be algebraic in the general case,
too, we again invoke Theorem V.4.4.)
In what follows we call a self-adjoint idempotent element p of a C∗-subalgebra B ⊂ A
minimal with respect to B if the only idempotent elements q ∈ B satisfying 0 ≤ q ≤ p
are q = 0 or q = p.
Let M be a maximal abelian C∗-subalgebra of A. Thus M ∼= C0(Ω) for some locally
compact Hausdorff space Ω by the Gelfand-Naimark theorem. Then we assert:

M = lin {p ∈M | p is minimal with respect to M} =: M1

= lin {p ∈M | p is minimal with respect to A} =: M2.
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Indeed, since M is an M -ideal in M∗∗ (by assumption and Theorem 1.6(a)) we conclude
from Proposition 2.7 thatM ∼= c0(I) for some set I. Hence we haveM =M1, and clearly
M2 ⊂ M1 holds. On the other hand, if an idempotent element p ∈ M is minimal with
respect to M and 0 ≤ q ≤ p for some idempotent q ∈ A, then p and q commute, and by
maximality of M we infer that q ∈ M . Hence p is minimal with respect to A as well,
and the inclusion M1 ⊂M2 follows.
As a result, A is the closed linear span of its minimal idempotents, since every self-adjoint
element is contained in some M as above.
Now let p ∈ A, p �= 0 be a minimal idempotent of A. Then we claim:

pAp = C p (1)

To see this, note that B := pAp is a unital C∗-subalgebra with unit p, and p is clearly
minimal with respect to B. Now B is an M -ideal in B∗∗ (Theorem 1.6), but on the
other hand B has the IP by Proposition II.4.2(b). Hence B is reflexive as a result of
Theorem II.4.4, consequently finite dimensional (cf. [360, p. 288]). The minimality of
the unit implies that B must be one-dimensional. [If not, B would contain an abelian
C∗-subalgebraM with p ∈M and d := dim(M) ≥ 2. SinceM can be identified with C d ,
the product being pointwise multiplication, and p with (1, . . . , 1), p cannot be minimal
with respect to M , let alone B, if d ≥ 2.]
Let H = Ap. We introduce a scalar product on H as follows. If xp, yp ∈ H , then
py∗xp ∈ pAp is a scalar multiple of p (by (1)) which we denote by 〈xp, yp〉:

〈xp, yp〉p = (yp)∗(xp) = py∗xp (2)

Then 〈xp, xp〉 = ‖〈xp, xp〉p‖ = ‖(xp)∗(xp)‖ = ‖xp‖2 so that the norm induced by 〈·, ·〉
coincides with the C∗-algebra norm inherited from A. HenceH is a Hilbert space. Finally
we define

T : A→ L(H), (Ta)(xp) = axp.

Clearly, this is a ∗-homomorphism; and T is injective since otherwise ker(T ) would be a
nontrivial closed two-sided ideal of A.
To complete the proof we wish to show that ran(T ) = K(H). First of all, if u : zp �→
〈zp, yp〉xp is an operator on H with rank 1, then an easy computation reveals T (xpy∗) =
u; and it follows that K(H) ⊂ ran(T ). For the converse inclusion it is enough to show
that Tq ∈ K(H) if q is a minimal idempotent of A. (Recall from the first part of the
proof that these q generate A.) Now observe qAq = C q (by (1)) and consequently

TqK(H)Tq ⊂ Tq T (A)Tq = C Tq.

Thus either TqK(H)Tq = 0 in which case Tq = 0 or C Tq = TqK(H)Tq ⊂ K(H).
Hence Tq ∈ K(H) in either case, and the proof is finished. 2

In the remainder of this section we will collect various other isometric properties of M -
embedded spaces. To start with, we recall the following definition: A Banach space
X is said to be a strongly unique predual (of X∗), if, for every Banach space Y , every
isometric isomorphism from X∗ onto Y ∗ is w∗-continuous, hence is the adjoint of an
isometric isomorphism from Y onto X . It is well-known (and routine to verify) that
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X has this property iff πX∗ is the only contractive projection from X∗∗∗ onto X∗ with
w∗-closed kernel.
Clearly a strongly unique predual is a unique predual, which of course means that X∗ ∼=
Y ∗ implies X ∼= Y . This latter property is not easy to handle; in particular no example
is known of a space which is a unique predual, but not a strongly unique predual. We
refer to Godefroy’s recent survey [258] for detailed information.

Proposition 2.10 Let X be a nonreflexive Banach space which is an M -ideal in its
bidual. Then
(a) X∗ is a strongly unique predual of X∗∗,
(b) X is not a strongly unique predual of X∗.

Proof: (a) By what was noted above this is an immediate consequence of Proposi-
tion 2.1.
(b) By assumption and Proposition 1.2 we have

X∗∗∗ = X∗ ⊕1 X
⊥.

Consider X⊥ as the dual space of X∗∗/X and choose y∗∗∗ ∈ X⊥, ‖y∗∗∗‖ = 1, and a w∗-
(i.e. σ ((X∗∗/X)∗, (X∗∗/X))-) closed hyperplane H in X⊥ such that

1 ≤ ‖y∗∗∗ + h∗∗∗‖ for all h∗∗∗ ∈ H.
[Take for example a norm-attaining y∗∗∗ ∈ (X∗∗/X)∗, ‖y∗∗∗‖ = 1, and put H = ker ix∗∗,
where y∗∗∗(x∗∗) = 1 = ‖x∗∗‖.] Because the w∗-topology on (X∗∗/X)∗ coincides with the
relative w∗-topology of X∗∗∗ on X⊥, the hyperplane H is σ(X∗∗∗, X∗∗)-closed in X∗∗∗.
Hence for 0 < s ≤ 1 and p∗ ∈ X∗, ‖p∗‖ = 1,

Z := H ⊕ K (y∗∗∗ + sp∗)

is w∗-closed in X∗∗∗. Let P be the projection onto X∗ associated with the decomposition

X∗∗∗ = X∗ ⊕ Z.

For x∗ + z∗∗∗ ∈ X∗ ⊕ Z we have

x∗ + z∗∗∗ = x∗ + [h∗∗∗ + λ(y∗∗∗ + sp∗)] = (x∗ + λsp∗) + (h∗∗∗ + λy∗∗∗) ∈ X∗ ⊕1 X
⊥.

Since ‖λsp∗‖ = |λ|s ≤ |λ| ≤ ‖h∗∗∗ + λy∗∗∗‖ for all λ ∈ K , h∗∗∗ ∈ H we get

‖P (x∗ + z∗∗∗)‖ = ‖x∗‖
≤ ‖x∗ + λsp∗‖+ ‖λsp∗‖
≤ ‖x∗ + λsp∗‖+ ‖h∗∗∗ + λy∗∗∗‖
= ‖x∗ + z∗∗∗‖.

So P is a contractive projection onto X∗ with w∗-closed kernel Z and is different from
πX∗ , since Z �= X⊥. 2

Remarks: (a) It is easy to verify that for the projection P in the above proof we have
‖Id − P‖ = 1 + s. For the predual Y of X∗ obtained by Y ⊥ = Z we thus get by some
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formal calculations ‖IdY ∗∗∗ − πY ∗‖ = 1 + s. This shows in particular that there are
Banach spaces Y for which ‖IdY ∗∗∗ − πY ∗‖ can be any number between 1 and 2. (The
first example of this kind was given in [352] using a renorming of c0.)
(b) If X is anM -embedded space then we have by Corollary 1.3 and Proposition 2.10(a)
that the L-embedded space X∗ is a strongly unique predual. However the following is
open:

Problem: Is every L-embedded space X a strongly unique predual of X∗?

The answer is yes for the “classical” Examples IV.1.1 (see [258, section V]), but in general
this problem seems to be difficult. Note that a counterexample would solve the long-
standing question whether a Banach space which contains no isomorphic copy of c0 is a
strongly unique predual. (By Theorem IV.2.2 L-embedded spaces are weakly sequentially
complete; a fortiori, they do not contain copies of c0.)
(c) The authors of [27] give an isometric representation of the dual of the little Bloch
space B0 as the minimal Möbius invariant spaceM, and they ask in [26] whether B0 is
the only isometric predual ofM and whetherM is the only isometric predual of B. An
explicit solution of the case ofM is contained in [449], whereas the first question is left
open there. Proposition 2.10 and Example 1.4(j) answer both questions.
Incidentally, M -ideal arguments can also be used to reprove Theorem 2 of [133] which
asserts that the onto isometries of B = B∗∗

0 coincide with the second adjoints of the
onto isometries of B0: Proposition 2.2. We also obtain from Proposition II.4.2 and
Theorem II.4.4 that the unit ball of B0 cannot contain any strongly extreme points, a
fact first pointed out in [132] by ad-hoc methods.

In the next proposition we describe a renorming technique for M - (and L-) embedded
spaces. In order not to obscure the main idea we don’t give the most general form.

Proposition 2.11 Let X be an M -embedded space, Y a Banach space and T : Y −→ X
a weakly compact operator. Then

|x∗|∗ := ‖x∗‖+ ‖T ∗x∗‖

defines an equivalent dual norm on X∗ for which (X, | . |) is an M -embedded space.

Proof: Since x∗ �−→ ‖T ∗x∗‖ is w∗-lower semicontinuous, | . |∗ is an equivalent dual
norm (see e.g. [154, p. 106]). To calculate | . |∗∗∗ on X∗∗∗ without using | . |∗∗ we employ
the following argument:
By definition the operator

S : (X∗, | . |∗) −→ X∗ ⊕1 Y
∗

x∗ �−→ (x∗, T ∗x∗)

is isometric, hence S∗∗ : (X∗∗∗, | . |∗∗∗) −→ X∗∗∗ ⊕1 Y
∗∗∗ is isometric, too. As easily

seen S∗∗∗x∗∗∗ = (x∗∗∗, T ∗∗∗x∗∗∗), so |x∗∗∗|∗∗∗ = ‖x∗∗∗‖+‖T ∗∗∗x∗∗∗‖. By w-compactness
and w∗-continuity of T ∗ we get T ∗∗∗ = πY ∗T ∗∗∗ = T ∗∗∗πX∗ , therefore T ∗∗∗x∗∗∗ = T ∗x∗
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where x∗∗∗ = x∗ + x⊥ ∈ X∗ ⊕1 X
⊥. Hence

|x∗∗∗|∗∗∗ = |x∗ + x⊥|∗∗∗
= ‖x∗ + x⊥‖+ ‖T ∗∗∗(x∗ + x⊥)‖
= ‖x∗‖+ ‖x⊥‖+ ‖T ∗x∗‖
= |x∗|∗ + ‖x⊥‖

x∗ = 0 yields |x⊥|∗∗∗ = ‖x⊥‖ (so that the two norms agree on X⊥), and we can continue

= |x∗|∗∗∗ + |x⊥|∗∗∗

Hence X⊥ is, with respect to the new norm, still an L-summand in X∗∗∗. 2

Applying the above proposition to the formal identity I : � 2 → c0, we find:

Corollary 2.12 There is an equivalent norm | . | on c0 such that (c0, | . |)∗ is strictly
convex, hence (c0, | . |) is smooth, and (c0, | . |) is an M -ideal in its bidual. Moreover,
there are uncountably many M -ideals in (c0, | . |)∗∗.
Proof: The injectivity of I∗ : � 1 → � 2 yields the strict convexity of | . |∗, and the
smoothness of | . | follows [154, p. 23, p. 100]. Every ideal in �∞ containing c0 yields an
M -ideal in �∞/c0 (Prop. I.1.17) and (c0, | . |)∗∗/(c0, | . |) is isometric to �∞/c0 by what
was noted in the above proof. 2

In Theorem 4.6(e) we will see that a similar renorming is possible for all M -embedded
spaces. Also, in Remark IV.1.17 we will point out an example of a strictly convex M -
embedded space with a smooth dual, namely C(T)/A.

In the last renorming result we show that the existence of nontrivial M -ideals or M -
summands is not preserved by almost isometries.

Proposition 2.13 There is an M -embedded space X isomorphic to c0 without nontrivial
M -ideals such that d(X,X ⊕∞ X) = 1.

Proof: Let E1 := K and define inductively En+1 := En ⊕2n En. Put Xn := c0(En)
and denote the norm of Xn by ‖ ‖n. For x ∈ c0 we obtain ‖x‖n ≤ ‖x‖n+1 ≤ 21/2n‖x‖n,
hence

‖x‖n ≤ 21/2n−1
21/2

n−2
. . . 21/2‖x‖1 ≤ 2

∑∞
k=1

1/2k‖x‖1 = 2‖x‖1.
Thus ‖x‖ := supn ‖x‖n defines a norm equivalent to ‖ ‖1, the usual sup-norm of c0. Since

‖x‖n ≤ ‖x‖ ≤ 2
∑∞

k=n
1/2k‖x‖n = 22−n+1‖x‖n (∗)

we get d(Xn, X)→ 1 where X = (c0, ‖ . ‖).
Since Xn is an M -embedded space by Theorem 1.6, the uniform estimate (∗) and the
3-ball property yield that X is M -embedded, too. From X

1+ε Xn
∼= Xn ⊕∞ Xn

1+ε 
X ⊕∞ X we deduce d(X,X ⊕∞ X) = 1. Finally every x ∈ c00 with unit norm is an
extreme point of BX : if supp(x) ⊂ {1, . . . , 2n} we get ‖x‖n+1 = ‖x‖n+2 = . . . = 1 and
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the strict convexity of En+k implies x ∈ exBX . So ex ‖ ‖
BX = SX , hence X can’t have

nontrivial M -summands and by Theorem 2.3 no nontrivial M -ideals either. 2

We now give a characterisation of the Hahn-Banach smoothness of a Banach space X ,
considered as a subspace of X∗∗, and then go on to apply it to M -embedded spaces.

Lemma 2.14 For a Banach space X and x∗ ∈ SX∗ the following are equivalent:
(i) x∗ has a unique norm preserving extension to a functional on X∗∗.
(ii) The relative w- and w∗-topologies on BX∗ agree at x∗, meaning that the function

IdBX∗ : (BX∗ , w∗)→ (BX∗ , w) is continuous at x∗.

Proof: (i) ⇒ (ii): Let (x∗α) be a net in BX∗ with x∗α
w∗−→ x∗. By σ(X∗∗∗, X∗∗)-

compactness of BX∗∗∗ we find for every subnet (x∗β) of (x
∗
α) an x∗∗∗ ∈ BX∗∗∗ and a subnet

(x∗γ) such that x
∗
γ −→ x∗∗∗ with respect to σ(X∗∗∗, X∗∗). Since x∗γ −→ x∗ with respect

to σ(X∗, X) we infer that x∗∗∗ is a norm preserving extension of x∗, hence x∗∗∗ = x∗.
So the σ(X∗∗∗, X∗∗)-convergence of (x∗γ) to x∗ is the desired σ(X∗, X∗∗)-convergence of
(x∗γ) to x

∗.

(ii) ⇒ (i): Let x∗∗∗ = x∗ + x⊥ be a norm preserving extension of x∗. By Goldstine’s
theorem there is a net (x∗α) in BX∗ such that x∗α −→ x∗∗∗ with respect to σ(X∗∗∗, X∗∗).
In particular x∗α

w∗−→ x∗ on BX∗ , hence by assumption x∗α
w−→ x∗. This means x∗α −→ x∗

with respect to σ(X∗∗∗, X∗∗) so that x⊥ = 0. 2

Corollary 2.15 If X is an M -ideal in its bidual, then the relative w- and w∗-topologies
on BX∗ agree on SX∗ , meaning that the function IdBX∗ : (BX∗ , w∗) → (BX∗ , w) is
continuous at all x∗ ∈ SX∗ .

Proof: This is an immediate consequence of Proposition I.1.12 and Lemma 2.14. 2

Remarks: (a) It is an amusing exercise to give a direct proof of Corollary 2.15 using
the 3-ball property.
(b) If the assumption in Corollary 2.15 is strengthened to “K(X) is anM -ideal in L(X)”
(see Proposition VI.4.4), then the conclusion that the relative ‖ . ‖- and w∗-topologies
agree on SX∗ obtains (Proposition VI.4.6). However, for this stronger conclusion it does
not suffice to assume only that X is an M -ideal in X∗∗: renorm � 2 by � 2  K ⊕∞ � 2;

then ‖(1, en)‖ = 1 = ‖(1, 0)‖, (1, en) w−→ (1, 0), but (1, en)
‖ ‖
−→/ (1, 0).

Corollary 2.16 If X is an M -ideal in its bidual, then X∗ contains no proper norming
subspace.

Proof: If V ⊂ X∗ is norming, which means that ‖x‖ = supx∗∈BV
|x∗(x)| for all x ∈ X ,

then BV is w∗-dense in BX∗ by the Hahn-Banach theorem. So every point x∗ ∈ SX∗

where the relative w- and w∗-topologies on BX∗ agree belongs to V . Hence the statement
follows from Corollary 2.15. 2

In Proposition 3.9 we will prove a stronger statement.
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III.3 Isomorphic properties

By what was said in Remark (b) following Definition 1.1, nonreflexive M -embedded
spaces are proper M -ideals, so they contain isomorphic copies of c0 by Theorem II.4.7.
This, and Theorem 3.1 below (M -embedded spaces are Asplund spaces, equivalently
duals of M -embedded space have the Radon-Nikodým property), were the first results
of isomorphic nature in M -structure theory.
The main part of the following section is devoted to the properties (V ) and (u) of
PeTlczyński, two properties which imply the containment of c0 in nonreflexive M -embed-
ded spaces. Although in our situation property (u) is the stronger one, we will also give
an independent proof of property (V ) since it uses a completely different – and in our
opinion, a very natural – approach to the problem. We will conclude this section with
some more results of isomorphic nature, among them a characterisation of M -embedded
spaces among separable L∞-spaces.

First we deal with the Radon-Nikodým property (RNP). This property of a Banach space
is defined and studied in detail in the monographs [93] and [158]. The RNP, originally
defined in measure theoretic terms, can be equivalently characterised in a number of
ways. The case of a dual Banach space is especially pleasing, since it is a theorem that
X∗ has the RNP if and only if every continuous convex function from an open convex
subset O of X into R is Fréchet differentiable on a dense Gδ-subset of O. Moreover,
either of these two properties is equivalent to the requirement that separable subspaces
of X have separable duals. Banach spaces fulfilling the above differentiability hypothesis
are called Asplund spaces, so X is an Asplund space if and only if X∗ has the RNP.
References for these results are [93, p. 91, p. 132], [158, p. 82, p. 195, p. 213] and [496,
p. 34, p. 75].
Depending on the consequences one wants to draw from Theorem 3.1 below, it is some-
times more advantageous to use the Asplund property, sometimes one is better off using
the RNP of the dual in order to give effective proofs. In particular, the result quoted in
Corollary 3.2 is more easily derived from the Asplund property of X , whereas we shall
have occasion to employ the (measure theoretic) RNP of the dual in Chapter VI.
The following theorem will frequently be used in the following. Its proof relies ultimately
on Corollary 2.15.
For a Banach space X we denote the least cardinal m for which X has a dense subset
of cardinality m, the so-called density character of X , by densX . Thus X �= {0} is
separable if and only if densX = ℵ0.

Theorem 3.1 If X is an M -embedded space and Y a subspace of X, then dens Y =
dens Y ∗. In particular, separable subspaces of X have separable duals. Consequently
M -embedded spaces are Asplund spaces, and duals of M -embedded spaces have the RNP.

Proof: By Theorem 1.6 we may assume that Y = X . For a dense subset {xi | i ∈ I}
of X we choose x∗i ∈ SX∗ such that x∗i (xi) = ‖xi‖. Then lin {x∗i | i ∈ I} is norming,
hence equal to X∗ by Corollary 2.16. For the final statement recall the above remarks.
(Actually, here we only use the comparatively easy implications from [158, p. 82] or [496,
p. 34].) 2

A point x∗ of a closed bounded convex subset K of a dual space X∗ is called w∗-strongly
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exposed (written x∗ ∈ w∗-sexp (K)) if there is an x ∈ X which strongly exposes x∗,
meaning Re y∗(x) < Re x∗(x) for y∗ ∈ K \ {x∗} and the sets {y∗ ∈ K | Re y∗(x) >
Re x∗(x) − ε} (ε > 0) form a neighbourhood base of x∗ in K for the relative norm
topology (see [93, Definition 3.2.1(w∗)] or [496, Definition 5.8]).
The following consequence of the above is occasionally useful.

Corollary 3.2 If X is an M -embedded Banach space, then

BX∗ = co ‖ ‖
w∗-sexpBX∗ .

Proof: SinceX is an Asplund space by Theorem 3.1 one knows from [496, Theorem 5.12]
(or [93, Theorem 4.4.1]) that

BX∗ = cow∗
w∗-sexpBX∗ .

Now, Corollary 2.15 yields for C := cow∗-sexpBX∗ the inclusion C
w ⊃ SX∗ , thus also

C
‖ ‖
= C

w ⊃ SX∗
w
= BX∗

for infinite dimensional X . (The finite dimensional case is trivial.) 2

Because the next property we want to prove for M -embedded spaces is possibly not so
well-known, we wish to not only give the definition but also to list its most important
consequences for easy reference.

3.3 The properties (V ) and (V ∗)

These properties were introduced by A. PeTlczyński in [485], where also most of the
following can be found. For further information see e.g. [511], [548], [267], [268] and
[156]. Recall that a series

∑
xn in a Banach space X is called weakly unconditionally

Cauchy (wuC), if for every x∗ ∈ X∗ we have
∑ |x∗(xn)| < ∞. Equivalently, ∑ xn

is a wuC-series if there is some M ≥ 0 such that ‖∑αnxn‖ ≤ M max |αn| for all
finitely supported scalar sequences (αn) [157, p. 44]. We refer to [157] and [572] for basic
properties of wuC-series.

Definition. (a) A Banach space X is said to have property (V ) if every subset K of X∗

satisfying
lim
n

sup
x∗∈K

|x∗(xn)| = 0

for every wuC-series
∑

xn in X is relatively weakly compact.
(b) A Banach space X is said to have property (V ∗) if every subset K of X satisfying

lim
n

sup
x∈K

|x∗n(x)| = 0

for every wuC-series
∑

x∗n in X
∗ is relatively weakly compact.
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Note that (by considering suitably defined operators into � 1) the converse implications
in the above definition are always true, e.g. for a relatively weakly compact subset K of
X∗ and

∑
xn wuC in X one has limn supx∗∈K |x∗(xn)| = 0.

These properties were introduced in order to understand why operators from C(K)-spaces
to spaces not containing c0 are always weakly compact, and they are closely related to
unconditionally converging operators which we define next.

Definition. Let X and Y be Banach spaces. An operator T ∈ L(X,Y ) is called
unconditionally converging if for every wuC-series

∑
xn in X the series

∑
Txn is uncon-

ditionally convergent in Y . We write U(X,Y ) for the set of all unconditionally converging
operators from X to Y . This makes U a closed Banach operator ideal (see [497, p. 48]).

These operators are characterised in the following lemma.

Lemma 3.3.A Let X and Y be Banach spaces.
(a) For T ∈ L(X,Y ) one has

T �∈ U(X,Y ) ⇐⇒ there is a subspace X0 of X which is isomorphic to
c0 such that T |X0

is an isomorphism.
(b) For T ∈ L(Y,X) one has

T ∗ �∈ U(X∗, Y ∗) ⇐⇒
there is a subspace Y0 of Y which is isomorphic to
� 1 such that T |Y0

is an isomorphism and T (Y0) is
complemented in X.

For a proof see [511, p. 270 and p. 272]. Maybe some readers will find it misleading
to call this result a lemma, after all it contains two beautiful theorems of Bessaga and
PeTlczyński in the special case X = Y and T = IdX , namely “A Banach space X contains
no copy of c0 iff every wuC-series

∑
xn in X is unconditionally converging” and “X

contains a complemented copy of � 1 iff X∗ contains c0”. In our context, however, it
serves only as a preparation to the following characterisation:

Theorem 3.3.B Let X be a Banach space.
(a) The following are equivalent:

(i) X has property (V ).

(ii) U(X, . ) ⊂W (X, . )

(iii) For all Banach spaces Y and for all operators T : X −→ Y which are not
weakly compact there is a subspace X0 of X isomorphic to c0 such that T |X0
is an isomorphism.

(b) The following are equivalent:

(i∗) X has property (V ∗).

(ii∗) Udual( . , X) ⊂W ( . , X)

(iii∗) For all Banach spaces Y and all operators T : Y −→ X which are not
weakly compact there is a subspace Y0 of Y isomorphic to � 1 such that T |Y0

is an isomorphism and T (Y0) is complemented in X.
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[The statement (ii∗) reads: for every Banach space Y every operator T ∈ L(Y,X) is
weakly compact if T ∗ is unconditionally converging – see [497, p. 67] for the dual of an
operator ideal.] The equivalence of the second and the third statements is immediate
from Lemma 3.3.A, “(i) ⇐⇒ (ii)” is proved in [485], the corresponding proof of part (b)
is similar. [Note that W (E,F ) ⊂ U(E,F ) for all Banach spaces E and F ; see e.g. [497,
p. 51].]

Corollary 3.3.C
(a) A nonreflexive Banach space with property (V ) contains a subspace isomorphic

to c0.
(b) A nonreflexive Banach space with property (V ∗) contains a complemented sub-

space isomorphic to � 1.

The remaining statements are from [485]:

Proposition 3.3.D Let X be a Banach space.
(a) If X has property (V ), then X∗ has property (V ∗).
(b) If X∗ has property (V ), then X has property (V ∗).

Proposition 3.3.E Let X be a Banach space and Y a subspace of X.
(a) If X has property (V ), then X/Y has property (V ).
(b) If X has property (V ∗), then Y has property (V ∗).

Proposition 3.3.F A Banach space X with property (V ∗) is weakly sequentially com-
plete.

Clearly reflexive Banach spaces have the properties (V ) and (V ∗). To give at least one
nonreflexive example we mention that C(K)-spaces have property (V ). This is essentially
a consequence of Grothendieck’s characterisation of relatively weakly compact subsets of
M(K) [485, Theorem 1].

Now back to M -ideals.

Theorem 3.4 Every M -embedded Banach space X has property (V ).

Proof: We use Theorem 3.3.B, part (a), and show that for every Banach space Y every
nonweakly compact operator T ∈ L(X,Y ) is not unconditionally converging. To achieve
this we will construct a wuC-series

∑
xn in X such that (Txn) does not converge to zero.

Since T is not weakly compact there is x∗∗ ∈ X∗∗ with T ∗∗x∗∗ ∈ Y ∗∗ \ Y . We may
assume without restriction ‖x∗∗‖ = 1. Put α := d(T ∗∗x∗∗, Y ) > 0 and take εn > 0 with∏
(1 + εn) <∞. We will inductively construct xn ∈ X such that

‖ ± x1 ± x2 · · · ± xn‖ ≤
2n∏
k=1

(1 + εk), n ∈ N (1)

‖Txn‖ >
α

2
for n ≥ 2 (2)
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Since (1) says that
∑

xn is weakly unconditionally Cauchy this will finish the proof.
The case n = 1 is trivial. So assume x1, . . . , xn are given satisfying (1) and (2). Put
η :=

∏2n
k=1(1 + εk). Then ‖ 1

η (±x1 ± x2 · · · ± xn)‖ ≤ 1, ‖x∗∗‖ = 1 and, since X is an
M -ideal in X∗∗, we find (Theorem I.2.2) z ∈ X such that∥∥∥∥x∗∗ + 1η (±x1 ± x2 · · · ± xn)− z

∥∥∥∥ ≤ 1 + ε2n+1,

i.e.
‖η (x∗∗ − z) + (±x1 ± x2 · · · ± xn)‖ ≤ η (1 + ε2n+1).

Put
E := lin (x∗∗, z, x1, . . . , xn) ⊂ X∗∗.

Because d(T ∗∗x∗∗, Y ) = α we have α ≤ ‖T ∗∗x∗∗ − Tz‖ = ‖T ∗∗(x∗∗ − z)‖. So we find
y∗ ∈ BY ∗ such that

|T ∗∗(x∗∗ − z)(y∗)| > α

2
.

Put G := lin {Ty∗} ⊂ X∗. By the principle of local reflexivity there is an operator
A : E −→ X such that

• Ax = x for x ∈ E ∩X,
• ‖A‖ ≤ 1 + ε2n+2,

• g∗(Ae∗∗) = e∗∗(g∗) for e∗∗ ∈ E, g∗ ∈ G.

Put xn+1 := A(η (x∗∗ − z)). Then

‖xn+1 ± x1 · · · ± xn‖ = ‖A[η (x∗∗ − z) + (±x1 · · · ± xn)]‖
≤ ‖A‖η (1 + ε2n+1)

≤
2(n+1)∏
k=1

(1 + εk)

and

‖Txn+1‖ ≥ |y∗(Txn+1)|
= |(T ∗y∗)(xn+1)|
= η |(T ∗y∗)(A(x∗∗ − z))|
= η |(x∗∗ − z)(T ∗y∗)|
= η |T ∗∗(x∗∗ − z)(y∗)|
> η

α

2
>

α

2
.

Hence x1, . . . , xn, xn+1 satisfy (1) and (2). 2

We shall prove in Theorem IV.2.7 the companion result that L-embedded spaces enjoy
property (V ∗).
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As a first application of the above theorem let us give an example which answers the
question of PeTlczyński [485, p. 646] whether the converse of Proposition 3.3.D holds:

Example 3.5 The space X = (⊕∑ �∞(n))� 1 has property (V ∗), but X∗ fails property
(V ).

Proof: X is the dual of X∗ =
(⊕∑ � 1(n)

)
c0
, which is an M -embedded space by

Theorem 1.6. So X has property (V ∗) by the above Theorem 3.4 and Proposition 3.3.D.
But X∗ =

(⊕∑ � 1(n)
)
�∞ contains a 1-complemented subspace isometric to � 1 (see the

proof of Example IV.1.7(b)). Since by Proposition 3.3.E property (V ) passes to quotients
(in particular to complemented subspaces) and � 1 fails property (V ) by Corollary 3.3.C,
we get the desired conclusion. 2

The first example to answer PeTlczyński’s question about the converse of Proposition 3.3.D
was given in [548]. Let us mention in passing that the Bourgain-Delbaen spaces [91] may
serve as examples of spaces X failing property (V ), but whose duals have property (V ∗).

By Propositions 3.3.D and 3.3.F the dual of a Banach space with property (V ) is weakly
sequentially complete. The following result gives a slightly stronger statement, which
may also be viewed as an abstract version of Phillips’s lemma.

Proposition 3.6 If a Banach space X has property (V ), then the natural projection πX∗

from X∗∗∗ onto X∗ is w∗-w-sequentially continuous.

Proof: It is enough to show πX∗(x∗∗∗n ) = x∗∗∗n |X
w−→ 0 for a w∗-null sequence (x∗∗∗n )

in X∗∗∗. The sequence (x∗∗∗n ) induces an operator T ∈ L(X∗∗, c0) by means of Tx∗∗ =
(x∗∗∗n (x∗∗)), and (x∗∗∗n |X) corresponds to T |X . If (x∗∗∗n |X) were not weakly null, then T |X
would not be weakly compact, hence, by Theorem 3.3.B, there would exist a subspace
X0 of X isomorphic to c0 such that the restriction of T |X to X0 is an isomorphism. We
would therefore obtain a diagram

X0

X∗∗

T (X0)  c0

c0

T |X0

−1

P

T

�

-

6

?

where P is a projection existing by Sobczyk’s theorem (Corollary II.2.9). T |X0

−1 ◦P ◦T
is then a projection from the dual space X∗∗ onto a subspace isomorphic to c0. But it
is quickly checked that a complemented subspace V of a dual space is complemented in
V ∗∗, a property not shared by c0. This contradiction completes the proof. 2

It seems appropriate to gather some consequences of what has been shown so far.
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Corollary 3.7 Let X be a nonreflexive Banach space which is an M -ideal in its bidual.
Then:
(a) Every subspace of X has property (V ). In particular: X contains a copy of c0,

X is not weakly sequentially complete, and X fails the Radon-Nikodým property.
(b) X∗ has property (V ∗). In particular: X∗ is weakly sequentially complete and

contains a complemented copy of � 1.
(c) X is not complemented in X∗∗.
(d) X∗∗/X is not separable.
(e) Every subspace or quotient of X which is isomorphic to a dual space is reflexive.
(f) Every operator from X to a space not containing c0 (in particular, every operator

from X to X∗) is weakly compact.

Proof: (a) This follows from Theorem 1.6 and Theorem 3.4.
(b) Theorem 3.4, Proposition 3.3.D, Proposition 3.3.F and Corollary 3.3.C.
(c) Assuming X to be complemented in X∗∗ we infer from (a) and [528, Theorem 1.3]
that X contains a subspace isomorphic to �∞. Hence X contains � 1 – a separable space
with nonseparable dual – contradicting Theorem 3.1.
(d) By (a) c0 embeds into X , hence �∞/c0 embeds into X∗∗/X .
(e) A subspace or quotient Y of X is again M -ideal in its bidual (Theorem 1.6). If Y
is nonreflexive then Y is not complemented in Y ∗∗ by part (c); in particular Y is not
isomorphic to a dual space.
(f) Theorem 3.4 and Theorem 3.3.B. 2

That nonreflexive M -embedded spaces contain (arbitrarily good) copies of c0 can be
deduced from Theorem II.4.7, too. Let us also mention that we shall present an improve-
ment of part (b) in Theorems IV.2.2 and IV.2.7.

The following property of a Banach space was introduced by PeTlczyński in [484].

Definition. A Banach space X is said to have property (u) if for every weak Cauchy
sequence (xn) in X there is a wuC-series

∑
yk in X such that (xn−

∑n
k=1 yk) converges

to zero weakly.

A reformulation of this is: X has property (u) if and only if every x∗∗ in the w∗-sequential
closure of X in X∗∗ is also the w∗-limit of a wuC-series

∑
yk in X ; we write x∗∗ =

∑∗ yk
in this case.

Remarks: (a) It is clear that weakly sequentially complete Banach spaces have property
(u). To see other examples we mention that order continuous Banach lattices have
property (u); cf. e.g. [422, Prop. 1.c.2].
(b) In the Notes and Remarks section of Chapter IV we will explain how property (u)
may be viewed as a statement about the continuity of elements of the bidual considered
as functions on (BX∗ , w∗).
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Theorem 3.8 Every M -embedded space X has property (u).

Proof: For a sequence (xn) in X which is w∗-convergent to some x∗∗ ∈ X∗∗ consider
the separable M -embedded space Y = lin (xn) and note that the σ-topology from Re-
mark I.1.13 is just the w∗-topology in our situation. Hence the assertion is a special case
of Theorem I.2.10. 2

While property (u) always passes to subspaces (see Lemma I.2.9) it is generally not
inherited by quotients. It seems noteworthy that quotients of M -embedded spaces do
enjoy property (u) by Theorems 1.6 and 3.8.
Let us briefly comment on the relation between the properties (u) and (V ). PeTlczyński has
shown in [485, Prop. 2] that a Banach space with property (u) in which every bounded
sequence contains a weak Cauchy subsequence has property (V ). The additional as-
sumption is clearly fulfilled for M -embedded spaces, since BY ∗∗ is w∗-metrizable if Y is
a separable M -embedded space as a result of Theorem 3.1. By the way, the celebrated
� 1-theorem of Rosenthal (see e.g. [421, Theorem 2.e.5]) states that every bounded se-
quence in X contains a weak Cauchy subsequence if and only if � 1 does not embed into
X . Therefore a restatement of PeTlczyński’s above proposition is:

A Banach space with property (u) which doesn’t contain an isomorphic copy
of � 1 has property (V ).

We refer to the Notes and Remarks section for consequences of Theorem 3.8 on property
(X) of Godefroy and Talagrand.

The next result is a quantitative version of Corollary 2.16. Recall from p. 67 that the
characteristic r(V,X∗) of a subspace V of a dual space X∗ is given by

r(V,X∗) = max{r ≥ 0 | rBX∗ ⊂ BV
w∗} = inf

x∈SX

sup
x∗∈BV

|x∗(x)|.

Proposition 3.9 If X is an M -embedded space, then for every proper subspace V of X∗

one has r(V,X∗) ≤ 1/2.
Proof: Since r(V,X∗) ≤ r(W,X∗) if V ⊂ W , it is enough to show the claim for
hyperplanes. Let V = kerx∗∗0 , ‖x∗∗0 ‖ = 1. Take x∗ ∈ X∗ such that ‖x∗‖ = 1/2 + ε and
x∗∗0 (x

∗) > 1/2. Assuming (1/2+ ε)BX∗ ⊂ BV
w∗
we could find vα ∈ BV with vα w∗−→ x∗.

For a σ(X∗∗∗, X∗∗)-accumulation point x∗∗∗ ∈ BX∗∗∗ of (vα) we obtain x∗∗∗|X = x∗.
Therefore x∗∗∗ = x∗ + x⊥ with x⊥ ∈ X⊥ and ‖x⊥‖ = ‖x∗∗∗‖ − ‖x∗‖ ≤ 1/2 − ε. Also
x∗∗∗(x∗∗0 ) = 0 since x∗∗0 (vα) = 0. But then

|x⊥(x∗∗0 )| = |(x∗∗∗ − x∗)(x∗∗0 )| = |x∗∗0 (x∗)| > 1/2 > ‖x⊥‖ ,

which contradicts ‖x∗∗0 ‖ = 1 and hence refutes the inclusion (1/2 + ε)BX∗ ⊂ BV
w∗
. 2

The example X = c0 and V = {(λn) |
∑

λn = 0} shows that 1/2 is optimal in the above
proposition.
For unexplained notation in the following corollary we refer to [421] and [174].
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Corollary 3.10 Every basic sequence (en) in an M -embedded space with basis constant
B < 2 is shrinking.

Proof: Since lin {e1, e2, . . .} is M -embedded we may assume that (en) is a basis. The
coefficient functionals (e∗n) are a basis of V := lin {e∗1, e∗2, . . .} and r(V,X∗) ≥ 1/B > 1/2
(see [174, Propositions 6.1 and 6.3]). Hence V = X∗ by Proposition 3.9 which means
that (en) is shrinking. 2

To elucidate the connection with the unique extension property from p. 118 and Propo-
sition 2.5 let us remark that according to the above corollary P ∗

nx
∗ −→ x∗ (x∗ ∈ X∗) for

the projections Pn associated to a basis (en) if sup ‖Pn‖ < 2. (Note that Pnx −→ x for
all x ∈ X anyway.)

We conclude this section with an isomorphic characterisation of M -embedded spaces
within the class of separable L∞-spaces. For the definition and basic properties of Lp-
spaces we refer to [418], [419], and [420].

Theorem 3.11 Let X be a separable L∞-space which is an M -ideal in its bidual. Then
X is isomorphic to c0.

Proof: We will show that X is a complemented subspace of any separable superspace Y
containing X . Zippin’s famous characterisation of separably injective spaces [660] then
gives the claim.
As every separable Banach space embeds into C[0, 1] it is sufficient to prove that every
subspace of C[0, 1] isometric to X is the range of a continuous linear projection. Since X
is an L∞-space, its bidual is injective [419]. Note that X∗∗ ∼= X⊥⊥ and X is an M -ideal
in X⊥⊥. Now X⊥⊥ is injective, and it is therefore complemented in C[0, 1]∗∗. Let P
denote a projection from C[0, 1]∗∗ onto X⊥⊥; hence

C[0, 1]∗∗  X⊥⊥ ⊕ kerP.

We now renorm C[0, 1]∗∗ (and thus its subspace C[0, 1]) to the effect that

(C[0, 1]∗∗, | . |) ∼= X⊥⊥ ⊕∞ kerP.

Observe that the norms ‖ . ‖ and | . | coincide on X⊥⊥. We conclude that X⊥⊥ is an
M -summand in (C[0, 1]∗∗, | . |), hence X (being an M -ideal in X⊥⊥) is an M -ideal in
(C[0, 1]∗∗, | . |), a fortiori X is an M -ideal in (C[0, 1], | . |).
We remark that (C[0, 1]/X)∗∗ is isomorphic to kerP , which has the BAP (it is a com-
plemented subspace of the space C[0, 1]∗∗ which has the MAP in its original norm).
Therefore C[0, 1]/X is a separable space with the BAP, hence, by Theorem II.2.1 and
Remark II.2.2(b), X is a complemented subspace of C[0, 1]. 2

We do not know if the above theorem holds also in the nonseparable case. Its proof
essentially used results which are limited to separable spaces; however the decomposition
of M -embedded spaces given in Theorem 4.5 gives the impression that it might be valid
in general.
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Lewis and Stegall have shown that X∗ is isomorphic to � 1 if X is an L∞-space with a
separable dual [393, p. 182]. So Theorem 3.11 is equivalent to: If X is an M -embedded
space such that X∗  � 1, then X  c0. Here is yet another way to look at Theorem 3.11
which should be compared with the isometric result in Proposition 2.7.

Corollary 3.12 Let X be a separable M -embedded space such that X∗ is isomorphic to
a complemented subspace of L1(µ) for some measure µ. Then X is isomorphic to c0.

This corollary follows from Theorem 3.11, since the condition on X∗ is equivalent to
requiring that X is an L∞-space (see [420, Theorem II.5.7]).
Applying this to X = C(T)/A, one recovers that H1 is not complemented in L1(T) [542,
Example 5.19].

III.4 Projectional resolutions of the identity
in M-embedded spaces

Our next aim is to establish a set of isomorphic properties (Theorem 4.6) forM -embedded
spaces which show that in some weak sense these spaces behave like subspaces of c0(Γ)
and thus support the intuition that M -embedded spaces in a way “vanish at infinity”.
These properties can all be deduced from the (isometric) result in Theorem 4.5: M -
embedded spaces admit a shrinking projectional resolution of the identity. The proof of
this fact uses a variation of the Lindenstrauss compactness argument and is prepared in
the next four lemmata.
We remark here that for a proof of the existence of a “nice” projectional resolution of
the identity some degree of smoothness of the space, i.e. some degree of continuity of
the support mapping, is always needed (see the Notes and Remarks section). It was
the achievement of Fabian and Godefroy in [212] to show that the assumption “X is an
Asplund space” via the Jayne-Rogers selection theorem gives a ‖ . ‖-Baire-1 selector of
the support mapping and that this is enough to prove the existence of a projectional
resolution of the identity in X∗. However, when dealing with M -embedded spaces, we
have much more geometrical structure at our disposal, which allows us – using the ideas
of Sims and Yost from [570] and [571] – to give the following “elementary” proof avoiding
the selection theorem.
We will work with a special kind of projection on the dual of a Banach space. So let us
recall:

• If M is a subspace of the Banach space X , then a linear operator T : M∗ → X∗

such that Tm∗ is a norm-preserving extension of m∗ for all m∗ ∈ M∗ is called a
Hahn-Banach extension operator.

• There exists a Hahn-Banach extension operator T : M∗ → X∗ if and only if M⊥

is the kernel of a contractive linear projection Q in X∗ (in which case Q = T i∗,
where i :M → X is the inclusion mapping).

In the next lemma the geometric structure comes into play.
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Lemma 4.1 If M is a subspace of an M -embedded space X and T : M∗ −→ X∗ is a
Hahn-Banach extension operator, then T is w∗-continuous. The projection Q = T i∗ is
the adjoint of a contractive projection P in X with range M .

Proof: (We use two results which will be proved in the next chapter.) By Proposi-
tion IV.1.5 the range of Q is an L-embedded space, hence Proposition IV.1.10 shows
that ranQ is w∗-closed in X∗. A projection in a dual space with w∗-closed kernel and
range is w∗- continuous, i.e. Q = P ∗ for a projection P in X . Since M⊥ = kerQ
we get ranP = M by standard duality. It is easily deduced from this that also T is
w∗-continuous. 2

Lemma 4.2 Let X be a Banach space, B a finite dimensional subspace of X, k a positive
integer, ε a positive real number, and G a finite subset of X∗. Then there is a finite
dimensional subspace Z containing B such that for every subspace E of X containing B
and satisfying dimE/B ≤ k, we find an operator T : E −→ Z such that Tx = x for
x ∈ B, ‖T ‖ ≤ 1 + ε and |f(Tx)− f(x)| ≤ ε‖x‖ for x ∈ E, f ∈ G.

Proof: If there were only finitely many subspaces Ei = B ⊕ Ni we would put Z :=
B⊕⋃Ni. The idea is now to reduce our problem to this “case”: Find (Ni)i≤i0 such that
for all E = B⊕N as in the statement of the lemma there is an Ni with ‖b+n‖ ∼ ‖b+ni‖.
The details are easier than expected:
Let G = {f1, . . . , fm} and let P be a projection on X with range B. Put U := kerP . So
X = B ⊕ U . Choose M so large that

M >
5k‖Id− P‖

ε
and

M + 1
M − 1 < 1 + ε.

Let
(bρ)ρ≤r be a finite 1/M -net for {b ∈ B | ‖b‖ ≤M},
(λσ)σ≤s be a finite 1/M -net for S� 1(k).

Define

Φ : (BU )k −→ K rs × Kmk = K rs+mk

(u1, . . . , uk) �−→
((
‖bρ +

∑k
κ=1 λ

σ
κuκ‖

)
ρ≤r
σ≤s

, (fµ(uκ)) µ≤m
κ≤k

)
Since Φ(BUk) is totally bounded we find u1, . . . , un in BUk such that

(Φuν)ν≤n is a finite 1/M -net for Φ(BUk)

where we may take any norm on K rs+mk for which the coefficient functionals have norm
≤ 1. Put

Z := B ⊕ lin {uνκ | 1 ≤ κ ≤ k, 1 ≤ ν ≤ n}.
Now given E ⊃ B with dimE/B = k there are u1, . . . , uk ∈ U such that E = B ⊕
lin (u1, . . . , uk). By Auerbach’s lemma (see e.g. [421, Prop. 1.c.3]) u = (u1, . . . , uk) may
be chosen so that

‖uκ‖ = 1 , 1 ≤ κ ≤ k and

∥∥∥∥∥
k∑
κ=1

λκuκ

∥∥∥∥∥ ≥ 1k
k∑
κ=1

|λκ| for all (λκ) ∈ K k . (1)
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So there is an ν ≤ n such that

‖Φu− Φuν‖ < 1
M

,

i.e. with λu :=
∑k

κ=1 λκuκ for λ = (λ1, . . . , λk) ∈ K k we have∣∣∣‖bρ + λσu‖ − ‖bρ + λσuν‖
∣∣∣ < 1

M
for all ρ ≤ r, σ ≤ s, (2)

∣∣∣fµ(uκ)− fµ(uνκ)
∣∣∣ < 1

M
for all µ ≤ m, κ ≤ k. (3)

Define
T : E −→ Z

b+ λu �−→ b+ λuν .

Obviously T fixes B. To show ‖T ‖ ≤ 1 + ε it is sufficient to prove

‖b+ λuν‖ ≤ (1 + ε)‖b+ λu‖ for ‖λ‖� 1(k) = 1.

Assume first ‖b‖ ≤M . Then ‖b− bρ‖ < 1/M for some ρ and ‖λ− λσ‖ < 1/M for some
σ. Consequently

‖b+ λuν‖ ≤ ‖bρ + λσuν‖+ 1
M
+
1
M

(2)

≤ ‖bρ + λσu‖+ 3
M

≤ ‖b+ λu‖+ 5
M

.

Also

‖b+ λu‖ ≥ 1
‖Id− P‖

∥∥∥∑λκuκ

∥∥∥ (1)

≥ 1
k‖Id− P‖

∑
|λκ| = 1

k‖Id− P‖ >
5
εM

,

i.e. 5/M ≤ ε‖b+ λu‖.
For ‖b‖ > M we have

‖b+ λuν‖ ≤ ‖b‖+ 1 and ‖b+ λu‖ ≥ ‖b‖ − 1,

so ‖b+ λuν‖
‖b+ λu‖ ≤

‖b‖+ 1
‖b‖ − 1 <

M + 1
M − 1 < 1 + ε.

Finally for any x = b+
∑

λκuκ ∈ E

|fµ(x) − fµ(Tx)| =
∣∣∣∣fµ(∑

κ

λκ(uκ − uνκ)
)∣∣∣∣

≤
∑

|λκ| |fµ(uκ − uνκ)|
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(3)

≤ 1
M

∑
|λκ|

(1)

≤ k

M

∥∥∥∑λκuκ

∥∥∥
=

k

M
‖(Id− P )x‖

≤ k‖Id− P‖
M

‖x‖

<
ε

5
‖x‖.

2

We will find a shrinking projectional resolution of the identity (for the definition see
Theorem 4.5) by constructing an increasing family of subspaces Mα which admit Hahn-
Banach extension operators. To achieve this we employ a transfinite induction argument
whose first step is the next lemma. Let us remark that Lindenstrauss has proved the
above Lemma 4.2 with G = ∅. Our modification, suggested by D. Yost, proves useful
when we want to show the ranges of the adjoint projections in the dual to be increasing.

Lemma 4.3 If X is a Banach space, L a separable subspace of X, and F a separable
subspace of X∗, then X has a separable subspace M containing L which admits a Hahn-
Banach extension operator T :M∗ −→ X∗ satisfying TM∗ ⊃ F .

Proof: Let (xn) be a sequence dense in L and (fn) a sequence dense in F . Start-
ing with M1 = {0} we inductively define subspaces Mn as follows: Putting Bn :=
lin (Mn, xn) , Gn := {f1, . . . , fn} we let Mn+1 be the subspace Z given by Lemma 4.2
when B = Bn , k = n , ε = 1

n , and G = Gn. We may assume dimMn+1/Bn ≥ n+ 1.
Clearly M :=

⋃
Mn is separable and contains L.

For n ∈ N define
In := {E ⊂ X | Bn ⊂ E, dimE/Bn ≤ n}

and put
I :=

⋃
In.

Since E ∈ In, F ∈ Im implies E + F +BdimE+dimF ∈ IdimE+dimF , we have that I is a
directed set. The condition dimMn+1/Bn ≥ n + 1 implies dimBn+1/Bn ≥ n + 1, and
this easily gives that for each E ∈ I there is a unique n ∈ N such that E ∈ In. So by
Lemma 4.2 there exists TE : E −→Mn+1 ⊂ M such that ‖TE‖ ≤ 1 + 1

n , TE|Bn
= IdBn

and |fi(TEx)− fi(x)| ≤ 1
n‖x‖ for all x ∈ E and 1 ≤ i ≤ n.

Extend TE (nonlinearly) to X by setting

TE(x) :=
{

TEx if x ∈ E
0 otherwise.

Since ‖TEx‖ ≤ 2‖x‖ and regarding TEx ∈M ⊂M∗∗ as an element of M∗∗ we have

(TEx)x ∈
∏
x∈X

BM∗∗(0, 2‖x‖).
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Hence by compactness
(
(TEx)x

)
E
has a convergent subnet

(
(TE′x)x

)
E′ , i.e. for all x ∈ X

there is mx ∈M∗∗ such that TE′x −→ mx with respect to σ(M∗∗,M∗). Define

T :M∗ −→ X∗

m∗ �−→ (
x �−→ mx(m∗) = limTE′x(m∗)

)
Noting that “for all x ∈ X there is E ∈ I such that x ∈ E” and “for E,F ∈ I with
E ⊂ F and E ∈ In, F ∈ Im one obtains n ≤ m” it is routine to verify that T is the
required Hahn-Banach extension operator. For example, the following establishes that
Tm∗ is additive:

Tm∗(x) + Tm∗(y) = lim
E′

TE′x(m∗) + lim
E′

TE′y(m∗)

= lim
E′
(TE′x+ TE′y)(m∗) = lim

E′⊃{x,y}
(TE′x+ TE′y)(m∗)

= lim
E′⊃{x,y}

TE′(x+ y)(m∗) = lim
E′

TE′(x+ y)(m∗)

= Tm∗(x+ y)

Since clearly TM∗ ⊃ F , we have completed the proof of Lemma 4.3. 2

We recall that the density character of a Banach space X , densX , is defined to be the
least cardinal m for which X has a dense subset of cardinality m. If α, β are ordinals we
use α < β as α ∈ β, hence β = {α | 0 ≤ α < β} = [0, β), and we write card α for the
cardinal number of α. The first infinite ordinal is denoted ω. We assume some familiarity
with transfinite induction arguments and ordinal and cardinal arithmetic (to the extent
given e.g. in [325]).

Lemma 4.4 Let X be a Banach space, L a subspace of X, F a subspace of X∗ with
dens F ≤ dens L. Then there is a subspace M of X containing L and a Hahn-Banach
extension operator T :M∗ −→ X∗ such that densM = dens L and TM∗ ⊃ F .

Proof: We use transfinite induction on dens L. The base case dens L = ℵ0 was treated
in the previous lemma. So assume m ≤ dens L and that the assertion holds for all
cardinals < m. We will show that it holds for m, too.
Let µ be the first ordinal of cardinality m, and let {xα | α < µ} and {fα | α < µ} be
dense in L and F respectively (we repeat some fα at the end if dens F < dens L).

Claim: For all α with ω ≤ α < µ there are subspaces Mα of X and Hahn-
Banach extension operators Tα :M∗

α −→ X∗ such that

• Mβ ⊂Mα for ω ≤ β ≤ α,
• densMα ≤ card α,
• Mα ⊃ {xβ | β < α}, TαM

∗
α ⊃ {fβ | β < α}.

This is again proved by transfinite induction: α = ω is Lemma 4.3. Assuming Mβ, Tβ
are given as in the claim for all β with ω ≤ β < α we put

L := lin
(
{xβ | β < α} ∪

⋃
β<α

Mβ

)
F := lin {fβ | β < α}.



140 III. Banach spaces which are M -ideals in their biduals

Since dens L ≤ card α +∑β<α card β = card α < m and dens F ≤ dens L we find Mα

and Tα as in the claim by the (outer) induction hypothesis.
To finish the proof of the first induction with the help of the claim put

M :=
⋃
α<µ

Mα.

Then M ⊃ L and densM ≤∑α<µ card α = card µ = m, thus densM = dens L. Clearly
‖Tαi∗α‖ ≤ 1 where iα : Mα −→ M stands for the inclusion map. So by compactness of
BL(M∗,X∗) in the weak*-operator topology, there is a subnet (Tα′ i∗α′) of (Tαi∗α)α<µ such
that

(Tα′i∗α′m∗)(x) −→ (Tm∗)(x) ∀m∗ ∈M∗ ∀x ∈ X.
Again, it is routine to verify that T is the desired Hahn-Banach extension operator. 2

After the above preparation we can finally prove the main result of this section.

Theorem 4.5 Every M -embedded space X admits a shrinking projectional resolution of
the identity. That is, there are contractive projections Pα on X (ω ≤ α ≤ µ, where µ
denotes the first ordinal with cardinality densX) such that

(a) Pµ = IdX ,

(b) PαPβ = PβPα = Pβ for β ≤ α,

(c) dens PαX ≤ card α.
(d)

⋃
β<α PβX = PαX for limit ordinals α,

(e)
⋃
β<α P

∗
βX

∗ = P ∗
αX

∗ for limit ordinals α.

Moreover the projections Pα come from subspaces Mα which admit Hahn-Banach ex-
tension operators Tα : M∗

α −→ X∗ in the sense that P ∗
α = Tαi

∗
α, where iα denotes the

inclusion mapping from Mα to X.

Proof: We will prove by transfinite induction:

Claim. For all α with ω ≤ α ≤ µ there are subspaces Mα of X and Hahn-
Banach extension operators Tα :M∗

α −→ X∗ such that

(a′) Mµ = X,

(b′) Mβ ⊂Mα and TβM
∗
β ⊂ TαM

∗
α for β ≤ α,

(c′) densMα ≤ card α,
(d′)

⋃
β<αMβ =Mα for limit ordinals α,

(e′)
⋃
β<α TβM

∗
β = TαM

∗
α for limit ordinals α.
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Assuming the claim, we know from Lemma 4.1 that Tαi∗α is the adjoint of a contractive
projection Pα on X with range Mα. Note that ranPβ ⊂ ranPα gives PαPβ = Pβ and
that ranP ∗

β = TβM
∗
β ⊂ TαM

∗
α = ranP

∗
α yields P

∗
αP

∗
β = P ∗

β , hence PβPα = Pβ . Trivially
the other primed properties imply the corresponding unprimed ones in the statement of
the theorem.
To establish the claim choose a set {xβ | β < µ} which is dense in X . First of all we
find a separable subspace Mω containing {xβ | β < ω} and a Hahn-Banach extension
operator Tω by Lemma 4.3. So assumeMβ and Tβ are given as in the claim for all β < α.
If α is a successor ordinal let L := lin (Mα−1 ∪ {xβ | β < α}) and F := Tα−1M

∗
α−1.

By Theorem 3.1 densMα−1 = densM∗
α−1, so dens F = densM∗

α−1 = densMα−1 ≤
dens L ≤ card (α − 1) + card α = card α, and Lemma 4.4 provides us with Mα and Tα
satisfying (b′) and (c′). Note xβ ∈Mα for β < α.
If α is a limit ordinal letMα :=

⋃
β<αMβ. For α = µ we getMµ = X since, for successor

ordinals β, Mβ ⊃ {xγ | γ < β}. Denoting by jβ :Mβ −→Mα the inclusion maps we find
a Hahn-Banach extension operator Tα as a w∗-operator topology accumulation point of
(Tβj∗β) in BL(M∗

α,X
∗). As in the proof of Lemma 4.4 it is easily verified that Mα and Tα

have the properties (a′) – (d′). The nontrivial part is property (e′).
Writing Qβ = Tβi

∗
β(= P ∗

β ), it is sufficient for the proof of (e
′) to show that

Qβx
∗ −→ Qαx

∗ for all x∗ ∈ X∗. (∗)

Actually (e′) and (∗) are equivalent since property (e) is easily seen to be the same
as the sop-continuity of the mapping α �−→ P ∗

α from [ω, µ ] to L(X∗), where [ω, µ ] is
equipped with the order topology. A similar remark applies to (d) so that in particular
Pβx

w−→ Pαx for all x ∈ X , i.e.

(Qβx∗)(x) −→ (Qαx∗)(x) for all x∗ ∈ X∗ and for all x ∈ X. (∗∗)

So our task is to improve w∗-convergence to ‖ . ‖-convergence. To accomplish (∗) it is
enough to prove

Qβx
∗ = 0 for x∗ ∈ kerQα, (1)

Qβx
∗ −→ x∗ for x∗ ∈ ranQα. (2)

Part (1) follows from the inclusion Mβ ⊂Mα, which immediately yields

kerQα =M⊥
α ⊂M⊥

β = kerQβ .

To see (2) note that ranQα = ranP ∗
α = (kerPα)⊥ = (X/ kerPα)∗ is the dual of an

M -embedded space, hence by Corollary 3.2

BranQα = co
‖ ‖
w∗-sexpB(X/ kerPα)∗ . (†)

Since TβM∗
β ⊂ TαM

∗
α we may regard Qβ as an operator on (X/ kerPα)∗, in particular

Qβx
∗ ∈ B(X/ kerPα)∗ for x∗ ∈ B(X/ kerPα)∗ . With these identifications the convergence in

(∗∗) means
Qβx

∗ −→ x∗ weak∗ in (X/ kerPα)∗.
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So
Qβx

∗ ‖ ‖−→ x∗ if x∗ ∈ w∗-sexpB(X/ kerPα)∗ .

Because of (†) this shows (2).
Thus the claim, hence the theorem, is completely proved. 2

We remark that the existence of a (shrinking) projectional resolution of the identity is
an isometric property which depends on the norm. However the important consequences
we will deduce from it appeal to the isomorphic structure.
Recall that a norm ‖ . ‖ on X is said to be locally uniformly rotund (LUR), whenever
‖x‖ = ‖xn‖ = 1 and lim ‖x+ xn‖ = 2 imply xn → x.
If (X, ‖ . ‖) is smooth, then by definition for every x ∈ SX there is a unique fx ∈ SX∗

such that fx(x) = 1. This support mapping x �→ fx from SX to SX∗ is then ‖ . ‖-w∗-
continuous. If it is even ‖ . ‖-w-continuous, X is said to be very smooth. The norm is
called Fréchet differentiable in case x �→ fx is ‖ . ‖-‖ . ‖-continuous (the latter is equivalent
to the more common requirement that limt→0(‖x+ty‖−‖x‖)/t exists uniformly in y ∈ SX
for every x ∈ SX). For more details on these notions we refer to [154].
Further recall that a Banach space is called weakly compactly generated if it is the closed
linear span of some weakly compact set. A good source of information on these spaces
is Chapter Five in [154].

Theorem 4.6 Let X be an M -embedded space. Then:
(a) X has a shrinking Markus̆evic̆ basis, i.e. there are (xi)i∈I in X, (fi)i∈I in X∗

such that card I = densX and

• fi(xj) = δij ,

• lin (xi) = X,

• lin (fi) = X∗.

(b) X is weakly compactly generated.
(c) There are operators T : X −→ c0(I) and S : X∗ −→ c0(I), card I = densX,

such that T ∗∗ is injective and S is w∗-w-continuous and injective.
(d) X has an equivalent LUR-norm whose dual norm is also LUR. In particular this

norm is Fréchet-differentiable und LUR.
(e) X has an equivalent very smooth norm, whose dual norm is strictly convex and

under which X is still M -embedded.

Proof: (a) We will establish this by transfinite induction on m = densX . For m = ℵ0

the dual X∗ is separable by Theorem 3.1; so an old result of Markus̆evic̆, see [421,
Proposition 1.f.3 and the remark thereafter] settles the base case.
Assume the statement holds for all M -embedded spaces Y with dens Y < m. Choose a
shrinking projectional resolution of the identity (Pα)ω≤α≤µ for X as in Theorem 4.5 and
put

Yω := PωX,

Yα+1 := (Pα+1 − Pα)X for ω ≤ α < µ.
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Then dens (Pα+1 − Pα)X ≤ dens Pα+1X ≤ card (α + 1) = card α < card µ = m, so
Yω and Yα+1 are as in the induction hypothesis. Thus there exist shrinking Markus̆evic̆
bases

(xωi , f
ω
i )i∈Iω in Yω and (xα+1

i , fα+1
i )i∈Iα+1 in Yα+1

with card Iα+1 = dens Yα+1 ≤ card α. Defining fωi := fωi ◦Pω and fα+1
i := fα+1

i (Pα+1−
Pα) we claim that

{(xβi , fβi ) | β = ω or β = α+ 1 for ω ≤ α < µ, i ∈ Iβ}

is the desired shrinking Markus̆evic̆ basis. That fβi (x
γ
j ) = δ(β,i),(γ,j) is clear since Yβ ∩

Yγ = {0} if β �= γ. An easy transfinite induction argument using Pαx = limβ<α Pβx (i.e.
property (d) in Theorem 4.5) shows

PαX = lin

(
PωX ∪

⋃
ω≤β<α

(Pβ+1 − Pβ)X

)
ω ≤ α ≤ µ.

Applying this for α = µ one obtains

lin {xβi | β = ω or β = α+ 1 for ω ≤ α < µ, i ∈ Iβ} = X.

The natural isomorphism Y ∗
α+1 = ((Pα+1 − Pα)X)

∗  (P ∗
α+1−P ∗

α)X∗ (similarly for Y ∗
ω )

gives lin {fα+1
i | i ∈ Iα+1} = (P ∗

α+1 − P ∗
α)X

∗. As above – now using property (e) in
Theorem 4.5 – one establishes

P ∗
αX

∗ = lin

(
P ∗
ωX

∗ ∪
⋃

ω≤β<α
(P ∗
β+1 − P ∗

β )X
∗
)

ω ≤ α ≤ µ,

and the rest is clear.
(b) By suitably scaling we may assume that the shrinking Markus̆evic̆ basis from (a)
satisfies ‖xi‖ = 1 for all i ∈ I. We claim that

K := {0} ∪ {xi | i ∈ I}
is weakly compact; then X = linK is weakly compactly generated.
By the Eberlein-Smulian theorem it is sufficient to show that K is weakly sequentially
compact. To prove this it is enough to establish that for all sequences (xin) in K with
each xin appearing only finitely many times

xin
w−→ 0 .

Given f ∈ X∗ and ε > 0, we find g ∈ lin (fi) such that ‖f − g‖ < ε. Then g(xi) �= 0 only
for finitely many i ∈ I. So∣∣∣|f(xin)| − |g(xin)|∣∣∣ ≤ |f(xin)− g(xin)| ≤ ‖f − g‖ < ε

shows the claim.
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(c) Assuming ‖fi‖ = 1 for the shrinking Markus̆evic̆ basis from (a) we define T by
T : X −→ c0(I)

x �−→
(
fi(x)

)
.

As in the proof of part (b) one verifies that {i ∈ I | |fi(x)| > ε} is finite for all x ∈ X and
ε > 0, so T is well-defined. Then T ∗∗ : X∗∗ −→ �∞(I) is given by T ∗∗x∗∗ =

(
x∗∗(fi)

)
.

So it is clear that T has the required properties.
Assuming now ‖xi‖ = 1 the desired operator S is given by

S : X∗ −→ c0(I)
f �−→

(
f(xi)

)
.

(d) An inspection of the proof of Theorem 2.1 of [271] shows the following

Theorem (Godefroy, Troyanski, Whitfield, Zizler): Let Y be an LUR Banach
space and X a Banach space with a locally convex topology τ such that BX is
τ-closed. If there is a bounded linear operator L : Y → X with a ‖ . ‖-dense
range such that L(BY ) is τ-compact, then X admits an equivalent LUR-norm
which is τ-lower semicontinuous.

First we apply this to X with τ = σ(X,X∗): Assuming ‖xi‖ = 1 for the shrinking
Markus̆evic̆ basis (xi, fi)i∈I from part (a), we have that L : � 1(I) → X , (λi) �→

∑
λixi

is continuous with dense range. The w∗-continuity of fi ◦ L and lin (fi) = X∗ provide
the w∗-w-continuity of L, hence the weak compactness of L(B� 1(I)). The existence of an
equivalent dual LUR-norm | . | on � 1(I) (e.g. |(λi)| = (‖(λi)‖2� 1(I) + ‖(λi)‖2� 2(I))

1/2, cf.
[271, p. 348]) then shows that X admits an equivalent LUR-norm.
If we apply the renorming theorem quoted above to X∗ with τ = σ(X∗, X) and take for
L the adjoint of the operator T : X → c0(I) defined in the proof of part (c), we find
that X∗ admits an equivalent dual LUR-norm (cf. [271, Remark 2.4]). So the Asplund
averaging technique (see [154, Chapter Four, § 3 and Chapter Five, § 9] or [213]) yields
a norm with both features. For the second statement in (d) see [154, Chapter Two, §2].
(e) By part (c) there is a w∗-w-continuous and injective operator S : X∗ → c0(I). In
particular S is weakly compact and w∗-w∗-continuous when considered as an operator
into �∞(I). Hence, S is the adjoint of a weakly compact operator from � 1(I) into X
and we are in the situation of Proposition 2.11. Using Day’s strictly convex norm on
c0(I) [154, p. 94ff.] we find, with the help of that proposition, an equivalent smooth
norm | . | on X with | . |∗ strictly convex and X still M -embedded. Such a norm is very
smooth: every support mapping from S(X, | |) to S(X∗, | |∗) is ‖ . ‖-w∗-continuous [154,
p. 22], hence ‖ . ‖-w-continuous by Corollary 2.15, i.e. | . | is very smooth. 2

Remarks: (a) The first step of the proof of part (d), the existence of an equivalent LUR-
norm on X , is of course an immediate consequence of Troyanski’s theorem that weakly
compactly generated spaces can be equivalently LUR-renormed (see [154, Chapter Five,
§ 5]). However, we gave the above argument in order to point out that the Godefroy-
Troyanski-Whitfield-Zizler theorem also yields a new and simpler proof of Troyanski’s
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renorming result. [This is indicated in the introduction of [271], but inadvertently not
in the text. To obtain the renorming for weakly compactly generated spaces X recall
that by the Amir-Lindenstrauss theorem (see [154, Theorem 2, p. 147] or [582]) there
is a w∗-w-continuous and injective operator T : X∗ → c0(I). Then T ∗ : � 1(I) → X
is w∗-w-continuous and has dense range. So an application of the Godefroy-Troyanski-
Whitfield-Zizler theorem indeed yields the renorming.]
(b) Parts (a) and (b) of Theorem 4.6 give in particular a new proof that every subspace
of c0(I) is weakly compactly generated and has a shrinking Markus̆evic̆ basis. This is a
result obtained in [345, p. 10] by different techniques.

For the large number of consequences which can be deduced for weakly compactly gener-
ated spaces we refer to [154, Chapter Five]. For convenience we state some implications
which may occasionally be useful.
Recall that a Banach space is said to have the separable complementation property if
every separable subspace is contained in a separable and complemented subspace.

Corollary 4.7 Let X be an M -embedded space. Then:
(a) w∗-compact subsets of X∗ are w∗-sequentially compact.
(b) w∗-sequentially continuous elements of X∗∗ are w∗-continuous.
(c) X has the separable complementation property.
(d) If X is nonreflexive then it contains a complemented copy of c0, in fact every

copy of c0 is complemented.

Proof: (a) The operator S from Theorem 4.6(c) maps these sets homeomorphically
to weakly compact subsets of c0(I). So the assertion follows from the Eberlein-Smulian
theorem.
(b) Corollary 4 on p. 148 in [154].
(c) Theorem 3 on p. 149 in [154]. However, this property of M -embedded spaces follows
already directly from Lemmata 4.1 – 4.3; it is even enough to use Lemma 4.2 with G = ∅.
(d) Combine the separable complementation property with Corollary 3.7(a) and Sob-
czyk’s theorem (Corollary II.2.9). 2

III.5 Notes and remarks

General remarks. The date of birth of M -embedded spaces is hard to fix. Before the
paper [292], where the first systematic study of this class was initiated, this type of space
appeared in Lima’s work [401] and, under the name class L0, in the article [97] by Brown
and Ito; there were also some unpublished results by R. Evans. In [401] Proposition 2.7
was proved, and in [97] Theorem 1.6(b), (c) and Proposition 2.10(a) were established. The
most important predecessor of [292], however, is Lima’s paper [403] where the connection
with M -ideals of compact operators was shown and the RNP for duals of M -embedded
spaces was explicitly proved; see below for more information on this result. The study of
M -embedded spaces marked an important point in the development of M -ideal theory:
the point of view of considering subspaces of given Banach spaces, C∗-algebras, L1-
preduals and ordered spaces was abandoned in favour of investigating pure Banach space
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properties. In particular the fact that nontrivial isomorphic conclusions can be deduced
from the geometric structure of M -embedded spaces has found some interest.
Many of the examples ofM -embedded spaces in Section III.1 appeared in [623]. For C/A,
however, we have followed Luecking’s proof in [426]; another proof can be found in [240].
The assertion about Orlicz spaces was proved much earlier by Ando [18], establishing the
L-decomposition in the dual directly. Even older is the result on K(H) which was shown
by Dixmier [164] in 1950. Corollary 1.5 was first proved in [38], the M -ideal argument
we have presented is due to Luecking [426]. We will say more about best approximation
from arbitrary Douglas algebras below and refer to [557, p. 109ff.] for the history of this
problem and its relation to questions in function theory. Concerning Orlicz spaces let us
mention that our proof shows that hM is an M -ideal in �M (resp. HM in LM ) no matter
if M or M∗ satisfies the ∆2-condition; but in this generality �M need not be the bidual
of hM . There is another norm which is of interest in the theory of Orlicz spaces. The
Orlicz norm is defined to be the dual norm of the Luxemburg norm with respect to the
pairing 〈f, g〉 = ∫ f(t)g(t) dt; i.e.,

‖f‖0M = sup{|〈f, g〉| | g ∈ LM∗ , ‖g‖M∗ ≤ 1}

in the case of function spaces and similarly for sequence spaces. H. Hudzik has shown
us a proof that one doesn’t obtain M -ideals for this norm. In Section VI.6 we shall
discuss another renorming of Orlicz sequence spaces which is of importance in the theory
of M -ideals of compact operators.
The stability of M -embedded spaces (Theorem 1.6) was fully established in [292]. In
the proof of this result the main difference between M - and L-embedded spaces appears
clearly: in the first case the natural projection πX∗ is an L-projection, in the second
case we just know that there is one. The results and techniques in [263] have inspired
Proposition 1.9 which is taken from [406]. We remark that the isomorphic version of
Corollary 1.10 is false, since by a result of Johnson and Lindenstrauss [355, Ex. 2] there
is a C(K)-space which is not a subspace of a weakly compactly generated space (hence
in particular not isomorphic to anM -embedded space by Theorem 4.6), yet all separable
subspaces of C(K) are isomorphic to subspaces of c0.
Proposition 2.1 is implicitly contained in [97] – see also [255, Th. 1] for a more general
result. Using Proposition 2.1 we obtain a more selfcontained proof of Proposition 2.2 than
the one in [292]. However, to get a better understanding of the question of automatic
w∗-continuity of surjective isometries in dual spaces we refer to Godefroy’s work in [249],
[255] and the survey chapter VII in [258]. Theorem 2.3 is from [292], the unique extension
property, Lemma 2.4, and Proposition 2.5 first appeared in [269]. By Proposition 2.5
of this last paper an important class of spaces enjoying the unique extension property
are those whose duals don’t contain proper norming subspaces. The decomposition of
M -embedded spaces in Proposition 2.6 was first proved in [291] using function module
representations. The proof of Proposition 2.7 is also from this work – the result, however,
first appeared in [401]. Much more than the statement in Corollary 2.8 is true: in [72]
Benyamini showed that, for a first countable compact space K, d(X,Cσ(K)) = 1 implies
X ∼= Cσ(K). Besides the conditions characterising M -embedded C∗-algebras which we
proved in Proposition 2.9 there are several others in [76]. The construction of the predual
in Proposition 2.10 comes from [256, Th. 27]. Presumably the first paper to explicitly
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note that the natural projection πX∗ from X∗∗∗ onto X∗ is not bicontractive is [96].
The example ‖Id(�1)∗∗∗ − π(�1)∗‖ = 2 was extended in [103] and [263] to “If X contains
a subspace isomorphic to � 1 then ‖IdX∗∗∗ − λπX∗‖ = 1 + |λ|”. In this last paper the
so-called Godun set G(X) = {λ ∈ K | ‖IdX∗∗∗−λπX∗‖ = 1} is studied. For instance it is
proved that a separable space is Asplund provided that G(X)∩(1, 2] �= ∅. The renorming
ofM -embedded spaces in Proposition 2.11 is from [293], the example in Proposition 2.13
essentially appeared in [337] – however, the arguments there are not at all clear; therefore,
we have followed the exposition in [623].
It took a while to realize the connection between unique Hahn-Banach extension, equality
of topologies on SX∗ , continuity of the support mapping, and the RNP for X∗. In [587]
Sullivan introduced Hahn-Banach smooth spaces as those which admit unique Hahn-
Banach extension from X to X∗∗, realized that no dual space is Hahn-Banach smooth
and proved that the equality of norm and weak∗ topologies on SX∗ implies this prop-
erty. Shortly after, Smith and Sullivan [573] showed that weakly Hahn-Banach smooth
spaces X (only norm attaining functionals x∗ are required to have unique Hahn-Banach
extensions) have duals with the RNP. Studying the continuity of the support mapping
D : SX → 2SX∗ Giles, Gregory, and Sims [246] proved that weak Hahn-Banach smooth-
ness means w∗ = w on the set of norm attaining functionals in SX∗ . They also gave two
arguments (one of them attributed to Phelps) that this implies the RNP for X∗. Also,
their Theorem 3.3 contains that duals of M -embedded spaces have the RNP in a rather
explicit manner. In [251] Godefroy called Namioka points those x∗ ∈ SX∗ where the
w∗- and w-topologies agree on SX∗ , showed Lemma 2.14 and established connections to
minimal norming subspaces and unique preduals – see also [645]. All this was unnoticed
by those working in M -ideal theory so that the RNP for duals of M -embedded spaces
was reproved twice in [403] and [252]. The argument in the text using proper norming
subspaces now seems to be the shortest.
Property (V ) for M -embedded spaces was first shown in [268]. The proof we have
presented is a modification due to Lima of the argument in [292] which shows that M -
embedded spaces contain c0. Besides the references for properties (V ) and (V ∗) already
cited in 3.3, we mention [116] and [117] for a study of (V ) in vector valued function
spaces, [83] representative of the work of Bombal and [512] for a weakening of (V ) and
its relation to Grothendieck spaces – see also [155]. A good summary is the survey article
by E. and P. Saab [549]. The most remarkable recent result in this area is Pfitzner’s
theorem [493] that all C∗-algebras have property (V ). Finally we mention that property
(V ) has occasionally been called strict Dieudonné property, e.g. in [451].
In [270] and [250] Godefroy and Talagrand (see also [258, p. 158ff.] and [256, p. 244ff.])
say that a Banach space X has property (X) if any x∗∗ ∈ X∗∗ such that x∗∗(

∑∗ x∗k) =∑
x∗∗(x∗k) for every wuC-series

∑
x∗k in X

∗, must be in X . They show that every Banach
space with property (X) is strongly unique predual of its dual; since property (X) is an
isomorphic invariant this remains true for every equivalent norm on the space. In [183]
Edgar introduced an ordering of Banach spaces by

X ≺ Y iff X =
⋂

T∈L(X,Y )

(T ∗∗)−1(Y )

and showed that X has property (X) iff X ≺ � 1 [183, Prop. 10]. He also proved that
property (X) implies property (V ∗) [183, Th. 13]. Since it was shown in [250], [264] and
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[258] that X∗ has property (X) whenever X is a separable space with property (u) not
containing � 1, we get by Theorem III.3.8 that duals of separable M -embedded spaces
X have property (X). By [258, Th. VII.8] we obtain that in this situation an operator
T : X∗∗ → Y ∗ is w∗-continuous if T is w∗-w∗-Borel measurable. We finish this digression
by remarking that property (X) is strictly stronger than property (V ∗) as shown in [594].
Accepting the existence of special cardinal numbers one also obtains an example of this
from [183, Prop. 12]: � 1(Γ) ≺ � 1 iff card Γ is not a real-valued measurable cardinal.
(This also shows that some of the examples of spaces with property (X) in [270] and
[250] have to be read with additional set-theoretic assumptions.)
Example 3.5 was first noted in [267] and Proposition 3.6 is an unpublished result of
Pfitzner. Godefroy and Li proved property (u) for M -embedded spaces in [264], but
only with the work in [396] the general background for this, presented in Theorem I.2.10,
became apparent to us. Meanwhile the ultimate clarification was provided by [263]
introducing the concept of u-ideals – see below. We mention that by the work of Knaust
and Odell in [380] the hereditary Dunford-Pettis property (and equivalently property
(S)) is sufficient for property (u), also the recent paper [367] studying property (u) in
vector valued function spaces is of interest here. Let us remark that property (u) for M -
embedded spaces can also be derived from recent deep results by Rosenthal who showed
that X has (u) provided Y ∗ is weakly sequentially complete for all subspaces Y of X
[530]. Proposition 3.9 and Corollary 3.10 are from [269]. Theorem 3.11 was obtained
independently by Godefroy and Li [265] and D. Werner [620].
The main result of Section III.4, Theorem 4.5, is due to Fabian and Godefroy [212], but
our proof largely follows ideas of Sims’ and Yost’s papers [570] and [571]. M. Fabian has
shown us another proof of this result based on techniques from his article [210]. We shall
have more to say on projectional resolutions of the identity later in this section.

Further examples of M -embedded spaces. We first consider the Schreier space
S. This is the completion of the space of all sequences which are eventually 0 under the
norm

‖(xn)‖S = sup
E

∑
n∈E

|xn| .

Here the supremum has to be taken over all “admissible” finite sets E, meaning all sets
E = {n1, . . . , nk} where k ≤ n1 < . . . < nk. This Banach space has its origin in Schreier’s
paper [561], and some information on S can be found in [45] and [115]. Schreier used
(a variant of) the space S to show that C[0, 1] fails the weak Banach-Saks property.
(Recall that a Banach space X is said to have the weak Banach-Saks property if every
weakly convergent sequence in X admits a subsequence with norm convergent arithmetic
means.) We now present a result from [623].

• The Schreier space S is an M -ideal in its bidual.

To show this note first that the natural basis (en) is 1-unconditional and shrinking, hence
S∗∗ ∼= {(xn) | ‖(xn)‖ := supN ‖

∑N
n=1 xnen‖ <∞} (cf. [421, Prop. 1.b.2]). Also xn → 0

for (xn) ∈ S∗∗. For x ∈ BS∗∗ , ji ∈ BS (without restriction with finite support) and ε > 0
choose first n0 such that ji(n) = 0 for n > n0, thenm0 ≥ n0 such that |x(m)| < ε/(n0−1)
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for m ≥ m0. Put j(n) = x(n) for n < m0 and j(n) = 0 otherwise. Then∑
E

|x(n) + ji(n)− j(n)|

can be estimated by
∑

E |x(n)| ≤ ‖x‖ ≤ 1 if minE > n0, and by
∑

E∩{1,...,n0} |ji(n)| +∑
E∩{n0+1,...} |x(n)| ≤ ‖ji‖+(n0−1) ε

n0−1 ≤ 1+ε if minE ≤ n0. Hence ‖x+ji−j‖ ≤ 1+ε.
Actually, the space originally considered by Schreier in [561] can be represented as a
sequence space by means of the norm ‖(xn)‖ = supE

∣∣∑
n∈E xn

∣∣ . The above proof can
clearly be modified so as to show that this space is also M -embedded.
By Corollary 3.7 every nonreflexive subspace of a quotient of S contains a copy of c0. In
the recent paper [456] E. Odell proves the stronger result that every infinite dimensional
subspace of a quotient of S contains a copy of c0. Thus in order to obtain the full strength
of Odell’s theorem one “only” has to show that no infinite dimensional reflexive specimen
exists among the subspaces of quotients of S. Odell also defines a hierarchy of Schreier
spaces S1, S2, . . . as follows. Let (S1, ‖ . ‖1) = (S, ‖ . ‖S) and suppose that (Sm, ‖ . ‖m) is
already constructed. Then Sm+1 is the completion of the finitely supported sequences
with respect to the norm

‖(xn)‖m+1 = sup
k∑
j=1

‖PEj(x)‖m

where the Ej are finite subsets of N satisfying

k ≤ minE1 ≤ maxE1 < minE2 ≤ maxE2 < . . . ≤ maxEk−1 < minEk,

where (PEx)n = xn if n ∈ E and (PEx)n = 0 otherwise, and the supremum is taken over
all k and all admissible strings E1, . . . , Ek as above. It follows in much the same way
as above that each Sm is M -embedded and hence each infinite dimensional nonreflexive
subspace of a quotient of Sm contains a copy of c0. This gives a partial answer to
Problem 6 in [456].
In [567] the extreme point structure of the unit ball of S is investigated. The knowledge
that S is M -embedded allows us to add the information that one cannot expect, by
Proposition II.4.2 and Theorem II.4.4, BS to possess strongly extreme points, let alone
strongly exposed points.
Let us now consider the function space L∞+Lp, 1 < p <∞, consisting of all measurable
functions on R which have a representation f = f1 + f2 with f1 ∈ L∞(R), f2 ∈ Lp(R).
We equip this space with the norm

‖f‖ = inf{‖f1‖L∞ ∨ ‖f2‖Lp | f = f1 + f2, f1 ∈ L∞, f2 ∈ Lp},
which is equivalent to the usual one [422, p. 119]. Let (L∞ + Lp)f denote the closed
subspace generated by the characteristic functions χE where λ(E) <∞.

• (L∞ + Lp)f is an M -ideal in its bidual.

This time we will directly verify the norm condition on the projection. It is well known
that the dual of (L∞+Lp)f is isometrically isomorphic to the space L1 ∩Lq, normed by

‖g‖ = ‖g‖L1 + ‖g‖Lq
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(of course 1/p + 1/q = 1), and the bidual can be identified with L∞ + Lp. Let us
consider X = L1 ∩ Lq as the diagonal in L1 ⊕1 L

q. Then the annihilator of X in
(L1 ⊕1 L

q)∗ = L∞ ⊕∞ Lp is

X⊥ = {(f,−f) | f ∈ L∞ ∩ Lp},

and one obtains

X⊥⊥ =

=
{
(�, g1, g2) ∈ L1

s ⊕1 L
1 ⊕1 L

q

∣∣∣∣ 〈�, f〉+ ∫ (g1 − g2)f dλ = 0 ∀f ∈ L∞ ∩ Lp
}

=
{
(�, g1, g2) ∈ L1

s ⊕1 L
1 ⊕1 L

q

∣∣∣∣ 〈�, χE〉+ ∫
E

(g1 − g2) dλ = 0 if λ(E) <∞
}
.

Here we write (L1)∗∗ = L1
s ⊕1 L

1 where L1
s is the space of “singular” functionals, cf.

Example IV.1.1(a). Hence one deduces

X⊥⊥ = Xs ⊕1 X

with
Xs

∼= {� ∈ (L1)∗∗ | 〈�, 1E〉 = 0 if λ(E) <∞} ∼= (L∞ + Lp) ⊥
f

which shows our claim. Clearly, Lp can be replaced by a reflexive Köthe function space
in the above proposition. This examples comes from [620].
In our next example we deal with the Bergman space

L1
a =

{
f : D → C analytic

∣∣∣∣ ∫
D

|f(x+ iy)| dxdy <∞
}
.

By definition, this is a (closed) subspace of L1(D ), and we are going to show:

• The Bergman space L1
a is L-embedded, in fact, it has a predual which is M -

embedded.

To show this we use a result proved in the next chapter, viz. Theorem IV.3.10. Let us
first observe that L1

a is a dual space. We consider the topology τ of uniform convergence
on compact subsets of D . Now, the unit ball of L1

a is a normal family. Indeed, the mean
value property of analytic functions implies

|f(z)| ≤ 1
πr2

∫
Br(z)

|f(x+ iy)| dxdy ≤ 1
πr2

‖f‖

for |z| ≤ R < 1 and r < 1−R. Moreover, an appeal to Fatou’s lemma reveals that BL1
a

is τ -closed in the space of all analytic functions on D ; for if fn
τ−→ f , then∫

|fn(9eiϕ)| dϕ→
∫
|f(9eiϕ)| dϕ ∀9 < 1,
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hence

‖f‖ =
∫
9 d9

∫
|f(9eiϕ)| dϕ ≤ lim inf

∫
9 d9

∫
|fn(9eiϕ)| dϕ

= lim inf ‖fn‖ ≤ 1.

Consequently, BL1
a
is τ -compact, and by a classical result [317, p. 211] those � ∈ (L1

a)
∗

whose restriction to BL1
a
is τ -continuous forms a predual of L1

a. Observe next that the
embedding of L1

a into L
0(D ), the space of all measurable functions on D equipped with

the topology of convergence in measure, is continuous for the τ - and L0-topologies so
that the two topologies coincide on the unit ball. Hence the above predual coincides with
the space (L1

a)
? from Theorem IV.3.10, (L1

a)
? separates L1

a (since f �→ f(z) is in (L1
a)
?),

and the unit ball of L1
a is L0-closed. Thus Theorem IV.3.10 proves our claim. – This

example is due to E. Werner.
The dual space of L1

a can be identified with the Bloch space B (see e.g. [37]); however
there is only an isomorphism and not an isometry between (L1

a)∗ and B. One can check
that the above predual is a renorming of the little Bloch space B0. (In Example 1.4(j) we
proved that B0 isM -embedded in its most natural norm, which is different.) The papers
[36] and [37] contain more information on renormings of B0 and B, their relationship to
operators on Hilbert space and the Bergman space. As a matter of fact, B0 is known to
be isomorphic to c0 [566]. Let us take the chance to point out how to obtain this result
from the material of this chapter: Since the Bergman projection maps C0(D ) onto B0

[565], we see that B0 is a separable M -embedded L∞-space; now apply Theorem 3.11.
In this connection Lusky’s recent paper [430] is also relevant. Similar arguments work
for the case of weighted spaces of analytic functions on certain subsets of C n [622].
We finally wish to connect the examples of M -ideals of Lorentz and Orlicz sequence
spaces given in Example 1.4(b) and (c) to the corresponding ideals of compact operators
on a separable Hilbert space H . Our setting will be as follows. Let E be a Banach space
with a 1-symmetric basis. Then JE denotes the set of compact operators T on H whose
sequences (sn(T )) of singular numbers belong to E. This is a Banach ideal of operators
under the norm

‖T ‖E = ‖(sn(T ))‖E
Various properties of E are known to pass to JE (see for instance [24] and its references);
for the general theory of “symmetrically normed ideals” we refer to [275] and [568]. In
this vein one can prove:

• Let E have a 1-symmetric basis, and suppose E �= c0. Then E is an M -ideal
in its bidual if and only if JE is.

The proof is contained in [623].

Douglas algebras. Let H∞ denote the algebra of bounded analytic functions on the
open unit disk. As usual we shall identify H∞ via radial limits isometrically with a closed
subalgebra of L∞ = L∞(T). The algebra H∞ has the following maximal property: If B
is a weak∗ closed subalgebra of L∞ strictly containing H∞, then B = L∞. (Note that
H∞ itself is weak∗ closed.) In 1969 R. G. Douglas, in his work on Toeplitz operators, was
led to investigate certain norm closed subalgebras between H∞ and L∞; more precisely
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he became interested in those subalgebras B with the additional property that B is the
closed algebra generated by H∞ and those f ∈ B for which f−1 ∈ H∞; equivalently, B is
generated by H∞ and those conjugates of inner functions which are in B. He conjectured
that every closed algebra between H∞ and L∞ necessarily has this property, which was
shown to be true by Chang and Marshall in 1976. Hence a closed algebra between H∞

and L∞ is called a Douglas algebra. (For references for this fact and related results we
refer to the surveys [555], [556], [557] and the monograph [243].)
The simplest example of a Douglas algebra is H∞ + C, the linear span of H∞ and the
space C of continuous functions on T. (As we have already remarked, Sarason was the
first to observe that H∞ + C is closed in that he shows that the canonical mapping
f +A �→ f +H∞ from C/A to L∞/H∞ is an isometry. Here A denotes the disk algebra.
Another proof is due to Rudin [543].) It is also known that H∞ + C is the smallest
Douglas algebra (apart from H∞).
In 1979 Axler, Berg, Jewell and Shields [38] proved that H∞+C is a proximinal subspace
of L∞. In fact, they showed that the quotient space (H∞ + C)/H∞ is proximinal in
L∞/H∞, and the above result follows easily from this and the fact thatH∞, being weak∗

closed, is proximinal. Then Luecking [426] obtained the same conclusion from his result
that (H∞ + C)/H∞ is an M -ideal in L∞/H∞; see Corollary 1.5.
Subsequently M -ideal methods have proved useful for obtaining best approximation re-
sults for Douglas algebras. Here we shall survey some of them. Let M be the maximal
ideal space of L∞ so that L∞ = C(M). If B ⊂ L∞ is a Douglas algebra and S ⊂ M we
let

BS = {f ∈ L∞ | f |S ∈ B|S}.
It is known that BS is closed if S is a p-set for B. (See Section V.4 for the definition of
a p-set.) Younis [657] shows that H∞

S /H∞ is an M -ideal in L∞/H∞ and thus that H∞
S

is proximinal if S is a p-set for H∞. In [658] and [427] Younis and Luecking consider
algebras of the form H∞ + L∞

F where for F ⊂ T

L∞
F = {f ∈ L∞ | f is continuous at each t ∈ F}.

It is known that H∞ + L∞
F is always a Douglas algebra, and for closed F it is shown in

[658] that (H∞ + L∞
F )/H

∞ is an M -ideal in L∞/H∞. One can translate this result as
follows (cf. [427]): If S ⊂ M is a p-set for H∞ + C, then (H∞ + C)S/H∞ is an M -ideal
in L∞/H∞; and Luecking and Younis ask if (H∞+C)S is the only Douglas algebra with
the above property. This was answered in the negative by K. Izuchi [330]. The paper
[331] contains the general result that, for a Douglas algebra B and a p-set S, BS/B is
an M -ideal in L∞/B. All these results contribute to the longstanding open question
whether every Douglas algebra is proximinal in L∞. Let us mention that this problem
was finally solved by Sundberg [588] who constructed a shrewd counterexample in 1984.
Also, the paper [240] is of interest in this connection.
There is another type of problem where M -ideal methods have turned out to be of
importance. Axler et al. prove in [38] that the unit ball of L∞/(H∞+C) fails to possess
extreme points, thus L∞/(H∞+C) is not isometric to a dual Banach space, which stands
in marked contrast to L∞/H∞ which can be identified with the dual of the Hardy space
H1

0 . In [658] and [427] it is shown that for closed or open F ⊂ T, the quotient space
L∞/(H∞ + L∞

F ) shares this property with L
∞/(H∞ + C) which represents the special
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case F = T. The proof relies essentially on the non-uniqueness of best approximants
from M -ideals. Meanwhile it has been shown by Izuchi [328] that the above statement
holds for every subset F of T. For related papers see [329], [332], [333] and [659].

Projectional resolutions of the identity. In 1966 Corson and Lindenstrauss
stated the – in Namioka’s words prophetic – conjecture that every weakly compact subset
of a Banach space is homeomorphic to a weakly compact subset of c0(Γ) for a suitable
set Γ. It is easily seen that in order to prove this it is sufficient to show the following
result, which was established by Amir and Lindenstrauss in 1968.

Theorem. (Amir-Lindenstrauss)
For every weakly compactly generated Banach space X there are a set Γ and
a continuous injective operator T : X → c0(Γ).

In fact, most of the properties of weakly compactly generated spaces already follow from
the existence of such an injection T , cf. [16, Section 1]. The first step towards the
above theorem was performed by Lindenstrauss in [415] and [416] where he proved it for
reflexive X . As a decisive tool he showed the existence of a projectional resolution of
the identity in X , and in order to get this he used what was later called a Lindenstrauss
compactness argument. We recall that a Banach space X is said to admit a projectional
resolution of the identity (PRI) if there is a family (Pα)ω≤α≤µ of projections in X , where
µ is the first ordinal with cardinality densX , satisfying

(a) ‖Pα‖ = 1 for ω ≤ α ≤ µ,
(b) Pµ = IdX ,

(c) PαPβ = PβPα = Pβ for β ≤ α,
(d) dens PαX ≤ card α for ω ≤ α ≤ µ,
(e)

⋃
β<α PβX = PαX for limit ordinals α.

The proof of the general Amir-Lindenstrauss theorem in [16] is much harder than in
the reflexive case, but again the existence of a PRI is instrumental. A survey of weakly
compactly generated spaces up to 1967 is [417]. It still furnishes a good introduction
to this area, though most of the problems stated there have meanwhile been solved, see
[154, Chapter Five].
Vašák [612] generalized the Amir-Lindenstrauss theorem by constructing a PRI for every
weakly countably determined Banach spaceX . (X is called weakly countably determined
if there is a sequence (An)n∈N of w∗-compact subsets of X∗∗ such that for all x ∈ X
there is a subset Nx ⊂ N with x ∈ ⋂n∈Nx

An ⊂ X .) In 1979 Gul’ko made a major
innovation by exposing the purely topological core of the problem and by providing a
very simple proof of the Amir-Lindenstrauss theorem using the notion of conjugate pairs.
A recommendable account of Gul’ko’s ideas for the weakly compactly generated case is
the article of Namioka and Wheeler [448]. Also Stegall gave a short and selfcontained
proof in [582].
An easy consequence of the Mackey-Arens theorem is that if K is any weakly compact
subset of a Banach spaceX , then the restriction mapR : X∗ → C(K) is w∗-w-continuous.
From this, one can show that a Banach space X is weakly compactly generated iff there
exists a w∗-w-continuous linear injection T : X∗ → Y for some Banach space Y ; and
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that a C(K)-space is weakly compactly generated iff K is an Eberlein compact space,
i.e. homeomorphic to a weakly compact subset of a Banach space. Thus an essentially
equivalent, yet more topological formulation of the Amir-Lindenstrauss theorem is: if K
is an Eberlein compact space, then there is an injective operator T : C(K) → c0(Γ) for
a suitable set Γ. In this form it was extended by Argyros, Mercourakis and Negrepontis
to Corson compact spaces K (a compact space K is called Corson compact if K is
homeomorphic to a subset of Σ(RI ) := {x ∈ RI | supp(x) is countable} for some set I);
see [450, Section 6]. Further extensions – which reintroduce functional analysis and PRIs
– can be found in [609] and [611]. In [469] Orihuela and Valdivia define the notion of a
projective generator, thus providing a unified approach not only to the above questions
but also to the problem of constructing PRIs in dual spaces, which we discuss below. In
fact, the arguments in [469] and [610], when specialized to weakly compactly generated
Banach spaces, seem to provide the simplest known proof of the Amir-Lindenstrauss
theorem.
We now wish to relate the existence of a PRI to other properties of a Banach space.
In fact, the assumption of a PRI neither implies the existence of a continuous injection
T : X → c0(Γ) nor the separable complementation property nor an equivalent locally
uniformly rotund renorming. Let us give an example. Let X be a Banach space with
densX = m admitting a PRI (Pα)ω≤α≤µ, and suppose Z is an arbitrary Banach space
with dens Z = n < m. Then the operators Qα = Pα ⊕ 0 for α ≤ ν and Qα = Pα ⊕ IdZ
for ν < α ≤ µ (where ν denotes the smallest ordinal with cardinality n) define a PRI on
X ⊕∞ Z. Suitable choices of Z provide the desired examples. (This simple construction
was shown to us by D. Yost.) On the other hand, in many classes of Banach spaces for
which PRIs can be constructed, the proofs automatically yield those stronger conclusions.
By the way, having an injection T : X → c0(Γ) is not sufficient for the existence of an
equivalent locally uniformly rotund norm on X , either, e.g. X = �∞ even fails to have
an equivalent weakly locally uniformly rotund norm [154, p. 120]. However, certain
other properties less restrictive than being weakly compactly generated are enough, as
shown in [602], [662], and [272]. On the other hand, the existence of an injective operator
T : X → c0(Γ) is sufficient for an equivalent strictly convex norm onX , but not necessary
as shown by Dashiell and Lindenstrauss, see [144]. Finally, although used for isomorphic
and topological problems, the existence of a PRI is an isometric property: X = C[0, ω1]
has a PRI with respect to the supremum norm, but when equipped with the equivalent
Fréchet differentiable norm constructed by Talagrand in [597] it does not; see [212, p. 149]
for details.
In some dual Banach spaces X∗ it is possible to construct a projectional resolution of
the identity even if X∗ is not weakly compactly generated. Tacon [590] did this under
the assumption that X is very smooth, i.e. X is smooth and has a ‖ . ‖-w-continuous
support mapping SX → SX∗ , cf. p. 142. It is easy to see that dens Y = dens Y ∗ for every
subspace Y of a very smooth space X , hence very smooth spaces are Asplund spaces.
In [570] and [571] Sims and Yost tried to extend Tacon’s result to arbitrary Asplund
spaces X ; however the projections Pα in X∗ which they constructed could not be ar-
ranged to satisfy PαX∗ =

⋃
β<α PβX

∗ for limit ordinals α. Yet their approach gives an
elementary (not model theoretic) proof of the result of Heinrich and Mankiewicz that
the dual of every nonseparable Banach space contains uncountably many nontrivial com-
plemented subspaces (i.e., they are neither finite dimensional nor finite codimensional).
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In this connection let us mention the very recent spectacular counterexamples of Gow-
ers and Maurey who found (separable) Banach spaces without nontrivial complemented
subspaces.
As we said in the introduction to Section III.4 the ideas of Sims and Yost do prove
successful in the special situation of M -embedded spaces. Fabian extended Tacon’s
result in [210] and [211]; he proves the crucial step [210, Lemma 1] without compactness
arguments but with sophisticated geometrical reasoning, and he singles out the following

Proposition. Let X be a Banach space with a ‖ . ‖-w lower semi-continuous
set-valued mapping D : X → 2X

∗
satisfying

(a) D(x) is countable for every x ∈ X,
(b) lin {x∗|V | x∗ ∈ D(x), x ∈ V } = V for every closed subspace V of X.

Then X∗ has a projectional resolution of the identity (which comes from
Hahn-Banach extension operators).

Recall that a set-valued map Φ from a topological space A into the subsets 2B of a
topological space B is said to be lower (upper) semi-continuous , if the set {a ∈ A |
Φ(a) ∩M �= ∅} is open (closed) whenever M is an open (closed) subset of B. Using the
above proposition, Fabian and Godefroy [212] proved the general result that the dual of
every Asplund space admits a projectional resolution of the identity. In order to find a
suitable mapping D they use the following selection theorem of Jayne and Rogers [342,
Th. 8]:

Theorem. Let M be a metric space and X∗ a dual Banach space with the
Radon-Nikodým property. Let F : M → 2X

∗
be an upper semi-continuous

set-valued map (X∗ with its w∗-topology) which takes only nonempty and w∗-
closed values. Then, with respect to the norm topology on X∗, the set-valued
map F has a Borel measurable selector f of the first Baire class.

This can be applied to the support map F : X → 2X
∗
, F (x) = {x∗ ∈ BX∗ | x∗(x) = ‖x‖}.

The ‖ . ‖-‖ . ‖-continuous functions fn : X → X∗ converging pointwise to the selector f
are used to build the set-valued map D : X → 2X

∗
required in the proposition by

D(x) = {fn(x) | n ∈ N}. Note that establishing (b) for this map D is far from being
obvious. In closing, we remark that the projections Pα in X∗ are in general not w∗-
continuous (cf. [212, p. 149]) and that clearly not every dual space admits a PRI (e.g.
X∗ = �∞).
The question under which conditions the adjoints P ∗

α of a PRI (Pα) in X form a PRI in
X∗, i.e. (Pα) is a shrinking PRI, was considered by John and Zizler in [345, Lemma 3].
This is the case if X has a Fréchet differentiable norm. Theorem 1 of this article says that
a weakly compactly generated Banach spaceX admits a shrinking projectional resolution
of the identity iff it has an equivalent Fréchet differentiable norm. The renorming results
of Talagrand in [597] show that this equivalence fails without extra assumptions on X .




