
CHAPTER II

Geometric properties of M-ideals

II.1 M-ideals and best approximation

In this section we shall establish several approximation theoretic properties of M -ideals.
Also, some preparatory work for Section II.3 will be done where we shall study the
difference between M -ideals and M -summands in some detail.

Let us first recall some notions from approximation theory. A subspace J of a Banach
space X is called proximinal if

∀ x ∈ X ∃ y ∈ J ‖x− y‖ = d(x, J) .

The set of all such y is called the set of best approximants and denoted by PJ (x). Thus
J is proximinal if and only if PJ (x) �= ∅ for all x ∈ X . The set-valued map PJ is called
the metric projection. J is called a Chebyshev subspace if PJ (x) is a singleton for each
x ∈ X . Finally, the metric complement Jθ is defined as

Jθ = {x ∈ X | ‖x‖ = d(x, J)} = {x ∈ X | 0 ∈ PJ (x)}.

To begin with, let us study these concepts for an M -summand J in X . P denotes the
M -projection with range J .
First of all, J is proximinal, and PJ (x) is a ball with radius d(x, J) = ‖x − Px‖ and
centre Px. To see this note that for any y ∈ J

‖y − x‖ = max{‖y − Px‖, ‖x− Px‖}.

As a consequence, lin PJ (x) = J for each x ∈ X\J . So J is highly non-Chebyshev.
Another consequence is the existence of a continuous linear selection for PJ , namely P .
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50 II. Geometric properties of M -ideals

(A selection f of a set-valued map F is a function such that f(x) ∈ F (x) for all x.)
Furthermore,

{x ∈ X | ‖Px‖ < ‖x‖}
is an open subset of Jθ.

We wish to examine the validity of these results for M -ideals J . Naturally, one has to
face certain limitations. For example, the M -ideal c0 in �∞ is easily seen to be proximinal
(this is not accidental, cf. Proposition 1.1 below), but

Pc0(1) = {(sn) ∈ c0 | |sn − 1| ≤ 1 for all n}
is not a ball (though still “big”), there is no continuous linear selection for Pc0 (since
there is no continuous linear operator whatsoever from �∞ onto c0), and the metric
complement cθ0 = {(sn) ∈ �∞ | ‖(sn)‖ = lim sup |sn|} has empty interior.

Proposition 1.1 M -ideals are proximinal.

Proof: Let J ⊂ X be an M -ideal, and let x ∈ X with d = d(x, J) > 0. We shall
inductively construct a sequence (yn) in J with

‖yn+1 − yn‖ ≤
(

3
4

)n
(1)

‖yn − x‖ ≤ d+
(

3
4

)n−1

(2)

for n ≥ 1. Once this is achieved, (1) yields that (yn) is a Cauchy sequence, while (2) gives
‖ lim yn − x‖ ≤ d, whence PJ (x) �= ∅. To show how the induction proceeds let ε > 0.
First, choose y ∈ J satisfying ‖y − x‖ ≤ d + ε. Then consider the balls B(x, d + ε/2)
and B(y, ε/2). Since the distance of the centres does not exceed the sum of the radii,
they have a point in common, and both balls meet J . Now J has the 2-ball property
(Theorem I.2.2), so there is

z ∈ J ∩B(x, d+ 3ε/4) ∩B(y, 3ε/4).

Applying this procedure with the sequence (εn) = ((3
4 )n−1) we obtain the desired yn. 2

Next, we are going to discuss the largeness of the set of best approximants. We shall
meet the following notion again in Section II.3.

Definition 1.2 A closed convex bounded subset B of a Banach space Y is called a pseu-
doball of radius r if its diameter is 2r > 0 and if for each finite collection y1, . . . , yn of
points with ‖yi‖ < r there is y ∈ B such that

y + yi ∈ B for i = 1, . . . , n.

If ρ = sup{s ≥ 0 | B contains a ball of radius s}, then the grade of B is defined to be

g(B) = 1− ρ
r
.

Singletons are considered as pseudoballs with radius 0 and grade 0.
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Equivalently B is a pseudoball of radius r > 0 if and only if⋂
i

(yi +B) �= ∅

for each finite family y1, . . . , yn satisfying ‖yi‖ < r.
Note that B is a closed ball of radius r > 0 if and only if⋂

‖y‖<r
(y +B) �= ∅,

in which case the intersection consists of the centre of the ball. In a pseudoball there is
only a “centre” for any finite set of directions. Also, note that g(B) = 0 if and only if B
is a ball. Thus, the larger the grade of B is the more proper a pseudoball is B. The idea
of properness for M -ideals will be studied in Section II.3.

To see a simple example, let 0 ≤ s ≤ 1. It is easy to check that

Bs = {(sn) ∈ c0 | |sn − s| ≤ 1 for all n ∈ N}
is a pseudoball in c0 with radius 1 and g(Bs) = s.

The following result explains our interest in pseudoballs here.

Proposition 1.3
(a) Let J be an M -ideal in X, and let x ∈ X. Then PJ (x) is a pseudoball in J with

radius d(x, J).
(b) If PJ(x) is a pseudoball of radius d(x, J) for all x ∈ X, then J is an M -ideal.

Proof: (a) Obviously, PJ (x) is a closed convex set with diameter ≤ 2 ·d(x, J). There is
no loss in generality in assuming d(x, J) = 1. So, let y1, . . . , yn ∈ intBJ be given. Then
we have

PJ (x+ yi) = J ∩B(x + yi, 1) �= ∅ (1)

since J is proximinal (Proposition 1.1), and

int
⋂
i

B(x+ yi, 1) �= ∅ (2′)

since ‖yi‖ < 1. By Theorem I.2.2(v) one concludes⋂
i

(yi + PJ(x)) = J ∩
⋂
i

B(x+ yi, 1) �= ∅.

Hence PJ (x) is a pseudoball of radius d(x, J).

(b) We shall verify the 3-ball property (Th. I.2.2(iv)). Let x, yi, ε be given as in I.2.2(iv).
Let r < d(x, J) < r + ε. Then there is y ∈ J such that

−ryi + y ∈ PJ(x), i = 1, 2, 3.
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Hence
‖x+ yi − y‖ ≤ d(x, J) + (1− r)‖yi‖ ≤ 1 + ε. 2

We shall prove in Theorem 3.10 that every pseudoball arises in this way. This and the
preceding proof show that B is a pseudoball if there is a “centre” for any 3 directions.

Proposition 1.4 Let B ⊂ Y be a pseudoball of radius r. Then

intB(0, r) ⊂ 1
2

(B −B) ⊂ B(0, r).

Proof: Let y ∈ Y , ‖y‖ < r. Choose

z ∈ (−y +B) ∩ (y +B).

Then
y =

1
2

((y + z)− (−y + z)) ∈ 1
2

(B −B).

The other inclusion is clear. 2

Combining Propositions 1.3 and 1.4 we arrive at the following stunning approximation
properties of M -ideals.

Corollary 1.5 If J is an M -ideal in X and x ∈ X\J , then every element in J can be
represented as a linear combination of two points from PJ(x). More precisely,

intBJ (0, d(x, J)) ⊂ 1
2

(PJ (x) − PJ(x)) ⊂ BJ(0, d(x, J)).

In particular, PJ (x) is compact if and only if J is finite dimensional.

Thus M -ideals are far from being Chebyshev subspaces. As a result, no strictly convex
space can contain a nontrivial M -ideal (otherwise the corresponding metric projection
would have to be single-valued).

Before we continue investigating the metric projection in more detail we want to give a
characterisation of pseudoballs in terms of the bidual space.

Theorem 1.6 For a closed convex bounded subset B ⊂ Y and r ≥ 0, equivalence between
(i) and (ii) holds:

(i) B is a pseudoball of radius r.
(ii) The weak ∗ closure of B in Y ∗∗ is a ball with radius r (and centre y∗∗B , say).

In this case
r · g(B) = d(y∗∗B , Y ). (∗)

Proof: We may assume r = 1.
(i)⇒ (ii): Let K = B

w∗
. It is easy to check that for any y∗ ∈ Y ∗ the set y∗(K) = y∗(B)

is a pseudoball in K with radius ‖y∗‖, and it is easy to prove, too, that pseudoballs in K

are actually balls. For y∗ ∈ Y ∗ let �(y∗) denote the centre of the ball y∗(K).
Claim: � is a continuous linear functional on Y ∗.
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Obviously � is homogeneous. To prove additivity choose, given ε > 0 and y∗1 , y∗2 ∈ Y ∗,
y1, y2, y3 ∈ Y such that

‖y1‖ < 1, R � 〈y∗1 , y1〉 ≥ (1 − ε2/2) ‖y∗1‖
‖y2‖ < 1, R � 〈y∗2 , y2〉 ≥ (1 − ε2/2) ‖y∗2‖
‖y3‖ < 1, R � 〈y∗1 + y∗2 , y3〉 ≥ (1 − ε2/2) ‖y∗1 + y∗2‖.

We infer
|〈y∗1 , y〉 − �(y∗1)| ≤ ε‖y∗1‖

and in the same way

|〈y∗2 , y〉 − �(y∗2)| ≤ ε‖y∗2‖
|〈y∗1 + y∗2 , y〉 − �(y∗1 + y∗2)| ≤ ε‖y∗1 + y∗2‖,

from which the additivity of � follows. The continuity of � is clear.
Let us write y∗∗B instead of �. It is left to show that

K = BY ∗∗(y∗∗B , 1).

This is an immediate consequence of the Hahn-Banach theorem, since

y∗(K) = BK (〈y∗∗B , y∗〉, ‖y∗‖) = y∗(BY ∗∗(y∗B, 1))

for all y∗ ∈ Y ∗.

(ii) ⇒ (i): A moment’s reflection shows that we have to prove

int (BY × · · · × BY ) ⊂ B × · · · ×B −∆B

where
∆B = {(y, . . . , y) | y ∈ B} ⊂ Y n

and n ∈ N is arbitrary. By a separation theorem due to Tukey [604] (see also [178, p. 461]
or [336, Cor. 22.5]) this will follow from

BY × · · · ×BY ⊂ B × · · · ×B −∆B. (1)

To prove this inclusion we first note

B
w∗ × · · · ×B w∗ −∆

B
w∗ ⊂ B × · · · ×B −∆B

w∗
(2)

thanks to the weak∗ continuity of (y∗∗1 , . . . , y
∗∗
n , y

∗∗) �→ (y∗∗1 − y∗∗, . . . , y∗∗n − y∗∗). Now
B

w∗
is a ball of radius 1 so that the left hand side of (2) contains BY ∗∗ × · · ·×BY ∗∗ and

a fortiori BY × · · · ×BY .
The desired inclusion easily follows from this and the Hahn-Banach theorem. It remains
to prove formula (∗). We first observe

BY ∗∗(y∗∗B , 1) ∩ Y = B.
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This and the triangle inequality give

B(y, 1− ‖y∗∗B − y‖) ⊂ B

and hence
g(B) ≤ ‖y∗∗B − y‖

for any y ∈ Y . This shows “≤” in (∗).
Conversely, if a ball B(y, s) is contained in B, then

BY ∗∗(y, s) ⊂ BY ∗∗(y∗∗B , 1).

This and the triangle inequality give

‖y∗∗B − y‖ ≤ 1− s
and hence d(y∗∗B , Y ) ≤ g(B). 2

Corollary 1.7 Let J be an M -ideal in X, and let P be the associated M -projection from
X∗∗ onto J⊥⊥. Consider the pseudoball B = PJ (x) for some x ∈ X. Then Px = y∗∗B ,
the centre of B

w∗
. More precisely: the canonical isometry i∗∗J from J∗∗ onto J⊥⊥ maps

y∗∗B onto Px. Moreover (if d(x, J) = 1)

g(PJ(x)) = d(Px, J) = sup{|〈y∗, x〉| | y∗ ∈ BJ∗}.
Proof: We consider J∗ via unique Hahn-Banach extensions as a subspace of X∗ (Re-
mark I.1.13). We have for y∗ ∈ J∗

y∗(BJ∗∗(y∗∗B , 1)) = BK(〈y∗∗B , y∗〉, ‖y∗‖).

On the other hand we know from Theorem 1.6 (w.l.o.g. d(x, J) = 1)

BK (〈y∗∗B , y∗〉, ‖y∗‖) = y∗(B)

⊂ y∗(BX(x, 1))

= BK(〈y∗, x〉, ‖y∗‖).

Hence 〈y∗∗B , y∗〉 = 〈x, y∗〉 for all y∗ ∈ J∗, which gives y∗∗B = Px. 2

We now return to best approximation and investigate the problem of whether there is a
continuous (possibly linear) selection for the metric projection. We recall the definition
of the Hausdorff metric dH on the set of closed subsets of X :

dH(A,B) = sup({d(a,B) | a ∈ A} ∪ {d(b, A) | b ∈ B})
Proposition 1.8 The metric projection associated to an M -ideal J in X is Lipschitz
continuous with respect to the Hausdorff metric. More precisely

dH(PJ (x1), PJ (x2)) ≤ 2 · ‖x1 − x2‖ for all x1, x2 ∈ X.
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Proof: The assertion is clearly true if either of x1 or x2 is in J . For the general case
we have to show: given x1, x2 ∈ X, ε > 0, and y2 ∈ PJ (x2), there is y1 ∈ PJ(x1) =
J ∩B(x1, d(x1, J)) such that

‖y1 − y2‖ ≤ 2 · ‖x1 − x2‖+ ε.

By the strict 2-ball property (Theorem I.2.2(v)) this will be assured by

‖x1 − y2‖ < 2 · ‖x1 − x2‖+ ε+ d(x1, J) (∗)
(since int (B(a1, r1) ∩B(a2, r2)) �= ∅ if ‖a1 − a2‖ < r1 + r2 and r1, r2 > 0). Finally, (∗)
is a consequence of

‖x1 − y2‖ ≤ ‖x1 − x2‖+ ‖x2 − y2‖
= ‖x1 − x2‖+ d(x2, J)

≤ ‖x1 − x2‖+ d(x2 − x1, J) + d(x1, J)

< 2 · ‖x1 − x2‖+ d(x1, J) + ε.

2

Remarks: (a) The constant 2 is optimal here. In fact, let X = �∞, J = c0, x1 =
(0, 0, 0, . . .), x2 = (1, 1, 1, . . .), y2 = (2, 0, 0, . . .). Then

dH(PJ (x1), PJ (x2)) ≥ d(y2, PJ (x1)) = ‖y2 − x1‖ = 2.

(b) A similar argument shows

dH(x1 − PJ(x1), x2 − PJ(x2)) ≤ dH(x1 − x2, J).

Theorem 1.9 Let J be an M -ideal in X.
(a) There exists a continuous homogeneous mapping π : X → J with π(x) ∈ PJ(x)

for all x ∈ X (i.e. a continuous selection for PJ) which is quasiadditive, meaning
π(x + y) = π(x) + y for x ∈ X, y ∈ J .

(b) There exists a continuous homogeneous mapping f : X/J → X with f(x+J) ∈
x + J and ‖f(x + J)‖ = ‖x + J‖ for all x ∈ X (i.e. a continuous norm
preserving lifting for the quotient map).

Proof: Consider the set-valued homogeneous mapping Σ on X/J defined by

Σ (x+ J) = {x} − PJ (x).

It is well-defined, and by Proposition 1.8 Σ is continuous for the Hausdorff metric, a
fortiori it is lower semicontinuous (that is to say for an open set U , the set {x+J | Σ(x+
J)∩U �= ∅} is open in X/J). Furthermore the Σ(x+J) are closed, convex and bounded.
Of course, the same is true for the restriction Σ0 of Σ to the unit sphere in X/J so that
Michael’s selection theorem [442, Theorem 3.2′′] applies to yield a continuous selection
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σ0 for Σ0. The technique described in [442, p. 376] permits the extension of σ0 to a
homogeneous selection σ for Σ on X/J .
Now, (a) is achieved by letting π(x) = x− σ(x + J), and (b) by f = σ. 2

Note that (a) and (b) above are in complete duality: given π as in (a), f(x+J) = x−π(x)
fulfills the requirements of (b), and given f as in (b), π(x) = x− f(x+ J) fulfills (a).

The question of whether the mappings π and f above can be chosen to be Lipschitzian (or
even linear) arises immediately. Let us first address the question of Lipschitz projections.
This problem remains open. It is pointed out in [510] and [655] that a Lipschitz set-valued
map need not have a Lipschitz selection (see the Notes and Remarks); on the other hand,
there does exist a 2-Lipschitz projection from �∞

R
onto c0 [414]. Here we give a lower

estimate for the Lipschitz constants of such projections in terms of the grade of certain
pseudoballs.

Proposition 1.10 Suppose J is an M -ideal in X. Let

g∗(J,X) := sup{g(PJ(x)) | d(x, J) = 1}.
If there exists a Lipschitz projection π from X onto J , then its Lipschitz constant L is
at least 2 · g∗(J,X).

The number g∗(J,X) defined above will be put into its proper milieu in the Notes and
Remarks section. It will be remarked there that g∗(J,X) = 1 in a number of cases, e.g.
for the familiar M -ideals JD in C(K) if D is not clopen, for J = K(H) in X = L(H) or,
more generally, in the case X = J∗∗. On the other hand, clearly g∗(J,X) = 0 if J is an
M -summand.

Proof: Let x ∈ X, d(x, J) = 1, and consider B = PJ(x) = BX(x, 1) ∩ J . Then

B = π(B) ⊂ π(BX(x, 1)) ⊂ BJ(π(x), L).

Now we take σ(J∗∗, J∗)-closures and use Proposition 1.3, Theorem 1.6, and Corollary 1.7
to obtain

BJ∗∗(Px, 1) ⊂ BJ∗∗(π(x), L)

where P is the M -projection from X∗∗ onto J⊥⊥ ∼= J∗∗. Hence

2Px− y ∈ BJ∗∗(π(x), L) for all y ∈ B
so that by Theorem 1.6 and Corollary 1.7

L ≥ 2 · ‖Px− (y + π(x))/2‖
≥ 2 · d(Px, J)

= 2 · g(B).

2

The grade of the pseudoballs PJ(x) is the appropriate tool for investigating the (possibly
empty) interior of the metric complement Jθ.
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Proposition 1.11 Let J be an M -ideal in X, and let

D = {x ∈ X | ‖x‖ = d(x, J) = 1}.
(a) If BJ(y0, 2r) ⊂ PJ (x0) for some x0 ∈ D, then BX(x0 − y0, r) ⊂ Jθ.
(b) If BX(x0, r) ⊂ Jθ for some x0 ∈ D, then PJ(x0) contains a ball of radius 2r− ε

for whatever ε > 0.
Therefore, Jθ has empty interior if and only if

g∗(J,X) := inf{g(PJ(x)) | d(x, J) = 1} = 1.

Proof: (a) We may assume y0 = 0. Define

|x| = sup{|〈x, y∗〉| | y∗ ∈ BJ∗}
(cf. Remark I.1.13). This is a seminorm, and from Lemma I.1.5 we get

‖x‖ = max{|x|, d(x, J)}. (1)

Now let z ∈ X, ‖z − x0‖ < r. We wish to show |z| < d(z, J) (so that z ∈ Jθ), then (a)
will follow from the closedness of Jθ.
First note |z − x0| < r and d(z − x0, J) < r by (1). Secondly,

|x0| ≤ 1− 2r. (2)

Proof of (2): Given ε > 0 choose y∗ ∈ SJ∗ such that

|x0| ≤ 〈y∗, x0〉+ ε.

Next choose y ∈ BJ such that
〈y∗, y〉 ≤ −1 + ε.

Note 2ry ∈ PJ(x0), i.e. ‖x0 − 2ry‖ = 1. The estimate

|x0| ≤ 〈y∗, x0〉+ ε

= 〈y∗, x0 − 2ry〉+ 2r〈y∗, y〉+ ε

≤ 1 + 2r(−1 + ε) + ε

now proves (2).
Altogether one obtains

|z| < |x0|+ r ≤ 1− r = d(x0, J)− r < d(z, J)

as desired.

(b) Let P be the M -projection from X∗∗ onto J⊥⊥ ∼= J∗∗. In view of Theorem 1.6 and
Corollary 1.7 we have to show d(Px0, J) ≤ 1− 2r. This is equivalent to

|〈y∗, x0〉| ≤ 1− 2r for all y∗ ∈ BJ∗ .
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To prove this for some given y∗ ∈ SJ∗ , fix ε > 0 and choose y ∈ intBJ such that 〈y∗, y〉
is real and so close to 1 that

|〈y∗, y〉 ± α| ≤ 1 only if |α| ≤ ε.
In particular 〈y∗, y〉 ≥ 1− ε.
Since PJ(x0) is a pseudoball (Proposition 1.3), we may find y ∈ PJ (x0) with y ± y ∈
PJ (x0). Let us first observe

|〈y∗, y〉 − 〈y∗, x0〉| ≤ ε. (3)

In fact,
〈y∗, y〉 ± 〈y∗, y〉 ∈ y∗(PJ (x0)) ⊂ BK(〈y∗, x0〉, 1)

(cf. Theorem 1.6) so that (3) follows. On the other hand, for z = (1− r)x0 + ry we have

y∗(z) = y∗(z + ry)− ry∗(y) ≤ (1 − r)− r(1 − ε) (4)

where we used ‖x0 − (z + ry)‖ ≤ r (since y + y ∈ PJ (x0)), consequently

‖z + ry‖ = d(z + ry, J) = d((1− r)x0, J) = 1− r.
(3) and (4) together give our claim. 2

With the help of Remark 3.8(d) below we conclude from Proposition 1.11 for example
that Jθ has empty interior if J is an M -ideal in J∗∗. Elementary calculations show that
JθD ⊂ C(K) has empty interior if and only if D has empty interior.

II.2 Linear projections onto M-ideals

In this section we shall investigate whether there are linear mappings π and f in the
setting of Theorem 1.9 above. Since there are noncomplemented M -ideals (e.g. c0 in �∞;
an entirely elementary argument for this fact is contained in [633]) we cannot generally
expect such a linear projection or lifting to exist. We next present a sufficient condition.
It involves Grothendieck’s approximation property which we now recall.

LetX be a Banach space. ThenX has the approximation property (AP) if Id ∈ F (X), the
closure being taken with respect to the topology τ of uniform convergence on compact
sets. We say that X has the λ-approximation property (λ-AP) where λ ≥ 1 if Id ∈
BF (X)(0, λ)

τ

. Usually the 1-AP is called metric approximation property (MAP). Finally
X has the bounded approximation property (BAP) if it has the λ-AP for some λ.
If one requires only approximation by compact operators instead of finite rank operators,
X is said to have the compact approximation property (CAP) resp. λ-compact approxi-
mation property (λ-CAP) etc.

We remark that the closure with respect to τ in the definition of the λ-AP and λ-CAP
may be replaced by the closure in the strong operator topology or even the weak operator
topology (note that the latter two topologies yield the same dual space [178, p. 477]).
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For a detailed exposition of the approximation properties see [158], [280], [421], [422].
We mention that the classical Lp(µ)- and C(K)-spaces enjoy the MAP. However, each
of the spaces � p (1 ≤ p < ∞, p �= 2) and c0 has a closed subspace failing the MCAP
(even the CAP) [422, p. 107 and passim], [354].
The main result of this section, due to Ando and, independently, Choi and Effros, is as
follows.

Theorem 2.1 Suppose J is an M -ideal in the Banach space X, Y is a separable Banach
space, and T ∈ L(Y,X/J) with ‖T ‖ = 1. Assume further

(a) Y has the BAP
or

(b) J is an L1-predual.
Then there is a continuous linear lifting L for T , i.e. L ∈ L(Y,X) such that qL = T
where q : X → X/J denotes the quotient map. More precisely, we obtain a lifting with

‖L‖ ≤ λ if Y has the λ-AP,

resp.
‖L‖ = 1 under assumption (b).

Before giving the proof we would like to make some remarks.

Remarks 2.2 (a) Instead of the separability of Y and (a) or (b) one may of course use
the weaker assumptions

(a) T factors through a separable space with the BAP
resp.

(b′) J is an L1-predual, and T has a separable range.
(b) If Theorem 2.1 is applicable to Y = X/J and L is a lifting for IdY , then Lq is a
continuous linear projection whose kernel is J so that J is a complemented subspace of
X .
(c) One might wonder to what extent the additional assumptions in Theorem 2.1 are
really needed. As for the separability one just has to activate the standard example
of the noncomplemented M -ideal c0 in �∞. (In view of the examples in [137] or [417,
Prop. 3.5] Theorem 2.1 does not even extend to weakly compactly generated spaces Y .)
Also, it is not enough to assume that J⊥ is norm one complemented by some projection
as is shown by the example of a subspace J of � 1 such that � 1/J = L1[0, 1]. As for the
approximation property we first note an easy proposition.

Proposition 2.3 For every separable Banach space Y there are a separable Banach
space X enjoying the MAP and an M -ideal J in X such that Y ∼= X/J .

Applying Proposition 2.3 to a space Y without the BAP we infer that there can be no
continuous linear lifting for the quotient map, because otherwise Y would be isomorphic
to a complemented subspace of X and hence would have the BAP.
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Proof of Proposition 2.3: We let (En) be an increasing sequence of finite dimensional
subspaces of Y such that

⋃
En is dense and define

X = {(xn) | xn ∈ En, limxn exists},
J = {(xn) | xn ∈ En, limxn = 0}.

(These spaces are, of course, equipped with the sup norm.)
It is quickly verified that Y is isometric to X/J . Moreover, J is an M -ideal. To prove this
we use the 3-ball property (Th. I.2.2(iv)). In fact, given normed vectors ξ = (xn) ∈ X ,
ηi = (yin) ∈ J (i = 1, 2, 3) and ε > 0, choose N such that

‖yin‖ ≤ ε for n > N and i = 1, 2, 3.

If η = (yn) with yn = xn (n ≤ N), yn = 0 (n > N), then

‖ξ + ηi − η‖ ≤ 1 + ε.

It remains to notice that X has the MAP since the contractive finite rank projections
Pm : (xn) �→ (x1, . . . , xm, xm, xm, . . .) converge strongly to the identity. 2

We now proceed to the proof of Theorem 2.1. The essential part of the argument is
purely finite dimensional, and we shall present it in the following lemma.

Lemma 2.4 Let X be a Banach space, J ⊂ X anM -ideal and q : X → X/J the quotient
map. Suppose further that E is a finite dimensional space and F ⊂ E is a subspace. Let
T ∈ L(E,X/J) with ‖T ‖ = 1. We assume

(a) there exists a contractive projection π from E onto F
or

(b) J is an L1-predual.
Then, given a contractive linear lifting LF : F → X for T |F and ε > 0, there exists a
contractive linear lifting LE : E → X for T such that ‖LE|F − LF‖ ≤ ε.
For the time being, let us take this lemma for granted and give the

Proof of Theorem 2.1:

We will first assume (b). Let (En) be an increasing sequence of finite dimensional sub-
spaces of Y such that its union is dense. Let E0 = {0} and L0 = 0. Using Lemma 2.4
one may inductively define a sequence Ln : En → X of contractions such that

qLn = T |En
and ‖Ln|En−1

− Ln−1‖ ≤ 2−n

for all n ∈ N. For y ∈ ⋃En the sequence (Lny) is eventually defined and Cauchy. Hence

Ly := lim
n→∞Lny (∗)

exists for these y, and (∗) defines a linear operator which can be extended to a contraction
(still called L) from Y to X . It is clear that qL = T , i.e. L is a lifting.
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The proof using assumption (a) is more delicate. We let c(X), c(X/J), . . . be the sup-
normed spaces of convergent sequences of vectors in X, X/J, . . . . Then T induces a
contraction c(T ) : c(Y )→ c(X/J) defined by

c(T )((yn)n) = (Tyn)n.

Further note that c(q) : c(X) → c(X/J), defined in the same vein, is a quotient map
with kernel c(J) so that

c(X/J) ∼= c(X)/c(J).

Finally we remark that c(J) is anM -ideal in c(X) as can easily be verified either by means
of the 3-ball property (Theorem I.2.2) or by directly checking the definition. (This is a
special case of Proposition VI.3.1.)
Now that we know that Y is a separable space with the λ-AP there is a sequence of
finite rank operators (Sn) converging strongly to IdY with ‖Sn‖ ≤ λ. Next we define an
auxiliary subspace H ⊂ c(Y ) as the closed linear span of the sequences

(S1y, . . . , Sm−1y, Smy, Smy, . . .)

where m ∈ N, y ∈ Y . Note (Sny)n ∈ H for all y ∈ Y . For m ∈ N and (yn)n ∈ H we
define

πm((yn)n) = (y1, . . . , ym−1, ym, ym, ym, . . .).

Obviously, the πm form an increasing sequence of contractive finite rank projections on
H converging strongly to IdH . If we let Em = ran(πm) and use the same technique as
in the first part (based on Lemma 2.4(a) applied to the M -ideal c(J) in c(X)) we obtain
a contractive linear lifting

Λ : H → c(X)

for c(T )|H , i.e.
c(q)Λ = c(T )|H .

To get the desired lifting for T we define

Ly = limit Λ((Sny)n).

Then
‖L‖ ≤ ‖Λ‖ · sup

n
‖Sn‖ ≤ λ

and

q(Ly) = limit c(q)(Λ((Sny)n))

= limit (c(q)Λ)((Sny)n)

= lim
n
T (Sny)

= Ty.

This concludes the proof of Theorem 2.1. 2
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Proof of Lemma 2.4: We shall work with the Banach space L(E,X). There is a
canonical isometry (since dimE <∞)

L(E,X)∗∗ ∼= L(E,X∗∗) (∗)
which we shall employ in the sequel. ((∗) is a special case of Grothendieck’s duality
theory of tensor products [280], but a direct argument is available in [152].) Let us
consider the following subspaces of L(E,X) :

W = {S ∈ L(E,X) | ran(S) ⊂ J} (∼= L(E, J))

V = {S ∈W | ker(S) ⊃ F}
Using (∗) one checks

W⊥⊥ = {S ∈ L(E,X∗∗) | ran(S) ⊂ J⊥⊥} (∼= L(E, J⊥⊥))

V ⊥⊥ = {S ∈W⊥⊥ | ker(S) ⊃ F}.
At this point we observe that W is an M -ideal in L(E,X): in fact, if P denotes the
M -projection from X∗∗ onto J⊥⊥, then S �→ PS is the M -projection from L(E,X∗∗)
onto W⊥⊥. (We refer to Chapter VI for more general results.)
Now let L1 ∈ L(E,X) be any extension of LF such that qL1 = T (this is possible since
dimE <∞). Abbreviating BL(E,X) by B we claim

L1 ∈ B + V . (∗∗)
To prove this, we think of L1 as an element of L(E,X∗∗) and will show

L1 ∈ B + V
w∗
. (∗∗∗)

In fact, let P be as above. We will first show how assumption (a) entails (∗∗∗). We
decompose L1 as

L1 = ((Id− P )L1 + PL1π) + PL1(Id− π)

and note

• PL1(Id − π) ∈ V ⊥⊥

• ‖PL1π‖ ≤ ‖P‖ · ‖LF‖ · ‖π‖ ≤ 1

• ‖(Id− P )L1‖ = ‖T ‖ = 1

(since ran(Id − P ) ∼= (X/J)∗∗ and the diagram

X/J (X/J)∗∗

iX

iX/J

Id− Pq

X

E

L1

T

X∗∗-

-

6 6
��

��
��*

HHHHHHj
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commutes) so that

• ‖(Id− P )L1 + PL1π‖ = max{‖(Id− P )L1‖, ‖PL1π‖} ≤ 1

(cf. Lemma VI.1.1(c)).
It follows that

L1 ∈ BL(E,X∗∗) + V ⊥⊥ = B
w∗

+ V
w∗

= B + V
w∗
.

This proves (∗∗∗) under assumption (a). If (b) is assumed we know that J⊥⊥ is isometric
to an L∞-space and hence enjoys the Hahn-Banach extension property (cf. e.g. [385,
p. 86ff.] for that matter). In particular, there is a contractive extension Λ : E → J⊥⊥ of
PLF : F → J⊥⊥. We now decompose L1 as

L1 = ((Id − P )L1 + Λ) + (PL1 − Λ)

and deduce L1 ∈ B + V
w∗

as above.
Given (∗∗) we conclude the proof of the lemma as follows. By (∗∗) there are S1 ∈ B,
S2 ∈ V such that

‖L1 − (S1 + S2)‖ ≤ ε/2.
Let L2 = L1 − S2. Then L2 is a lifting for T extending LF which is nearly a contraction
(‖L2‖ ≤ 1 + ε/2). We wish to disturb L2 so as to obtain a lifting which nearly extends
LF but is a contraction. The decisive tool to achieve this is an intersection property of
M -ideals. To wit:

L2 ∈ (L1 + V ) ∩ (1 + ε/2)B

⊂ B + V ∩ (1 + ε/2)B by (∗∗)
⊂ B +W ∩ (1 + ε/2)B

⊂ B + ε(B ∩W )

where we used Lemma 2.5 below in the last line. Thus there is a contraction LE with

‖LE − L2‖ ≤ ε and ran(LE − L2) ⊂ J.

It follows
‖LE|F − LF‖ ≤ ε and qLE = T,

as desired. 2

It remains to prove:

Lemma 2.5 For an M -ideal J in a Banach space X and ε > 0

BX + J ∩ (1 + ε/2)BX ⊂ BX + εBJ

holds.
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Proof: For x ∈ BX + J certainly d(x, J) ≤ 1 holds. Since J is proximinal (1.1) we
have B(x, 1) ∩ J �= ∅, and, if ‖x‖ ≤ 1 + ε/2, B(0, ε) ∩ B(x, 1) has nonempty interior.
Therefore there is y ∈ B(0, ε)∩B(x, 1)∩J by the strict 2-ball property (Theorem I.2.2(v)),
and x = (x− y) + y ∈ BX + εBJ , as requested. 2

Theorem 2.1 contains several well-known results on the existence of linear extension
operators as a special case. We give a sample.

Corollary 2.6 (Borsuk-Dugundji)
Let K be a compact Hausdorff space and let D ⊂ K be a closed metrizable subset. Then
there is a linear extension operator T : C(D)→ C(K) with ‖T ‖ = 1, i.e. (Tx)(t) = x(t)
for x ∈ C(D) and t ∈ D.
Proof: Consider the M -ideal JD = {x ∈ C(K) | x|D = 0} (Example I.1.4(a)). Then
C(D) ∼= C(K)/JD meets the requirements of Theorem 2.1. (As a matter of fact, both
(a) and (b) are fulfilled: C(D) has the MAP, and JD is an L1-predual.) 2

Corollary 2.7 (PeNlczyński)
Let A be the disk algebra, and suppose D is a subset of the unit circle with Lebesgue
measure 0. Then there is a contractive linear extension operator from C(D) to A.

Proof: Consider the M -ideal J = {x ∈ A | x|D = 0} (Example I.1.4(b)). By the
Rudin-Carleson theorem [239, p. 58] we have C(D) ∼= A/J , hence the result. 2

More general corollaries can be formulated along the same lines on the basis of the Glicks-
berg peak interpolation theorem [239, p. 58, Th. 12.5 and Th. 12.7] and Theorem V.4.2
below.

Corollary 2.8 (Michael and PeNlczyński, Ryll-Nardzewski)
Suppose X ⊂ C(K) and D ⊂ K is closed such that the pair (X |D, X) has the bounded
extension property. If X |D is separable and has the MAP, then there is a contractive
linear extension operator from X |D into X.

Proof: This follows from Corollary I.1.20. 2

A slightly different type of corollary is the following.

Corollary 2.9 (Sobczyk)
If X is a separable Banach space and Y ⊂ X is a closed subspace isometric to c0, then
there is a continuous linear projection π from X onto Y with ‖π‖ ≤ 2.

Proof: Y ⊥⊥, which is canonically isometric to Y ∗∗, is isometric to �∞, and Y (more
precisely iX(Y )) is an M -ideal in Y ⊥⊥, since c0 is an M -ideal in �∞. Since Y ⊥⊥ is
isometric to �∞ there is a contractive projection P from X∗∗ onto Y ⊥⊥. Hence Y ⊥ is
the kernel of a contractive projection on X∗, viz. Q = i∗XP

∗iX∗ . (To see this check
ran(Id − Q) ⊂ Y ⊥ ⊂ kerQ which shows Q(Id − Q) = 0 and kerQ = Y ⊥.) We now
renorm X∗ so that Q becomes an L-projection:

|x∗| := ‖Qx∗‖+ ‖x∗ −Qx∗‖
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i.e.
(X∗, | . |) = ran(Q)⊕1 Y

⊥.

Unfortunately | . | need not be a dual norm, therefore we cannot conclude directly that
Y is an M -ideal in some renorming of X . However, we have with respect to the dual
norm

(X∗∗, | . |) = ker(Q∗)⊕∞ Y ⊥⊥

so that Y ⊥⊥ is an M -summand in (X∗∗, | . |). Note that | . | and ‖ . ‖ coincide on Y ⊥⊥; it
follows that Y is an M -ideal in (X∗∗, | . |) (Prop. I.1.17(b)), a fortiori Y is an M -ideal in
the intermediate space (X, | . |). By Theorem 2.1 there is a contractive (with respect to
| . |) linear lifting L of the identity map IdX/Y with respect to quotient map q : X → X/Y
(Y is an L1-predual!), consequently π = Id−Lq is a linear projection onto Y . It remains
to estimate the norm:

‖π(x)‖ = |π(x)| ≤ |π| · |x| ≤ 2 · ‖x‖
since ‖x∗‖ ≤ |x∗| for all x∗ ∈ X∗ whence |x∗∗| ≤ ‖x∗∗‖ for all x∗∗ ∈ X∗∗. 2

We hasten to add that the above argument is probably the most complicated proof of
Sobczyk’s theorem that has appeared in the literature; a very simple one can be found
in [421, Th. 2.f.5]. Reading our proof from the bottom to the top will, however, yield an
interesting result in Chapter III (Theorem III.3.11).

We finish this section with a proposition which is contained in the proof of Corollary 2.9
and worth stating explicitly.

Proposition 2.10 Let X be a Banach space and Y ⊂ X a subspace isometric to c0.
Then there is an equivalent norm on X which agrees with the original norm on Y so that
Y becomes an M -ideal.

II.3 Proper M-ideals

This section in devoted to the study of the distinction between M -ideals and M -sum-
mands.

Definition 3.1 An M -ideal which is not an M -summand is called a proper M -ideal.
A Banach space Y can be a proper M -ideal if it is isometric to a proper M -ideal in a
suitable superspace X.

Trivially, a reflexive space Y cannot be a proper M -ideal, since in the decomposition

X∗ = Y ⊥ ⊕1 Y
∗

the complementary L-summand Y ∗ is reflexive, hence weak∗ closed. On the other hand,
if Y is an M -ideal in Y ∗∗ and if Y is not reflexive, then it is a proper M -ideal. (If Y were
an M -summand, then Y would be a weak∗ closed subspace of Y ∗∗ by Theorem I.1.9.
Goldstine’s theorem then yields Y = Y ∗∗.)
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The approximation theoretic results of Section II.1 imply the following useful criterion.

Proposition 3.2 For a closed subspace J ⊂ X, the following assertions are equivalent:
(i) J is an M -summand.
(ii) PJ (x) is a ball of radius d(x, J) for all x ∈ X.

Proof: (i) ⇒ (ii) is elementary (compare p. 49).
(ii)⇒ (i): First of all J is an M -ideal by Proposition 1.3. Let P denote the M -projection
from X∗∗ onto J⊥⊥. By Theorem 1.6 and Corollary 1.7 we obtain Px ∈ J for all x ∈ X
from (ii). This means that P maps X onto J . 2

Proposition 3.2 has an interesting consequence. The 3-ball property of Theorem I.2.2(iv)
implies:

• J is an M -ideal in X iff J is an M -ideal in lin (J ∪ {x}) for all x ∈ X .

Proposition 3.2 shows the same equivalence for M -summands! Thus:

Corollary 3.3 Y can be a proper M -ideal if and only if there is a Banach space X
containing Y as a proper M -ideal and dimX/Y = 1.

Another consequence is a characterisation of M -summands by means of an intersection
property.

Proposition 3.4 For a subspace J in X, the following assertions are equivalent:
(i) J is an M -summand.
(ii) For all families (B(xi, ri))i∈I of closed balls satisfying

B(xi, ri) ∩ J �= ∅ for all i ∈ I (1)

and ⋂
i

B(xi, ri) �= ∅ (2)

the conclusion ⋂
i

B(xi, ri) ∩ J �= ∅

obtains.

Proof: (i) ⇒ (ii) is Lemma I.2.1.
(ii) ⇒ (i): We show that PJ (x) is a ball of radius 1 if d(x, J) = 1. This is the case if and
only if ⋂

‖y‖<1

(PJ (x) + y) �= ∅. (∗)

This set equals ⋂
‖y‖<1

ε>0

BX(x+ y, 1 + ε) ∩ J,

and (∗) follows since the above collection of balls satisfies (1) and (2). 2
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We next describe a class of Banach spaces which cannot be proper M -ideals.

Proposition 3.5 Suppose Y is norm one complemented in Y ∗∗. Then Y cannot be a
proper M -ideal.

Proof: Suppose Y is an M -ideal in X . Let P denote the M -projection from X∗∗

onto Y ⊥⊥ and Q a contractive projection from Y ∗∗ ∼= Y ⊥⊥ onto Y . Then QP |X is a
contractive projection from X onto Y , hence Y is an M -summand (Corollary I.1.3). 2

We remark that the assumption of Proposition 3.5 is equivalent to saying that Y is a
1-complemented subspace of a dual; this is well known.

Corollary 3.6
(a) If Y is isometric to a dual Banach space (or merely a 1-complemented subspace

of a dual Banach space) then Y cannot be a proper M -ideal.
(b) A weak ∗ closed M -ideal in a dual Banach space X∗ is an M -summand which is

the annihilator of an L-summand in X.

Proof: (a) follows from Proposition 3.5, and (b) follows from (a), since the complemen-
tary M -summand is weak∗ closed by Theorem I.1.9. 2

Remarks: (a) Proposition 3.5 and Corollary 3.6 are isometric results; the corresponding
isomorphic versions are false in general. For example, consider �∞ = C(βN) and t ∈
βN\N . Then the proper M -ideal J{t} is isomorphic to �∞ as is easily seen. (Compare,
however, Corollary III.3.7(e).)
(b) Another argument for Corollary 3.6 appears in the Notes and Remarks section.

We are going to characterise Banach space which can be proper M -ideals intrinsically. It
will be useful to introduce some notation. We first recall the notion of the characteristic
r(V,X∗) of a subspace V of a dual space X∗, which was introduced by Dixmier [163],

r(V,X∗) = max{r ≥ 0 | rBX∗ ⊂ BV

w∗}.
Obviously, 0 ≤ r(Y,X∗) ≤ 1. Also r(V, V ∗∗) = 1 by Goldstine’s theorem, and an
application of the bipolar theorem shows

r(V,X∗) = inf
x∈SX

sup
x∗∈BV

|〈x∗, x〉|.

We refer to [174, p. 42ff.] for detailed information.
We now define:

Definition 3.7
(a) If J is a one-codimensional M -ideal in X then the grade of J in X , g(J,X), is

the number r(J∗, X∗) in case J is proper and g(J,X) = 0 otherwise.
(b) For a Banach space Y we define the grade of Y by

g(Y ) = sup g(Y,X)

where the sup is taken over all superspaces X of Y containing Y as a one-
codimensional M -ideal. If there is such an X with g(Y,X) = 1 we call Y an
extreme M -ideal.
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Remarks 3.8 (a) Corollary 3.3 suggests studying one-codimensional M -ideals in order
to find intrinsic characterisations.

(b) Note that r(J∗, X∗) is well defined for proper one-codimensional M -ideals, since J∗

is either weak∗ closed or weak∗ dense if dim(X/J) = 1. (Recall from Remark I.1.13 that
J∗ is a subspace of X∗ for M -ideals.) Also, g(J,X) = 0 only if J is an M -summand:
r(J∗, X∗) = 0 implies that BJ∗ and consequently J∗ is σ(X∗, X)-closed since J∗ has
codimension one. (In general, there do exist weak∗ dense subspaces V with r(V,X∗) =
0, e.g. for X = c0 [163], [174, p. 45]. As a matter of fact, this characterises non-
quasireflexivity of X [150], [174, p. 99].) Thus we obtain the equivalence

Y can be a proper M -ideal ⇐⇒ g(Y ) > 0,

and the bigger g(Y ) is, the more proper an M -ideal can Y be.

(c) As an example consider the space Xr of convergent sequences equipped with the norm

‖(sn)‖r = max
{
‖(sn)‖∞ ,

1
r

lim |sn|
}

where 0 < r ≤ 1 and ‖ · ‖∞ is the usual sup-norm. An application of the 3-ball property
(Theorem I.2.2(iv)) reveals that c0 is an M -ideal in Xr (note that ‖ · ‖r = ‖ · ‖∞ on c0).
Also, an easy computation shows g(c0, Xr) = r. (Some readers might find the following
representation of Xr as a G-space helpful:

Xr
∼= {x ∈ C({0} ∪ αN) | r · x(0) = x(∞)}

where the latter space carries the sup-norm.)

(d) Suppose there exists y∗∗ ∈ Y ∗∗ such that Y is an M -ideal in X = lin (Y ∪ {y∗∗}).
Goldstine’s theorem implies g(Y,X) = 1. Moreover, Y is an extreme M -ideal. The
converse is also true: the canonical operator IX,Y ∗ : X → Y ∗∗ is isometric if g(Y,X) = 1,
see the proof of Proposition 3.9. We note as a particular case

g(Y ) = 1 if Y is an M -ideal in Y ∗∗.

We now link the grade of an M -ideal Y with the grade of certain pseudoballs in Y .

Proposition 3.9 Let Y be an M -ideal in X, dimX/Y = 1. Then

g(Y,X) = g(PY (x)) ∀x ∈ X\Y.
Proof: Since Y is an M -summand if and only if either of the two numbers equals 0
(Proposition 3.2 and Remark 3.8(b)) we may suppose that Y is a proper M -ideal, i.e.
g(Y,X) > 0. A look at the definition of the characteristic reveals that the canonical
operator (recall Y ∗ ⊂ X∗)

IX,Y ∗ : X → Y ∗∗, 〈IX,Y ∗(x), y∗〉 = 〈x, y∗〉
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is an (into-) isomorphism with ‖I−1
X,Y ∗‖ = g(Y,X)−1. On the other hand, we note that

g(PY (x)) is actually independent of x (because codim (Y ) = 1) and equals (cf. Cor. 1.7,
including the notation used there), in the case d(x, Y ) = 1,

g(PY (x)) = d(Px, Y ) = sup{|〈x, y∗〉| | y∗ ∈ BY ∗}.
These two observations together prove Proposition 3.9. 2

Theorem 3.10 A Banach space Y can be a proper M -ideal if and only if Y contains
a pseudoball B which is not a ball. In the latter case, there exists a Banach space X
containing Y such that dim(X/Y ) = 1, Y is a properM -ideal in X, and g(Y,X) = g(B).

Proof: The “only if” part is a consequence of Proposition 1.3, Corollary 3.3 and Propo-
sition 3.9. We now turn to the “if” part. Let B ⊂ Y be a pseudoball which is not a ball.
We consider the vector space X = Y ⊕ K . We will find a norm | . | on X such that

a) the map y �→ (y, 0) from Y into X is an isometry,

b) PY⊕{0}(x) = B × {0} for some x,

c) Y ∼= Y ⊕ {0} is an M -ideal in X .

The inequality g(B) > 0 then yields that Y ⊕ {0} is a proper M -ideal with grade g(B)
by Proposition 3.9.
In the sequel we assume w.l.o.g. that B has diameter 2 and that 0 ∈ B. We put

K := co {(θy, θ) | θ ∈ K , |θ| = 1, y ∈ B}
= aco B × {1}

(the closures being taken with respect to the product topology) and let | . | be the asso-
ciated Minkowski functional. (To see that K is absorbing, use Proposition 1.4 to obtain

intBX × {0} ⊂ 1
2

(B × {1} −B × {−1}) ⊂ K.) (∗)

Since by (∗)
|(y, r)| ≤ ‖y‖+ |r| ≤ 4 · |(y, r)|,

| . | is a norm which generates the product topology. Thus X is a Banach space.
ad a): It remains to prove (look at (∗))

K ∩ (Y ⊕ {0}) ⊂ BY × {0}. (∗∗)
So let (y, 0) ∈ K. We may write

(y, 0) = lim(yn, rn)

rn =
∑
k

µn,k ,
∑
k

|µn,k| ≤ 1

yn =
∑
k

µn,kyn,k , yn,k ∈ B.
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If y∗∗B denotes the centre of B
w∗

in Y ∗∗, then (cf. Theorem 1.6)

‖yn‖ ≤
∥∥∥∥∥∑

k

µn,k(yn,k − y∗∗B )

∥∥∥∥∥ +

∣∣∣∣∣∑
k

µn,k

∣∣∣∣∣ ‖y∗∗B ‖
≤ 1 + |rn| ‖y∗∗B ‖.

Since rn → 0 and ‖ . ‖ and | . | are equivalent on Y we get

‖y‖ = lim ‖yn‖ ≤ 1,

i.e. y ∈ BY .
ad b): Consider x = (0,−1). A moment’s reflection reveals d(x, Y ⊕ {0}) = 1 and
PY⊕{0}(x) = {(y, 0) | (y, 1) ∈ K}. (For the proof take into account that |r| ≤ |(y, r)| for
all (y, r) ∈ X.) Therefore, B × {0} ⊂ PY⊕{0} (x). For the converse inclusion consider
y ∈ Y such that (y, 1) ∈ K. We write

(y, 1) = lim(yn, rn)

with

rn =
∑
k

λn,kθn,k , λn,k ≥ 0,
∑
k

λn,k = 1, |θn,k| = 1

yn =
∑
k

λn,kθn,kyn,k , yn,k ∈ B.

We have
ŷn := yn +

∑
k

λn,k(1 − θn,k)yn,k ∈ B

and
ŷn → y

thanks to the following lemma. This proves y ∈ B as desired.
ad c): We remark that PY⊕{0}((y, r)) = −r(B − y) × {0}, hence it is a pseudoball in
Y ⊕{0}with radius |r| = d((y, r), Y ⊕{0}). Thus c) is a consequence of Proposition 1.3(b).

2

So, the proof of Theorem 3.10 will be completed as soon as the following lemma is proved.

Lemma 3.11 For m ∈ N, λk ≥ 0,
∑m

k=1 λk = 1, and θk ∈ C with |θk| = 1 we have

m∑
k=1

λk|1− θk| ≤
√

2
√
ε+ 2

√
ε

provided that |∑λk(1− θk)| ≤ ε.
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Proof: We define

N1 := {k ∈ {1, . . . ,m}| Re θk > 1−√ε},
N2 := {k ∈ {1, . . . ,m}| Re θk ≤ 1−√ε},

λ :=
∑
k∈N1

λk,

and we claim that
1− λ ≤ √ε, (1)

|1− θk| ≤
√

2
√
ε for every k ∈ N1. (2)

ad (1): By assumption we have |1−z| ≤ ε and therefore Re z ≥ 1−ε, where z :=
∑
λkθk.

Let z1 :=
∑

k∈N1
(λk/λ)θk and z2 :=

∑
k∈N2

(λk/(1 − λ))θk. The convexity of {w ∈ C |
|w| ≤ 1, Re w ≤ 1−√ε} implies that Re z2 ≤ 1−√ε. Hence

1− ε ≤ Re z = Re (λz1 + (1 − λ)z2) ≤ λ+ (1− λ)(1 −√ε),
and this gives 1− λ ≤ √ε.
ad (2): For k ∈ N1 we have 1− Re θk <

√
ε and thus

|1− θk|2 = 2(1− Re θk) < 2
√
ε.

The lemma follows by combining (1) and (2):

m∑
k=1

λk|1− θk| =
∑
k∈N1

λk|1− θk|+
∑
k∈N2

λk|1− θk|

≤ λ

√
2
√
ε+ (1− λ) · 2

≤
√

2
√
ε+ 2

√
ε.

2

We next aim at giving an example of a Banach space which can be a proper M -ideal, yet
not an extreme M -ideal. (A geometric characterisation of extreme M -ideals is contained
in the Notes and Remarks section.)
First we present a result on finite dimensional subspaces of proper M -ideals which will
eventually lead to a necessary condition for an M -ideal to be extreme.

Proposition 3.12 Suppose Y is a proper M -ideal in X with dimX/Y = 1 and α :=
g(Y,X) > 0. Then, given ε > 0 and a finite dimensional subspace E ⊂ Y , one may find
y0 ∈ Y satisfying

α

1 + ε
max{‖e‖, |λ|} ≤ ‖e+ λy0‖ ≤ (1 + ε) max{‖e‖, |λ|}

for all e ∈ E, λ ∈ K .
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Proof: We recall that under our present assumptions the canonical operator

IX,Y ∗ : X → Y ∗∗, 〈IX,Y ∗(x), y∗〉 = 〈x, y∗〉

is an (into-) isomorphism whose inverse has norm α−1. To get started, consider the
decomposition

X∗∗ = Y ⊥⊥ ⊕∞ lin {x∗∗0 }
in which we assume ‖x∗∗0 ‖ = 1. Let δ > 0 and choose with the help of the principle of
local reflexivity an injective operator

T : lin (E ∪ {x∗∗0 })→ X

such that
‖T ‖ · ‖T−1‖ ≤ 1 + δ

and
Te = e for all e ∈ E.

For x0 := Tx∗∗0 we obtain

1
1 + δ

max{‖e‖, |λ|} ≤ ‖e+ λx0‖ ≤ (1 + δ) max{‖e‖, |λ|}

for all e ∈ E, λ ∈ K .
We have to “push” x0 into Y . As a first step, we push it into Y ∗∗ by means of y∗∗0 :=
IX,Y ∗(x0). It follows easily

α

1 + δ
max{‖e‖, |λ|} ≤ ‖e+ λy∗∗0 ‖ ≤ (1 + δ) max{‖e‖, |λ|}

for all e ∈ E, λ ∈ K . As a second step, we again apply the principle of local reflexivity
to obtain an injection

S : lin (E ∪ {y∗∗0 })→ Y

with ‖S‖ · ‖S−1‖ ≤ 1 + δ which extends the identity on E.
With an appropriate choice of δ and y0 := S(y∗∗0 ) we finally achieve the desired result.

2

Proposition 3.12 claims that there are uniformly M -orthogonal directions in a proper
M -ideal Y for every finite dimensional subspace with the uniformity constant depending
only on the grade. If Y is even an extremeM -ideal (i.e. α = 1), then an obvious induction
process shows that Y contains arbitrarily good copies of �∞(n) “everywhere”, i.e. the
induction process can be started with an arbitrary y ∈ Y . Moreover, these subspaces are
even nested so that Y contains (1 + ε)-copies of c0, for every ε > 0. This result extends
to all proper M -ideals as will be shown using a different approach in Theorem 4.7.

The following corollary supports the point of view that elements of (proper) M -ideals
should – loosely speaking – vanish at infinity.
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Corollary 3.13 If Y is an extreme M -ideal, then

0 ∈ exw∗
BY ∗ .

Proof: Let y1, . . . , yn ∈ Y, ‖yi‖ = 1, and δ > 0. We have to produce some p ∈ exBY ∗

such that
|p(yi)| ≤ δ for all i.

To this end consider E := lin {y1, · · · , yn} and ε = δ/3 > 0. Choose y0 according to 3.12.
In particular (since α = 1 here) ‖y0‖ ≥ 1/(1 + ε) so that there exists p ∈ ex BY ∗ with
p(y0) ∈ R and p(y0) > 1/(1 + ε)− ε. Hence for i = 1, . . . , n and suitable scalars θi with
modulus 1

|p(yi)| = p(θiyi + y0)− p(y0)

≤ ‖θiyi + y0‖ − p(y0)

≤ 1 + ε−
( 1

1 + ε
− ε
)

≤ δ.

2

The preceding corollary enables us to prove the existence of nonextreme M -ideals. (The
example of Remark 3.8(c) does not give this.)

Example 3.14 Consider the sup-normed spaces

X = {(sn)n≥0 ∈ c | s0 = s1 + 2s∞}
Y = {(sn) ∈ X | s0 = 0}.

(Here, s∞ := lim sn.) Then
(a) Y can be a proper M -ideal – in fact Y is a proper M -ideal in X – but
(b) Y cannot be an extreme M -ideal in any superspace.

Proof: A straightforward application of the 3-ball property (Theorem I.2.2) shows
that Y is an M -ideal in X . To show that it is proper, let δm : (sn) �→ sm be the
evaluation functional on X . It is quickly seen that 2δn+ δ1 attains its norm on Y so that
2δn + δ1 ∈ Y ∗ (⊂ X∗, cf. Remark I.1.13). But (2δn + δ1) tends to δ0 ∈ Y ⊥ with respect
to σ(X∗, X), hence Y ∗ is not weak∗ closed in X∗. This proves (a). To prove (b) we use
Corollary 3.13. We have

ex BY ∗ ⊂ {λ · δn|Y | n = 1, 2, . . . ,∞, |λ| = 1}

by the Krein-Milman theorem (more precisely Milman’s converse to it) since the latter
set is norming. But it is also σ(Y ∗, Y )-closed, therefore 0 �∈ exw∗

BY ∗ . 2
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II.4 The intersection property IP

In Theorem 3.10 we gave an internal characterisation of Banach spaces which can (or
cannot) appear as proper M -ideals. In this section we are going to discuss an easy to
check intersection property whose presence in a Banach space X entails that X fails to
be a proper M -ideal.

Definition 4.1 A Banach space X has the intersection property (IP for short) if, given
ε > 0, there are a finite family {xi | i = 1, . . . , n} ⊂ SX and δ > 0 such that

n⋂
i=1

B(±xi, 1 + δ) ⊂ B(0, ε).

An equivalent formulation, which saves one existence quantifier, is of course

∀ε > 0 ∃n ∈ N ∃x1, . . . , xn ∈ intBX ∀x ∈ X (∀i‖x± xi‖ ≤ 1⇒ ‖x‖ ≤ ε).

It is easily verified that c0 fails the IP while C(K) has it. (For the latter, take n = 1 and
x1 = 1, independently of ε.) The C(K)-proof admits immediate generalisation. Recall
that x ∈ BX is called a strong extreme point of BX if

xk ∈ X, ‖x± xk‖ → 1 ⇒ xk → 0.

Taking n = 1 and x1 a strong extreme point in Definition 4.1 we conclude that Banach
spaces X for which BX contains a strong extreme point enjoy the IP. It is, however,
worth remarking at this point that we shall eventually encounter a strictly convex space
which fails the IP (see the remarks following Example 4.6).
Let us collect more examples of spaces with IP.

Proposition 4.2 Each of the following properties is sufficient for a Banach space X to
have the IP:

(a) BX contains a strong extreme point,
(b) X is a (real or complex) unital Banach algebra (e.g. X = L(E)),
(c) there exists x0 ∈ X such that |p(x0)| = 1 for all p ∈ exBX∗ ,
(d) exw∗

BX∗ ⊂ SX∗ (e.g. X is a CΣ-space),
(e) BX is dentable (e.g. BX contains a strongly exposed point),
(f) X has the Radon-Nikodým property (e.g. X is reflexive or a separable dual space),
(g) X contains a nontrivial L-summand (e.g. X is an L1-space),
(h) X is the space CΣ(Sm).

The definition of a CΣ-space will be recalled in the next section (p. 83); for the notions
employed in (e) and (f) we refer to the monograph [158].
Proof: (a) was observed above.
(b) The complex case follows from Theorem 5, p. 38 in [84], where it is shown that the
unit of a Banach algebra is a strong extreme point of the unit ball, and (a). The real case
can be reduced to the complex case by a complexification procedure (p. 68ff. in [85]).
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(c) is a consequence of (a), since such an x0 is a strong extreme point.
(d) We first claim:

(∗)
For each ε > 0 there is a finite family {xi | i ≤ n} ∈ intBX such that

max
i
|p(xi)| > 1− ε for all p ∈ exBX∗ .

If this were false, we could find a net (pF ) in ex BX∗ , indexed by the finite subsets of
intBX , such that

max
x∈F

|pF (x)| ≤ 1− ε0,
for a suitable ε0 > 0. Then also

|x∗(x)| ≤ 1− ε0 for all x ∈ intBX ,

where x∗ is any weak∗-accumulation point of the net (pF ). Hence x∗ ∈ (exw∗
BX∗)\SX∗ ,

which contradicts (d). (By the way, it is not hard to show that conversely (∗) implies
the condition in (d).) Now let ε > 0 and (xi) as in (∗). We wish to show

‖x± xi‖ ≤ 1 (all i) ⇒ ‖x‖ ≤
√

2ε,

which will yield the IP.
Let p ∈ ex BX∗ . Then by assumption

|p(x)± p(xi)| ≤ 1 (all i).

But |p(xi)| > 1− ε for a certain i, so that

|p(x)| ≤
√

2ε

and, consequently,
‖x‖ = sup

p∈exBX∗
|p(x)| ≤

√
2ε.

That CΣ-spaces have the property in (d) is contained in [385, p. 72f.]; as a matter of
fact, for CΣ-spaces X , exBX∗ is weak∗ closed.
(e) Suppose X fails the IP. We will show that there exists ε > 0 with

x ∈ co (BX\B(x, ε/2)) for all x ∈ SX ,
i.e., the unit ball is not dentable.
By assumption there exists ε > 0 such that for all x ∈ SX and n ∈ N there is zn ∈ X ,
‖zn‖ > ε, with ‖x± zn‖ ≤ 1 + 1

n =: rn.
Then

1
2

(
(x+ zn)rn + (x− zn)rn

)
→ x

and
‖(x± zn)rn − x‖ > ε/2

for large n.
(f) follows from (e), by well-known results ([158, Chap. V]).
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(g) Suppose X = X1 ⊕1 X2 and consider any xi ∈ Xi, ‖xi‖ = 1. We claim

B(±x1, 1 + ε) ∩B(±x2, 1 + ε) ⊂ B(0, 2ε).

So let y be a member of the left hand side and decompose

y = y1 + y2 ∈ X1 ⊕1 X2.

Then
‖y1 ± x1‖+ ‖y2‖ ≤ 1 + ε,

hence
‖x1‖+ ‖y2‖ ≤ 1 + ε,

so that
‖y2‖ ≤ ε.

Analogously, ‖y1‖ ≤ ε and so

‖y‖ = ‖y1‖+ ‖y2‖ ≤ 2ε.

(h) As usual, Sm is the Euclidean sphere in R
m+1 and

CΣ(Sm) = {f ∈ C(Sm) | f(s) = −f(−s) ∀ s ∈ Sm}.
This is a CΣ-space and consequently enjoys the IP by (d). The upshot of this example
is, however, that the number n appearing in Definition 4.1 must be larger than m for
X = CΣ(Sm). So let us prove:

(∗)
For f1, . . . , fm in the open unit ball of CΣ(Sm) there is g ∈ CΣ(Sm) with

‖g ± fi‖ ≤ 1 (all i), but ‖g‖ > 1/3.

The decisive tool to prove this assertion is a corollary to the Borsuk-Ulam theorem [6,
p. 485, Satz VIII] according to which any m functions in CΣ(Sm) have a common zero,
say f1(s0) = . . . = fm(s0) = 0. To construct g choose a neighbourhood U of s0 such that

U ∩ −U = ∅ and |fi(s)| < 1/2 for s ∈ U, i ≤ m.
Let h : Sm → [0, 1] be a continuous function vanishing outside U with h(s0) = 1. Put
g(s) = 1

2 (h(s) − h(−s)) and V = −U ∪ U . Then g ∈ CΣ(Sm), ‖g‖ = |g(s0)| = 1/2, and
g vanishes off V . It follows easily ‖g ± fi‖ ≤ 1. 2

One cannot expect many permanence properties for the IP. For example, c0 ⊕1 c0 has
the IP by Proposition 4.2(g), but the one-complemented subspace c0 fails it. Also, �2 has
the IP while the injective tensor product �2⊗̂ε�2 fails it. This follows from Theorem 4.4
below and Example I.1.4(d). We stress, however, that in connection with M -ideals
positive results can be achieved.

Proposition 4.3 Suppose X has the IP and J is an M -ideal in X. Then X/J has the
IP. In particular, the IP is inherited by M -summands.
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Proof: For every ε > 0, we find by assumption x1, . . . , xn ∈ intBX such that

‖z ± xi‖ ≤ 1 (all i) ⇒ ‖z‖ ≤ ε.

We claim that q(x1), . . . , q(xn) will do for X/J , where q : X → X/J is the quotient map.
So let

‖q(x)± q(xi)‖ ≤ 1 (all i).

Then all the balls B(x± xi, 1) meet J since J is proximinal (Proposition 1.1), and their
intersection contains a small ball around x, since ‖xi‖ < 1. Apply Theorem I.2.2(v) to
obtain y ∈ J such that

‖x± xi − y‖ ≤ 1 (all i).

By assumption we have ‖x− y‖ ≤ ε, i.e. ‖q(x)‖ ≤ ε. 2

The following theorem furnishes a large class of Banach spaces which fail the IP. Note
that by Proposition 4.2 the failure of the IP is connected to some kind of “vanishing at
infinity” (especially (c) and (d) suggest this point of view). So we think that Theorem 4.4
is quite a natural result.

Theorem 4.4 A proper M -ideal X fails the IP.

Proof: We know from Theorem 3.10 (or Corollary 1.7 if you prefer) that X contains a
pseudoball B with radius 1 which is not a ball so that

α := d(x∗∗, X) > 0

where x∗∗ is the centre of B
w∗

in X∗∗. Let ε < α and x1, . . . , xn ∈ intBX . We wish to
produce z ∈ X with ‖z‖ ≥ ε and ‖z± xi‖ ≤ 1 for all i, thus showing that X fails the IP.
First of all choose η > 0 such that

(1 + η) max ‖xi‖ < 1 and ε < α/(1 + η)2.

The defining property of pseudoballs provides us with an x ∈ X such that x±(1+η)xi ∈ B
and thus ‖x ± (1 + η)xi − x∗∗‖ ≤ 1 (i = 1, . . . , n). We now use the principle of local
reflexivity to obtain an injection

T : E := lin {x∗∗, x, x1, . . . , xn} → X

with ‖T ‖, ‖T−1‖ ≤ 1 + η which is the identity on E ∩X . Hence

‖x− Tx∗∗ ± (1 + η)xi‖ ≤ 1 + η

and
‖x− Tx∗∗‖ ≥ ‖x− x∗∗‖/(1 + η) ≥ α/(1 + η).

Therefore z = (x− Tx∗∗)/(1 + η) has the required properties. 2
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The converse of Theorem 4.4 does not hold. To prepare a counterexample we prove:

Lemma 4.5 Suppose X1, X2, . . . are Banach spaces and put

X = X1 ⊕∞ X2 ⊕∞ · · · = {(xm) | xm ∈ Xm, ‖(xm)‖ := sup
m
‖xm‖ <∞}.

Then:
(a) If no Xm can be a proper M -ideal, then neither can X.
(b) If X has the IP, then each Xm has the IP. Moreover, the number n = n(ε) in

the definition of the IP can be chosen to be the same for X and each Xm.

Proof: (a) Let Pm be the M -projection from X onto Xm (we consider Xm as naturally
embedded in X). Suppose X is an M -ideal in some superspace Z. Then Xm is an M -
ideal in Z (Proposition I.1.17(b)) so that by assumption on Xm there is an M -projection
Qm from Z onto Xm. Proposition I.1.2(a) shows Pm = Qm|X .
Define Q : Z → Z by Qz = (Qmz)m∈N. We have shown that Q is a contractive projection
onto the M -ideal X , hence X cannot be a proper M -ideal by Corollary I.1.3.
(b) can immediately be verified. 2

Example 4.6 There is a Banach space which fails the IP, yet cannot be a proper M -
ideal.

Proof: Let Xm = CΣ(Sm) (cf. 4.2(h)) and consider the �∞-sum X = X1⊕∞X2⊕∞ · · ·.
Then Xm has the IP (Proposition 4.2(h)), thus cannot be a proper M -ideal (Theo-
rem 4.4). Therefore X cannot be a proper M -ideal either (Lemma 4.5(a)).
On the other hand, to verify the IP for Xm we need at least m + 1 vectors in Defini-
tion 4.1 as was pointed out in the proof of Proposition 4.2(h). Therefore X fails the IP
(Lemma 4.5(b)). 2

As a consequence of Theorem 4.4 and Proposition 4.2(a) one obtains that the extreme
point structure of the unit ball of a proper M -ideal is quite weak; at any rate there
are no strong extreme points, let alone strongly exposed points. However, it is shown
in [303] that BX = co exBX for X = K(�p), 1 < p < ∞, p �= 2. Since K(�p) is
a proper M -ideal in L(�p) for these p (this will be proved in Example VI.4.1), none
of these extreme points can be strongly extreme. Even better: The quotient space
C(T)/A (T = unit circle, A = disk algebra) is strictly convex and an M -ideal in its
bidual (Remark IV.1.17). Though all the points with norm one are extreme, none of
them is strongly extreme.
As another consequence of 4.4 and 4.2 we observe that a proper M -ideal must fail the
RNP. This also follows from the following result which was already announced in the
previous section, where a special case was treated (see the discussion following Proposi-
tion 3.12).

Theorem 4.7 A Banach space X which fails the IP contains a subspace isomorphic to
c0. In particular, every proper M -ideal contains c0.

Proof: A by now classical theorem due to Bessaga and PeNlczynski [421, Prop. 2.e.4]
asserts that X contains a copy of c0 if and only if there is a weakly unconditionally
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Cauchy series which does not converge. So, our aim is to produce a sequence (xi) such
that ∥∥∥∥∥

n∑
i=1

εixi

∥∥∥∥∥ < 1 for all n ∈ N and all εi = ±1,

yet
inf ‖xi‖ > 0.

Let α > 0 be such that for all finite families {z1, . . . , zn} ⊂ intBX there is z ∈ X
with α < ‖z‖ < 1 and ‖z ± zi‖ < 1 for all i. Such an α exists by assumption on
X . (The inequality ‖z‖ < 1 can be obtained upon adding 0 to {z1, . . . , zn}.) Now the
desired sequence can easily be defined inductively: Start with an arbitrary x1 satisfying
α < ‖x1‖ < 1. Suppose x1, . . . , xn have been found such that∥∥∥∥∥

n∑
i=1

εixi

∥∥∥∥∥ < 1 for all choices of signs εi = ±1, (1)

‖xi‖ > α for i = 1, . . . , n. (2)

Apply the above version of non-IP to the finite family {∑n
1 εixi | εi = ±1} to obtain

xn+1 extending (1) and (2) to n+ 1.
This completes the proof of Theorem 4.7. 2

James’ distortion theorem (e.g. [421, Prop. 2.e.3]) permits us to infer that there are even
(1 + ε)-isomorphic copies of c0, for every ε > 0. One might wonder if Theorem 4.7 can
be strengthened so as to even yield isometric copies of c0; after all, the assumptions of
4.7 are of isometric type as well. This, however, is impossible; the strictly convex space
C(T)/A, which is an M -ideal in its bidual, serves as a counterexample (Remark IV.1.17).
Another counterexample will be presented in Corollary III.2.12 where we will exhibit
a smooth space X which is an M -ideal in X∗∗. Another enlightening counterexample
concerning (1 + ε)-isomorphisms will be presented in Proposition III.2.13.

In the last part of this section we will consider a question of isomorphic nature, namely
what conditions imply that a Banach space can be renormed so as to become a proper
M -ideal. It will turn out that in the isomorphic setting an example such as 4.6 does not
exist. The key idea is contained in the following notion.

Definition 4.8 A closed bounded convex subset S of a Banach space is called a quasiball
if

(a) int (S − S) �= ∅,
(b)

⋂n
i=1(xi + S) �= ∅ for any finite family of vectors x1, . . . , xn ∈ 1

2 (S − S).
A quasiball is called proper if it is not symmetric.

Proposition 1.4 shows that every pseudoball is a quasiball. But unlike the definition of
a pseudoball, the notion of a quasiball is only dependent on the topology of X and not
on the particular choice of an equivalent norm. On the other hand, a quasiball S will be
a pseudoball for the equivalent norm | . | on X whose unit ball is 1

2S − S. (By the way,
the remark following Proposition 1.3 thus implies that it would be enough to require (b)
of Definition 4.8 for n = 3.) Moreover, S is proper if and only if it is not a ball for | . |.
(This follows for example from Theorem 1.6.)
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Theorem 4.9 For a Banach space X, the following assertions are equivalent:
(i) X can be renormed to become a proper M -ideal.
(ii) X can be renormed to fail the IP.
(iii) X contains an isomorphic copy of c0.
(iv) X contains a proper quasiball.

Proof: (iv) ⇒ (i): This follows from the above considerations together with Theo-
rem 3.10.
(i) ⇒ (ii) is Theorem 4.4.
(ii) ⇒ (iii) is Theorem 4.7.
(iii)⇒ (iv): Let Y be subspace ofX isomorphic to c0. Then Y contains a proper quasiball
S0 since c0 does. We let S = S0 +BX . Obviously, S is closed, convex, bounded, and
int (S − S) �= ∅. Moreover, S is not symmetric. In fact, an easy application of the
Hahn-Banach theorem reveals

y +BX ⊂ S ⇒ y ∈ S0. (∗)

Thus, should S be symmetric, w.l.o.g. with centre 0, (∗) implies that S0 is symmetric
around 0, too.
It is left to establish (b) from Definition 4.8. We first observe

int
1
2

(S − S) ⊂ int
1
2

(S0 +BX)− (S0 +BX)

= int
(1

2
(S0 − S0) +BX

)
= intY

1
2

(S0 − S0) + intBX .

[Proof of this equality: Let us abbreviate 1
2 (S0 − S0) by V . Then obviously

C := intY V + intBX ⊂ int V + BX =: C
′

and also C
′ ⊂ C since

V +BX = intY V + intBX ⊂ C.
Thus C and C

′
are open convex sets satisfying

C ⊂ C ′ ⊂ C.

An application of the Hahn-Banach theorem now shows C = C′.]
Now let xi ∈ int 1

2 (S − S) (i = 1, . . . , n). Write

xi = yi + zi ∈ intY
1
2

(S0 − S0) + intBX .
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Then, since −zi ∈ BX ,
n⋂
i=1

(xi + S) ⊃
n⋂
i=1

(yi + zi) + (S0 +BX)

⊃
n⋂
i=1

(yi + S0)

�= ∅.
This completes the proof of Theorem 4.9. 2

II.5 L1-preduals and M-ideals

This final section is devoted to the study of L1-predual spaces (i.e. Banach spaces X
whose duals are isometrically isomorphic to spaces of type L1(µ)) and certain of their
subclasses by means of M -structure methods. We shall restrict ourselves to real Banach
spaces, although several of the results presented here have direct analogues for complex
spaces, owing to the refinements in complex integral representation theory made in the
70s.

Our first result connects the M -ideals in an L1-predual space with certain faces in the
unit ball of L1-spaces. Let us call a subset H of BY , Y a Banach space, a biface if
H = co (F ∪ −F ) for some face F in BY .

Proposition 5.1 In an L1-predual space X, there is a one-to-one correspondence be-
tween M -ideals in X and weak ∗ closed bifaces in BX∗ : J ⊂ X is an M -ideal if and only
if J is the annihilator of a weak ∗ closed biface in BX∗.

Proof: Let H be a weak∗ closed biface in BX∗ . It is proved in [385, p. 220] that

(a) H equals the unit ball of its linear span linH .

(Note that (a) does not hold for bifaces in arbitrary Banach spaces, as shown by two-
dimensional examples.) Using similar arguments we wish to show:

(b) If p ∈ H and ‖p‖ = ‖p− q‖+ ‖q‖, then q ∈ H .

To prove (b) we may assume that H �= BX∗ and that X∗ is isometric to some L1-space
in such a way that F corresponds to a subface of

{u ∈ L1 | ‖u‖ = 1, u ≥ 0}
where ≥ is the usual order of L1 (see [385, p. 171]).

Claim: If 0 ≤ u ≤ v, u �= 0 and
v

‖v‖ ∈ F , then
u

‖u‖ ∈ F .

In fact, writing v = u+ w with w ≥ 0 we obtain from the additivity of the L1-norm on
positive elements

‖v‖ = ‖u‖+ ‖w‖
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and
v

‖v‖ =
‖u‖
‖v‖

u

‖u‖ +
‖w‖
‖v‖

w

‖w‖ ∈ F,

hence the claim.

Now the norm equality in (b) is equivalent to

|p| = |p− q|+ |q| a.e.

which in turn means
p+ ≥ q+, p− ≥ q−.

(p+ is the positive part of the L1-function p.) By assumption on p we may write

p = λu1 − (1− λ)u2

with some 0 ≤ λ ≤ 1, ui ∈ F . Hence

λu1 ≥ p+ ≥ q+,

and the claim applies to show that q+ = 0 or else
q+

‖q+‖ ∈ F . An analogous statement

applies to q− so that

q = ‖q+‖ q
+

‖q+‖ − ‖q
−‖ q

−

‖q−‖ + (1− ‖q‖) · 0

∈ co (F ∪ −F ∪ {0})
= co (F ∪ −F )

= H.

(a) and (b) together yield:

(c) linH is a weak∗ closed order ideal in L1 and hence an L-summand.

Weak∗ closedness follows from (a) and the Krein-Smulian theorem. If |q| ≤ |p| and
p ∈ H , then by (b) p+ ∈ H and p− ∈ H , hence |p| ∈ H . By the same argument q+ and
q− are in H , hence q ∈ linH . For the equivalence of order ideals and L-summands cf.
Example I.1.6(a). Thus, we have shown that

J := {x ∈ X | p(x) = 0 for all p ∈ H}
is an M -ideal in X .
Conversely let J be an M -ideal in X . Representing X∗ as L1(µ) we see that there is a
measurable set A such that (Example I.1.6(a) again)

J⊥ = {p ∈ L1 | p|A = 0}.
Now

F =
{
p ∈ L1

∣∣∣∣ ‖p‖ ≤ 1,
∫
{A

p dµ = 1
}
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defines a face in BL1 such that

J⊥ = lin (co (F ∪−F )) (= lin F ). 2

We wish to consider the following subclasses of L1-predual spaces.

• X is a G-space if there are a compact Hausdorff space K and (si, ti, λi) ∈
K ×K × R, i in some index set I, such that X is isometric to

{x ∈ C(K) | x(si) = λi · x(ti) for all i ∈ I}.

• X is a Cσ-space if there are a compact Hausdorff spaceK and an involutory
homeomorphism σ : K → K (i.e. σ2 = idK) such that X is isometric to

{x ∈ C(K) | x(t) = −x(σ(t)) for all t ∈ K}.

• X is a CΣ-space if it is a Cσ-space for some fixed point free involution σ
on some K.

Obviously, a Cσ-space is a G-space. Lindenstrauss [413, p. 79ff.] showed that G-spaces
are L1-preduals, but that the converse does not hold, thus disproving a conjecture of
Grothendieck who had introduced the class of G-spaces – now termed after his initial –
in [281]. (Previously, Stone [583, p. 465ff.] and Kakutani [363, p. 1005] had shown that
the closed subalgebras (resp. sublattices) of a real C(K)-space are exactly those spaces
isometric to G-spaces with λi ∈ {0, 1} (resp. λi ≥ 0) throughout.) A detailed analysis of
these spaces can be found in [389] and [423], see also Lacey’s monograph [385].

Below we shall present characterisations of G- and Cσ-spaces in terms of their M -
structure properties. This will also lead to a (in our context) natural argument to show
that the class of G-spaces is strictly smaller than the class of L1-preduals.
We first show:

Proposition 5.2 Let

X = {x ∈ C(K) | x(si) = λix(ti) for all i ∈ I}

be a G-space. Then J ⊂ X is anM -ideal if and only if there is a (not necessarily uniquely
determined) closed set D ⊂ K such that

J = {x ∈ X | x|D = 0}.

Proof: The “only if” part is a consequence of Proposition I.1.18. To prove the “if”
part we verify the 3-ball property (Theorem I.2.2(iv)). Given x ∈ BX , y1, y2, y3 ∈ BJ

we consider the function

y = max{y1, y2, y3,−x}+ min{y1, y2, y3,−x}+ x
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(defined pointwise) which of course vanishes on D. Also, y ∈ X by [413, p. 79], and the
desired inequality ‖x+yi−y‖ ≤ 1+ε is elementary to verify pointwise (even with ε = 0),
since for real numbers the implication

|ai| ≤ 1 (all i) ⇐⇒
∣∣∣∣ai − (max

j
aj + min

j
aj)
∣∣∣∣ ≤ 1 (all i)

holds. 2

Corollary 5.3 In a G-space the intersection of an arbitrary family of M -ideals is an
M -ideal.

There is a partial converse to this result.

Theorem 5.4 Let X be a separable L1-predual with the property that the intersection of
an arbitrary family of M -ideals is an M -ideal. Then X is a G-space.

Proof: The proof relies on the following fact (cf. e.g. [214] or [600]). An L1-predual
space X is a G-space if and only if

exw∗
BX∗ ⊂ [0, 1] · exBX∗ .

To provide a proof of Theorem 5.4 we consider x∗0 ∈ exw∗
BX∗ . To show that x∗0 ∈

[0, 1] · exBX∗ it will be enough to show that lin {x∗0} is an L-summand, equivalently that
kerx∗0 is an M -ideal (recall Lemma I.1.5). Since X is separable, BX∗ is weak∗ metrizable
so that there is a sequence of distinct points (x∗n) in ex BX∗ with x∗0 = w∗-limx∗n. (We
are assuming x∗0 �∈ exBX∗ .) Now fix m ∈ N and consider the subspace

Um = lin
‖ ‖{x∗0, x∗m+1, x

∗
m+2, . . .} ⊂ X∗.

We wish to show that Um is a weak∗ closed L-summand.
Define a linear operator T : X → c by Tx = (〈x∗n+m, x〉)n∈N. Let e∗k : (sn) �→ sk be the
kth evaluation functional on c and e∗0 : (sn) �→ lim sn be the limit functional. We then
have

T ∗(e∗k) = x∗m+k and T ∗(e∗0) = x∗0.

The x∗m+k, being linearly independent extreme points in some L1-space, generate a sub-
space isometric to � 1 as do the e∗k. From this we conclude that Um = ran(T ∗) is norm
closed, and thus, by a classical result, it is weak∗ closed. Hence

Um = lin
w∗{x∗m+1, x

∗
m+2, . . .} =

(⋂
k∈N

kerx∗m+k

)⊥
.

But kerx∗m+k is an M -ideal, and the assumption of Theorem 5.4 now yields that so is⋂
k∈N kerx∗m+k. Therefore, Um is in fact a weak∗ closed L-summand.

It remains to observe that lin {x∗0} =
⋂
m∈NUm and to apply Proposition I.1.11(a) to

obtain that kerx∗0 is an M -ideal which happens only if x∗0 is a multiple of an extreme
functional (Lemma I.1.5). 2

We remark that an L1-predual always has infinitely many M -ideals (cf. Proposition 5.1)
so that nontrivial intersections ofM -ideals exist. It is an open problem as of this writing if
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one can dispense with the separability assumption in Theorem 5.4. However, it would be
enough to require that exBX∗ is sequentially dense in its weak∗ closure. As the example
of the disk algebra shows (Example I.1.4(b)), one cannot weaken the assumption “X is
an L1-predual” to “kerp is an M -ideal for all p ∈ exBX∗”.
We next present an example of a separable L1-predual which does not fulfill the conclusion
of Corollary 5.3, hence cannot be a G-space by Theorem 5.4. (We admit that there are
other ways of proving the existence of such spaces; the first example of this kind was
constructed by Lindenstrauss [413, p. 78 and 81].)

Example 5.5 Fix t0 ∈ [0, 1] and let λ denote Lebesgue measure on [0, 1]. Put

X =
{
x ∈ C[0, 1]

∣∣∣∣ x(t0) =
∫
xdλ

}
.

Then X is an L1-predual, and for t �= t0

Jt := {x ∈ X | x(t) = 0}
is an M-ideal. However, if the sequence (tn) converges to t0 and tn �= t0 for all n, the
intersection

⋂
n Jtn fails to be an M-ideal. Consequently, X is not isometric to a G-space.

Proof: That X is an L1-predual is a special case of results given in [46], but we wish
to sketch a direct argument. Let µ denote the signed measure λ− δt0 . We have to prove
that X∗ = M [0, 1]/lin {µ} is an L1-space. Note

X∗ = L1(|µ|)/lin {1} ⊕1 Msing(|µ|) (∗)

where Msing(|µ|) is the space of |µ|-singular measures which is an L1-space. Thus it
is left to prove that L1(|µ|)/lin {1} is an L1-space, or equivalently [281] that its dual
U := {f ∈ L∞(|µ|) | ∫ fdµ = 0} is an L∞-space. This will follow if there is a contractive
projection P from L∞(|µ|) onto U . (Cf. e.g. [385, §§ 11 and 21] for these matters.) Now
it is not hard to show that

Pf = f +
∫
fdµ · χ{t0}

is such a projection.
It is seen from (∗) that δt|X ∈ exBX∗ for t �= t0, hence its kernel Jt is an M -ideal by
Proposition 5.1. To refute that J =

⋂
n Jtn is an M -ideal we refute the 3-ball (in fact

2-ball) property (Theorem I.2.2). We let x = 1, ε > 0 small enough (ε < 1
10 will do) and

will construct y1 ∈ BJ in such a way that no y ∈ J satisfies

‖x± y1 − y‖ ≤ 1 + ε. (∗∗)
The construction of such a y1 is quite easy to understand but a bit cumbersome to
describe in detail. Here is the idea: Choose an open neighbourhood U of t0 of Lebesgue
measure ≤ ε. Also, choose open neighbourhoods Un of those tn which are not in U , whose
total length does not exceed ε, either. The complement of these neighbourhoods consists
of finitely many closed intervals. The function y1 is defined in such a way that |y1(t)| = 1
on a large part of these intervals (total length ≥ 1− 3ε say), ‖y1‖ ≤ 1,

∫
y1dλ = 0, and
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y1(tn) = 0 for all n so that y1 ∈ J . Let y be any continuous function satisfying (∗∗).
Then

|y(t)− 1| ≤ ε on a set of measure ≥ 1− 3ε,

|y(t)| ≤ 2 + ε otherwise.

Consequently ∫
y dλ ≥ 1− 10ε > 0

for sufficiently small ε. But if y ∈ J we have∫
y dλ = y(t0) = 0

so that indeed no y ∈ J can satisfy (∗∗). 2

The following result characterises G-spaces among all Banach spaces by a richness con-
dition concerning the M -ideal structure. This condition will be given in terms of the
structure topology on exBX∗ , which we defined in I.3.11. To appreciate it the reader is
referred to the remarks following I.3.11. There EX was defined to be the quotient space
ex BX∗/∼ with p ∼ q if and only if p = q or p = −q.
Theorem 5.6 For a Banach space X, the following conditions are equivalent:

(i) The structure topology on EX is Hausdorff.
(ii) X is a G-space.

We found it convenient to single out part of the argument for the implication (i) ⇒ (ii)
in the following lemma.

Lemma 5.7 If the structure topology on EX is Hausdorff, then X is an L1-predual.

Proof: By a result of Lima’s [399, Theorem 5.8] it is enough to prove
(a) If p ∈ X∗, ‖p‖ = 1 and P (p) ∈ {0, p} for all L-projections P on X∗, then

p ∈ exBX∗ .
(b) lin {p} is an L-summand in X∗ for all p ∈ exBX∗ .

Note that (b) is equivalent with saying that singletons are closed in EX , i.e. EX is a
T1-space in its structure topology. Thus we are left with showing (a).

The Hausdorff property easily implies:

(∗)
If F ⊂ EX is a structurally closed set containing at least two points,
then there are structurally closed sets F1, F2 different from F such that
F = F1 ∪ F2.

With the help of the Krein-Milman and Krein-Smulian theorems, (∗) translates into the
language of L-summands as follows:

(∗∗) If N ⊂ X∗ is a weak∗ closed L-summand with dim(N) ≥ 2, then there are
weak∗ closed L-summandsN1, N2 different fromN such thatN = N1+N2.

Now let p be a point as in (a) and let N be the intersection of all weak∗ closed L-
summands containing p. Then N itself is a weak∗ closed L-summand (cf. I.1.11(a)). If



II.5 L1-preduals and M -ideals 87

p �∈ exBX∗ then dim(N) ≥ 2. Assuming this to be the case we could split N according to
(∗∗). Either p ∈ N1 or p ∈ N2 contradicts the choice of N , thus, if Pi is the L-projection
onto Ni, P1(p) = P2(p) = 0 by the very choice of p. Observe that P = P1 + P2 − P1P2

is the L-projection onto N so that P (p) = 0, contradicting p ∈ N . This completes the
proof of Lemma 5.7. 2

We remark that Lemma 5.7 remains true if “EX is Hausdorff” is replaced by “EX fulfills
(∗)”; examine the above proof. (Property (∗) is quickly seen to imply the T1-separation
axiom.) The property (∗), which might be called “total reducibility” in accordance with
[88, Chap. II.4], is not necessary for a Banach space X to be an L1-predual, since the
space of Example 5.5 fails it. [One can show, using the 3-ball property, that exactly the
subspaces {x ∈ X | x|D = 0}, where D ⊂ [0, 1] is a nonvoid closed set not containing
t0, are the nontrivial M -ideals in X . Consequently, EX can be identified as a set with
[0, 1]\{t0}, the structurally closed sets corresponding to those D above and the trivial
sets ∅ and [0, 1]\{t0}. Thus F = [0, 1]\{t0} is a counterexample to (∗).]

Proof of Theorem 5.6:

(i) ⇒ (ii): We already know from Lemma 5.7 that X must be an L1-predual. By the
result quoted in the proof of 5.4, it remains to show that the weak∗ closure of ex BX∗

is contained in [0, 1] · exBX∗ . So, let (pi) be a net in exBX∗ converging in the weak∗

sense to some p ∈ BX∗ . We may assume p �= 0. Let N be the smallest weak∗ closed
L-summand in X∗ containing p. We now claim that (pi) converges structurally to all
q ∈ exBN : Should this be false there would exist a structurally closed set F ⊂ ex BX∗ ,
some q ∈ (exBN )\F and a subnet (pj) ⊂ F of (pi). Now F has the form exBL for
some weak∗ closed L-summand, and p = w∗-lim pj implies p ∈ L. Hence N ⊂ L and
therefore q ∈ L which contradicts q �∈ F . (We have relied on Lemma I.1.5 several
times.) By the claim and since EX is structurally Hausdorff we conclude that N must
be one-dimensional, i.e. p/‖p‖ ∈ exBN ⊂ exBX∗ .
(ii) ⇒ (i): Let X ⊂ C(K) be a G-space, and let [p] �= [q] be two equivalence classes in
EX . We wish to find two M -ideals J1, J2 in X such that

p �∈ J⊥
2 and q �∈ J⊥

1 .

Observe that p ∈ exBX∗ has the form

p(x) = λx(s1)

where λ = ±1, and we may assume λ = 1 since [p] = [−p]. In the same vein,

q(x) = x(s2)

for some s2 ∈ K. Since p and q are linearly independent, we may find x1, x2 ∈ X such
that

p(x1) = q(x1) = 1

p(x2) = −q(x2) = 1.
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For the closed sets

D1 = {s ∈ K | x1(s)x2(s) ≥ 0}
D2 = {s ∈ K | x1(s)x2(s) ≤ 0}

we consider the M -ideals (Proposition 5.2)

Ji = {x ∈ X | x|Di
= 0}.

Let x± = x1 ± x2 − (max{x1,±x2, 0} + min{x1,±x2, 0}). Then x± is the pointwise
median of x1,±x2 and 0, hence x± ∈ X by [413, p. 79]. It is left to observe

p(x+) = x+(s1) �= 0, yet x+|D2
= 0

and
q(x−) = x−(s2) �= 0, yet x−|D1

= 0

so that p �∈ J⊥
2 , q �∈ J⊥

1 , as requested. 2

Next we shall discuss the centralizer of an L1-predual. First we give examples of L1-
preduals having trivial centralizers. (The centralizer of a Banach space was introduced
in I.3.7.)
Let X be the L1-predual of Example 5.5. It is quickly checked that

exBX∗ = {±δt|X | t �= t0},

hence T ∈ Z(X) (recall that we are considering real spaces here) if and only if there
exists h ∈ C[0, 1] such that

(Tx)(t) = h(t)x(t) ∀t ∈ [0, 1].

However, the only continuous functions with

hx ∈ X for all x ∈ X

are the constants, which is not hard to see. Consequently,

Z(X) = R · Id.

We pointed out after I.3.12 that X has a nontrivial M -ideal provided Z(X) is nontrivial.
The preceding example shows that there are separable spaces for which the converse is
not true.
For the following example, which presents a nonseparable G-space yielding the same
effect, one needs more elaborate arguments. First we give a general representation of the
centralizer of a G-space. Let

X = {x ∈ C(K) | x(si) = λi · x(ti) ∀i ∈ I}
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be a G-space. It is proved in [214, Lemma 4] that

exBX∗ = {±δs|X | ‖δs|X‖ = 1}.

[Let us give a quick argument for this fact. The inclusion “⊂” is proved by the usual
extension argument. For “⊃” we consider the M -ideal {x ∈ X | x(s) = 0} (Proposi-
tion 5.2), obtain the decomposition X∗ = J∗ ⊕1 lin {δs|X} and use Lemma I.1.5.]
Continuing our discussion, we may assume that {s ∈ K | ‖δs|X‖ = 1} is dense in K. In
fact, this is just a matter of representation, sinceX may be represented in an obvious way
as a G-subspace of C(exw∗

BX∗). Using the same method as above, one may associate to
each T ∈ Z(X) a bounded continuous function h on K\L, where L is the set of common
zeros of all the x ∈ X , with

(Tx)(t) = h(t)x(t).

In addition, h must be constant on each equivalence class pertaining to the equivalence
relation

s ∼ t ⇐⇒ ∃λ �= 0 ∀x ∈ X x(s) = λx(t)

on K\L. Conversely such a function h defines an element in Z(X) if multiplication by h
leaves X invariant. (Cf. Example I.3.4(g) for a general view of this procedure.)

Proposition 5.8 There exists a nonseparable G-space with a trivial centralizer.

We remark that as a consequence of results by N. Roy [533], every separable G-space
necessarily has a nontrivial centralizer, see the Notes and Remarks section.

Proof: Let Y be any nonseparable Banach space, and let K denote its dual unit ball
with the weak∗ topology. Define

X = {x ∈ C(K) |x(λy∗) = λx(y∗) ∀λ ∈ [−1, 1], y∗ ∈ K}.

Obviously, X is a G-space, and Y can be identified with a subspace of X . In view of our
above remark, we have to prove the following:

If h ∈ Cb(K\{0}) is constant on each punctured ray {λy∗ | 0 < |λ| ≤ 1}
(where ‖y∗‖ = 1), then h is constant.

Suppose not. First of all, let us extend h to Y ∗\{0} so as to be constant on each
punctured one-dimensional subspace. This extension – still to be called h – is continuous
with respect to the bounded weak∗ topology, i.e. weak∗ continuous on bounded sets.
Recall [178, p. 427] that a neighbourhood base of 0 for the bounded weak∗ topology is
given by absolute polars of sequences in Y tending strongly to 0. Now if h were not
constant there would be y∗1 , y

∗
2 �= 0 and scalars a1, a2 ∈ R such that

h(y∗1) < a1 < a2 < h(y∗2).

By continuity h|y∗
1+U

< a1, where

U = {y∗ | |〈y∗, yn〉| ≤ 1 ∀n ∈ N}
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with some yn → 0. In particular,

h(y∗1 + y∗) < a1

for all y∗ ∈ (lin {yn|n ∈ N})⊥ =: V ⊥
1 . Since V1 is separable and Y is not, V ⊥

1 �= {0}.
Hence, for all y∗ ∈ V ⊥

1 \{0}, we obtain

h
( 1
n
y∗1 + y∗

)
= h(y∗1 + ny∗) < a1

so that
h(y∗) = lim

n→∞h
( 1
n
y∗1 + y∗

)
≤ a1

by continuity. Analogously, for a certain separable subspace V2 and all y∗ ∈ V ⊥
2 \{0}

h(y∗) ≥ a2.

Since the separable subspace V = lin (V1 ∪ V2) is different from Y , there exists y∗ ∈
V ⊥\{0} = (V ⊥

1 ∩ V ⊥
2 )\{0}, and for any such y∗ we have

a1 ≥ h(y∗) ≥ a2,

contradicting a1 < a2. Thus, Proposition 5.8 is proven. 2

It is interesting to compare Proposition 5.8 with Theorem 5.6 in view of the Dauns-
Hofmann type Theorem I.3.12. Namely, the structure space EX of the G-space X of
5.8 is a Hausdorff topological space, yet every real-valued continuous function on EX
is constant. Next we are going to characterise those Banach spaces which yield “suffi-
ciently many” structurally continuous functions on EX , equivalently whose centralizer is
“sufficiently large”. Recall the notation

ZX = exw∗
BX∗\{0}

from Section I.3. Further, we identify Z(X) with an algebra of functions on ZX via
T ↔ aT . In the next theorem p and q are said to be nonantipodal if neither p = q nor
p = −q. (Recall that we assume the scalars to be real in this section.)

Theorem 5.9 For a Banach space X, the following assertions are equivalent:
(i) Z(X) separates nonantipodal points of ZX.
(ii) X is a Cσ-space.

Proof: (i) ⇒ (ii): This is a corollary to Theorem I.3.10.
By assumption (i), the set of equivalence classes F(X,C0(ZX)) (cf. the notation of
Section I.3) consists exactly of the pairs {p,−p}, p ∈ ZX (note aT (p) = aT (−p) for
T ∈ Z(X)). Now Theorem I.3.10 states

X = {f ∈ C0(ZX) | f |{p,−p} ∈ X |{p,−p} ∀p ∈ ZX}

= {f ∈ C0(ZX) | f(p) = −f(−p) ∀p ∈ ZX}
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so that X is a Cσ-subspace of C(exw∗
BX∗).

(ii) ⇒ (i): By [385, p. 73] X is isometric to

{f ∈ C0(ZX) | f(p) = −f(−p) ∀p ∈ ZX}.

Also, Z(X) acts on X by multiplication with functions in

{h ∈ Cb(ZX) | h(p) = h(−p) ∀p ∈ ZX},

cf. the discussion preceding Proposition 5.8. To achieve the desired conclusion, choose,
given nonantipodal p1, p2 ∈ ZX , any g ∈ Cb(ZX) with

g(p1) = g(−p1) = 0,

g(p2) = g(−p2) = 1,

and let h(p) = g(p) + g(−p) for p ∈ ZX . Then h “is” in Z(X) and h(p1) �= h(p2). 2

In the final part of this section, which does not depend on the results presented so far,
we propose the use of the intersection property IP introduced in Definition 4.1 in order
to distinguish between Cσ- and CΣ-spaces.
It is a well-known fact that a Banach space is a Cσ-space if and only if it is isometric to a
norm one complemented subspace of a C(K)-space [385, p. 74]. It follows that the class
of Cσ-spaces is stable with respect to forming �∞-sums, since the class of C(K)-spaces
is. (This could also be deduced directly from the definition.) For the same reason, the
class of Cσ-spaces is stable with respect to forming ultraproducts, cf. [299]. For the case
of CΣ-spaces, things look different.
Recall the definition of an ultraproduct of a family of Banach spaces Xi (i ∈ I): Let U
be a free ultrafilter on I, and let X be the �∞(I)-sum of the Xi. Then the quotient space
X/N where

N = {(xi) ∈ X | lim
U
‖xi‖ = 0}

is called an ultraproduct of the Xi. Note that the norm in X/N is given by

‖(xi) +N‖ = lim
U
‖xi‖.

The reader is referred to [298] or [569] for a detailed account.

Proposition 5.10 The class of CΣ-spaces is not stable with respect to forming �∞-sums
or ultraproducts.

Proof: Let X be the Banach space of Example 4.6. By its very construction it is
an �∞-sum of CΣ-spaces. But X fails the IP so that X cannot be a CΣ-space by
Proposition 4.2(d).
We now turn to the assertion concerning ultraproducts. For that matter, fix a free
ultrafilter U on N. Then, with the above notation, X/N is an ultraproduct of the spaces
Xn = CΣ(Sn) (n ∈ N). We claim that X/N fails the IP and hence cannot be a CΣ-space
(Proposition 4.2(d) again).
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Fix ε0 < 1
3 . We wish to find, given equivalence classes x1 +N, . . . , xm +N ∈ intBX/N ,

a class y +N such that

‖(y ± xk) +N‖ ≤ 1 (k = 1, . . . ,m),

yet
‖y +N‖ > ε0,

thus refuting the defining condition for the IP.
In fact, we may assume that the representatives xk = (xkn)n∈N fulfill

‖xk‖ < 1 (k = 1, . . . ,m),

i.e.
‖xkn‖ < 1 (k = 1, . . . ,m; n ∈ N).

By (∗) in the proof of Proposition 4.2(h), there is, for each n ≥ m, yn ∈ Xn such that

‖yn ± xkn‖ ≤ 1 (all k),

but
‖yn‖ > 1

3
.

Let yn = 0 for n < m and y = (yn)n∈N ∈ X . Then

‖(y ± xk) +N‖ ≤ sup
n
‖yn ± xkn‖ ≤ 1 for k = 1, . . . ,m

and
‖y +N‖ = lim

U
‖yn‖ ≥ 1

3
> ε0,

as desired. 2

II.6 Notes and remarks

General remarks. The fundamental Proposition 1.1 provides a convenient tool for
studying approximation theoretic properties by M -ideal methods. Various proofs of this
proposition have appeared in the literature. Alfsen and Effros [11, Cor. I.5.6] derive it
from their work on “dominated extensions” already alluded to in the Notes and Remarks
to Chapter I. Independently it was obtained by Ando [19] as a consequence of a variant
of our Lemma 2.5 which he proves without using any intersection properties (see also
[318] for an account of this proof). We have drawn upon the simple proofs devised by
Behrends [51, Prop. 6.5] and Yost [647]. Also Lau [387] gives a proof based on a variant
of Lemma 2.5, which was later rediscovered in [240]. More specifically, he calls a subspace
J of a Banach space X U-proximinal if there exists a positive function φ on R

+ with
φ(ε)→ 0 as ε→ 0 such that

(BX + J) ∩ (1 + ε)BX ⊂ BX + φ(ε)BJ ∀ε > 0
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and proves that U -proximinal subspaces are in fact proximinal. He goes on to give
examples of U -proximinal subspaces, among them M -ideals.
The fact that the set of best approximants in an M -ideal J algebraically spans J was
first shown by Holmes, Scranton and Ward [320], our simple proof is due to Behrends [51,
Prop. 6.6] and Lima [403]. The notion of a pseudoball is implicitly contained already in
Lima’s paper, too, but the explicit definition appears only in [67] where it is attributed
to R. Evans. There it is also shown in addition to Theorem 1.6 that B is a pseudoball
of radius 1 if and only if for every subspace V ⊂ Y with dimY/V < ∞ there is some
y0 + V ∈ Y/V such that intB(y0 + V, 1) ⊂ q(B) ⊂ B(y0 + V, 1) (where q : Y → Y/V
denotes the quotient map). Other papers where the concept of a pseudoball is employed
are [54], [267] and [479].
Also Proposition 1.8 comes from [320], the proof we have presented is a modification of
the one in [647]. Apart from these authors, H. Fakhoury, too, has obtained Theorem 1.9
[216]. His argument is quite different and more in the spirit of the Alfsen-Effros paper.
Corollary 1.7 and Proposition 1.10 seem to be new (with 1.10 essentially appearing in
[291]) as does Proposition 1.11. This proposition answers a question raised in [320] where
it is conjectured that an M -ideal is an M -summand as soon as its metric complement
has an interior point. The concept of a grade (studied in [291], see also [67] and below)
is the decisive tool to provide a complete solution.
The approximation theoretic properties of M -ideals have turned out to be of particular
interest in the context of best approximation of bounded linear operators by compact
operators. We refer to the Notes and Remarks to Chapter VI for a more detailed discus-
sion.
As already mentioned in the text, Theorem 2.1 is due to Ando [20] and Choi and Effros
[121]. For details of the development of this theorem see below. The classical Corol-
lary 2.6 can be found in [173], for a nice geometric argument in the case that K is
compact see [317, p. 103]. Corollary 2.7 comes from [486] and Corollary 2.8 from [444].
The strange proof of Sobczyk’s theorem (Corollary 2.9) was suggested in [620]. Another
argument for Proposition 2.10 is given in [651].
Proper M -ideals are studied in [67] and [293]. The fact that an M -ideal is proper if and
only if the sets of best approximants are not balls (Proposition 3.2) was independently
observed in [403] and [55]. Theorem 3.4 is due to Evans [205], with the present proof
being essentially taken from [55]. Many proofs of Corollary 3.6 have appeared: see [205],
[226], [399], [403], [476]. We can’t help mentioning the simplest of these arguments, due
to Payá [476]. Let J⊥ ⊂ X∗ be a weak∗ closed M -ideal so that there is an L-projection
P from X∗∗ onto J⊥⊥. To show Px ∈ J for x ∈ X , which is our aim, we calculate, given
y ∈ J ,

‖x− y‖ = ‖Px− y‖+ ‖x− Px‖
= ‖Px− y‖+ d(x, J⊥⊥)

= ‖Px− y‖+ d(x, J),

where the natural identification (X/J)∗∗ ∼= X∗∗/J⊥⊥ is used. Now take the infimum
over all y ∈ J to obtain

d(x, J) = d(Px, J) + d(x, J),
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i.e. d(Px, J) = 0 and Px ∈ J . (One may note that this reasoning yields another proof
of the fact, mentioned in the Notes and Remarks to Chapter I, that an F -ideal is an
F -summand provided (0, 1) ∈ exBF .) We have taken the chance to add another proof
of Corollary 3.6 which ultimately builds on the simple Proposition I.1.2. The rest of
Section II.3 is taken from [67] and [291], whereas Section II.4 relies on [67] and [293]
save for Theorem 4.9 which appears in [654]. Concerning the intersection property of
Section II.4 we would like to mention the problem that up to now no dual space is known
which fails this property; however, we strongly suspect such a space to exist.
As regards the material of Section II.5 let us note that the definition of a biface is due
to Effros [189] who defines a structure topology on exBX∗ by means of the weak∗ closed
bifaces of BX∗ . By virtue of Proposition 5.1 this is the same as the structure topology
of Section I.3 if X is a real L1-predual space. (The use of bifaces in the general theory
of L1-preduals has proved useful e.g. in [214], [247], [386] or [429].) 5.2 – 5.7 are taken
from Uttersrud’s paper [607] with the exception of Theorem 5.4 which was first proved
by N. Roy [535]. Simpler proofs of 5.4 are due to Lima, Olsen and Uttersrud [408] whose
argument we have presented and to Rao [515]. Example 5.5 has already been used by
Perdrizet [491, Section 6] for essentially the same purpose (up to the nomenclature), and
a variant appears in Bunce’s paper [100]. Uttersrud gives a detailed analysis of the M -
structure of spaces of the form {x ∈ C(K) | x(t0) =

∫
x dµ}; the case K = [0, 1], t0 = 1

2 ,
µ = (δ0 + δ1)/2 corresponds to Bunce’s example. Theorem 5.6 was proved under the
additional assumption that X is an L1-predual by Effros [189] in the separable case and
in the nonseparable case by Taylor [600] and Fakhoury [214] using arguments different
from those presented here. That this additional assumption is in fact superfluous is
shown in Lemma 5.7. It is not clear how much has to be added to the T1-separation
property of EX in order to force X to be an L1-predual. We have already remarked that
the “splitting property” (∗) appearing in the proof of Lemma 5.7 is sufficient, but not
necessary. Contributions to this problem can be found in [536] and [607].
In his paper [139] Cunningham suggested a method of representing a Banach space as
a “function module” or a Banach bundle, cf. the Notes and Remarks to Chapter I. He
proposed to call a Banach space square if all the fibres in such a representation are zero-
or one-dimensional. (Admittedly, this notation is not too suggestive.) To put it another
way, a square Banach space X is a sup-normed space of bounded scalar-valued functions
on some compact Hausdorff space Ω such that, for x ∈ X and f ∈ C(Ω), the pointwise
product f · x belongs to X and the numerical function |x(·)| is upper semicontinuous.
In [140] and [141] Cunningham shows that every square Banach space is a G-space, but
that there are nonseparable G-spaces which fail to be square. To this end he proves
Proposition 5.8. [To show that the nonseparable G-spaces of Proposition 5.8 are not
square one has to take into account that the point evaluations x �→ ±x(ω) are exactly
the extreme functionals on a square space X [143] so that all the multiplication operators
x �→ f ·x for f ∈ C(Ω) belong to the centralizer Z(X). In particular, the centralizer of a
square Banach space cannot be trivial.] In contrast has N. Roy shown in [533] (see also
[534]) that separable G-spaces are in fact square. She also proves that a Banach space
X is square if and only if Z(X) separates EX , i.e. nonantipodal points of exBX∗ . This
result should be compared to Theorem 5.6 and to Theorem 5.9 which comes from [629].
Note that for Cσ-spaces the equation ZX = exBX∗ holds; the above results do, of course,
not imply that every square Banach space is a Cσ. Another result along these lines worth
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mentioning is that a Banach space X is a Cσ-space if and only if the structure topology
on exBX∗ coincides with the weak∗ topology. This is proved (modulo Lemma 5.7) in
[214].
Finally we remark that Proposition 5.10 was first proved, using topological arguments,
in [300]. Our approach follows [293].

The 1 1
2 -ball property. Following D. Yost [647] we say that a closed subspace J of a

Banach space X has the 1 1
2 -ball property if the conditions

‖x‖ < r1 + r2 and B(x, r2) ∩ J �= ∅

imply that
B(0, r1) ∩B(x, r2) ∩ J �= ∅.

This is equivalent to requiring the (strict) 2-ball property subject to the restriction that
one of the centres lies in J . The 1 1

2 -ball property is, however, far less restrictive than
the 2-ball property. Unlike the latter the 1 1

2 -ball property is self-dual, i.e. J has it if and
only if J⊥ has it. Among the examples one finds apart from (semi) M -ideals

• L-summands and semi L-summands (for the definition cf. Section I.4),

• closed subalgebras of CR(K),

• K(L1(µ), � 1) as a subspace of L(L1(µ), � 1),

• K(C(S), C(T )) as a subspace of L(C(S), C(T )) if S is scattered and T is
extremally disconnected.

Furthermore K(c) has the 1 1
2 -ball property in L(c) if c is considered to be the space of

convergent sequences of real numbers, whereas K(c) fails it if we consider the complex
sequence space c ! Also, closed subalgebras of CC (K) need not have the 1 1

2 -ball property.
(All these examples are contained in Yost’s papers [647] and [653].)
Among the complex Banach spaces with the 1 1

2 -ball property the examples of K(� 1) in
L(� 1) and its relatives were until recently the only known specimens except for M -ideals
and L-summands. Now it is known that every complex Banach space can arise as a
subspace with the 1 1

2 -ball property of some superspace in a nontrivial way, i.e. without
being an M -ideal or L-summand [440].
The importance of this notion stems from its approximation theoretic implications. In
fact, the proof of Proposition 1.1 applies as well to show that subspaces with the 1 1

2 -ball
property are proximinal. Moreover, in analogy with Proposition 1.8 one can show that
the metric projection onto a subspace with the 1 1

2 -ball property is Lipschitz continuous,
with the Lipschitz constant 2. Thus Theorem 1.9, too, extends to this greater generality.
These results yield an interesting consequence, namely:

A Lipschitz continuous metric projection need not have a Lipschitz continuous
selection.

(A merely continuous selection always exists by Michael’s theorem, cf. Theorem 1.9.) To
see this let D denote the sup-normed space of all real valued functions on [0,1] which are
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continuous at each irrational point, which are continuous from the right everywhere and
which have limits from the left everywhere. Since D is isometric to a C(K)-space (e.g.
by Gelfand’s theorem) and C = CR[0, 1] is a closed subalgebra of D it has the 1 1

2 -ball
property, and the metric projection PC is Lipschitz continuous on D. However, there
cannot exist a Lipschitz selection of PC because otherwise there would be a Lipschitz
lifting for the quotient map from D onto D/C, contradicting a result by Aharoni and
Lindenstrauss [4]. For this example see also [655], where a selfcontained proof is given.
In [649] Yost gives a new proof of the duality theorem for spaces with the 3-ball property
(resp. 2-ball property) and L-summands (resp. semi L-summands). More specifically he
proves that Y has the 2-ball property in X if and only if Y has 1 1

2 -ball property and is
Hahn-Banach smooth in X , and Y is a semi L-summand if and only if Y has the 1 1

2 -ball
property and is a Chebyshev subspace. By a theorem due to Phelps [494] this proves that
J has the 2-ball property if and only if J⊥ is a semi L-summand, and with a bit of extra
work Yost obtains that J has the 3-ball property if and only if J⊥ is an L-summand, i.e.
the equivalence (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (v) of Theorem I.2.2.
Other papers dealing with the 1 1

2 -ball property include [273], [471], [472] and [481].

Linear extension operators. The genesis of the important Theorem 2.1 lies in
PeNlczyński’s papers [486] and [487]. There he proved the existence of a contractive
linear extension operator from X |D to X under the following assumptions: X is a closed
subspace of C(K) where K is metrizable, D ⊂ K is closed, X |D = C(D) and the pair
(X |D, X) enjoys the bounded extension property. (In fact, his assumptions were formally
stronger, but actually equivalent to those stated above, see [444].) His original proof was
long and technical, and it was greatly simplified by Michael and PeNlczyński in [444].
They were also able to drop the assumption that K be metrizable and X |D = C(D) in
favour of the assumption that D be metrizable and X |D be a π1-space; see also [514] for
a proof. [Here a Banach space Z is called a π1-space if and only if there is an increasing
sequence of finite dimensional subspaces E1, E2, . . . whose union is dense and each of
which is the range of a contractive projection. This means that Z not only has the
metric approximation property, but the metric approximation property is realized by
an increasing sequence of (commuting) contractive finite rank projections; in particular
such a space must be separable. It was shown in [445] that C(D) is a π1-space if D is a
compact metric space. For a comparison of the various refinements of the BAP see the
interesting recent paper [114] and its references.]
A considerable improvement in the development of linear extension theorems is due to
Ryll-Nardzewski (see [490]) who replaced the π1-property by the mere metric approxima-
tion property, still assuming separability of X |D. The idea here is to reduce the problem
to the previous case by switching to vector valued sequence spaces; this idea is used in
the proof of Theorem 2.1, too. Note that the metric approximation property for C(D)
is far easier to check than the π1-property and that the disk algebra yields an example
of a space with the metric approximation property which fails to be a π1-space [639].
In a similar vein, Lazar [388] proved the existence of a contractive linear extension oper-
ator from A(F ) to A(K), where K denotes a Choquet simplex and F a closed metrizable
face, as a consequence of his selection theorem, and Andersen [17] treated the same prob-
lem for a general compact convex set and a closed metrizable split face where he assumed
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that A(F ) has the metric approximation property. This can be converted into a linear
lifting theorem for quotients of C∗-algebras by closed two-sided ideals.
The first abstract theorem of this kind was proved by Ando [19] who supposed that J is
an M -ideal in X and that X/J is a π1-space to obtain a linear contractive lifting from
X/J to X . Finally he showed in [20] that it is enough to assume that X/J is a separable
space with the bounded approximation property in order to obtain a continuous linear
lifting. All the results previously mentioned can be deduced from this theorem. It was
also obtained by a different proof by Choi and Effros [121] (see also [120]), who point
out the relevance of Theorem 2.1 for questions in the cohomology theory of C∗-algebras
(see Section V.4). We have largely followed Ando’s proof in the text.
Various authors have investigated which additional properties of a linear extension oper-
ator can be obtained, for instance positivity (see [17], [19], [388], [444]). Vesterstrøm has
proved a rather general result in [613] using M -ideals in certain ordered Banach spaces.
In the other direction we have already remarked that the assumptions in Theorem 2.1
are quite sharp; Proposition 2.3, which shows that the approximation assumption cannot
be dispensed with, is related to an example in [149]. It follows from Theorem 1.9 that
without metrizability there is always a nonlinear continuous normpreserving extension
operator from C(D) to C(K); Benyamini [71] has shown that every number between 1
and ∞ may arise as the norm of a linear extension operator in this setting. It follows
from the principle of local reflexivity that one can always obtain simultaneous extensions
of finite dimensional subspaces of C(D); see [215] for a more general result.
If one wants to apply Theorem 2.1 for function spacesX ⊂ C(K), then a natural problem
is to find conditions on D so that X |D = C(D). In this case D is called an interpolation
set. Bishop [79] has shown that D is an interpolation set if |µ|(D) = 0 for all µ ∈
X⊥ ⊂ M(K). The simplest proof of this proceeds as follows: Using the assumption of
Bishop’s theorem it is not hard to show that the map µ �→ (x �→ ∫

D
x dµ) from M(D)

to X∗ is an isometry. By duality this means that the restriction operator x �→ x|D is
a quotient map, hence the result. But more is true: Since J = JD ∩ X is an M -ideal
in X (Cor. I.1.19) and thus proximinal, the restriction operator even maps the closed
unit ball of X onto the closed unit ball of C(D) so that we even get norm preserving
extensions. This observation yields a proof of the Rudin-Carleson theorem mentioned in
the proof of Corollary 2.7, since Bishop’s condition is fulfilled by the F. and M. Riesz
theorem. (The intimate connection between M -ideals and F. and M. Riesz type theorems
will be discussed in Section IV.4; for elementary proofs of the Rudin-Carleson and the
Riesz theorem we refer to [168] and its references.) Corresponding results under different
orthogonality conditions (e.g. χDµ = 0 for all µ ∈ X⊥) are discussed e.g. in the papers
[12], [94], [238], [248]; see Chapter 4 of the monograph [35] for a detailed account. For
the topic of linear extension operators see also the memoir [488].
Finally we present an application of Theorem 2.1 to potential theory. Let U ⊂ R

n be
open and bounded. We put

H(U) = {f ∈ C(U) | f is harmonic on U}.

The classical Dirichlet problem requires to find, given ϕ ∈ C(∂U), some f ∈ H(U) such
that f |∂U = ϕ. This is generally impossible. However, there is always a generalised
solution, called the Perron-Wiener-Brelot solution. Those points x0 ∈ ∂U such that
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for all ϕ ∈ C(∂U) and corresponding Perron-Wiener-Brelot solutions f the relation
limx→x0 f(x) = ϕ(x0) is valid are called regular boundary points. The set of all regular
boundary points is denoted by ∂rU , and it is classical that ∂rU = ∂U if the boundary
of U is sufficiently smooth or if U is simply connected and n = 2. Concerning the weak
solvability of the Dirichlet problem we now have:

Proposition. Let U ⊂ R
n be open and bounded, and let E ⊂ ∂rU be

compact. Then there is a contractive linear operator L : C(E)→ H(U) such
that (Lϕ)|E = ϕ for all ϕ ∈ C(E).

This result will turn out to be almost obvious after we have reformulated it in terms of
convexity theory. The space H(U) is an order unit space and can hence be represented
as a space of affine continuous functions A(K). The crux of the matter is that here K
is a Choquet simplex; see [81] or [193]. Moreover, it is known from [44] that ∂rU can
be identified with the Choquet boundary of H(U), that is exK. If we regard E as a
compact subset of exK, then a corollary to Edwards’ separation theorem states that
every continuous function on E has a norm preserving extension to an affine continuous
function on K [7, p. 91]. Let us denote F = co E so that F is a split face since K is a
simplex. Consequently, by Example I.1.4(c),

{f ∈ A(K) | f |E = 0} = JF ∩A(K) =: J

is an M -ideal in A(K), and the quotient space A(K)/J is isometric with C(E) by the
above. By Theorem 2.1 there is a linear contractive lifting L for the quotient map, and
reidentifying A(K) with H(U) yields the desired solution operator from C(E) to H(U).

Grades of M -ideals. In Propositions 1.10 and 1.11 we attached two numbers g∗(J,X)
and g∗(J,X) to an M -ideal J in X . According to Proposition 3.9 these numbers can be
calculated as

g∗(J,X) = sup{g(J, Y ) | J ⊂ Y ⊂ X, dim Y/J = 1},
g∗(J,X) = inf{g(J, Y ) | J ⊂ Y ⊂ X, dim Y/J = 1}.

The interpretation is that J behaves like a very proper M -ideal in every direction if
g∗(J,X) is close to 1, while g∗(J,X) close to 1 only yields the existence of one such
direction. As was already announced in the text, for the familiar M -ideals JD in C(K)
one obtains that g∗(JD, C(K)) = 0 if D is clopen and g∗(JD, C(K)) = 1 otherwise; and
g∗(JD, C(K)) = 0 if D contains an interior point and g∗(JD, C(K)) = 1 otherwise. Also,
it follows from Remark 3.8(d) that g∗(Y, Y ∗∗) = 1 if Y is an M -ideal in its bidual.
One-codimensional M -ideals offer appealing geometric descriptions. If Y = ker(p) for
some p ∈ X∗, ‖p‖ = 1, is an M -ideal in X and L = {x ∈ X | ‖x‖ = p(x) = 1}, then the
unit ball of X is kind of cylindrically shaped with the set L being the lid of that cylinder,
since one can show [291]

intBX ⊂ aco L ⊂ BX .

The idea of a cylindrical unit ball is perfect if J is even an M -summand, in which case L
is the translate of a ball in J . The general case, however, produces a certain flaw in this
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idea because now L is merely the translate of a pseudoball in J . This flaw has already
appeared in the example of Remark I.2.3(d) where we presented anM -ideal containing an
extreme point of BX , and it shows up again in the following characterisation of extreme
M -ideals from [291]: J is an extreme one-codimensional M -ideal if and only if for each
x ∈ X , ‖x‖ > 1, there is some y ∈ co (BX ∪ {x}) ∩ J with ‖y‖ > 1.

Intersection properties and complex L1-preduals. In his memoir [413] Lin-
denstrauss introduced, extending previous work by Hanner [286], the n.k. intersection
property as follows: A Banach space has the n.k.IP if, given a family of n closed balls
each subfamily of which consisting of k balls has a point in common, the intersection of
these n balls is nonempty. Then he proved that a real Banach space is an L1-predual
if and only if it satisfies the 4.2.IP. Moreover he shows that neither the 4.3.IP nor the
3.2.IP is sufficient to ensure that the space under consideration is an L1-predual (every
L1-space is known to fulfill the 3.2.IP) and that, for each n ≥ 4, the 4.2.IP is equivalent
to the n.2.IP. This resembles, at least formally, our Theorem I.2.2 where M -ideals are
characterised by an intersection condition. Unlike the latter theorem Lindenstrauss’ the-
orem is clearly false for complex Banach spaces; not even the one-dimensional complex
space C satisfies the 3.2.IP.
In order to provide a substitute for the n.2.IP, Hustad [327] proposed the following weak
intersection property: A Banach space X is an E(n)-space if, for each family of n closed
balls B(x1, r1), . . . , B(xn, rn), the implication

n⋂
i=1

B(x∗(xi), ri) �= ∅ ∀x∗ ∈ BX∗ =⇒
n⋂
i=1

B(xi, ri) �= ∅

holds. It is readily seen that every Banach space is an E(2)-space (by virtue of the Hahn-
Banach theorem) and that a real Banach space is an E(n)-space if and only if it satisfies
the n.2.IP. Thus Lindenstrauss’ result reads: A real Banach space X is an L1-predual if
and only if it is an E(4)-space. In [327] Hustad was able to prove that a complex Banach
space is an L1-predual if and only if it is an E(7)-space if and only if it is an E(n)-space
for some n ≥ 7.
The obvious question, which numbers smaller than 7 would suffice as well, was answered
by Lima who at first proved that n = 4 is enough [398] and then obtained the final result
that complex L1-predual spaces are characterised by the E(3)-property [397, Appendix].
Simplifications of his proofs appear in [532] and [409]; let us remark that one variant of
the final step of the proof that E(3)-spaces are L1-preduals in the latter paper depends
on a precise knowledge of the L-summands in the dual of an E(3)-space. Lima also shows
in [398] that the 4.3.IP characterises complex L1-preduals. Both these results suggest
that in the complex case weaker intersection conditions than in the corresponding real
situation suffice. With this philosophy at hand it was believed for many years that
complex M -ideals might be characterised by the 2-ball property, but, as we have pointed
out in the Notes and Remarks to Chapter I, this belief has only recently turned out to
be faulty. – Papers related to this subject include [289], [326], [399], [400], [402], [404],
[410], [411], [520].
The general theory of complex L1-preduals advanced in the 70s after complex versions
of the Choquet-Meyer representation theorem were proved, for which we refer to the
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survey [495]. Substantial contributions are due to Effros [190] and Hirsberg and Lazar
[312]. Using tools provided by these authors Olsen extended the Lazar-Lindenstrauss-
Wulbert classification scheme ([389], [423]) of Cσ-spaces, G-spaces etc. to the complex
setting which is not a straightforward task ([467], see also [455], [468] and [531]). Here
we shall report on some results concerning L1-preduals involving the L-structure of the
dual space.
Apart from Lima’s fundamental theorem [399, Th. 5.8] that a real or complex Banach
space X is an L1-predual if and only if

• if p ∈ X∗, ‖p‖ = 1 and P (p) ∈ {0, p} for all L-projections P on X∗, then
p ∈ exBX∗ ,

• lin {p} is an L-summand in X∗ for all p ∈ ex BX∗ ,

(we had occasion to use this in the proof of Lemma 5.7), the following results seem to
be of interest. The authors of [202] show that a separable complex Banach space is an
L1-predual if and only if linC acow∗

K is an L-summand in X∗ whenever K ⊂ ex BX∗

is weak∗ compact. By way of example they point out that the separability assumption
cannot be dispensed with. In the general case they prove that a complex Banach space
is an L1-predual if and only if linC F is an L-summand in X∗ whenever F is a weak∗

closed face in BX∗ . (Both these results hold in the real case, too.) Rao [515] characterises
complex L1-preduals as follows: For all x ∈ X , ‖x‖ = 1, the set {p ∈ exBX∗ | |p(x)| = 1}
is structurally closed and F = {x∗ ∈ BX∗ | x∗(x) = 1} is a split face in cow∗(F∪−iF ). (In
the real case the first condition is sufficient.) Moreover he points out that Proposition 5.2
extends to the complex case.
Our proofs of Proposition 5.2 and Theorem 5.6 rely essentially on the “max + min”
operation which is restricted to the real case. It was believed to constitute remnants of a
lattice structure in a real G-space [423, p. 337], and no complex analogue was contrived
until recently when Uttersrud [608] succeeded in doing so, thus proving Theorem 5.6
for complex G-spaces as well. Uttersrud’s idea is to view, given 3 real numbers r, s, t,
1
2 (max{r, s, t}+min{r, s, t}) as the centre of the smallest closed interval containing these
three numbers. Accordingly he defines, given 3 complex numbers r, s, t, the complex
number c(r, s, t) as the centre of the smallest closed disk containing r, s and t. Using
this notion he proves that a closed subspace X of CC (K) is a G-space if and only if for
x, y ∈ X the centre function c(x, y, 0) (defined pointwise) belongs to X if and only if the
structure topology on EX is Hausdorff.


