
CHAPTER I

Basic theory of M-ideals

I.1 Fundamental properties

In this book we shall be concerned with decompositions of Banach spaces by means of
projections satisfying certain norm conditions. The essential notions are contained in the
following definition. We denote the annihilator of a subspace J of a Banach space X by
J⊥ = {x∗ ∈ X∗ | x∗(y) = 0 ∀y ∈ J}.
Definition 1.1 Let X be a real or complex Banach space.

(a) A linear projection P is called an M -projection if

‖x‖ = max{‖Px‖, ‖x− Px‖} for all x ∈ X.
A linear projection P is called an L-projection if

‖x‖ = ‖Px‖+ ‖x− Px‖ for all x ∈ X.
(b) A closed subspace J ⊂ X is called an M-summand if it is the range of an M-

projection. A closed subspace J ⊂ X is called an L-summand if it is the range
of an L-projection.

(c) A closed subspace J ⊂ X is called an M-ideal if J⊥ is an L-summand in X∗.

Some comments on this definition are in order. First of all, every Banach space X
contains the trivial M -summands {0} and X . All the other M -summands will be called
nontrivial. (Sometimes only trivial M -summands exist as will presently be shown.) The
same remark applies to L-summands and M -ideals.
There is an obvious duality between L- and M -projections:

• P is an L-projection on X iff P ∗ is an M -projection on X∗.

• P is an M -projection on X iff P ∗ is an L-projection on X∗.
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2 I. Basic theory of M -ideals

This remark yields the following characterisation of M -projections which will be useful
in the sequel:

A projection P ∈ L(X) is an M -projection if and only if

‖Px1 + (Id− P )x2‖ ≤ max{‖x1‖, ‖x2‖} for all x1, x2 ∈ X. (∗)
In fact, (∗) means that the operator

(x1, x2) �→ Px1 + (Id− P )x2

from X ⊕∞ X to X is contractive whence its adjoint

x∗ �→ (P ∗x∗, (Id− P )∗x∗)
from X∗ to X∗ ⊕1 X

∗ is contractive. (X ⊕p Y denotes the direct sum of two Banach
spaces, equipped with the 
p-norm.) This means that P ∗ is an L-projection, and P must
be an M -projection.
Turning to (b) let us note that there is only one M -projection P with J = ran(P )
(= ker(Id − P )) if J is an M -summand and only one L-projection P with J = ran(P )
(= ker(Id−P )) if J is an L-summand (cf. Proposition 1.2 below which contains a stronger
statement). Consequently, there is a uniquely determined closed subspace Ĵ such that

X = J ⊕∞ Ĵ

resp.
X = J ⊕1 Ĵ .

Then Ĵ is called the complementary M - (resp. L-)summand. The duality of L- and
M -projections may now be expressed as

• X = J ⊕∞ Ĵ iff X∗ = J⊥ ⊕1 Ĵ
⊥,

• X = J ⊕1 Ĵ iff X∗ = J⊥ ⊕∞ Ĵ⊥.

It follows that M -summands are M -ideals and that the M -ideal J is an M -summand if
and only if the L-summand complementary to J⊥ is weak∗ closed. Let us note that the
fact that J and Ĵ are complementary L-summands in X means geometrically that BX ,
the closed unit ball of X , is the convex hull of BJ and B

Ĵ
.

As regards (c) the reader might wonder why we didn’t introduce the notion of an “L-
ideal”, meaning a subspace whose annihilator is anM -summand. The reason is that such
an “L-ideal” is automatically an L-summand (see Theorem 1.9 below). Note, however,
that the expression “L-ideal” has occasionally appeared in the literature as a synonym
of L-summand, e.g. in [11].

Proposition 1.2
(a) If P is an M -projection on X and Q is a contractive projection on X satisfying

ran(P ) = ran(Q), then P = Q.
(b) If P is an L-projection on X and Q is a contractive projection on X satisfying

ker(P ) = ker(Q), then P = Q.
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Proof: We first prove (b). The decisive lever for our argument is that, for an L-
summand J in X , there is for a given x ∈ X one and only one best approximant y0 in
J , that is

‖x− y0‖ = inf
y∈J
‖x− y‖,

namely the image of x under the L-projection onto J . (In the language of approximation
theory, L-summands are Chebyshev subspaces.) We apply this remark with J = ker(P ).
For x ∈ X we have x− Px ∈ ker(P ) = ker(Q), hence

‖x− (x−Qx)‖ = ‖Qx‖
= ‖Q(x− (x− Px))‖
≤ ‖Q‖ · ‖Px‖
≤ ‖x− (x− Px)‖.

This means that x −Qx ∈ ker(Q) = ker(P ) is at least as good an approximant to x in
J as x − Px which is the best one. From the uniqueness of the best approximant one
deduces Qx = Px, thus P = Q, as claimed.
(a) follows from (b) since ker(P ∗) = ran(P )⊥ = ker(Q∗). 2

Corollary 1.3 If an M -ideal is the range of a contractive projection Q, then it is an
M -summand.

Proof: ker(Q∗) = J⊥. Thus, the L-projection with kernel J⊥ is Q∗ and hence weak∗

continuous. 2

We now discuss some examples of M -ideals and M -summands.

Example 1.4(a) Let S be a locally compact Hausdorff space. Then J ⊂ C0(S) is an
M -ideal if and only if there is a closed subset D of S such that

J = JD := {x ∈ C0(S) | x(s) = 0 for all s ∈ D}.

It is an M -summand if and only if D is clopen (= closed and open).

Proof: Obviously, µ �→ χDµ is the L-projection from C0(S)∗ =M(S) onto J⊥
D so that

JD is an M -ideal if D is closed, and JD is an M -summand if D is clopen. Suppose now
that J ⊂ C0(S) is an M -ideal. In order to find the set D, we make use of the following
elementary lemma which we state for future reference. The set of extreme points of a
convex set C is denoted by ex C.

Lemma 1.5 For Z = J1 ⊕1 J2 we have (using the convention exB{0} = ∅)

exBZ = exBJ1 ∪ exBJ2 .
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We shall apply Lemma 1.5 here with Z =M(S), J1 = J⊥ and J2 = the complementary
L-summand. Let

D = {s ∈ S | δs ∈ J⊥}.
Then D is closed, and by construction J ⊂ JD. The inclusion JD ⊂ J follows from the
Hahn-Banach and Krein-Milman theorems: By virtue of these results we only have to
show exBJ⊥ ⊂ J⊥

D , and this is true by Lemma 1.5 and by definition of D.
Finally, if J = JD is an M -summand, then the complementary M -summand is of the
same form, J

D̂
say, consequently D ∪ D̂ = S and D is clopen. 2

In particular, c0 is anM -ideal in 
∞ = C(βN) (which could also be proved directly); the
additional feature is that 
∞ is the bidual of c0. We shall study Banach spaces which
are M -ideals in their biduals in detail in Chapter III.

Example 1.4(b) Let A be the disk algebra, that is the complex Banach space of con-
tinuous functions on the closed unit disk which are analytic in the open unit disk. It will
be convenient to consider A (via boundary values) as a subspace of C(T), where T is the
unit circle. We claim that J is a nontrivial M -ideal in A if and only if there is a closed
subset D �= ∅ of T with linear Lebesgue measure 0 such that1

J = JD ∩A = {x ∈ A | x(t) = 0 for all t ∈ D}.

Proof: Note first that JD∩A = {0} if D is a subset of T having positive linear measure,
cf. e.g. [544, Theorem 17.18]. To see that anM -ideal J has the form JD∩A one proceeds
exactly as in Example 1.4(a); one only has to recall that

exBA∗ = {λ · δt|A | |λ| = 1, t ∈ T}. (∗)

[This amounts to saying that every t ∈ T is in the Choquet boundary of A, and a proof of
this fact is contained in [239, p. 54ff.]; for an explicit statement see e.g. [586, p. 29]. Since
this example will have some importance in the sequel, we would like to sketch a direct
argument: The right hand side of (∗) is weak∗ closed and norming by the maximum
modulus principle, therefore the Krein-Milman theorem (or rather its converse) implies
“⊂”. On the other hand, exBA∗ �= ∅. So let us assume p0 := λ0 · δt0 |A ∈ exBA∗ . (Here
we use the fact that for p ∈ exBX∗ and X ⊂ Y , p has an extension to some q ∈ exBY ∗ .)
For |λ| = 1, t ∈ T

(Φx)(s) :=
λ

λ0
· x
( t
t0
s
)

defines an isometric isomorphism on A, hence λ · δt|A = Φ∗(p0) ∈ exBA∗ .]
Now let D �= ∅ be a closed subset of T of linear measure 0. We wish to find an L-
projection from A∗ onto (JD ∩A)⊥. A functional p ∈ A∗ may be represented as p = µ|A
for some measure µ ∈ M(T) = C(T)∗. Let q = (χDµ)|A. Then the mapping P : p �→ q
is well-defined: If p = ν|A is another representation, then ν − µ annihilates A. The F.
and M. Riesz theorem (cf. e.g. [544, Theorem 17.13]) implies that ν − µ is absolutely
continuous with respect to Lebesgue measure so that χDµ = χDν if D has measure 0. It

1Throughout, JD will have the same meaning as in Example 1.4(a).



I.1 Fundamental properties 5

is easy to check that P is the required L-projection. Finally, the nontriviality follows from
a theorem of Fatou [316, p. 80] which also shows that different D give rise to different
M -ideals. 2

We shall present a characterisation of M -ideals in a general function algebra in Theo-
rem V.4.2. As regards this example, see also the abstract version of our approach in
Corollary 1.19.

Example 1.4(c) LetK be a compact convex set in a Hausdorff locally convex topological
vector space. As usual, A(K) denotes the space of real-valued affine continuous functions
on K. Let us recall the definition of a split face of K ([7, p. 133], [9]). A face F of K is
called a split face if there is another face F ′ such that every k ∈ K\(F ∪F ′) has a unique
representation

k = λk1 + (1− λ)k2 with k1 ∈ F, k2 ∈ F ′, 0 < λ < 1.

It is known that every closed face of a simplex is a split face [7, p. 144].
Then J is an M -ideal in A(K) if and only if there exists a closed split face F of K such
that

J = JF ∩A(K) = {x ∈ A(K) | x(k) = 0 for all k ∈ F}.
The proof of this fact can be given along the lines of (b), the crucial step being the measure
theoretic characterisation of closed split faces (see [7, Th. II.6.12]) which replaces the use
of the F. and M. Riesz theorem.

Example 1.4(c) was one of the forerunners of the generalM -ideal theory (cf. [9]). Another
forerunner of the general theory is contained in the next example.

Example 1.4(d) In a C∗-algebra theM -ideals coincide with the closed two-sided ideals.

We shall present a proof of this fact in Theorem V.4.4. For the time being let us notice
that in particular K(H) is anM -ideal in L(H) (where H denotes a Hilbert space) which
was first shown by Dixmier [164] back in 1950. An independent proof of Dixmier’s result
will be given in Chapter VI. There we shall study the class of Banach spaces X for which
K(X) is anM -ideal in L(X). Let us indicate at this point that this class contains all the
spaces 
p for 1 < p <∞ and c0 as well as certain of their subspaces and quotient spaces
(cf. Example VI.4.1, Corollary VI.4.20). Moreover, K(X) is never an M -summand in
L(X) unless dimX <∞ (Proposition VI.4.3).

Example 1.4(e) Although there are certain similarities between algebraic ideals andM -
ideals, there is one striking difference: Unlike the case of algebraic ideals the intersection
of (infinitely many) M -ideals need not be an M -ideal. An example to this effect will
be given in II.5.5. Also let us advertise now the description of M -ideals in G-spaces
(Proposition II.5.2) and Theorem II.5.4 which are related to this phenomenon.
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Here are some examples of L-summands.

Example 1.6(a) Consider X = L1(µ). We assume that µ is localizable (e.g. σ-finite)
so that L1(µ)∗ ∼= L∞(µ) in a natural fashion. Then the L-projections on L1(µ) coincide
with the characteristic projections PA(f) = χAf for measurable sets A.

Proof: Trivially, PA is an L-projection. Conversely, for a given L-projection P the
adjoint P ∗ is an M -projection on L∞(µ). Now L∞(µ) is a commutative unital C∗-
algebra, and as such it may be represented as C(K) by the Gelfand-Naimark theorem.
(This representation is also possible in the real case.) Since the Gelfand transform is
multiplicative, the idempotent elements in L∞(µ) (i.e., the measurable characteristic
functions) correspond exactly to the idempotent elements in C(K) (i.e., the continuous
characteristic functions). Now Example 1.4(a) tells us that M -projections are charac-
teristic projections. Thus the same is true for L∞(µ) so that P ∗, and hence P , is a
characteristic projection. 2

The description of the L-projections on L1(µ) in terms of the measure space is a bit more
involved if µ is arbitrary; we refer to [66, p. 58]. However, every space L1(µ) is order
isometric to a space L1(m) where m is (even strictly) localizable [559, p. 114]. Therefore,
our initial restriction concerning µ is not a severe one, since we are dealing with Banach
space properties of L1 rather than properties of the underlying measure space.
It is worthwhile adopting the point of view of Banach lattice theory in this example. Using
the notions of Banach lattice theory we have established the fact that the L-projections
on an L1-space (or an (AL)-space if one prefers) coincide with the band projections and
that the L-summands coincide with the (projection) bands (which are the same as the
order ideals in L1); cf. [559, p. 113 and passim] for these matters. The advantage of this
description is that it avoids explicit reference to the underlying measure space.
Incidentally, we have shown that the M -projections on L1(µ)∗ are weak∗ continuous.
This is true for every dual Banach space, see Theorem 1.9 below.

Example 1.6(b) The Lebesgue decomposition µ = µac + µsing with respect to a given
probability measure furnishes another example of an L-decomposition. Note that neither
of the L-summands in

C[0, 1]∗ =M [0, 1] = L1[0, 1]⊕1Msing[0, 1]

is weak∗ closed. (In fact, both of them are weak∗ dense.)

Example 1.6(c) In Chapter IV we shall study Banach spaces which are L-summands in
their biduals. Prominent examples will be the L1-spaces as well as their “noncommuta-
tive” counterparts, i.e., the preduals of von Neumann algebras.

The preceding examples have shown a variety of situations where M -ideals or L-sum-
mands arise in a natural way. Sometimes, however, it will also be of interest to have
a criterion at hand in order to show that a given Banach space does not contain any
nontrivial M -ideal or L-summand.

Proposition 1.7 If X is smooth or strictly convex, then X contains no nontrivial M -
ideal and no nontrivial L-summand.
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Proof: Since points of norm one which are contained in a nontrivial L-summand never
have a unique supporting hyperplane, we conclude that a smooth space cannot contain a
nontrivial L-summand. On the other hand, ifX is smooth and x∗ ∈ SX∗ attains its norm,
then x∗ is an extreme functional. Now the Bishop-Phelps theorem (see Theorem VI.1.9)
yields that exBX∗ is norm dense in SX∗ . By Lemma 1.5, X cannot contain a nontrivial
M -ideal either. (Actually, we have shown the (by virtue of Proposition V.4.6) stronger
statement that all the L-summands in the dual of a smooth space are trivial. However, we
shall eventually encounter the dual of a smooth space which contains nontrivialM -ideals,
namely L∞/H∞ (Remark IV.1.17).)
As for the case of strictly convex spaces, all the L-summands are trivial by Lemma 1.5,
and the triviality of the M -ideals is a consequence of Corollary II.1.5 below. 2

Proposition 1.7 applies in particular to the Lp-spaces for 1 < p <∞.
The following theorem describes a dichotomy concerning the existence of L-summands
and M -ideals.

Theorem 1.8 A complex Banach space or a real Banach space which is not isometric to

∞(2) (= (R2 , ‖ . ‖∞)) cannot contain nontrivial M -ideals and nontrivial L-summands
simultaneously.

Proof: Suppose that the real Banach space X admits nontrivial decompositions

X = J ⊕∞ Ĵ

= Y ⊕1 Ŷ .

Our aim is to show that under this assumption Y must be one-dimensional. Once this is
achieved we conclude by symmetry that Ŷ must be one-dimensional as well so that X is
isometric to 
 1(2) (∼= 
∞(2)). If X is a complex Banach space, then the above reasoning
applies to the underlying real space and yields that X is R-isometric to 
∞

R
(2) which of

course is impossible.
Let us now present the details of the proof that dim(Y ) = 1. We denote by P the
M -projection onto J and by π the L-projection onto Y . We first claim:

J ∩ Y = {0} (1)

Assume to the contrary that there exists some u ∈ J ∩ Y with ‖u‖ = 1. Let x ∈ Ĵ ,
‖x‖ = 1. We shall show x ∈ Y : Since ‖u± x‖ = 1 we have

2 = ‖u+ x‖+ ‖u− x‖
= ‖u+ π(x)‖ + ‖x− π(x)‖ + ‖u− π(x)‖ + ‖π(x)− x‖
≥ 2 · ‖u‖+ 2 · ‖x− π(x)‖

so that
x = π(x) ∈ Y.

This shows Ĵ ⊂ Y and in particular Ĵ∩Y �= {0}. Thus we may repeat the same argument
with the duo Ĵ & Y to obtain J ⊂ Y as well. Consequently Y = X in contrast to our
assumption that the L-decomposition is nontrivial. Therefore (1) holds.
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To show that Y is one-dimensional we again argue by contradiction. Suppose there exists
a two-dimensional subspace Y0 of Y . By (1), P |Y0

is injective so that J0 := P (Y0) is two-
dimensional, too. By Mazur’s theorem (e.g. [317, p. 171]) (or since every convex function
on R has a point of differentiability) J0 contains a smooth point z, i.e., ‖z‖ = 1 and


(x) := lim
h→0

1
h

(
‖z + hx‖ − 1

)
exists for all x ∈ J0. Since J0 is supposed to be two-dimensional, we can find some
x ∈ J0, ‖x‖ = 1, such that

lim
h→0

1
h

(
‖z + hx‖ − 1

)
= 0. (2)

Let us write z =
Py

‖Py‖ for some y ∈ Y0, ‖y‖ = 1. We next claim:

lim
h→0

1
h

(
‖y + hx‖ − 1

)
= 0 (3)

To prove this we note

‖y + hx‖ = max{‖Py + hx‖, ‖y − Py‖}
since P is an M -projection and x ∈ J . Also note

1 = ‖y‖ = max{‖Py‖, ‖y− Py‖}.
Thus, if ‖Py‖ < 1, we have for sufficiently small h

‖y + hx‖ = ‖y − Py‖ = 1,

and (3) follows immediately. If ‖Py‖ = 1 (hence z = Py) and ‖y−Py‖ < 1, we have for
sufficiently small h

‖y + hx‖ = ‖Py + hx‖ = ‖z + hx‖,
and (3) follows from (2). It is left to consider the case where 1 = ‖Py‖ = ‖y − Py‖. In
this case we have

‖y + hx‖ = max{‖z + hx‖, 1},
and again (3) follows from (2).
We can now conclude the proof as follows. For h > 0 we have

‖y + hx‖ = ‖y + hπ(x)‖ + h‖x− π(x)‖,
‖y − hx‖ = ‖y − hπ(x)‖ + h‖x− π(x)‖.

Observing
‖y + hπ(x)‖ + ‖y − hπ(x)‖ ≥ 2 · ‖y‖ = 2

we obtain from the above equations

1
h

(
‖y + hx‖ − 1

)
+

1
h

(
‖y − hx‖ − 1

)
≥ 2 · ‖x− π(x)‖,
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which shows x = π(x) ∈ Y by virtue of (3). Since 0 �= x ∈ J by choice of x we have
arrived at a contradiction to (1). Therefore, Y must be one-dimensional. 2

The real space 
∞(2) has to be excluded because it contains the nontrivial M -summand
{(s, t) | s = 0} and the nontrivial L-summand {(s, t) | s+ t = 0}.
Theorem 1.8 implies that an L1-space does not contain any nontrivialM -ideal whereas a
C(K)-space does not contain any nontrivial L-summand unless the scalars are real and
the space is two-dimensional.

Next we are going to collect several results on M -ideals and L-summands which will
frequently be used.

Theorem 1.9 An M -summand in a dual space X∗ is weak ∗ closed and hence of the
form J⊥ for some L-summand J in X. Consequently, an M -projection on a dual space
is weak ∗ continuous.

Proof: Given a decomposition X∗ = J1 ⊕∞ J2 let us assume to the contrary that J1

is not weak∗ closed. In this case there exists a net (x∗i ) in the unit ball of J1 which
converges in the weak∗ sense to some x∗ ∈ J2, x∗ �= 0. (Here the Krein-Smulian theorem
enters.) Then y∗i = x

∗
i + x

∗/‖x∗‖ defines a net in the unit ball of X∗ whose weak∗ limit
has norm 1 + ‖x∗‖ > 1: a contradiction.
It is easily checked that a projection whose range and kernel are weak∗ closed is weak∗

continuous so that the remaining assertion follows. 2

Remarks: (a) Theorem 1.9 can be thought of as a “localized” version of Grothendieck’s
result that L1 is the only predual of L∞ [281].

(b) We will eventually prove in Corollary II.3.6 that a weak∗ closed M -ideal in a dual
space is an M -summand and hence the annihilator of an L-summand.

(c) In Proposition V.4.6 we present an example of a space X without nontrivialM -ideals
such that X∗ has infinitely many L-summands; see also Example IV.1.8.

Theorem 1.10
(a) Two L- (resp. M -)projections commute.
(b) The set PL(X) of all L-projections on X forms a complete Boolean algebra under

the operations

P ∧Q = PQ, P ∨Q = P +Q− PQ, P c = Id− P.
(c) The set PM(X) of all M -projections on X forms a (generally not complete)

Boolean algebra. However, for a dual space X∗
PM(X∗) is isomorphic to PL(X)

and hence complete.

Proof: (a) Let P and Q be L-projections. Then

‖Qx‖ = ‖PQx‖+ ‖(Id− P )Qx‖
= ‖QPQx‖+ ‖(Id−Q)PQx‖+ ‖Q(Qx− PQx)‖+ ‖(Id−Q)(Qx− PQx)‖
= ‖QPQx‖+ 2 · ‖PQx−QPQx‖+ ‖Qx−QPQx‖
≥ ‖Qx‖+ 2 · ‖PQx−QPQx‖
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so that PQ = QPQ. Likewise we obtain P (Id − Q) = (Id − Q)P (Id − Q) which is
equivalent to QP = QPQ, hence the result.

(b) PQ is a projection by (a), and it is an L-projection since

‖x‖ = ‖Qx‖+ ‖(Id−Q)x‖
= ‖PQx‖+ ‖Qx− PQx‖+ ‖x−Qx‖
≥ ‖PQx‖+ ‖x− PQx‖
≥ ‖x‖,

and so is P +Q− PQ = Id − (Id − P )(Id −Q). It is routine to verify that PL has the
structure of a Boolean algebra.
Let M be a family of L-projections. To prove that PL is complete we have to show that
the supremum of M (for the induced order: P ≤ Q if and only if PQ = P ) exists. Upon
replacing M by its family of finite suprema one may assume without loss of generality
that M is upward directed. Since

‖Qx‖ = ‖PQx‖+ ‖Qx− PQx‖
= ‖Px‖+ ‖Qx− Px‖
≥ ‖Px‖

for P ≤ Q and since {‖Px‖ | P ∈ M } is bounded we see that (Px)P∈M is a Cauchy net
for every x: If ‖P0x‖ ≥ supP∈M ‖Px‖− ε, then ‖Q1x−Q2x‖ ≤ 2ε for Q1, Q2 ≥ P0. It is
not hard to verify that its pointwise limit Sx = limP∈M Px is an L-projection, and that
Q ≥ S if and only if Q ≥ P for all P ∈ M which means that S is the supremum of M .

(c) PM is a Boolean algebra by the duality of L- and M -projections. That PM need
not be complete can be seen from Example 1.4(a): For X = c = C(αN) the family of
M -projections onto the M -summands JD, D = {2}, {2, 4}, {2, 4, 6}, . . . , has no infimum.
For dual spaces combine Theorem 1.9 and (b). 2

Proposition 1.11 Let Ji (i ∈ I), J1, J2 be M -ideals in X.
(a) lin

⋃
i Ji is an M -ideal in X. (Equivalently, the intersection of weak ∗ closed

L-summands is a weak ∗ closed L-summand.)
(b) J1 ∩ J2 is an M -ideal in X.
(c) J1 + J2 is closed and hence an M -ideal in X. Moreover

J1/(J1 ∩ J2) ∼= (J1 + J2)/J2.

Proof: (a) and (b) are consequences of Theorem 1.10(b) (cf. [51, p. 37] for details).
(c) is a special case of Proposition 1.16 below. 2

We again stress that in general an arbitrary intersection of M -ideals need not be an
M -ideal; see II.5.5 for a counterexample.
The following proposition is very important, though its proof is immediate from the
definition of an M -ideal. It states that M -ideals are “Hahn-Banach smooth”.
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Proposition 1.12 Let J be an M -ideal in X. Then every y∗ ∈ J∗ has a unique norm
preserving extension to a functional x∗ ∈ X∗.

Proof: By assumption, J⊥ is an L-summand so that there is a decomposition

X∗ = J⊥ ⊕1 J
#. (∗)

But J# can explicitly be described, since there are canonical isometric isomorphisms

J∗ ∼= X∗/J⊥ ∼= J#

so that
J# = {x∗ ∈ X∗ | ‖x∗‖ = ‖x∗|J‖}.

The result now follows. 2

Remark 1.13 Proposition 1.12 enables us to view J∗ as a subspace of X∗. Accordingly
we shall replace (∗) above by

X∗ = J⊥ ⊕1 J
∗ (∗∗)

in the sequel. Thus, it makes sense to consider the (generally non-Hausdorff) topology
σ(X, J∗), which we shall occasionally meet. (In the special case where J is an M -ideal
in J∗∗ (see Chapter III) this is nothing but the weak∗ topology on J∗∗.)
The Hahn-Banach theorem implies that BJ is σ(X, J∗)-dense in BX . (Note that this
holds even in the case when σ(X, J∗) is not Hausdorff.) This simple observation has
important consequences when applied to operator spaces (Proposition VI.4.10).

Next we wish to consider the question whether an M -ideal in a Banach space induces
an M -ideal in a subspace or a quotient space. We first collect some general facts in this
direction.

Lemma 1.14 Let J and Y be closed subspaces in a Banach space X.
(a) J+Y is closed in X if and only if J⊥+Y ⊥ is closed in X∗ if and only if J⊥+Y ⊥

is weak ∗ closed in X∗. In this case J⊥ + Y ⊥ = (J ∩ Y )⊥, and (J + Y )/J is
isomorphic to Y/(J ∩ Y ), (J⊥ + Y ⊥)/Y ⊥ is isomorphic to J⊥/(J⊥ ∩ Y ⊥).

(b) Suppose J⊥ is the range of a projection P such that P (Y ⊥) ⊂ Y ⊥. Then the
assertions of (a) hold. If P is contractive we even have

(J + Y )/J ∼= Y/(J ∩ Y ),
(J⊥ + Y ⊥)/Y ⊥ ∼= J⊥/(J⊥ ∩ Y ⊥).

If Id− P is contractive we have

(J + Y )/Y ∼= J/(J ∩ Y ).
Proof: (a) To prove the asserted equivalence apply the closed range theorem to the
operator y �→ y + J from Y to X/J (cf. [521] for details). The sum J⊥ + Y ⊥ is always
weak∗ dense in (J∩Y )⊥ by the Hahn-Banach theorem so that the next assertion obtains.
Finally, the operator

T : Y/(J ∩ Y ) −→ (J + Y )/J, T (y + (J ∩ Y )) = y + J
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is a well-defined bijective contractive operator between Banach spaces, hence an isomor-
phism. Similarly,

S : J⊥/(J⊥ ∩ Y ⊥) −→ (J⊥ + Y ⊥)/Y ⊥, S(z∗ + (J⊥ ∩ Y ⊥)) = z∗ + Y ⊥

is an isomorphism.

(b) Let us prove that J⊥ + Y ⊥ is closed. Suppose

J⊥ + Y ⊥ � z∗n + ξ∗n → x∗ ∈ X∗

as n→∞. Then
ξ∗n − Pξ∗n = (Id− P )(z∗n + ξ∗n)→ x∗ − Px∗

which is seen to lie in Y ⊥ by assumption on P . Hence

x∗ = Px∗ + (x∗ − Px∗) ∈ J⊥ + Y ⊥.

It is left to prove that T−1 and S−1 are contractive. The latter follows from the estimate
(valid for z∗ ∈ J⊥)

inf{‖z∗ − ξ∗‖ | ξ∗ ∈ J⊥ ∩ Y ⊥}
= inf{‖Pz∗ − Pξ∗‖ | ξ∗ ∈ X∗, P ξ∗ ∈ Y ⊥}
≤ inf{‖z∗ − ξ∗‖ | ξ∗ ∈ X∗, P ξ∗ ∈ Y ⊥}
≤ inf{‖z∗ − ξ∗‖ | ξ∗ ∈ Y ⊥}

(where we used ‖P‖ ≤ 1 and P (Y ⊥) ⊂ Y ⊥); for the former observe that

‖y + J ∩ Y ‖ = d(y, J ∩ Y )
= sup{|〈x∗, y〉| | ‖x∗‖ ≤ 1, x∗ ∈ (J ∩ Y )⊥ = J⊥ + Y ⊥},

‖y + J‖ = d(y, J)

= sup{|〈x∗, y〉| | ‖x∗‖ ≤ 1, x∗ ∈ J⊥}.
Now for x∗ = z∗ + ξ∗ ∈ J⊥ + Y ⊥ we have x∗ − Px∗ = ξ∗ − Pξ∗ ∈ Y ⊥, hence 〈x∗, y〉 =
〈Px∗, y〉. Since ‖Px∗‖ ≤ ‖x∗‖ the result follows.
The remaining isometry is established in the same way. 2

Lemma 1.15 Let P be a projection on X and let Y ⊂ X be a closed subspace. We
suppose P (Y ) ⊂ Y so that

P |Y : Y −→ Y, y �→ Py

and
P/Y : X/Y −→ X/Y, x+ Y �→ Px+ Y

are well-defined projections. We have

ran(P |Y ) = ran(P ) ∩ Y,
ran(P/Y ) = (ran(P ) + Y )/Y,
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and
ran(P/Y ) ∼= ran(P )/(ran(P ) ∩ Y )

if P is contractive. Moreover, P |Y and P/Y are L- (resp. M -) projections if P is.

Proof: All the assertions concerning P |Y are obvious. Note that P ∗(Y ⊥) ⊂ Y ⊥ and
thus (P/Y )∗ = P ∗|Y ⊥ . Taking into account the duality of L- and M -projections and
Lemma 1.14 we infer the assertions concerning P/Y . 2

Proposition 1.16 Suppose J is an M -ideal in X with corresponding L-projection P
from X∗ onto J⊥. Suppose in addition that Y is a closed subspace of X such that

(a) P (Y ⊥) ⊂ Y ⊥.

Then J ∩ Y is an M -ideal in Y , J + Y is closed, and (J + Y )/Y is isometric with
J/(J ∩ Y ) and an M -ideal in X/Y .
Moreover, (a) is equivalent to either of the conditions
(b) J ∩ Y is σ(X, J∗)-dense in Y ,
(b1) BJ∩Y is σ(X, J∗)-dense in BY .

Proof: If one identifies Y ∗ with X∗/Y ⊥ then P/Y ⊥ defines an L-projection from Y ∗

onto the annihilator of J ∩Y in Y ∗ by Lemma 1.15 so that J ∩Y is anM -ideal in Y . To
show that (J + Y )/Y is an M -ideal in X/Y employ the L-projection P |Y ⊥ . The other
assertions are special cases of Lemma 1.14. Now that J ∩ Y is an M -ideal in Y under
assumption (a), we see from Remark 1.13 that (b1) holds, and (b1) trivially implies (b).
Next assume (b). For ξ∗ ∈ Y ⊥ we have ξ∗−Pξ∗ ∈ ker(P ) = J∗. Now ξ∗ ∈ Y ⊥ ⊂ (J∩Y )⊥
and Pξ∗ ∈ J⊥ ⊂ (J ∩ Y )⊥ imply that ξ∗ − Pξ∗ annihilates J ∩ Y σ(X,J∗)

so that by (b)
ξ∗ − Pξ∗ ∈ Y ⊥. Hence (a) follows. 2

Remarks: (a) The reader should have no difficulty in recovering Example 1.4(b) from
1.4(a) using condition (a) of Proposition 1.16. This is the abstract argument behind
our reasoning in Example 1.4(b), and it will be expressively mentioned in Corollary 1.19
below.
(b) We remark that (a) is not necessary to ensure that J ∩Y is anM -ideal. For example,
let Y = 
∞(2), K = BY ∗(= {(s, t) ∈ K

2 | |s|+ |t| ≤ 1}) and X = C(K) so that Y ⊂ X
in a canonical fashion. Let U = {(0, t) | t ∈ K} and

D = {y∗ ∈ K | y∗|U = 0} = {(s, 0) | |s| ≤ 1}.

Then U is the intersection of the M -ideal JD with Y and also itself an M -ideal in Y (in
fact, an M -summand). Nevertheless, assumption (a) in Proposition 1.16 is violated: If
µ ∈M(K) is the discrete measure

µ = δ(1/2,1/2) + δ(1/2,−1/2) + δ(−1,0)

then µ ∈ Y ⊥, but
P (µ) = χDµ = δ(−1,0) �∈ Y ⊥.
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For a positive result involving maximal measures we refer to Theorem 2.4.
(c) Condition (a) in 1.16 is fulfilled if Y , too, is anM -ideal, since L-projections commute
(1.10(a)). This provides a proof of Proposition 1.11(c).

Proposition 1.17
(a) If J1 and J2 are M -ideals in X, then the canonical images of J1 and J2 in

(J1 + J2)/(J1 ∩ J2) are complementary M -summands.
(b) Let J be an M -ideal in X.

• Y ⊂ J is an M -ideal in X if and only if it is an M -ideal in J .

• Y ⊂ X/J is an M -ideal if and only if it is the image of an M -ideal in X
under the quotient map.

• If Y ⊂ J , then J/Y is an M -ideal in X/Y .

• If J ⊂ Y ⊂ X, then J is an M -ideal in Y .

Proof: These assertions are easily verified; for details cf. [51, p. 39f.]. 2

We recall from the fundamental Example 1.4(a) that theM -ideals in C(K) coincide with
the ideals JD. The following proposition says that the JD are in fact the ancestors of all
M -ideals, since every Banach space is a subspace of some C(K).

Proposition 1.18 Let X be a closed subspace of C(K), and let J be an M -ideal in X.
Then there is a closed subset D of K such that J = JD ∩X.

Proof: Let D = {k ∈ K | δk|X ∈ J⊥}. Then D is a closed set, and J ⊂ JD ∩ X
by construction. If the inclusion were proper, we could separate a certain x0 ∈ JD ∩X
from J by a functional p ∈ J⊥. We may even assume p ∈ exBJ⊥ by the Krein-Milman
theorem and thus (Lemma 1.5) p ∈ exBX∗ . Such a p is of the form p(x) = λ · x(k) for
some k ∈ K, |λ| = 1. Since p ∈ J⊥ we must have k ∈ D and hence x0(k) = 0. On the
other hand p(x0) �= 0 since p is a separating functional: a contradiction. 2

We turn to the converse of this proposition, which, of course, will generally not hold.
The following is a special case of Proposition 1.16.

Corollary 1.19 Let X be a closed subspace of C(K). Then JD ∩X is an M -ideal in X
if the L-projection µ �→ χDµ from C(K)∗ onto J⊥

D leaves X⊥, the annihilator of X in
C(K)∗, invariant.

Let us formulate an important example where this occurs. SupposeX is a closed subspace
of C(K) and suppose D ⊂ K is closed. We let X |D be the space of all restrictions
{x|D | x ∈ X}. Following [444] one says that (X |D, X) has the bounded extension
property if there exists a constant C such that, given ξ ∈ X |D, ε > 0 and an open set
U ⊃ D, there is some x ∈ X such that

x|D = ξ,

‖x‖ ≤ C · ‖ξ‖,
‖x(k)‖ ≤ ε for k �∈ U.
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(Note that X |D is closed under this assumption.) For example, if X ⊂ C(K) is a
subalgebra and D ⊂ K is a subset of the form f−1({1}) for some f ∈ BX (a “peak
set”), then the pair (X |D, X) has the bounded extension property: Let ξ ∈ X |D and
g ∈ X such that g|D = ξ. First of all we remark that replacing f by (1 + f)/2 permits
us to assume that in addition |f(k)| < 1 if and only if k �∈ D. Then g · fn meets the
requirements of the above definition if n is large enough. (The argument easily extends
to intersections of peak sets, the so-called p-sets.)
We now have:

Proposition 1.20 If (X |D, X) has the bounded extension property, then JD ∩X is an
M -ideal in X.

Instead of proving this proposition now with the help of Corollary 1.19 we prefer to
provide a proof using the methods of the next section, see p. 24. In fact, not only could
one prove that under the assumption of the bounded extension property the condition of
Corollary 1.19, namely χDµ ∈ X⊥ for all µ ∈ X⊥, is fulfilled; it is even true that the two
conditions are equivalent. This follows from [238]. Let us add that Hirsberg [311] has
obtained necessary and sufficient conditions on a closed subset D to ensure that JD ∩X
is an M -ideal in X , where X ⊂ C(K) is assumed to be a closed subspace separating
points and containing the constants.

As a counterpart to the preceding results we now discuss the L-structure of subspaces of
L1-spaces. (In contrast to the situation presented in Proposition 1.18 and Corollary 1.19,
not every Banach space is a subspace of some L1-space.) Recall from Example 1.6(a)
that the L-projections on L1 coincide with the band projections.

Proposition 1.21 Let X be a closed subspace of some L1-space and let P : X −→ X
be an L-projection. Then P can be extended to an L-projection on L1. More precisely,
if PB denotes the L-projection from L1 onto the band B generated by P (X), then X is
an invariant subspace of PB and PB|X = P .

Proof: We shall use the slightly unusual notation (A ⊂ L1 a given subset)

As = {y ∈ L1 | |x| ∧ |y| = 0 for all x ∈ A}.
(Here s stands for singular. The usual notation A⊥ collides with our symbol for the
annihilator of A.) Then ([558, p. 210]) B = P (X)ss and Bs = P (X)s. We first claim:

(a) For x ∈ X there is a measurable set E (depending on x) such that Px = χE · x.
In fact, for f, g ∈ L1 with ‖f±g‖ = ‖f‖+‖g‖ we have |f |∧ |g| = 0, since |f(ω)±g(ω)| =
|f(ω)| + |g(ω)| almost everywhere which implies f(ω) · g(ω) = 0 almost everywhere. In
particular |Px| ∧ |x− Px| = 0, and our claim obtains with E = {Px �= 0}.
We now show

(b) (Id − P )(X) = X ∩Bs,

(c) P (X) = X ∩B,
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which will prove Proposition 1.21.
ad (b): For x ∈ X ∩ Bs we have |x| ∧ |Px| = 0. But Px = χE · x for a certain E by
(a) so that Px = 0 and x ∈ (Id − P )(X). Conversely, let Px = 0. We wish to prove
|x| ∧ |y| = 0 for all y ∈ P (X). Now choose E such that P (x+ y) = χE · (x+ y). It follows
y = P (x+ y) = χE · (x+ y) and χ{E · y = χE · x. This implies |x| ∧ |y| = 0.
ad (c): “⊂” is trivial. Let x ∈ X ∩B. Since Px ∈ B we have x− Px ∈ B. On the other
hand x− Px ∈ Bs by (b). Thus x = Px ∈ P (X). 2

Corollary 1.22 Let X and Y be closed subspaces of C(K) with Y ⊂ X. Let B be the
band in M(K) generated by X⊥, the annihilator of X in M(K), and let PB be the band
projection onto B. Then X/Y is an M -ideal in C(K)/Y if and only if

PB(Y ⊥) ⊂ Y ⊥ (1)

B ∩ Y ⊥ = X⊥. (2)

Proof: By standard duality, X/Y is an M -ideal if and only if there is an L-projection
from Y ⊥ onto X⊥. Now, if (1) and (2) hold, the restriction of PB to Y ⊥ is such a
projection. The converse follows from Proposition 1.21. 2

The final part of this section is devoted to the possible dependence of results on the
choice of the scalar field. Up to now we have not encountered the necessity of treating
real and complex spaces separately. This is not accidental.

Proposition 1.23 Let X be a complex Banach space, and denote by XR the same space,
considered as a real Banach space. If P is an L- (resp. M -) projection on XR, then P
is complex linear and thus an L- (resp. M -) projection on X. Consequently, X and XR

have the same L-summands, M -summands and M -ideals.

Proof: Let P be an R-linear L-projection. It is enough to prove

z ∈ ran(P ) =⇒ iz ∈ ran(P ) (∗)
since then iPx ∈ ran(P ) and, by symmetry, i(Id− P )x ∈ ker(P ) for every x ∈ X which
shows

iPx = P (iPx) = P (ix− i(Id− P )x) = P (ix).
For the proof of (∗) let Qx = i−1P (ix). This is an R-linear L-projection because multi-
plication by i is an isometry. Consequently, P and Q commute (1.10(a)). Now we have
for z ∈ ran(P )

z −Qz = Pz −QPz = P (z −Qz) ∈ ran(P )

and
i(z −Qz) = iz − P (iz) ∈ ker(P )

so that
√
2 · ‖z −Qz‖ = ‖(z −Qz) + i(z −Qz)‖

= ‖z −Qz‖+ ‖z −Qz‖
= 2 · ‖z −Qz‖.
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Hence z = Qz, i.e. iz = P (iz) ∈ ran(P ). 2

There are, however, several phenomena particular to complex spaces. We now discuss
one of them. Suppose X is a complex Banach space and T ∈ L(X). We let

Π(X) = {(x∗, x) ∈ BX∗ ×BX | 〈x∗, x〉 = 1}.
Recall that T is called hermitian if

V (T ) := {〈x∗, Tx〉 | (x∗, x) ∈ Π(X)} ⊂ R.

The set V (T ) is called the spatial numerical range of T . Equivalently, T is hermitian if
and only if ‖ exp(itT )‖ = 1 for all t ∈ R. We refer to [84] for a proof of this fact and
related information. As an application, one easily shows that L- and M -projections are
hermitian.
We wish to prove thatM -ideals are invariant subspaces of hermitian operators on complex
Banach spaces. This will be obtained as a corollary to the following technical proposition,
which will be used again in Lemma V.6.7.

Proposition 1.24 Suppose X is a complex Banach space, and let J ⊂ X be an M -ideal.
Moreover, let T ∈ L(X) be an operator whose numerical range V (T ) is contained in the
strip R(ε) := R × [−ε, ε]i of the complex plane. Then for x ∈ J

d(Tx, J) ≤ ε · ‖x‖.
Proof: Let us assume ‖x‖ = 1. Since

d(Tx, J) = ‖Tx+ J‖ = sup{|〈x∗, Tx〉| | x∗ ∈ BJ⊥}
we have to show

|〈x∗, Tx〉| ≤ ε for all x∗ ∈ SJ⊥ .

So let x∗ ∈ SJ⊥ . Taking into account the canonical duality (J⊥)∗ = (J∗)⊥ (recall
Remark 1.13), we may choose x∗∗ ∈ B(J∗)⊥ such that 〈x∗∗, x∗〉 = 1, i.e. (x∗∗, x∗) ∈
Π(X∗). Then

〈λx∗, x+ λx∗∗〉 = 1

and
‖x+ λx∗∗‖ = max{‖x‖, ‖x∗∗‖} = 1

if |λ| = 1. Consequently (x+ λx∗∗, λx∗) ∈ Π(X∗) so that

λ〈x∗, Tx〉+ 〈x∗, T ∗∗x∗∗〉 ∈ V (T ∗)
(∗)⊂ V (T ) ⊂ R(ε)

if |λ| = 1 (cf. [86, p. 11] for the inclusion marked (∗)). But this implies |〈x∗, Tx〉| ≤ ε, as
requested. 2

Letting ε→ 0 in this proposition we obtain:

Corollary 1.25 A hermitian operator on a complex Banach space leaves M -ideals in-
variant.
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I.2 Characterisation theorems

The definition of an M -ideal was given in terms of projections on the dual space. The
first aim of the present section is to derive an equivalent condition for J to be anM -ideal
which avoids mentioning the dual space. We start with an easy lemma.

Lemma 2.1 Suppose J is an M -summand in X, and suppose (B(xi, ri))i∈I is a family
of closed balls satisfying

B(xi, ri) ∩ J �= ∅ for all i ∈ I (1)

and ⋂
i

B(xi, ri) �= ∅. (2)

Then ⋂
i

B(xi, ri) ∩ J �= ∅.

Proof: Let P be the M -projection onto J , and let x ∈ ⋂iB(xi, ri). We claim Px ∈⋂
iB(xi, ri).

In fact, if yi ∈ B(xi, ri) ∩ J then

ri ≥ ‖xi − yi‖
= ‖(Pxi − yi) + (xi − Pxi)‖
= max{‖Pxi − yi‖, ‖xi − Pxi‖}
≥ ‖xi − Pxi‖

so that
‖xi − Px‖ = max{‖Pxi − Px‖, ‖xi − Pxi‖} ≤ ri. 2

It will be shown in Proposition II.3.4 that the intersection condition of Lemma 2.1 ac-
tually characterises M -summands. Let us now characterise M -ideals by means of an
intersection condition which turns out to be a powerful tool for detecting M -ideals.

Theorem 2.2 For a closed subspace J of a Banach space X, the following assertions
are equivalent:

(i) J is an M -ideal in X.
(ii) (The n-ball property)

For all n ∈ N and all families (B(xi, ri))i=1,...,n of n closed balls satisfying

B(xi, ri) ∩ J �= ∅ for all i = 1, . . . , n (1)

and
n⋂
i=1

B(xi, ri) �= ∅ (2)
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the conclusion
n⋂
i=1

B(xi, ri + ε) ∩ J �= ∅ for all ε > 0

obtains.
(iii) Same as (ii) with n = 3.
(iv) (The [restricted] 3-ball property)

For all y1, y2, y3 ∈ BJ , all x ∈ BX and all ε > 0 there is y ∈ J satisfying

‖x+ yi − y‖ ≤ 1 + ε (i = 1, 2, 3).

(v) (The strict n-ball property)
For all n ∈ N and all families (B(xi, ri))i=1,...,n of n closed balls satisfying

B(xi, ri) ∩ J �= ∅ for all i = 1, . . . , n (1)

and

int
n⋂
i=1

B(xi, ri) �= ∅ (2′)

the conclusion
n⋂
i=1

B(xi, ri) ∩ J �= ∅

obtains.

Proof: (i) ⇒ (ii): We consider X as a subspace of X∗∗ and

BX∗∗(xi, ri) = {x∗∗ ∈ X∗∗ | ‖x∗∗ − xi‖ ≤ ri}.

Now J⊥⊥ is an M -summand in X∗∗, hence by Lemma 2.1 we find some

x∗∗0 ∈
⋂
i

BX∗∗(xi, ri) ∩ J⊥⊥.

If (ii) were false, we could even assume that, for some ε > 0, D :=
⋂
iB(xi, ri + ε) and

J have positive distance and hence can be separated strictly. Thus, there is x∗0 ∈ J⊥

with Re x∗0|D ≥ 1. Let E := lin {x∗∗0 , x1, . . . , xn} ⊂ X∗∗ and δ = min ε/ri.
The principle of local reflexivity assures the existence of an operator T ∈ L(E,X) satis-
fying

• ‖T ‖ ≤ 1 + δ

• Txi = xi (i = 1, . . . , n)

• 〈Tx∗∗0 , x∗0〉 = 〈x∗∗0 , x∗0〉.
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It follows that

‖Tx∗∗0 − xi‖ ≤ ‖T ‖ · ‖x∗∗0 − xi‖ ≤ (1 + δ)ri ≤ ri + ε,

i.e.
Tx∗∗0 ∈ D,

thus
1 ≤ Re 〈Tx∗∗0 , x∗0〉 = Re 〈x∗∗0 , x∗0〉 = 0,

a contradiction. (Variants of this proof will be discussed in the Notes and Remarks.)

(ii) ⇒ (iii): This is more than obvious.

(iii) ⇒ (iv): (iv) is just the special case xi = x+ yi, ri = 1.

(iv) ⇒ (i): We put
J# = {x∗ ∈ X∗ | ‖x∗‖ = ‖x∗|J‖}.

Step 1: Each x∗ ∈ X∗ can be written as

x∗ = x∗1 + x
∗
2

with x∗1 ∈ J⊥, x∗2 ∈ J#.
[Proof: Let x∗2 be a Hahn-Banach extension of x∗|J and put x∗1 = x∗ − x∗2.]
Step 2: ‖x∗1 + x∗2‖ = ‖x∗1‖+ ‖x∗2‖ for all x∗1 ∈ J⊥, x∗2 ∈ J#.
[Proof: Given ε > 0, choose x ∈ BX and z ∈ BJ such that 〈x∗1, x〉 and 〈x∗2, z〉 are real
and

〈x∗1, x〉 ≥ ‖x∗1‖ − ε,
〈x∗2, z〉 ≥ ‖x∗2‖ − ε.

An application of (iv) with y1 = y2 = z, y3 = −z yields

‖x± z − y‖ ≤ 1 + ε

for some y ∈ J . Hence
(1 + ε)(‖x∗1 + x∗2‖+ ‖x∗1 − x∗2‖)

≥ |〈x∗1 + x∗2, x+ z − y〉+ 〈x∗1 − x∗2, x− z − y〉|
= 2 |〈x∗1, x〉+ 〈x∗2, z〉|
≥ 2‖x∗1‖+ 2‖x∗2‖ − 4ε

≥ ‖x∗1‖+ ‖x∗2‖+ ‖x∗1 − x∗2‖ − 4ε

from which Step 2 follows.]

Step 3: The decomposition in Step 1 is unique.
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[Proof: If x∗1 + x∗2 = y∗1 + y∗2 , then x∗2 = (y∗1 − x∗1) + y∗2 ∈ J⊥ + J#. Since x∗2|J = y∗2 |J ,
Step 2 shows ‖y∗1 − x∗1‖ = 0.]

Thus, P : x∗ �→ x∗1 is a well-defined idempotent map onto J⊥ which fulfills the norm
condition of L-projections. To finish the proof we must show the linearity of P which
easily follows from the

Step 4: J# is a linear subspace of X∗.
[Proof: Obviously J# is a cone. Now let x∗, y∗ ∈ J#. Then we have a unique decom-
position

x∗ + y∗ = x∗1 + x
∗
2 ∈ J⊥ + J#.

We wish to show x∗1 = 0. To this end, let x ∈ BX . Given ε > 0, choose y0, y1, y2 ∈ BJ
satisfying

R � 〈x∗, y0〉 ≥ ‖x∗‖ − ε
R � 〈y∗, y1〉 ≥ ‖y∗‖ − ε
R � −〈x∗2, y2〉 ≥ ‖x∗2‖ − ε.

Use (iv) to obtain y ∈ J such that

‖x+ yi − y‖ ≤ 1 + ε (i = 0, 1, 2).

We then have

(1 + ε)(‖x∗‖+ ‖y∗‖+ ‖x∗2‖)
≥ |〈x∗, x+ y0 − y〉+ 〈y∗, x+ y1 − y〉 − 〈x∗2, x+ y2 − y〉|
≥ Re 〈x∗1, x〉+ ‖x∗‖+ ‖y∗‖+ ‖x∗2‖ − 3ε.

Consequently
Re 〈x∗1, x〉 ≤ 0 for all x ∈ BX

so that x∗1 = 0.]

(ii) ⇐⇒ (v): Since (v) is apparently stronger than (ii), the proof will be completed if we
can show the following for a fixed number n:

• If (ii) holds for collections of n + 1 balls, then (v) holds for collections of n
balls.

So let us assume the balls B(xi, ri), i = 1, . . . , n, satisfy (1) and (2′). By (2′) there exist
y0 ∈ X and δ > 0 such that

‖y0 − xi‖ ≤ ri − δ, i = 1, . . . , n.

Let r = min ri. Next we wish to construct a sequence y1, y2, . . . in J such that for k ∈ N

‖yk − yk−1‖ ≤ 2−k · 4r,
‖yk − xi‖ ≤ ri + 2−kδ (i = 1, . . . , n)
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hold. (Note that we are not claiming y0 ∈ J .) Once this is achieved we see that the limit
y of the Cauchy sequence (yk) belongs to

⋂n
i=1 B(xi, ri) ∩ J .

To construct y1 consider the balls B(y0, 2r − δ) and B(xi, ri) for i = 1, . . . , n. These
n+ 1 balls fulfill the assumptions of (ii) by the definition of y0, hence there is some

y1 ∈ B(y0, 2r) ∩
n⋂
i=1

B(xi, ri + δ/2) ∩ J,

which is what we are looking for.
Now suppose y1, . . . , yk have already been constructed. To find yk+1 consider the balls
B(yk, (2−(k+1) − 2−(2k+1)) · 4r) and B(xi, ri + (2−(k+1) − 2−(2k+1))δ) for i = 1, . . . , n.
Obviously each of them intersects J (note yk ∈ J for k ≥ 1). Let us observe that

zk := 2−(k+1)y0 + (1− 2−(k+1))yk

lies in the intersection of these n+ 1 balls:

‖zk − yk‖ = 2−(k+1)‖y0 − yk‖
≤ 2−(k+1)(‖y0 − y1‖+ · · ·+ ‖yk−1 − yk‖)

≤ 2−(k+1)
k∑
i=1

2−i · 4r

= (2−(k+1) − 2−(2k+1)) · 4r,

‖zk − xi‖ ≤ 2−(k+1)‖y0 − xi‖+ (1− 2−(k+1))‖yk − xi‖
≤ 2−(k+1)(ri − δ) + (1− 2−(k+1))(ri + 2−kδ)

= ri + (2−(k+1) − 2−(2k+1))δ.

An application of (ii) yields some

yk+1 ∈ B(yk, 2−(k+1) · 4r) ∩
n⋂
i=1

B(xi, ri + 2−(k+1)δ) ∩ J,

as requested. 2

Remarks 2.3 (a) Two balls do not suffice in the real case. For example, in the real space
X = L1(µ), µ a positive measure, the subspace J ofX consisting of those functions whose
integral vanishes satisfies (ii) in Theorem 2.2 with n = 2, but fails to be an M -ideal if
dimX > 2. (We remark that only recently such an example was found in the complex
case, see the Notes and Remarks.)
[Proof: To prove that J satisfies the 2-ball property suppose that the balls B(f1, r1)
and B(f2, r2) have nonvoid intersection (i.e., ‖f1− f2‖ ≤ r1 + r2) and both of them meet
J (i.e., ‖gi − fi‖ ≤ ri for some gi ∈ J). If B(f1, r1 + ε) ∩B(f2, r2 + ε) ∩ J = ∅ for some
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ε > 0, we could separate the set D = {(x1, x2) | ‖xi − fi‖ ≤ ri} ⊂ L1 ⊕ L1 strictly from
{(y, y) | y ∈ J} by means of some functional (F1, F2) ∈ L∞ ⊕ L∞. Thus we would have

F1 + F2 ∈ J⊥ = lin {1}, (1)

and
sup

(x1,x2)∈D

∫
(F1x1 + F2x2) dµ < 0. (2)

On the other hand, each L∞-function F may be decomposed as F = c1 + G with
c = (ess supF + ess inf F )/2 so that

‖F‖ = |c|+ ‖G‖.
By (1) above we may then write

F1 = c11+G1, ‖F1‖ = |c1|+ ‖G1‖,
F2 = c21−G1, ‖F2‖ = |c2|+ ‖G1‖.

Hence we obtain

sup
(x1,x2)∈D

∫
(F1x1 + F2x2) dµ

= sup
(x1,x2)∈D

∫ (
F1(x1 − f1) + F1f1 + F2(x2 − f2) + F2f2

)
dµ

= ‖F1‖r1 + ‖F2‖r2 + c1
∫
f1 dµ+

∫
G1(f1 − f2) dµ+ c2

∫
f2 dµ

= ‖F1‖r1 + ‖F2‖r2 + c1
∫
(f1 − g1) dµ+

∫
G1(f1 − f2) dµ+ c2

∫
(f2 − g2) dµ

≥ ‖F1‖r1 + ‖F2‖r2 −
(
|c1|r1 + ‖G1‖(r1 + r2) + |c2|r2

)
= 0,

a contradiction to (2).
Clearly, J is not an M -ideal by Theorem 1.8 if dim(X) > 2.]
An examination of the proof of Theorem 2.2 reveals that the 2-ball property yields a
nonlinear “L-projection” onto J⊥; in order to establish linearity we needed an intersection
property involving three balls. We refer to the Notes and Remarks section for some
information on spaces with the 2-ball property.

(b) One can even guarantee ‖y‖ ≤ 1 + ε in (iv). This is a consequence of the 4-ball
property applied to the balls B(x+ yi, 1) (i = 1, 2, 3) and BX .

(c) One may also consider infinite collections of balls in (ii) provided the centres form a
relatively compact set and the radii depend (lower semi-) continuously on the centres.
(The proof is straightforward.)
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(d) ε = 0 is not admissible in (ii). By way of example, let A be the disk algebra, and let

J = {x ∈ A | x(1) = 0}.
By Example 1.4(b) J is an M -ideal in A. Consider now the Möbius transform w(z) =
i−z
1−iz and the function f(z) = w(

√
w(z)). Then, by elementary complex analysis, f

maps the open unit disk D onto {z ∈ D | Re z < 0} and the unit circle T onto the
boundary of that region. Moreover, we have f ∈ A and f(1) = 0, hence f ∈ J ; and
since |f(z)| = 1 on {z ∈ T | Re z ≤ 0} we conclude f ∈ exBA [316, p. 139]. This means
B(1 + f, 1) ∩B(1− f, 1) = {1}, and therefore

J ∩B(1 + f, 1) ∩B(1− f, 1) = ∅.
(It may seem counterintuitive that an M -ideal contains extreme points of the ambient
space, since this is impossible for an M -summand.)

(e) The presence of some ε > 0 in (ii) is due to the fact that some openness assumptions
are needed in order to apply the Hahn-Banach theorem. This assumption is shifted to
condition (2′) in (v).

One can see Theorem 2.2 at work at various places of this book, e.g., II.2.3, II.5.2,
III.1.4, III.3.4, V.3.2, VI.2.1, VI.4.1, VI.5.3. Let us now give a first application of the
3-ball property in that we provide the still missing

Proof of Proposition 1.20:

To begin with we observe that the constant C appearing in the definition of the bounded
extension property may be chosen as close to 1 as we wish. To see this let U ⊃ D be
an open set and let ε > 0. Applying the bounded extension property with U1 = U and
ε yields an extension x1 of a given ξ ∈ X |D (w.l.o.g. ‖ξ‖ = 1) such that ‖x1‖ ≤ C and
|x1| ≤ ε off U1. Then we repeat this procedure with U2 = {k | |x1(k)| < 1 + ε/2} ∩ U1

and obtain an extension x2 such that ‖x2‖ ≤ C and |x2| ≤ ε off U2. In the third step
one applies the bounded extension property with U3 = {k | |x2(k)| < 1 + ε/2} ∩ U2

etc. This yields a sequence of extensions (xn) with ‖xn‖ ≤ C and |xn| ≤ ε off Un. Let
x = 1

N

∑N
n=1 xn. Obviously we have x|D = ξ and |x| ≤ ε off U . Finally, if k ∈ U , then by

construction |xn(k)| is big (but ≤ C) for at most one n, and |xn(k)| ≤ 1+ ε/2 otherwise.
It follows

|x(k)| ≤ 1
N

(
C + (N − 1)(1 + ε/2)

)
≤ 1 + ε

for sufficiently large N . (As a consequence of this one may remark that X/(JD ∩X) ∼=
X |D.)
Now we can prove that JD ∩ X is an M -ideal employing the 3-ball property. Thus,
let y1, y2, y3 in the unit ball of JD ∩ X , x ∈ BX and ε > 0. With the help of the
(1 + ε)-bounded extension property we may find x̂ ∈ X such that

x̂|D = x|D,

‖x̂‖ ≤ (1 + ε)‖x|D‖ ≤ 1 + ε,
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|x̂(k)| ≤ ε if max
i
|yi(k)| ≥ ε.

Let y = x − x̂ so that y ∈ JD ∩X . Distinguishing whether or not maxi |yi(k)| ≥ ε one
can immediately verify that

|(x+ yi − y)(k)| = |yi(k) + x̂(k)| ≤ 1 + 2ε

for all k ∈ K, i.e.
‖x+ yi − y‖ ≤ 1 + 2ε (i = 1, 2, 3). 2

We now turn to a characterisation ofM -ideals with a different, namely measure theoretic
flavour. In the following we shall make use of the basic notions of integral representation
theory, for the weak∗ compact convex set BX∗ . By a measure on BX∗ we shall understand
a regular Borel measure on this compact set. A measure µ is called maximal (or boundary
measure) if its variation is maximal with respect to Choquet’s ordering. A measure µ
has a unique barycentre (or resultant), denoted by r(µ), which is defined by

〈r(µ), x〉 =
∫
BX∗

p(x) dµ(p) for all x ∈ X.

Note r(µ) ∈ BX∗ for probability measures µ. Conversely, every x∗ ∈ X∗ may be repre-
sented by a maximal measure µ on BX∗ in that r(µ) = x∗. (For a detailed discussion see
[7] and [495].)
Let J be a closed subspace of X . For µ ∈ M(BX∗) we define the restricted measure
µ|J⊥ ∈M(BX∗) by µ|J⊥(E) = µ(E ∩ J⊥). Note that µ|J⊥ is maximal if µ is.

Now the characterisation theorem reads as follows:

Theorem 2.4 J ⊂ X is anM -ideal if and only if the following requirements are fulfilled:

(1) ‖p‖+ ‖q − p‖ = ‖q‖ and q ∈ J⊥ imply p ∈ J⊥.

(2) If µ ∈M(BX∗) is maximal and r(µ) = 0, then also r(µ|J⊥ ) = 0.

Proof of the “if” part:

Given x∗ ∈ X∗, choose a maximal measure µ with r(µ) = x∗. By (2), r(µ|J⊥ ) depends
only on x∗ and not on the particular choice of µ so that P (x∗) = r(µ|J⊥ ) gives rise
to a well-defined mapping P : X∗ → X∗. By construction P is linear. We wish to
show that P is an L-projection onto J⊥. Since we have ‖r(ν)‖ ≤ ‖ν‖ for every measure
ν ∈M(BX∗) we conclude

‖x∗‖ ≤ ‖Px∗‖+ ‖x∗ − Px∗‖
= ‖r(µ|J⊥ )‖+ ‖r(µ− µ|J⊥)‖
≤ |µ|(BX∗ ∩ J⊥) + |µ|(BX∗\J⊥)

= ‖µ‖.
Since one may choose such a µ with ‖µ‖ = ‖x∗‖, one obtains

‖x∗‖ = ‖Px∗‖+ ‖x∗ − Px∗‖.
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Also, P is a projection by the remark preceding Theorem 2.4, and ran(P ) ⊂ J⊥ is clear.
Now let q ∈ J⊥ with ‖q‖ = 1, say. Represent q by a maximal probability measure µ.
Then there is a net of discrete measures (να) with r(να) = q and weak∗-lim να = µ [7,
Prop. I.2.3]. Let

να =
∑
λiδpi

be such a measure. Then

‖q‖ =
∥∥∥∑λipi

∥∥∥ ≤∑λi‖pi‖ ≤
∑
λi = 1 = ‖q‖

so that λi = 0 or pi ∈ J⊥ as a consequence of (1). Therefore, the support of µ must be
contained in J⊥, and it follows µ = µ|J⊥ so that q = P (q). (2)

The proof of the “only if” part will be given as a consequence of several lemmas which
are of independent interest. We fix some notation. In the following we assume that J is
an M -ideal in the real Banach space X with P : X∗ → X∗ denoting the corresponding
L-projection onto J⊥. (This assumption is made merely for simplicity of notation. The
modifications to be made in the complex case will be sketched at the end of the proof of
Theorem 2.4.) Furthermore we shall write

K = BX∗ , D = K ∩ J⊥, D′ = K ∩ ker(P ).

Given x ∈ X we define hx : K → R by

hx(x∗) =

{
x∗(x) if x∗ ∈ D and x∗(x) ≥ 0

0 otherwise.

In other words, hx = χD · x ∨ 0.
Also, we recall the definition of the upper envelope ĥx of hx :

ĥx(x∗) = inf a(x∗)

where a runs through the set of those functions a ≥ hx which are affine and weak∗

continuous on K. Then ĥx is concave and weak∗ upper semicontinuous.

Lemma 2.5

〈P ∗x, x∗〉 = 〈x, Px∗〉 = ĥx(x∗)− ĥx(−x∗) for all x ∈ X, x∗ ∈ K.
(Here the adjoint P ∗ of P is considered as a map from X to X∗∗.)

Proof: We first note

Sx := {(x∗, r) ∈ K × R | 0 ≤ r ≤ ĥx(x∗)}
= cow∗{(x∗, r) | 0 ≤ r ≤ hx(x∗)}

which results from the Hahn-Banach theorem. (Sx is the truncated subgraph of ĥx.)
Also

{(x∗, r) | 0 ≤ r ≤ hx(x∗)} = {(x∗, r) | x∗ ∈ D, 0 ≤ r ≤ x∗(x)} ∪ (K × {0}).
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Since the latter two sets are weak∗ compact and convex, so is the convex hull of their
union. Therefore, taking into account

K = co (D ∪D′)

we have

Sx = co ({(x∗, r) | x∗ ∈ D, 0 ≤ r ≤ x∗(x)} ∪ (D × {0}) ∪ (D′ × {0})).
Now let x∗ ∈ K. Then (x∗, ĥx(x∗)) ∈ Sx. Accordingly there is a convex combination

x∗ = λ1x
∗
1 + λ2x

∗
2 + λ3x

∗
3 (1)

with
x∗1, x

∗
2 ∈ D, x∗3 ∈ D′ (2)

x∗1(x) ≥ 0 (3)

ĥx(x∗) = λ1x
∗
1(x). (4)

By concavity of ĥx

ĥx(x∗) ≥
∑
λiĥx(x∗i )

≥
∑
λihx(x∗i )

≥ λ1x
∗
1(x) + λ2x

∗
2(x)

so that
0 ≥ λ2x

∗
2(x).

In case λ2 = 0 we could have chosen x∗2 = 0, hence we may conclude x∗2(x) ≤ 0 and thus

hx(x∗2) = 0, hx(−x∗2) = −x∗2(x).
We employ the concavity of ĥx once again to obtain

ĥx(−x∗) ≥
∑
λihx(−x∗i )

≥ −λ2x
∗
2(x).

Together with (4) this implies

ĥx(x∗)− ĥx(−x∗) ≤ (λ1x
∗
1 + λ2x

∗
2)(x)

= 〈Px∗, x〉 (by (1) and (2)).

Since both sides of this inequality are odd functions of x∗, the inequality is in fact an
equality, and the lemma is proved. 2

From Lemma 2.5 one concludes immediately that P ∗x|K , being a difference of weak∗

upper semicontinuous functions, is weak∗ Borel. Even more: the points of continuity
of an upper semicontinuous function on a compact space form a dense Gδ-set, cf. e.g.
[204, p. 87]. By Baire’s theorem this property is shared by linear combinations of such
functions, in particular by P ∗x restricted to K or any compact subset. A result of
Choquet’s [7, p. 16] now yields:
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Lemma 2.6 P ∗x|K is a bounded affine weak ∗ Borel function which satisfies the barycen-
tric calculus, i.e.

〈P ∗x, r(µ)〉 =
∫
K

P ∗x dµ

for all µ ∈M(K).

Of course, Lemma 2.6 is completely trivial if J is an M -summand, since in this case
P ∗x ∈ X , i.e., P ∗x is weak∗ continuous. Now Lemma 2.6 implies that P ∗x is not very
discontinuous in the general case, either. In fact, if X is separable then P ∗x|K is of the
first Baire class by what we have seen and Baire’s classification theorem [157, p. 67].
One should mention that the weak∗ closedness of ran(P ) is crucial for Lemma 2.6: for
example, consider the L-projection P defined on C[0, 1]∗ by P (ν) = atomic part of ν.
Then P ∗1 is of the second Baire class (as a function on the dual unit ball), yet fails the
barycentric calculus [7, Ex. I.2.10].

Lemma 2.7 r(χDµ) = P (r(µ)) for every maximal measure µ ∈M(K).

Proof: With the help of Lemmas 2.5 and 2.6 one obtains

〈P (r(µ)), x〉 = 〈r(µ), P ∗x〉

=
∫
K

P ∗x dµ

=
∫
K

(ĥx(x∗)− ĥx(−x∗)) dµ(x∗)

=
∫
D

(hx(x∗)− hx(−x∗)) dµ(x∗)

=
∫
D

x∗(x) dµ(x∗)

= 〈r(χDµ), x〉.

(In the fourth line we used the fact that a maximal measure is concentrated on {h = ĥ}
for all upper semicontinuous functions h [7, p. 35].) 2

Now it is easy to give the

Proof of the “only if” part of Theorem 2.4:

(1) is an elementary calculation:
Since

‖p‖ = ‖P (p)‖+ ‖p− P (p)‖
and

‖q − p‖ = ‖q − P (p)‖+ ‖p− P (p)‖
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(because q ∈ J⊥) we have

‖q‖ = ‖p‖+ ‖q − p‖
= ‖P (p)‖+ ‖q − P (p)‖+ 2‖p− P (p)‖
≥ ‖q‖+ 2‖p− P (p)‖,

hence p = P (p) ∈ J⊥.

(2) is a consequence of Lemma 2.7:
If r(µ) = 0, then we conclude in the case of real Banach spaces r(µ+) = r(µ−) (µ =
µ+ − µ− denoting the Hahn decomposition; note that µ+ and µ− are maximal), hence

r(χDµ) = r(χDµ+)− r(χDµ−)
= P (r(µ+))− P (r(µ−))
= 0.

The proof of the complex case can be reduced to the real case by considering real and
imaginary parts. (We remark that the above lemmas remain valid, too; hx should be
defined as (Re χDx) ∨ 0 in the complex case.) 2

We finish this section with a theorem stating that every vector in a Banach space X has
a kind of unconditional expansion into a series of elements from a separable M -ideal J ,
with the convergence being taken with respect to the topology σ(X, J∗). (Recall from
Remark 1.13 that J∗ can naturally be identified with a subspace of X∗.) The proof of
that result (Theorem 2.10) relies on the above Lemma 2.5 as well as the following two
lemmas which are of independent interest.

Lemma 2.8 Let H and K be compact Hausdorff spaces and ρ : K → H a continuous
surjection. Suppose σ : H → R is a function such that τ = σ ◦ ρ is a difference of two
positive lower semicontinuous functions τ = g1 − g2 with the additional property that
g1(t) + g2(t) ≤ 1 for all t ∈ K. Then there are positive lower semicontinuous functions
f1, f2 : H → R such that σ = f1 − f2 and f1(s) + f2(s) ≤ 1 for all s ∈ H.

Proof: We let

fi(s) := inf{gi(t)| ρ(t) = s} = min{gi(t)| ρ(t) = s}.
The infimum defining fi is actually a minimum, as lower semicontinuous functions on
compact sets attain their infimum. Clearly the fi are well-defined and positive.
To show that fi (i = 1 or 2) is lower semicontinuous we pick s0 ∈ H and α ∈ R such
that fi(s0) > α. Then, by definition of fi, ρ−1({s0}) ⊂ V := {gi > α}, which is an
open set by assumption on gi. Now

⋂
W ρ

−1(W ) ∩ {V = ∅, where the intersection is
taken over all compact neighbourhoods of s0. Then the compactness of K produces a
finite void intersection which in turn yields a compact neighbourhood W0 of s0 such
that ρ−1(W0) ⊂ V . This says gi(t) > α whenever ρ(t) ∈ W0, and as a result fi(s) > α
whenever s ∈W0. Thus the lower semicontinuity is proved.
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Next we show that σ = f1 − f2. Given s ∈ H there are t1, t2 ∈ ρ−1({s}) such that
fi(s) = gi(ti) and therefore g1(t1) ≤ g1(t2), g2(t2) ≤ g2(t1). Hence

f1(s)− f2(s) = g1(t1)− g2(t2) ≤ g1(t2)− g2(t2) = τ(t2) = σ(s)

and likewise f1(s)− f2(s) ≥ σ(s).
Finally, for s and ti as above,

f1(s) + f2(s) = g1(t1) + g2(t2) ≤ g1(t2) + g2(t2) ≤ 1,

which completes the proof of Lemma 2.8. 2

Lemma 2.9 Let E be a Banach space, F ⊂ E a (not necessarily closed) subspace and
x∗∗ ∈ F⊥⊥ such that there is a sequence (xn) in E and a constant C > 0 satisfying

x∗∗ = weak∗-
∞∑
n=1

xn,

sup
|εn|≤1

∥∥∥∥∥
N∑
n=1

εnxn

∥∥∥∥∥ ≤ C‖x∗∗‖ ∀N ∈ N.

Then there is, for every ε > 0, a sequence (yn) in F satisfying

x∗∗ = weak∗-
∞∑
n=1

yn,

sup
|εn|≤1

∥∥∥∥∥
N∑
n=1

εnyn

∥∥∥∥∥ ≤ (C + ε)‖x∗∗‖ ∀N ∈ N.

Proof: We may assume ‖x∗∗‖ = 1. To begin with we show that x∗∗ is a weak∗ limit of
some sequence (zm) from F . First of all one concludes from the Hahn-Banach theorem
that the distance between F and co {∑m

n=1 xn,
∑m+1
n=1 xn, . . .} vanishes for all m ∈ N.

Hence there are zm ∈ F and ξm ∈ co {∑m
n=1 xn,

∑m+1
n=1 xn, . . .} such that ‖zm−ξm‖ → 0,

and we obtain

weak∗- lim zm = weak∗- lim ξm = weak∗-
∞∑
n=1

xn = x∗∗.

Now vn = zn −
∑n
i=1 xi defines a weakly null sequence so that a sequence of convex

combinations tends to 0 strongly. More precisely, we can define a strictly increasing
sequence of integers 0 = p0 < p1 < . . ., a sequence of real numbers λn ≥ 0 with∑pn

i=pn−1+1 λi = 1 and un =
∑pn

i=pn−1+1 λivi to obtain ‖un‖ ≤ ε/2n+1 for all n. Setting
now

wn =
pn∑

i=pn−1+1

λizi
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and
y1 = w1, yn+1 = wn+1 − wn

for n ≥ 1, we have

y1 =
p1∑
j=1

µ0
jxj + u1,

yn+1 =
pn+1∑

j=pn−1+1

µnj xj + un+1 − un

with

µ0
j =

p1∑
i=j

λi,

µnj =


1−

pn∑
i=j

λi if pn−1 + 1 ≤ j ≤ pn,
pn+1∑
i=j

λi if pn + 1 ≤ j ≤ pn+1.

Since 0 ≤ µnj ≤ 1 for all j and n, we obtain∥∥∥∥∥
N∑
n=1

εnyn

∥∥∥∥∥ ≤
∥∥∥∥∥∥
N−1∑
n=1

pn∑
j=pn−1+1

(εnµn−1
j + εn+1µ

n
j )xj +

pN∑
j=pN−1+1

εNµ
N−1
j xj

∥∥∥∥∥∥+ ε
≤ C + ε

because µn−1
j + µnj = 1 for pn−1 + 1 ≤ j ≤ pn and hence |εnµn−1

j + εn+1µ
n
j | ≤ 1. 2

We now state the promised “unconditional expansion”.

Theorem 2.10 Let X be a Banach space, and suppose J is a separable M -ideal in X.
Then there is, for each x ∈ X and each ε > 0, a sequence (yn) in J such that

x =
∞∑
n=1

yn

with respect to the topology σ(X, J∗) and

sup
|εn|≤1

∥∥∥∥∥
N∑
n=1

εnyn

∥∥∥∥∥ ≤ (1 + ε)‖x‖ for all N ∈ N.

In fact, such yn can be picked from any given dense subspace of J .
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Proof: It is clearly sufficient to prove this for real Banach spaces and for x ∈ BX .
We will retain the notation K = BX∗ , P : X∗ → J⊥ the L-projection and hx from
Lemma 2.5. Putting

τ : K → R, τ(x∗) = 〈x∗ − Px∗, x〉,
we obtain from that lemma the representation

τ(x∗) =
[
1 + x∗(x)

2
− ĥx(x∗)

]
−
[
1− x∗(x)

2
− ĥx(−x∗)

]
of τ as a difference of two lower semicontinuous functions τ = g1− g2, where in addition
g1 ≥ 0, g2 ≥ 0 and g1 + g2 ≤ 1 as is easily checked. Now, if H = BJ∗ (equipped with the
topology σ(J∗, J)) and ρ : K → H is the restriction map, then there is, by Lemma 2.8, a
corresponding representation of the function σ : H → R, σ(y∗) = 〈y∗, x〉 as a difference
σ = f1− f2 of positive lower semicontinuous functions on H whose sum does not exceed
1. (To define the duality between y∗ and x we have identified J∗ with ker(P ), as in
Remark 1.13. Note also σ ◦ ρ = τ .)
The assumption that J is separable, i.e. H is metrizable and C(H) is separable, permits
us to write f1 as a pointwise converging series of positive continuous functions on H . [In
fact, since f1 is lower semicontinuous and positive, we have

f1(y∗) = sup{ϕ(y∗)| 0 ≤ ϕ ≤ f1 and ϕ ∈ C(H)}
for each y∗ ∈ H . If (ϕn) is a uniformly dense sequence in {ϕ ∈ C(H)| 0 ≤ ϕ ≤ f1} and
ϕ1 = 0, then clearly f1 = supϕn, and the functions h1,n = (ϕ1∨· · ·∨ϕn+1)−(ϕ1∨· · ·∨ϕn)
have the required properties.] Likewise f2 =

∑∞
n=1 h2,n for some positive continuous

functions h2,n. Hence, using the notation hn = h1,n − h2,n, we obtain a pointwise
converging series of continuous functions σ =

∑∞
n=1 hn such that∥∥∥∥∥

N∑
n=1

εnhn

∥∥∥∥∥ ≤ sup
y∗

(∣∣∣∣∣
N∑
n=1

εnh1,n(y∗)

∣∣∣∣∣+
∣∣∣∣∣
N∑
n=1

εnh2,n(y∗)

∣∣∣∣∣
)

≤ sup
y∗

(
N∑
n=1

h1,n(y∗) +
N∑
n=1

h2,n(y∗)

)
≤ sup

y∗
(f1(y∗) + f2(y∗))

≤ 1

whenever |εn| ≤ 1 and N ∈ N, and

〈y∗, x〉 = σ(y∗) =
∞∑
n=1

hn(y∗)

for each y∗ ∈ H .
We would like to replace

∑
hn by a series of functions from A0(H), the space of affine

continuous functions onH vanishing at 0. To achieve this we employ Lemma 2.9. Clearly
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σ is a bounded affine function on the compact convex set H , σ(0) = 0 and moreover,
by what we have just proved, it is of the first Baire class. Hence σ is continuous on
a dense Gδ-set as is every restriction σ|H′ of σ to a compact subset H ′. Choquet’s
theorem referred to in the paragraph preceding Lemma 2.6 now yields that σ satisfies
the barycentric calculus. The upshot of this argument is that σ ∈ A0(H)⊥⊥ ⊂ C(H)∗∗:
In fact, since σ is measurable and bounded we have that σ ∈ C(H)∗∗ in a natural way.
If µ ∈ C(H)∗ annihilates A0(H), then the resultant r(µ) is 0; consequently

∫
H σ dµ =

σ(0) = 0.
Of course, A0(H) is canonically isometrically isomorphic with J by the Krein-Smulian
theorem; and the dominated convergence theorem yields σ =

∑∞
n=1 hn in the topology

σ(C(H)∗∗, C(H)∗). Therefore an application of Lemma 2.9 with E = C(H) and F =
A0(H) shows how to find such a sequence (yn) in J . If a dense subspace of J is considered,
then we only have to apply Lemma 2.9 with the corresponding dense subspace of A0(H).

2

Remark: Another way to see that σ ∈ A0(H)⊥⊥ in the above proof is to use a result from
[457] (see also [157, p. 235]) stating that a bounded affine function which is a pointwise
limit of a sequence of continuous functions is even a pointwise limit of a sequence of
continuous affine functions.

We shall apply Theorem 2.10 in Theorem III.3.8 and Theorem VI.4.21.

I.3 The centralizer of a Banach space

In this section we shall briefly discuss an algebra of operators on a Banach space X which
has close relations to the M -ideal structure of X . In the same way as the M -ideals of
a Banach space correspond to the closed ideals of a C∗-algebra, this operator algebra,
called the centralizer of X , corresponds to the centre of a C∗-algebra (cf. the revisited
Example 3.4(h)). It must be stressed that there are some differences between the real
and complex case, here; cf. the Notes and Remarks.
For the most part, proofs of the results presented in this section have already appeared
in E. Behrends’ monograph [51]. Instead of repeating these arguments we prefer to give
due references.
We start with the basic notion.

Definition 3.1 T ∈ L(X) is called a multiplier if every p ∈ exBX∗ is an eigenvector of
T ∗, with eigenvalue aT (p) say, i.e.

T ∗p = aT (p)p for all p ∈ exBX∗ . (∗)

The collection of all multipliers is called the multiplier algebra and denoted by Mult(X).
Mult(X) is said to be trivial if Mult(X) = K · Id.
It is an immediate consequence of the Krein-Milman theorem that Mult(X) is a closed
commutative unital subalgebra of L(X).
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The following lemma is sometimes quite helpful for deciding whether a given operator
belongs to Mult(X). We let

ZX = exw∗ BX∗\{0}.
This weak∗ locally compact space will turn out to be of importance later; see Theo-
rem II.5.9.

Lemma 3.2 Suppose that E is a weak ∗ dense subset of ZX and that T ∈ L(X). Then
T ∈Mult(X) if and only if for all p ∈ E there is a number aT (p) such that

T ∗p = aT (p)p.

In this case, aT may be extended to a weak ∗ continuous function on ZX, and each p ∈ ZX
is an eigenvector of T ∗ with eigenvalue aT (p).

This lemma is a direct consequence of the definition. Next we will collect a few easy-
to-prove properties of the functions aT appearing in (∗) which we will understand to be
defined on ZX .

Lemma 3.3 Let T ∈Mult(X).
(a) aT is bounded and, moreover, ‖aT ‖∞ = ‖T ‖.
(b) aT (p) = aT (−p) for all p ∈ ZX .
(c) T �→ aT is an algebra homomorphism.

By these properties, Mult(X) is isometric to a closed subalgebra of Cb(ZX), where ZX
is equipped with the weak∗ topology. Consequently, Mult(X) is a function algebra.

Examples 3.4
(a) Let S be locally compact. Then Mult(C0(S)) consists exactly of the multipli-

cation operators
Mz : x �→ x · z

with bounded continuous functions z as can easily be proved [51, p. 55]. Hence

Mult(C0(S)) ∼= Cb(S) ∼= C(βS)
as algebras. If S is compact, then Mult(C(S)) ∼= C(S).

(b) Let A ⊂ C(T) be the disk algebra. Since the extreme functionals are given by

x �→ λ · x(t), |λ| = 1, t ∈ T

(cf. p. 4) we conclude that a multiplier must be of the form Mz as above, for some
function z. Since z =Mz(1) ∈ A,

Mult(A) = {Mz|z ∈ A} ∼= A.

(c) The same reasoning as in (b) applies to any complex function algebra A. [If
S ∈ Mult(A), then Sx(t) = (S1)(t) · x(t) for all t in the Choquet boundary of A, hence
S =MS1.] This example will be of importance in Chapter V.
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(d) Now consider AR, that is the disk algebra as a real Banach space. For T ∈
Mult(AR), T ∗ is subject to having real eigenvalues so that T =Mz for some real-valued
analytic function on the unit disk. Hence Mult(AR) = R·Id. Consequently, the multiplier
algebra depends on the choice of the scalar field.

(e) Every M -projection P belongs to Mult(X), the eigenvalues of P ∗ being 0 or 1.
This is immediate from Lemma 1.5.

(f) For a compact convex set K we let A(K) be the space of real-valued affine
continuous functions on K. Then T is a multiplier on A(K) if and only if T is order
bounded. This is proved in [7, II.7.10].

(g) In a sense example (a) comprises the most general case. Given X , consider the
locally compact space ZX as above. Then there is a canonical isometric embedding of X
into C0(ZX), and by definition T ∈ L(X) is a multiplier if and only if T is the restriction
of a multiplication operator on C0(ZX) which leaves X invariant.

We shall need the following lemma in Chapter VI (Lemma VI.2.2).

Lemma 3.5 Let T ∈Mult(X).
(a) ‖x+ y‖ = max{‖x‖, ‖y‖} if x ∈ ker (T ), y ∈ ran(T ).
(b) T (J) ⊂ J if J is an M -ideal in X.

Proof: (a) We have y = Tz for some z and Tx = 0 so that 0 = p(Tx) = aT (p)p(x) for
all p ∈ exBX∗ and, as a result, aT (p) = 0 or p(x) = 0. It follows

‖x+ y‖ = sup{Re p(x+ y) | p ∈ exBX∗}
= sup{Re p(x) + Re aT (p)p(z) | p ∈ exBX∗}
= max{‖x‖, ‖y‖}.

(b) follows from T ∗(ex BJ⊥) ⊂ J⊥, the Krein-Milman theorem and the Hahn-Banach
theorem. (Recall ex BJ⊥ ⊂ exBX∗ from Lemma 1.5.) 2

The following theorem characterises multipliers without recourse to the dual space.

Theorem 3.6 For a real or complex Banach space X and T ∈ L(X), the following
assertions are equivalent:

(i) T ∈ Mult(X).
(ii) For all x ∈ X, Tx is contained in every closed ball which contains

{λx | λ ∈ K , |λ| ≤ ‖T ‖}.
Proof: [11, p. 151] and [51, p. 57] in the complex case. 2

In the real case, Mult(X) ∼= {aT | T ∈ Mult(X)} is the self-adjoint part of the C∗-
subalgebra {aS+ iaT | S, T ∈ Mult(X)} of Cb

C
(exBX∗) and thus Mult(X) ∼= CR(KX) for

a (uniquely determined) compact Hausdorff space KX by the Gelfand-Naimark theorem.
In the complex case, Mult(X) need not be self-adjoint (cf. Example 3.4(b)). This is the
motivation for the next definition.
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Definition 3.7 The centralizer of X, Z(X), consists of all those T ∈Mult(X) for which
there exists T ∈Mult(X) such that aT (p) = aT (p) for all p ∈ exBX∗ . We let

ZR(X) = {T ∈ Z(X) | aT real valued}

and
Z0,1(X) = {T ∈ ZR(X) | 0 ≤ aT ≤ 1}.

Z(X) is called trivial if Z(X) = K · Id.
Obviously, Z(X) = Mult(X) for real Banach spaces and Z(X) = ZR(X) + iZR(X)
in the complex case. By construction Z(X) is a commutative unital C∗-algebra, thus
Z(X) ∼= C(KX), with KX the Gelfand space of this C∗-algebra. One can prove that
X has a representation as a Banach space of sections in a bundle with base space KX
such that the section of norms is upper semicontinuous [139], [51, Chap. IV]. We will not
pursue this idea, but invite the reader to consult the above mentioned literature and the
Notes and Remarks section.
For the sake of easy reference we remark in addition:

Lemma 3.8 Every T ∈ ZR(X) is hermitian.

Proof: ‖eitT ‖ = ‖eitaT ‖∞ = 1 for all t ∈ R. 2

Examples 3.4 (revisited)
(a) Here we have Z(C0(S)) = Mult(C0(S)) ∼= Cb(S).
(b) If T =Mz ∈ Z(A) has an “adjoint” T =Mz∗ for some z∗ ∈ A, then z∗ = z (the

complex conjugate function) so that z is constant. Consequently Z(A) = C · Id.
(c) Here we have Z(A) = {x ∈ A | x ∈ A}.
(e) Since aP is real-valued, we have P ∈ Z(X). In fact, a projection belongs to

Z(X) if and only if it is an M -projection. This is a consequence of (∗) from p. 2
and Proposition 3.9 below.

(g) If X is canonically embedded in C0(ZX), then the operators in Z(X) are exactly
the restrictions of multiplication operators Mh : f → f · h on C0(ZX) such that
Mh and Mh leave X invariant.

(h) For a unital C∗-algebra A, Z(A) = {Mz | z ∈ centre(A)}. (This will be proved
in Theorem V.4.7.)

The following proposition should be compared with (∗) on p. 2.

Proposition 3.9 T ∈ L(X) belongs to Z0,1(X) if and only if

‖Tx1 + (Id− T )x2‖ ≤ max{‖x1‖, ‖x2‖}

for all x1, x2 ∈ X.
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Proof: It is elementary to verify that T ∈ Z0,1(X) has the announced property. Now
suppose that T fulfills the above norm condition. Then we have for p ∈ exBX∗ (assuming
w.l.o.g. T ∗p �= 0 and T ∗p �= p)

p = ‖T ∗p‖ T
∗p

‖T ∗p‖ + ‖p− T ∗p‖ p− T
∗p

‖p− T ∗p‖ .

But this is a convex combination since there are, given ε > 0, x1, x2 ∈ BX such that

‖T ∗p‖+ ‖p− T ∗p‖ − 2ε ≤ p(Tx1) + p(x2 − Tx2)

≤ ‖Tx1 + (x2 − Tx2)‖
≤ 1

by assumption on T . The extremality of p now yields

T ∗p = ‖T ∗p‖ p. 2

We are now going to discuss the problem of characterising those functions a on ex BX∗

(or ZX if you prefer) which give rise to operators in Z(X). In view of the (revisited)
Example 3.4(g) this is the case if and only if multiplication by a and a (defined onC0(ZX))
leaves X invariant. Eventually we shall state a characterisation of those functions a in
terms of a topological condition involving M -ideals (Theorem 3.12).
First, however, we shall present a result of Stone-Weierstraß type which gives a necessary
and sufficient condition for g ∈ C0(ZX) to be in X . It will be convenient to take a slightly
broader view. So let us fix some notation. Let L be a locally compact space and suppose
that X is a closed subspace of C0(L). Put

Z(X,C0(L)) = {f ∈ Cb(L) | f ·X ⊂ X and f ·X ⊂ X}.
We further denote by F(X,C0(L)) the set of equivalence classes which are obtained from
the equivalence relation

s ∼ t ⇐⇒ f(s) = f(t) ∀f ∈ Z(X,C0(L))

on L. Finally, for a subset F ⊂ L, we let

X |F = {x|F | x ∈ X}.
With this notation, we may state:

Theorem 3.10 Let X be a closed subspace of C0(L). Then g ∈ C0(L) belongs to X if
and only if

g|F ∈ X |F for all F ∈ F(X,C0(L)).

Proof: The “only if” part is trivial. For the “if” part, we start by showing that the
support of each measure µ ∈ exBX⊥ is contained in some F0 ∈ F(X,C0(L)). To this
end let f ∈ Z(X,C0(L)) be given. We wish to show

f |supp(µ)
= const.
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Since Re f ∈ Z(X,C0(L)), too, we may assume that f is real-valued, and a simple scaling
procedure allows us to assume

0 < f(s) < 1 for all s ∈ L.
We then have

‖fµ‖+ ‖(1− f)µ‖ =
∫
L

f d|µ|+
∫
L

(1− f) d|µ| = ‖µ‖ = 1.

Hence µ can be represented as a convex combination

µ = ‖fµ‖ fµ‖fµ‖ + ‖(1− f)µ‖
(1− f)µ
‖(1− f)µ‖

so that by extremality (note that by the very choice of f we have fµ ∈ X⊥)

‖fµ‖µ = fµ,

i.e.
‖fµ‖ = f µ-a.e.,

and the claim follows.
Now consider g ∈ C0(L) with

g|F ∈ X |F ∀F ∈ F(X,C0(L)).

If g �∈ X , there would be some µ ∈ exBX⊥ with
∫
L g dµ �= 0. However, if supp(µ) ⊂ F0,

F0 ∈ F(X,C0(L)), then, since g|F0
= x|F0

for some x ∈ X ,∫
L

g dµ =
∫
F0

g dµ =
∫
F0

xdµ =
∫
L

xdµ = 0.

This contradiction proves g ∈ X , as claimed. 2

We remark that for a subalgebra X , F(X,C0(L)) is the well-known maximal X-antisym-
metric decomposition of L, and Theorem 3.10 reduces to Bishop’s generalisation of the
Stone-Weierstraß theorem. We hasten to add that our proof of Theorem 3.10 is nothing
but a minor modification (if any) of the de Branges-Glicksberg proof of Bishop’s theorem,
cf. [239, p. 60].
An application of Theorem 3.10 will be given in Theorem II.5.9; for others see the Notes
and Remarks section.

To indicate the links between the centralizer of X and the M -ideals of X , which will
enable us to characterise those functions on exBX∗ which arise as aT for some T ∈ Z(X),
we need the notion of the structure topology.

Definition 3.11 The collection of sets exBX∗ ∩J⊥, where J runs through the family of
M -ideals in X, is the collection of closed sets for some topology on exBX∗ (this follows
from Proposition 1.11), called the structure topology.
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This topology is never Hausdorff, since p and −p cannot be separated. For this reason
we will also consider the quotient space exBX∗/∼ (where p ∼ q iff p and q are linearly
dependent) equipped with the corresponding quotient topology. This topological space
will be denoted by EX .
The richness of theM -ideal structure is reflected by topological qualities of the structure
topology. For example, if X has no nontrivial M -ideals, then EX has no nontrivial
structurally open sets. On the other hand, if EX satisfies the T1-separation axiom, then
ker p is an M -ideal in X for all p ∈ exBX∗ so that X has in fact many M -ideals. Surely,
EX is a T1-space if X∗ is isometric to an L1-space, but this condition is not necessary,
as the example of the disk algebra shows. We will consider certain strengthenings of
the T1-axiom for EX and will study the Banach spaces with such a structure space in
Section II.5.
We can now state the announced connection between M -ideals and the centralizer in
the following theorem of Dauns-Hofmann type. These authors obtained a corresponding
result in the setting of C∗-algebras [146].

Theorem 3.12 For a bounded function a : exBX∗ → K , the following assertions are
equivalent:

(i) a is structurally continuous.
(ii) a = aT for some T ∈ Z(X).

Proof: [11, p. 153], [201] or [51, Th. 3.13(ii)], where in addition the complex case is
treated. 2

As a corollary one obtains: If Z(X) is nontrivial, then X contains a nontrivial M -ideal.
We shall later encounter Banach spaces which show that the converse is not true, see
p. 88 or the discussion following Theorem III.2.3. Another example is the disk algebra;
but note that here the multiplier algebra is nontrivial.

Finally, we would like to briefly sketch the dual situation. We give one more definition.

Definition 3.13 The closed linear span of the set of L-projections on X is called the
Cunningham algebra of X, denoted by Cun(X).

Cun(X) is a commutative algebra of operators by virtue of Theorem 1.10(a). For in-
stance, by Example 1.6(a) the Cunningham algebra of L1(µ) coincides with the algebra
of multiplication operators with L∞-functions.
The connection between Definitions 3.13 and 3.7 is expressed in the following theorem.

Theorem 3.14
(a) T ∈ Z(X) if and only if T ∗ ∈ Cun(X∗).
(b) T ∗ ∈ Z(X∗) if and only if T ∈ Cun(X).
(c) Every operator T ∈ Z(X∗) is weak ∗ continuous so that

Cun(X) ∼= Z(X∗) ∼= C(KX∗)

where KX∗ is hyperstonean, and

Z(X∗) = lin {P | P is an M -projection on X∗}.
Moreover, Mult(X∗) and Z(X∗) are dual Banach spaces.
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(d) If X is a complex Banach space or a real Banach space not isometric to 
∞(2),
then either Z(X) or Cun(X) is trivial.

Proof: (a) [11, p. 151] or [51, Th. 3.12] (real scalars) and [56] (complex scalars).
(b) and (c) Let us first note that L(X∗) is a dual Banach space with canonical pre-
dual X∗⊗̂πX and that the corresponding weak∗ topology (henceforth called “the” weak∗

topology) on L(X∗) coincides with the weak∗ operator topology on bounded sets, i.e.

Ti
w∗−→ T ⇐⇒ 〈Tix∗, x〉 → 〈Tx∗, x〉 ∀x∗ ∈ X∗, x ∈ X

if supi ‖Ti‖ <∞. (Cf. e.g. [158, Chap. VIII].)
Now we show that Mult(X∗) is weak∗ closed in L(X∗). Let (Ti) be a bounded net in
Mult(X∗) and T ∈ L(X∗) such that Ti

w∗−→ T . There is no loss of generality in assuming
‖T ‖ = ‖Ti‖ = 1 throughout. We shall verify the condition of Theorem 3.6(ii). So suppose

‖x∗0 − λx∗‖ ≤ r for all |λ| ≤ 1.

Since the Ti are multipliers we obtain

‖x∗0 − Tix∗‖ ≤ r for all i.

Passing to the limit entails by weak∗ lower semicontinuity of the norm

‖x∗0 − Tx∗‖ ≤ r

so that our assertion follows from Theorem 3.6 and the Krein-Smulian theorem.
Hence, if the scalars are real, Z(X∗) = Mult(X∗) is a weak∗ closed subspace of L(X∗),
and in the complex case ZR(X∗), which is R-isometric with Mult(X∗

R
), is weak∗ closed in

L(X∗
R
). Consequently they are isometric to dual Banach spaces. The point of these con-

siderations is that, regardless of the scalar field, Z(X∗) is isometric to a dual C(K)-space.
By a theorem due to Grothendieck [385, p. 96] we conclude that KX∗ is hyperstonean; in
particular, the algebra C(KX∗) is generated by its idempotents, and the same must be
true for Z(X∗). Taking into account that the idempotents in the centralizer are exactly
the M -projections (cf. the revisited Example 3.4(e)) we obtain the assertions made in
(b) and (c).
For a different line of reasoning, see [51, Th. 5.9] along with [51, Prop. 1.16] and [66,
p. 24ff.].
(d) is a consequence of (a) – (c) and Theorem 1.8, applied to X∗. 2

Formally, Theorem 3.14 generalises both Theorem 1.8 and Theorem 1.9, but its proof
relies on these results.

Corollary 3.15
(a) If T ∈ Z(X), then also T ∗∗ ∈ Z(X∗∗).
(b) If X is a complex Banach space, then T ∈ Z(X) commutes with every hermitian

operator.
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Proof: (a) is an immediate consequence of Theorem 3.14.
(b) Since the adjoint of an hermitian operator is hermitian, we may – by passing to
second adjoints – assume from the outset that T is anM -projection (by (a) and 3.14(c)).
In this case the assertion to be proved is equivalent with saying that a hermitian operator
leaves M -summands invariant, which we already know from Corollary 1.25. 2

We remark that the assertions of Corollary 3.15 extend to T ∈ Mult(X); see [56] and
[68] for a proof.

I.4 Notes and remarks

General remarks. In 1972 the seminal paper “Structure in real Banach spaces” [11]
by Erik M. Alfsen and Edward G. Effros appeared. There they initiated a study of
general Banach spaces based on the notion of an M -ideal, proceeding in much the same
way as in C∗-algebra theory where the notion of a closed two-sided ideal is instrumental.
Effros [186] proved in 1963 that the closed left ideals in a C∗-algebra correspond in a
one-to-one fashion to the closed faces in the state space, thus paving a way towards a
geometric approach to structural questions. (The result was independently obtained by
Prosser [509, Th. 5.11], as well.) Then it was proved in a series of articles ([186], [584],
[9]) that the closed two-sided ideals are in one-to-one correspondence with the closed split
faces of the state space. Similar developments of general ideal theories were encountered
in the theory of ordered Banach spaces ([10], [491], [637]), L1-predual spaces ([189], [214];
cf. Section II.5) and compact convex sets ([9], [187], [188]; cf. Example 1.4(c)). In order to
provide a unified treatment, Alfsen and Effros defined the concept of anM -ideal; around
the same time the same notion arises in Ando’s work [19], however under a different
name (“splittable convex set”) and for a different purpose.
The key result of part I of the Alfsen-Effros paper is the characterisation of M -ideals by
means of an intersection property of balls; more precisely they proved (i) ⇐⇒ (ii) ⇐⇒
(iii)⇐⇒ (v) of Theorem 2.2 for real Banach spaces. Their proof was anything but simple
and used a theorem on “dominated extensions” [11, Th. 5.4], based on Theorem 2.4 which
is also due to them [11, Th. 4.5], as a decisive step. (Alfsen adapted this approach to
complex spaces in [8].) Simpler proofs, covering the case of complex scalars, too, were
devised by Lima [399], who added the useful condition (iv), Behrends [51, Chap. 2D] and
Yost [649]. The latter paper also contains the counterexample of Remark 2.3(d); further
counterexamples appear in [11, p. 126], [648] and [650]. The example of Remark 2.3(a)
is due to Lima [399]; a three-dimensional version can already be found in [11].
The proof of the implication (iv) ⇒ (i) in Theorem 2.2 follows [399], and for (ii) ⇐⇒
(v) we follow [650]. Our proof of the implication (i) ⇒ (ii) using the principle of local
reflexivity, however natural this approach may be, seems to be new. One could even
shortcut the proof if one knew in advance that a local reflexivity operator T can always
be found with the additional property that T (J⊥⊥∩E) ⊂ J for a givenM -ideal J and a
finite dimensional subspace E ⊂ X∗∗. As a matter of fact this is the case as was recently
shown in [62], see also [69] and [167]. However we decided to present the slightly longer
proof, since it employs well known tools only. Lima’s idea in [399] to show (i)⇒ (ii) is to
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use the Hahn-Banach theorem in the space X ⊕∞ · · · ⊕∞ X . If (ii) were false one could
separate the “diagonal” {(y, . . . , y) | y ∈ J} from B(x1, r1)× · · · ×B(xn, rn), from which
Lima derives a contradiction. Yost’s approach in [649] uses the 1 1

2 -ball property to be
discussed in the Notes and Remarks to Chapter II.
We remark that Proposition 1.2 and Corollary 1.3 first appeared in [292]. Theorem 1.8 is
due to Behrends whose original proof is quite tedious albeit elementary (cf. [51, p. 24ff.]).
We have followed the line of reasoning by Payá and Rodŕıguez [479]. Theorem 1.9 comes
from [142], and Theorem 1.10 from [138]. (For the importance of part (b) of this theorem
see below.) Proposition 1.16 was observed in [148] in order to obtain best approxima-
tion results in the setting of C∗-algebras. For another account of Proposition 1.20 we
refer to [641, Chap. III.D]. Proposition 1.21 and Corollary 1.22 can be found in [240]
where a different proof is given. Proposition 1.23 is due to Effros and was published
in [311], see [476] for another proof. Corollary 1.25 made its first appearance in [473]
and, independently, [476] and [477]; our proof and Proposition 1.24 are taken from [630].
Theorem 2.10 represents a general version of the main result of Godefroy’s and Li’s pa-
per [264] where the case X = J∗∗ is treated and also draws on the related paper [396].
Lemma 2.9 is in essence a classical result due to PeUlczyński [484] and can be found for
example in [422, p. 32] or [572, p. 446ff.].
Part II of the Alfsen-Effros paper centres around the notions of Section I.3, notably the
centralizer, the Cunningham algebra and the structure topology. These notions are pat-
terned after similar concepts in C∗-algebra theory, the analogue of the structure topology
being the so-called hull-kernel topology. The main result describes their connection in
the Dauns-Hofmann type theorem 3.12. However, as the title of [11] suggests, only real
Banach spaces are considered in that paper. The wish to cover complex spaces as well
necessitates distinguishing between the centralizer and the multiplier algebra. This was
first done by Behrends in [51]. Let us remark that M -ideals in complex Banach spaces
were first studied in [311]. With the help of Proposition 1.23 one may conclude that
most of the results on M -ideals in real Banach spaces extend – mutatis mutandis – to
the complex case. For the multiplier algebra things are not so easy. For example it is
not known if a complex Banach space such that Mult(X) is nontrivial must contain a
nontrivial M -ideal. (For Z(X) this follows from 3.12, though a direct proof is possible,
too.) Wodinski [638] has shown that this is so if in addition the existence of a nontrivial
T ∈ Mult(X) such that T ∗ attains its norm is supposed. Also, it is not hard to show
that a strictly convex space has a trivial centralizer. The corresponding result for the
multiplier algebra holds, too, but is considerably more difficult to prove [338, Th. 12.7],
[638].
Most of the material of Section I.3 appears in [11] and [51], cf. the references given in
the text. Proposition 3.9 and Theorem 3.10 come from [627] and [629]. There it is also
pointed out that 3.10 implies that a unital C∗-algebra is commutative if and only if its
centre separates the weak∗ closure of its pure states (which represents a special case of
Théorème 11.3.1 in [166]) and that a compact convex set K is a Bauer simplex if and
only if the order bounded operators on A(K) separate the closure of exK.
For a detailed discussion of results related to Section I.3 we refer to the monographs [35]
and [51]. In addition we mention the papers [53], [56], [161], [162], [339], [452], [453],
[454].
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Semi M -ideals. We have pointed out in Remark 2.3(a) that the 2-ball property and
the 3-ball property are not equivalent, whereas it follows from Theorem 2.2 that the
n-ball property and the 3-ball property are in fact equivalent if n ≥ 3. Let us call a
closed subspace a semi M -ideal if it satisfies the 2-ball property. (By the way, the 2-ball
property and the strict 2-ball property coincide [649].) The arguments of Theorem 2.2,
(iv) ⇒ (i), and of Remark 2.3(a) yield that J is a semi M -ideal in X if and only if there
is a (nonlinear) projection P from X∗ onto J⊥ such that

P (λx∗ + Py∗) = λPx∗ + Py∗,

‖x∗‖ = ‖Px∗‖+ ‖x∗ − Px∗‖

for all x∗, y∗ ∈ X∗, λ ∈ K . Such a projection is called a semi L-projection and its range
a semi L-summand. Thus the above result (due to Lima [399]) says that J is a semi M -
ideal if and only if J⊥ is a semi L-summand. (Actually, Lima defines a semi M -ideal in
terms of semi L-projections, and the characterisation by the 2-ball property is a theorem
of his.)
The example given in 2.3(a) seems to be one of the few natural occurrences of (proper)
semiM -ideals resp. semi L-summands. It shows thatM -ideals and semi L-summands can
appear simultaneously, in contrast to the situation described in Theorem 1.8. However,
in this case it is necessary that the semi L-summand is one-dimensional and that the
ambient space is isometric to an A(K)-space. This is proved by Payá and Rodŕıguez [479].
A lot more examples of semi M -ideals in real Banach spaces which are not M -ideals are
constructed in [481] and [412]. As a matter of fact, these authors show that every real
Banach space can be represented as a quotient space X/J where J is a semi M -ideal,
but not an M -ideal. On the other hand, occasionally a semi M -ideal is automatically
forced to be anM -ideal. For example, if X is a semiM -ideal in X∗∗ then it is already an
M -ideal ([551], [404]). This is due to the fact that a natural contractive linear projection
with kernel J⊥ is available. In fact, the proof of Proposition 1.2 extends to show: If P is
a semi L-projection and Q is a contractive linear projection with ran(P ) = ker(Q), then
P = Id−Q so that P is linear, too. Applying this to P = the semi L-projection onto the
annihilator X⊥ of X in X∗∗∗ and Q = the natural projection from X∗∗∗ onto X∗ (see
III.1.2) we obtain that P is actually an L-projection. The same holds for the subspace
K(X) of compact operators in L(X) provided X has the metric compact approximation
property. (The natural linear projection will be described in the Notes and Remarks to
Chapter VI.) Also, semi M -ideals in C(K)-spaces and, more generally, in C∗-algebras
are ideals and hence M -ideals ([399], [439]).
Semi M -ideals share a number of properties with M -ideals; for example, the sum of
two semi M -ideals is closed and a semi M -ideal [399], hermitian operators leave semi
M -ideals invariant [439], semi M -ideals are Hahn-Banach smooth and proximinal (see
Section II.1 for M -ideals) etc. [399]. A striking difference from the theory of M -ideals
is that the intersection of two semi M -ideals need not be a semi M -ideal and that there
are weak∗ closed semi M -ideals in a dual space which are not M -summands [399]; for
M -ideals this is not possible as will be shown in II.3.6(b).
It is worth mentioning that the annihilator J⊥ of a semi M -ideal J is always the range
of a contractive linear projection which, however, in general does not enjoy decent norm
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properties. This follows from Lindenstrauss’ work [414, p. 270] (see also [488, p. 62] for a
simpler proof) since the semi L-projection onto J⊥ can be shown to be 1-Lipschitz [647].
The most intriguing problem about semi M -ideals is to find examples of semi M -ideals
in a complex Banach space which are not M -ideals. Only recently the existence of such
examples was established by Behrends [63], thus refuting the long-standing conjecture
that complex M -ideals might be characterised by the 2-ball property. (We shall discuss
in the Notes and Remarks to Chapter II which results led to this conjecture.) Previously
Yost [652] proved the equivalence of the following conjectures:

• There exists a semi M -ideal in some complex Banach space which is not an
M -ideal.

• There exists a compact convex set ∆ ⊂ C
2 such that 
(∆) is a disk for all

linear maps 
 : C 2 → C which is not symmetric.

Further reformulations appear in [654] and [412], see also [656]. Using a very delicate
and involved construction Behrends produces a set ∆ as above and hence shows the
existence of proper complex semi M -ideals. Let us remark that the equivalence of the
two conjectures holds for real Banach spaces as well (here “disk” has of course to be
replaced by “interval”); in this case, however, both of them were already known to be
true. (For the former consult Remark 2.3(a), for the latter take ∆ to be a triangle.)
Another relevant paper on this topic is [64].

Unique Hahn-Banach extensions. It was shown in Proposition 1.12 that a func-
tional which is defined on an M -ideal can be extended to a functional on the whole
space preserving its norm in a unique manner. Following [573] and [587] we shall refer
to this property of a closed subspace as Hahn-Banach smoothness. The study of the
phenomenon of unique Hahn-Banach extensions was initiated by Phelps in [494] who
proved for example that the subspace J is Hahn-Banach smooth if and only if J⊥ is a
Chebyshev subspace of X∗ (cf. Section II.1 for the definition of this notion); in Phelps’
terminology Hahn-Banach smoothness is called property (U).
Obviously, being an M -ideal is far stronger than being Hahn-Banach smooth. For this
reason Hennefeld [304] has proposed a weakening of the notion of an M -ideal in that he
requires that there be a projection P on X∗ whose kernel is J⊥ such that

‖Px∗‖ < ‖x∗‖ if x∗ �= Px∗ (1)

‖x∗ − Px∗‖ ≤ ‖x∗‖. (2)

In this case J is called an HB-subspace. It is known that, for all Banach spaces X and for
1 < p <∞, K(X, 
p) is an HB-subspace of L(X, 
p) without generally being an M -ideal
[461], cf. also [304], [305].
It is easy to see that an HB-subspace is in fact Hahn-Banach smooth, but actually
inequality (2), which may contain welcome information, has nothing to do with the
problem of unique Hahn-Banach extensions. Let us say that a subspace J is strongly
Hahn-Banach smooth if there is a projection on X∗ with kernel J⊥ which satisfies solely
(1). In [404] Lima characterises the difference between strongly Hahn-Banach smooth
subspaces and Hahn-Banach smooth subspaces by an intersection property akin to the
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n-ball property of Theorem 2.2. More precisely, he has proved that a Hahn-Banach
smooth subspace J is strongly Hahn-Banach smooth if and only if for ε > 0, all n ∈ N

(equivalently: for n = 3), all x1, . . . , xn ∈ J the implication

n⋂
i=1

B(xi, ri) �= ∅ =⇒
n⋂
i=1

B(xi, ri) ∩ J �= ∅

holds. (Note that one requires here all the centres to lie in J !) Incidentally, Lima
seems to have overlooked inequality (2) since he claims to provide a characterisation of
HB-subspaces. This was pointed out by E. Oja in [460]. She also presents examples
of strongly Hahn-Banach smooth subspaces which are not HB-subspaces and of Hahn-
Banach smooth subspaces which are not strongly Hahn-Banach smooth. One way of
distinguishing between Hahn-Banach smoothness and its strong version is as follows:
J is Hahn-Banach smooth if and only if there is only one norm preserving extension
function Φ : J∗ → X∗. The subspace J is strongly Hahn-Banach smooth if in addition
Φ is linear !

More general norm decompositions. A natural generalisation of the concept of
L- and M -projections is the concept of an Lp-projection, defined by the norm condition

‖x‖p = ‖Px‖p + ‖x− Px‖p.
Lp-summands are defined in the obvious way. This notion is discussed in detail in
[66]. The nontrivial fact about these projections is that two Lp-projections commute if
p �= 2. This was first proved by Behrends [47], an easier proof can be found in [110],
and for complex scalars there is a simple argument in [476]. If we agree to call an M -
projection an L∞-projection, then it is also true that Lp- and Lr-projections cannot exist
simultaneously on a given Banach space if p �= r (except for 
∞

R
(2)). This is proved in [47]

and [110], too. Moreover, the set of all Lp-projections forms a complete Boolean algebra,
and Lp-projections on dual spaces are weak∗ continuous if p > 1. Therefore, there is a
complete duality between Lp-projections in X and Lq-projections in X∗ (with q denoting
the index conjugate to p); in particular there is no need for “Lp-ideals”. This fact seems
to be responsible for the extreme lack of nontrivial examples of Lp-projections apart from
the characteristic projections in Lp-spaces, including Lp-spaces of vector valued functions
(Bochner Lp-spaces). In fact, one can characterise Lp-spaces by a richness condition on
the set of Lp-projections ([138] for p = 1, [66, p. 54]). Let us mention one other instance
where Lp-projections arise naturally: the 1-complemented subspaces of the Schatten
classes cp for 1 < p < ∞, p �= 2, were recently characterised as those subspaces which
can be decomposed into a sequence of Lp-summands of a special nature (Cartan factors)
([29], [30]). (The boundary cases p = 1, ∞ were treated in [28].) However, it follows
from the results of [580] that the Schatten class cp itself does not admit any nontrivial
Lp-projections.
Lp-projections also turn out to be of interest in the discussion of ergodic theorems
[282] and isometries for Bochner Lp-spaces [277] [278]. Fortunately, it is the lack of
Lp-projections of the range space which is of importance for the description of the iso-
metric isomorphisms of Bochner Lp-spaces. For example, Greim describes in [277] the
surjective isometries of Lp(µ, V ) if V is separable and has no nontrivial Lp-summands.
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Yet more general norm decompositions are discussed in [438] and the subsequent papers
[439], [440]. Let F be a norm on R

2 such that

F (0, 1) = F (1, 0) = 1

F (s, t) = F (|s|, |t|) ∀(s, t) ∈ R
2 .

An F -projection is defined by the equation

‖x‖ = F (‖Px‖, ‖x− Px‖) ∀x ∈ X,
and the range of an F -projection is called an F -summand. The dual norm F ∗ is defined
by

F ∗(a, b) = sup
F (s,t)≤1

|at+ bs|,

and an F -ideal of X is a closed subspace J for which J⊥ is an F ∗-summand. One can
show that the existence of F -ideals which are not F -summands depends decisively on
the geometry of the two-dimensional unit ball BF = {(s, t)| F (s, t) ≤ 1}. In fact, if
(0, 1) ∈ exBF , then every F -ideal is actually an F -summand. [One way to prove this
is to show by duality that a G-summand in X∗ is weak∗ closed if G is differentiable at
(1,0), i.e., limh→0(G(1, h) − 1)/h = 0. This can be achieved by an argument similar to
the one leading to Theorem 1.9.]
The authors of [438] also consider the corresponding “semi” notions, where the additivity
of the projections involved is replaced by the weaker quasiadditivity condition

P (x+ Py) = Px+ Py ∀x, y ∈ X.
At this level of abstraction another dualisation procedure leads to a new concept: If J⊥

is a semi F ∗-ideal, then J is called a semi F -idealoid. Luckily, further dualisation has no
effect, since J can be shown to be a semi F -ideal if J⊥ is a semi F ∗-idealoid. Again, one
can prove that the geometry of BF and of BF∗ governs the problem whether several of
these notions coincide for a given F . For details we refer to [438].

Boolean algebras of projections. In Theorem 1.10, which is due to Cunningham
[138], we proved the completeness of the Boolean algebra PL of all L-projections. (Ac-
tually, not only is PL complete as an abstract Boolean algebra, but the supremum of
an upwards filtrating family is its limit in the strong operator topology. This refined
version of completeness is known as Bade completeness and of importance in operator
theory.) By the Stone representation theorem (cf. e.g. [283, p. 78]) PL is isomorphic to
the Boolean algebra of clopen sets of some compact Hausdorff space Ω. Since PL is com-
plete, Ω is extremally disconnected, meaning that the closure of each open set is open.
But even more is true: as Cunningham shows there is a Borel measure m on Ω with the
following properties.

• m is regular on sets of finite measure.
• m(A) = 0 if A is nowhere dense.
• m(C) > 0 if ∅ �= C is clopen.
• Every Borel set contains a Borel set of finite measure.
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[Idea of construction: Let C �→ EC be the Boolean isomorphism between the clopen sets
of Ω and PL. For x ∈ X and closed B ⊂ Ω let mx(B) = inf{‖ECx‖ | C ⊃ B clopen}.
One can show that mx extends to a uniquely determined finite regular Borel measure
on Ω. Let {mxi| i ∈ I} be a maximal family of pairwise singular measures of this type
(which exists by Zorn’s lemma) and put m(B) =

∑
imxi(B). (Details can be found in

[66, p. 24ff.].)]
An extremally disconnected compact space admitting such a measure is called hyper-
stonean; equivalently, the order continuous functionals on C(Ω) (“normal measures”)
separate the points of C(Ω). (This is the usual definition to be found e.g. in [385].) It
is now possible to represent X as a Banach space of “integrable sections” in a product∏
ω∈ΩXω such that ‖x‖ = ∫

Ω
‖x(ω)‖Xω dm(ω). IfX is represented in this way the opera-

tors in the Cunningham algebra (Definition 3.13) correspond exactly to the multiplication
operators Tx(·) = f(·)x(·) for f ∈ C(Ω). This representation, called the integral module
representation, is proved in [66].
Furthermore one can show that the operators in the Cunningham algebra behave like
normal operators on Hilbert space; more precisely they are spectral operators of scalar
type in the sense of Dunford and Schwartz [179], see [48], [66].
These theorems extend to the setting of Lp-projections for 1 < p <∞, p �= 2 [66]. Also,
Evans proves in [206] that a Boolean algebra of F -projections necessarily consists solely
of Lp-projections for some p under some natural additional assumption on F .
The case p =∞ differs from the previous ones in that the Boolean algebra PM need not
be complete. As a matter of fact, there need not exist any nontrivial M -projections on
a C(K)-space (e.g. K = [0, 1]) so that such a space cannot be “resolved” in terms of M -
projections although it certainly should have a fairly large “M -structure”. The idea here
is to have the role of the algebra generated by PM taken over by the centralizer, and now
a representation analogous to the integral module representation is possible. This was
shown – up to the terminology – by Cunningham in [139]. More specifically, letKX be the
Gelfand space of the commutative C∗-algebra Z(X). Then X is isometric to a subspace
of a product

∏
k∈KX

Xk in such a way that the numerical function k �→ ‖x(k)‖Xk
is

upper semicontinuous on KX and ‖x‖ = sup ‖x(k)‖. Moreover, the operators T ∈ Z(X)
correspond exactly to the multiplication operators Tx(·) = f(·)x(·) for f ∈ C(KX). In
particular, the copy of X in

∏
Xk has the structure of a C(K)-module. The above

representation is called the maximal function module representation in [51, Chap. 4].
The reader should observe that this procedure is reminiscent of von Neumann’s reduction
theory of operator algebras [165, Chap. II]. We refer to [139], [51] or [244] for exhaustive
information, moreover we mention the papers [161], [245], [377] and [562]. A general view
of integral and function module representation theorems is given in Evans’ paper [207],
see also [208].




