KORREKTUREN ZU

Einführung in die höhere Analysis

(Springer-Verlag, 1. Auflage 2006)

Dirk Werner

Im folgenden dokumentiere ich die mir bekannt gewordenen mathematischen Tipp- und sonstigen Fehler in chronologischer Reihenfolge. "Reine" Tippfehler werden nicht extra aufgezählt.

Seite 16. In der vorletzten Zeile muss es $\{0,2\}^{\mathbb{N}}$ heißen.

Entdeckt von Jochen Wengenroth, September 2006.

Seite 325. Im Beweis der Jordan-Zerlegung fehlt die Begründung, warum N keine Teilmenge von echt positivem Maß enthält; es ist bloß klar, dass es keine solche Teilmenge aus \mathcal{A}^+ gibt. Hier das vollständige Argument.

[...]

Dazu sei \mathcal{A}^+ das System aller $A \in \mathcal{A}$ mit der Eigenschaft, dass für $B \subset A$, $B \in \mathcal{A}$, stets $\nu(B) \geq 0$ gilt; offensichtlich ist das System \mathcal{A}^+ nicht leer, da $\emptyset \in \mathcal{A}^+$. Setze nun $\alpha = \sup\{\nu(A) \colon A \in \mathcal{A}^+\}$; dann existiert eine aufsteigende Folge (A_n) in \mathcal{A}^+ mit $\nu(A_n) \to \alpha$. Für $P = \bigcup_n A_n$ folgt dann $P \in \mathcal{A}^+$ und $\nu(P) = \alpha$; insbesondere ist $\alpha < \infty$. Da $\nu(P)$ maximal (und endlich) ist, kann keine Teilmenge von $N = S \setminus P$ mit echt positivem ν -Maß in \mathcal{A}^+ liegen. Wir werden daraus schließen, dass jede Teilmenge von N ein ν -Maß ≤ 0 hat. Wenn das erreicht ist, hat man mit $\nu^+(E) = \nu(P \cap E)$ und $\nu^-(E) = -\nu(N \cap E)$ die gewünschte Darstellung $\nu = \nu^+ - \nu^-$ gefunden.

Es bleibt also noch folgendes zu zeigen: Ist $M \in \mathcal{A}$ mit $\nu(M) > 0$, so existiert eine Teilmenge $M' \in \mathcal{A}^+$ von M mit $\nu(M') > 0$. Falls nicht schon $M \in \mathcal{A}^+$ ist, ist $\beta_1 := \inf\{\nu(B) \colon B \subset M, \ B \in \mathcal{A}\} < 0$. Wähle nun $B_1 \subset M$ mit $\nu(B_1) < \max\{\frac{1}{2}\beta_1, -1\} < 0$. (Die Bildung des Maximums mit -1 ist eine notwendige Sicherheitsmaßnahme, da $\beta_1 = -\infty$ a priori nicht ausgeschlossen ist.) Nun wiederholen wir diesen Schritt ausgehend von der Menge $M_2 = M \setminus B_1$, für die wegen $\nu(M) = \nu(B_1) + \nu(M_2)$ auch $\nu(M_2) > 0$ gilt. Ist $M_2 \notin \mathcal{A}^+$, betrachte $\beta_2 = \inf\{\nu(B) \colon B \subset M_2, \ B \in \mathcal{A}\} < 0$ und wähle $B_2 \subset M_2$ mit $\nu(B_2) < \max\{\frac{1}{2}\beta_2, -1\} < 0$. Dann betrachte $M_3 = M \setminus (B_1 \cup B_2), \ \beta_3 = \inf\{\nu(B) \colon B \subset M_3, \ B \in \mathcal{A}\} < 0$ usw. Wenn dieses Verfahren nicht nach endlich vielen Schritten zu einer Menge in \mathcal{A}^+ führt, setze $M' = M \setminus \bigcup_n B_n$. Wie oben folgt für diese Menge $\nu(M') > 0$, und sie liegt in \mathcal{A}^+ : Sei nämlich $C \subset M'$, $C \in \mathcal{A}$. Da die B_n paarweise disjunkt sind und deshalb $\sum_n \nu(B_n)$ gegen die reelle Zahl $\nu(\bigcup_n B_n)$ konvergiert, folgt $\nu(B_n) \to 0$ und $\beta_n \to 0$. Für jedes m sind C und $\bigcup_{n=1}^{m-1} B_n$ disjunkt; also ist $\nu(C) \geq \beta_m$ nach Definition von β_m und deshalb $\nu(C) \geq 0$.

Entdeckt von Jochen Wengenroth, September 2006.

Seite 233. In Lemma IV.5.2 fehlt die Voraussetzung, dass $g,h\geq 0$. Entdeckt von mir, November 2006.

Seite 264. In Zeile -6 und -5 von Abschnitt IV.8 lies $r^2 \sin \theta$ statt $r \sin \theta$. Entdeckt von Tarik Kilian Scheltat, November 2006.

Seite 245. In Korollar IV.6.5 lies in Zeile 1 messbar statt integrierbar, in der ersten Zeile des Beweises muss es $\{|f_n| > g\}$ heißen, und in der dritten Zeile ist \tilde{f}_n durch $\chi_{\mathbb{C}N}f_n$ zu definieren.

Entdeckt von Felix Poloczek, November 2006.

Seite 334. Der Dirichletkern ist bei 0 durch $D_n(0) = 2n+1$ (stetig) zu ergänzen. Entdeckt von mir, Januar 2007.

Seite 95. In Zeile -6 lies "einer wesentlichen Singularität".

Entdeckt von mir, Juni 2007.

Seite 97. Im Beispiel in Zeile 4ff. hat f nur einen Pol 1. Ordnung (wg. der Nullstelle des Sinus). Die Funktion sollte durch $f(z) = \sin \frac{\pi}{4} z/(z-1)^2$ ersetzt werden.

Entdeckt von mir, Juni 2007.

Seite 108. Die Reihe in Zeile 8 konvergiert nur auf kompakten Teilmengen gleichmäßig, wie auch der folgende Beweis zeigt!

Entdeckt von Jürgen Voigt, Juli 2008.

Seite 111. Zeile -3: Die Funktion h_p ist keine ganze Funktion; in der Tat hat sie Pole an den Stellen $2k\pi i/\log p$, $k\in\mathbb{Z}$.

Entdeckt von Jürgen Voigt, Juli 2008.