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Abstract. We provide sufficient conditions on a Banach space X in order
that there exist norm attaining operators of rank at least two from X into
any Banach space of dimension at least two. For example, a rather weak such
condition is the existence of a non-trivial cone consisting of norm attaining
functionals on X. We go on to discuss density of norm attaining operators of
finite rank among all operators of finite rank, which holds for instance when
there is a dense linear subspace consisting of norm attaining functionals on X.
In particular, we consider the case of Hilbert space valued operators where we
obtain a complete characterization of these properties. In the final section we
offer a candidate for a counterexample to the complex Bishop-Phelps theorem
on c0, the first such counterexample on a certain complex Banach space being
due to V. Lomonosov.

1. Introduction

Shortly after Bishop and Phelps’s papers ([6], [7]) on the density of norm at-
taining functionals on a Banach space had appeared, Lindenstrauss, in his seminal
work [24], launched the study of norm attaining operators. Let us recall that a
bounded linear operator T : X −→ Y between Banach spaces, T ∈ L (X,Y ), is
called norm attaining if there is some x0 ∈ X with ‖x0‖ = 1 and ‖Tx0‖ = ‖T‖; in
this case we write T ∈ NA(X,Y ). Lindenstrauss introduced the following proper-
ties (A) and (B) of a Banach space: X has (A) if NA(X,Z) is dense in L (X,Z)
for all Z; and Y has (B) if NA(W,Y ) is dense in L (W,Y ) for all W . Among many
other results, he showed that reflexive spaces have (A) as does `1, and that c0,
`∞ and finite dimensional polyhedral spaces are examples of Banach spaces with
property (B) and, finally, that there are Banach spaces (X,Y ) such that NA(X,Y )
is not dense in L (X,Y ). Major progress was made by Bourgain [9] who proved
that spaces with the RNP have property (A) and provided a certain converse re-
sult. The problem of whether Hilbert spaces have property (B) was left open in
[24], and it was solved only 25 years later by Gowers [17, Appendix], who showed
that none of the spaces `p for 1 < p < ∞ have (B). This result was pushed out
by M. Acosta [1, 2] showing that neither infinite-dimensional L1(µ) spaces nor any
strictly convex infinite dimensional Banach space have property (B). Finally, let us
comment that even though there are many Banach spaces X for which all compact
linear operators from them can be approximated by norm attaining (finite rank)
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operators [21] (including X = C0(L) and X = L1(µ)), it was proved in [29] that
there exists a compact operator between certain Banach spaces which cannot be
approximated by norm attaining operators. For more information and background
on the topic of norm attaining operators we refer to the survey papers [3] and [30].

One should observe that none of the negative results summed up above says
anything about operators of finite rank. Actually, it is one of the major open
questions in the theory whether all finite dimensional Banach spaces have Linden-
strauss’s property (B); equivalently, whether every finite rank operator between
Banach spaces can be approximated by (finite rank) norm attaining operators.
The aim of our paper is to contribute to this problem, in particular for rank-two
operators.

In the case of linear functionals, it is clear from the Hahn-Banach theorem that
NA(X), the set of norm attaining functionals, is always non-empty. For operators
of rank two it is not clear at all whether there are norm attaining ones. We are
going to investigate this problem in detail, both in general and in the particular
case when the range space is the two-dimensional Hilbert space `22.

Let us outline the contents of the paper. We devote Section 2 to the study of the
existence of norm attaining operators of finite rank. For certain Banach spaces we
prove that there are norm attaining operators of finite rank to all range spaces using
known sufficient conditions. A first new result says that whenever NA(X) contains
n-dimensional subspaces for a Banach space X, there are rank n norm attaining
operators from X into any Banach space Y with dimension at least n. There are
Banach spaces X for which NA(X) contains no two-dimensional subspaces (this
is proved in [34], [22] or [23] building on the ingenious ideas of Ch. Read [33]), so
this does not solve the existence problem for all domain spaces. However, we also
show that it is sufficient for the existence of norm attaining rank two operators that
NA(X) contains a nontrivial cone. We do not know whether this condition is also
necessary; neither do we know whether every Banach space shares this property.

Section 3 contains a new result on the density of norm attaining finite rank
operators from a Banach space X: this is the case if NA(X) contains “sufficiently
many” linear subspaces. In particular, this holds if NA(X) contains a dense linear
subspace (for instance if NA(X) is actually a linear space itself). We use this result
to recover the known results from [21] and [30] about the density of norm attaining
compact operators on a Banach space whose dual satisfies an appropriate version of
the approximation property, like for example C0(L) spaces, L1(µ) spaces, preduals
of `1, among many others. But it can also be used to get some new results. Among
other examples, we show that all finite rank operators from X can be approximated
by norm attaining operators in the following cases: X is a finite-codimensional
proximinal subspace of c0 or of K (`2), X is a c0-sum of reflexive spaces.

The special case when the range space is a two-dimensional Hilbert space is
studied in Section 4. Here, we characterize the norm attaining rank-two operators
in L (X, `22) in terms of the geometry of the dual norm on the set NA(X). As a
consequence, we show that the set of norm attaining rank-two operators in L (X, `22)
is not empty if and only if there are f ∈ NA(X) and g ∈ X∗ with ‖f‖ = 1 and
0 < ‖g‖ 6 1 such that ‖f + tg‖ 6

√
1 + t2 for all t ∈ R and if and only if there

is f ∈ NA(X) with ‖f‖ = 1 such that the operator f ⊗ (1, 0) ∈ L (X, `22) is not
an extreme point in the unit ball of L (X, `22). We do not know if such a norm
attaining functional f can be found on every Banach space X.

The last part of the paper, Section 5, is devoted to commenting on V. Lomonosov’s
solution of the complex Bishop-Phelps problem, which is explained in the first few
paragraphs of that section. We present a subset of the complex space c0 which
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might be a candidate for a bounded closed convex subset without modulus attain-
ing (complex) functionals, that is, a possible Lomonosov type example in c0.

We finish this introduction with the needed notation. We have already ex-
plained the notation L (X,Y ), NA(X,Y ), and NA(X). In addition, we define
NA1(X) := {f ∈ NA(X): ‖f‖ = 1}. For k ∈ N with k > 2, we also use the nota-
tion L (k)(X,Y ) (resp. NA(k)(X,Y )) for the subset of L (X,Y ) (resp. NA(X,Y ))
consisting of operators of rank k. As usual, BX = {x ∈ X: ‖x‖ 6 1} stands for
the closed unit ball of X, SX = {x ∈ X: ‖x‖ = 1} for its unit sphere and, less
canonically, UX = {x ∈ X: ‖x‖ < 1} for its open unit ball. Further needed nota-
tion is the following: M⊥ is the annihilator in X∗ of a closed subspace M of X,
JX : X −→ X∗∗ denotes the canonical isometric inclusion of a Banach space into
its bidual, K (X,Y ) is the space of compact linear operators between X and Y ,
cone{f, g} stands for the cone generated by f and g, that is, cone{f, g} = {af + bg:
a, b > 0}.

If x0 ∈ X is a non-zero vector, any functional f ∈ SX∗ with f(x0) = ‖x0‖ is called
a supporting functional at x0. (Obviously the supporting functionals are precisely
the norm attaining ones.) If x0 ∈ SX admits a unique supporting functional, it
is called a smooth point. A theorem due to Mazur guarantees that for separable
(in particular finite-dimensional) X the set of smooth points is dense in SX [19,
Th. 20F].

Finally, let us remark that the spaces considered in this paper are Banach spaces
over the reals, with the exception of Section 5 where complex Banach spaces are
the issue.

2. Existence of norm attaining finite rank operators

Before asking for the density of finite rank norm attaining operators, we should
ask for the existence of such operators. It is not clear, to the best of our knowledge,
that for all Banach spaces X and Y of dimension at least two, there exists a norm
attaining operator from X to Y with finite rank greater than one. Our goal in this
section is to discuss known and new sufficient conditions for the existence of norm
attaining finite rank operators. In particular, we will focus on the rank-two case.
So the leading question here is the following.

Problem 2.1. Is NA(2)(X,Y ) non-empty for all Banach spaces X and Y of di-
mension at least two?

An obvious comment here is that for the above problem, it is enough to deal
with range spaces Y of dimension two. The next comment, though easy as well, is
more surprising.

Remark 2.2. (a) If X is a Banach space and NA(2)(X, `22) is non-empty, then
NA(2)(X,Y ) is also non-empty for every Banach space Y of dimension at least two.

Indeed, we can assume that Y is a two-dimensional Banach space. Now, take
T ∈ NA(2)(X, `22) with ‖T‖ = 1 and pick x0 ∈ SX such that ‖T (x0)‖ = 1. Fix an
isomorphism S from `22 onto Y with ‖S‖ = 1. Then S attains its norm, so there
is z ∈ S`22 such that ‖S(z)‖ = 1. Consider a rotation operator π on `22 such that
π(T (x0)) = z. Then, SπT ∈ NA(2)(X,Y ) and so NA(2)(X,Y ) is non-empty.

(b) In fact, if there exist n ∈ N and Banach spaces X and Y of dimension at
least n such that NA(n)(X,Y ) = ∅, then

NA(X, `2) ⊂
⋃

k6n−1
L (k)(X, `2),

that is, every norm attaining operator from X to `2 has rank at most n− 1.
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Indeed, if there exists T ∈ NA(X, `2) whose rank is greater than or equal to n
(or even has infinite rank), then composing with a suitable orthogonal projection P
from `2 to an n-dimensional subspace Hn of `2, we get that PT ∈ NA(n)(X,Hn) ∼=
NA(n)(X, `n2 ). By an argument completely identical to the one given in item (a),
this provides that NA(n)(X,Y ) 6= ∅.

The above arguments explain the key role of `22 to solve the problem of deciding
whether NA(2)(X,Y ) is non-empty for all Banach spacesX and Y with dim(Y ) > 2.
However, in the following we will study the problem for arbitrary range spaces Y .
In Section 4 we will study the particular case of NA(2)(X, `22) and we will even give
characterizations of the statement that this set is non-empty.

But let us return to the general case of Problem 2.1. First, we try to focus on the
range space. If Y is a polyhedral two-dimensional Banach space, then as a result
of Lindenstrauss [24, Proposition 3], NA(X,Y ) is dense in L (X,Y ) for all Banach
spaces X, so the result is clear. Next, if Y is not polyhedral and not strictly convex
either, then it is easy to construct a norm attaining rank-two operator from any
Banach space X of dimension greater than one into Y (indeed, go first onto `2∞
and then use that SY contains a segment to produce an injective operator from `2∞
into Y that carries a whole maximal face of S`2∞ to the unit sphere of Y , see the
proof of Proposition 2.17). For strictly convex range spaces Y , we do not know the
answer, even for Y being a two-dimensional Hilbert space, and actually this case
will be studied in depth in Section 4, as announced before.

In this section we will mainly focus on the domain space. Our first comment is
that, since compact operators are completely continuous, every compact operator
whose domain is a reflexive space attains its norm (see [30, p. 270] for an argument).
Next, there is an easy argument to get rank-two norm-attaining operators from a
given Banach space X having a one-complemented reflexive subspace of dimension
greater than one to arbitrary range spaces Y . Indeed, let P : X −→ X be a norm-
one projection such that P (X) = Z is reflexive and dim(Z) > 2. Now, every finite
rank (actually compact) operator from a reflexive space is norm-attaining, so we
just have to compose an arbitrary rank-two operator S: Z −→ Y with the operator
P viewed as P : X −→ P (X) = Z to get that T = SP ∈ L (X,Y ) has rank-
two and attains its norm (indeed, ‖T‖ = ‖S‖ and there exists z ∈ SZ such that
‖Sz‖ = ‖T‖, but z = P (z) ∈ SX and so ‖Tz‖ = ‖SPz‖ = ‖Sz‖ = ‖T‖). Actually,
the same proof shows that every compact operator which factors through P is norm
attaining, but this is the same as requiring that the kernel of the operator contains
the kernel of P .

Result 2.3 (Folklore). Let X be a Banach space, let P ∈ L (X,X) be a norm-one
projection such that P (X) is reflexive, and let Y be an arbitrary Banach space.
Then, every compact operator T : X −→ Y for which kerP ⊂ kerT attains its
norm.

But to have one-complemented closed subspaces of dimension greater than one
is a quite strong requirement, and there are even Banach spaces without norm-one
projections apart from the trivial ones (the identity and rank-one projections), see
[8] for a finite-dimensional example.

Anyway, a quick glance at the proof of the above result makes one realize that
the only properties of the norm-one projection P that we have used are that P (X)
is reflexive and that P (BX) = BP (X), but not that P 2 = P . As P (X) = X/kerP ,
we may try to consider general quotient maps instead of projections. Let X be a
Banach space, let Z be a closed subspace of X, and let Y be an arbitrary Banach
space. Suppose that X/Z is reflexive (this is usually referred to by saying that
Z is a factor reflexive subspace of X) and suppose also that the quotient map q:



NORM ATTAINING OPERATORS OF FINITE RANK 5

X −→ X/Z satisfies that q(BX) = BX/Z , then every compact operator T : X −→ Y

such that Z ⊂ kerT attains its norm. Indeed, we may write T = T̃ ◦ q where
‖T̃‖ = ‖T‖ and T̃ is compact, so there is ξ ∈ BX/Z such that ‖T̃ (ξ)‖ = ‖T‖, but
ξ = q(x) for some x ∈ BX by hypothesis, so ‖T (x)‖ = ‖T‖.

How to get the condition that q(BX) = BX/Z? This is just the proximinality of
Z in X. Recall that a (closed) subspace M of X is called proximinal if for each
x ∈ X there is some m ∈M such that ‖x−m‖ = dist(x,M). We refer to the book
[35] for background. Clearly, M is proximinal in X if and only if q(BX) = BX/M ,
see [35, Theorem 2.2] for instance. Therefore, we have shown the following.

Result 2.4 (Folklore). Let X be a Banach space, let Z be a factor reflexive proxim-
inal subspace of X, and let Y be an arbitrary Banach space. Then, every compact
operator T : X −→ Y for which Z ⊂ kerT attains its norm.

The problem of whether every infinite-dimensional Banach space contains a two-
codimensional proximinal subspace [35, Problem 2.1] was open until a celebrated
example was recently given by Read [33]: there is a Banach space R containing
no finite-codimensional proximinal subspaces of codimension greater than one (and
then it contains no proximinal factor reflexive subspaces of infinite codimension
either, use [31, Proposition 2.3]). We refer the reader to [22, 23, 34] for more
information on Read type spaces. Therefore, Result 2.4 does not provide a complete
positive solution of Problem 2.1.

Our next step is to get a slightly weaker sufficient condition for norm attainment
than the one given in Result 2.4, which is new as far as we know. Namely, it is easy
to see that if Z is a factor reflexive proximinal subspace of a Banach space X, then
Z⊥ ⊂ NA(X) (see [5, Lemma 2.2] for instance), but the converse result is not true
(see [20, Section 2] or [34, Section 2] for a discussion of this). Our result is that the
condition Z⊥ ⊂ NA(X) is enough to get the conclusion of Result 2.4.

Proposition 2.5. Let X be a Banach space, let Z be a closed subspace of X such
that Z⊥ ⊂ NA(X), and let Y be an arbitrary Banach space. Then, every compact
operator T ∈ L (X,Y ) for which Z ⊂ kerT attains its norm.

Proof. As Z⊥ ⊂ NA(X), it is immediate from James’s theorem thatX/Z is reflexive
(see the proof of [5, Lemma 2.2]). As Z ⊂ kerT , the operator T factors through
X/Z, that is, there is an operator T̃ : X/Z −→ Y such that T = T̃ ◦ q, and it is
clear that ‖T̃‖ = ‖T‖ and that T̃ is compact whenever T is. Then, T̃ attains its
norm (it is compact defined on a reflexive space), so also the adjoint T̃ ∗ attains its
norm. That is, there is y∗ ∈ SY ∗ such that ‖T̃ ∗y∗‖ = ‖T‖. Now, the functional
x∗ = T ∗y∗ =

[
q∗T̃ ∗

]
(y∗) ∈ X∗ vanishes on Z, so it belongs to Z⊥ ⊂ NA(X). This

implies that there is x ∈ SX such that

|x∗(x)| = ‖x∗‖ =
∥∥[q∗T̃ ∗](y∗)∥∥ =

∥∥q∗(T̃ ∗y∗)∥∥ =
∥∥T̃ ∗(y∗)∥∥ = ‖T‖,

where we have used the immediate fact that q∗ is an isometric embedding as q is
a quotient map. Therefore, ‖T‖ = |[T ∗y∗](x)| = |y∗(Tx)| and so ‖Tx‖ = ‖T‖, as
desired. �

Observe that the proposition above can also be written in the following more
suggestive form.

Corollary 2.6. Let X, Y be Banach spaces and let T ∈ L (X,Y ) be a compact
operator. If [kerT ]⊥ ⊂ NA(X), then T attains its norm.

The following obvious consequence gives a solution to Problem 2.1 in most Ba-
nach spaces.
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Corollary 2.7. Let X be a Banach space. If NA(X) contains two-dimensional
subspaces, then NA(2)(X,Y ) is non-empty for any Banach space Y of dimension
at least two.

What happens with Read’s space R? (Un)fortunately, Corollary 2.7 does not
apply since NA(R) does not contain two-dimensional subspaces, as was shown
by Rmoutil [34, Theorem 4.2]. Actually, Rmoutil used the fact that if Z is a
finite-codimensional closed subspace of a Banach space X such that X/Z is strictly
convex, then Z⊥ ⊂ NA(X) if and only if Z is proximinal (see [34, Lemma 3.1]).
Then, he showed, for X = R, that if Z⊥ is contained in NA(R), then R/Z is
strictly convex and so Z is proximinal and hence it has codimension one. Actually,
R∗∗ is strictly convex [22, Theorem 4], so all quotients of R are strictly convex.

What to do then with R? Well, R is not smooth (this follows from the formula
for the directional derivative of its norm given in [33, Lemma 2.5]), so the following
easy observation applies to it.

Observation 2.8. If X is a non-smooth Banach space, then NA(2)(X,Y ) is non-
empty for any Banach space Y with dim(Y ) > 2.

Indeed, there are x0 ∈ SX and linearly independent f, g ∈ SX∗ such that f(x0) =
g(x0) = 1. Consider two linearly independent vectors y1 and y2 of SY and, replacing
y2 by −y2 if necessary, let

α0 := ‖y1 + y2‖ = max{‖ay1 + by2‖: |a|, |b| 6 1}.

Now, define the operator T ∈ L (X,Y ) by Tx = 1
α0

(
f(x)y1 + g(x)y2

)
for all x ∈ X

and observe that T has rank two, that ‖T‖ 6 1, and that ‖Tx0‖ = 1. Thus
T ∈ NA(2)(X,Y ), giving the result.

Observation 2.8 solves Problem 2.1 for R. But, are the already presented results
applicable to solve the problem for all Banach spaces? The answer is no since
we may construct a smooth renorming R̃ of R such that NA(R̃) = NA(R) [22,
Example 12], and neither Corollary 2.7 nor Observation 2.8 apply. Nevertheless,
there is something these two results have in common: in both cases, the set of norm
attaining functionals contains non-trivial cones. This also happens in NA(R̃) (as it
coincides with NA(R)), and this will be the key to obtain the main new existence
result about norm attaining rank-two operators.

Theorem 2.9. Let X be a real Banach space, let f1, f2 ∈ SX∗ be linearly inde-
pendent, Z = ker f1 ∩ ker f2 and cone{f1, f2} ⊂ NA(X). Then, for every real
two-dimensional normed space E there is a norm attaining surjective operator T :
X −→ E with kerT = Z.

Before providing the proof of this result, let us give some consequences and
comments.

Observe that Theorem 2.9 implies the following sufficient condition for the exis-
tence of norm attaining operators of rank two.

Corollary 2.10. Let X be a Banach space. If there exist two linearly independent
f, g ∈ X∗ such that cone{f, g} ⊂ NA(X), then NA(2)(X,Y ) 6= ∅ for every Banach
space Y of dimension at least two.

We do not know whether the condition is necessary as well, and we don’t know
any Banach space that fails it.

Problem 2.11. Does NA(X) contain non-trivial cones for every infinite-dimensional
Banach space X?
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Problem 2.12. Let X be a Banach space and suppose that NA(2)(X,Y ) 6= ∅ for
every Banach space Y of dimension at least two. Does this imply that NA(X)
contains a non-trivial cone?

As promised before we stated Theorem 2.9, this result solves the problem of the
existence of rank-two norm attaining operators for R̃.

Example 2.13. The Read space R given in [33] and its smooth renorming R̃ given
in [22, Example 12], satisfy that their set of norm attaining functionals contains
non-trivial cones (but no non-trivial subspaces). Therefore, for every Banach space
Y of dimension at least two, both NA(2)(R, Y ) and NA(2)(R̃, Y ) are non-empty.

Indeed, as R is not smooth, taking linearly independent f1, f2 ∈ R∗ and x0 ∈ SR

such that f1(x0) = 1 = f2(x0), it is immediate that cone{f1, f2} ⊂ NA(R). For
the space R̃, we just have to observe that NA(R̃) = NA(R), as shown in [22,
Example 12].

It is now time to present the proof of Theorem 2.9. We first need some prelim-
inary results. We recall that we denote the open unit ball of a Banach space X
by UX .

Lemma 2.14. Let E be a two-dimensional normed space, let e1 ∈ SE, e∗1 ∈ SE∗
such that e∗1(e1) = 1, and let e2 ∈ SE ∩ ker e∗1. For 0 < τ < 1, denote by Tτ :
E −→ E the norm-one linear operator such that Tτ (e1) = e1 and Tτ (e2) = τe2.
Then, for every compact subset K ⊂ E such that sup |e∗1(K)| < 1 there is 0 < τ < 1
such that Tτ (K) ⊂ UE.

Proof. Let τn = 1
n . Then the operators Tτn converge pointwise to the operator

T = e∗1 ⊗ e1. Now, pointwise convergence on E implies uniform convergence on K.
Since, by hypothesis, UE is an open neighborhood of T (K) = {e∗1(x)e1: x ∈ K},
there is n ∈ N such that Tτn(K) ⊂ UE . �

Lemma 2.15. Under the conditions of the previous lemma, let additionally e1 be
a smooth point of SE, and let h1, h2 ∈ E∗ be two linearly independent functionals
such that e∗1 = 1

2 (h1 + h2) and h1(e1) = h2(e1) = 1. Denote

A = {x ∈ E: max{|h1(x)| , |h2(x)|} 6 1}.
Then, there is 0 < τ < 1 such that Tτ (A) ⊂ BE.

Proof. Since e1 is a smooth point of BE , it follows by geometrical reasoning in
the plane that there is a neighborhood V of e1 such that A ∩ V ⊂ BE (i.e., the
parallelogram A touches SE at e1 from the inside of BE). Note that e1 is a strongly
exposed point of A; it is strongly exposed by e∗1 = 1

2 (h1 +h2). Hence, there is some
δ > 0 such that

Aδ := {x ∈ A: |e∗1(x)| > 1− δ} ⊂ A ∩ V ⊂ BE .
Let us apply Lemma 2.14 to K = A \ Aδ = {x ∈ A: |e∗1(x)| 6 1 − δ}. We obtain
some 0 < τ < 1 so that Tτ (K) ⊂ UE . Since Tτ (Aδ) ⊂ Aδ ⊂ BE , this gives us the
desired inclusion Tτ (A) ⊂ BE . �

Lemma 2.16. Let Y be a two-dimensional normed space, x1, x2 ∈ SY be lin-
early independent smooth points, and let the corresponding supporting functionals
x∗1, x

∗
2 ∈ SY ∗ , x∗1(x1) = x∗2(x2) = 1, be also linearly independent. Let y ∈ SY be of

the form y = a1x1 + a2x2 with ai > 0, i = 1, 2. Then, every supporting functional
f ∈ SY ∗ at y belongs to cone{x∗1, x∗2}.

Proof. We again argue geometrically. Denote b1 = x∗1(x2), b2 = x∗2(x1). Evidently,
|bi| < 1, i = 1, 2. Denote by x3 the point at which x∗1(x3) = x∗2(x3) = 1 and
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consider the triangle ∆ whose vertices are x1, x2, and x3. Then, y ∈ ∆, and the
supporting line ` = {x ∈ Y : f(x) = 1} contains y. Now, x1, x2 lie on one side of `
(actually, all points of BY do), whereas x3 lies on the opposite side of `, that is

f(x1) 6 1, f(x2) 6 1, and f(x3) > 1.

Since x∗1, x∗2 ∈ Y ∗ are linearly independent, there is a (unique) representation of f as
f = c1x

∗
1 +c2x

∗
2. Let us substitute this representation into the previous inequalities:

c1 + c2b2 6 1,(2.1)
c1b1 + c2 6 1,(2.2)
c1 + c2 > 1.(2.3)

From (2.1) and (2.3) together with b2 6= 1, we deduce that c2 > 0, and likewise
from (2.2) and (2.3) that c1 > 0. �

We are now able to present the pending proof.

Proof of Theorem 2.9. Denote by q the corresponding quotient map q: X −→ X/Z;
then q∗ maps (X/Z)∗ isometrically onto Z⊥ = span{f1, f2} ⊂ X∗. Let x1, x2 ∈ SX
be points at which f1(x1) = f2(x2) = 1, x̃1 = q(x1), x̃2 = q(x2) and let f̃1, f̃2 ∈
S(X/Z)∗ be those functionals for which q∗(f̃i) = fi, i = 1, 2. Then, f̃1(x̃1) =

f̃2(x̃2) = 1, so, in particular, x̃1, x̃2 ∈ SX/Z .
We will consider two cases.
• Case 1: x̃1 and x̃2 are smooth points of SX/Z . In this case, since f̃1, f̃2 are

linearly independent, x̃1, x̃2 are linearly independent as well. Let ` ⊂ X/Z be the
straight line connecting x̃1 with x̃2, let f̃3 ∈ S(X/Z)∗ be the norm-one functional
taking a positive constant value α < 1 on ` and let x̃3 ∈ SX/Z be a point at
which f̃3(x̃3) = 1. Select a point e1 ∈ SE , a supporting functional e∗1 ∈ SE∗ at
e1, e2 ∈ SE ∩ ker e∗1 and Tτ : E −→ E as in Lemma 2.14. Choose t ∈ (α, 1),
and denote by R: X/Z −→ E the linear operator such that R(x̃1 − x̃2) = e2 and
R(x̃1) = te1. Applying Lemma 2.14 to K = {e ∈ R(BX/Z): |e∗1(e)| 6 t} we
obtain some 0 < τ < 1 such that Tτ (K) ⊂ UE . We also note for future use that
e∗1(R(x̃1)) = e∗1(R(x̃2)) = t, consequently R∗e∗1 = t

α f̃3 and e∗1(R(x̃3)) = t
α > 1.

Our goal is to demonstrate that T = Tτ ◦R ◦ q: X −→ E is the operator we are
looking for. Consider the composition Tτ ◦ R: X/Z −→ E. It is a bijection, which
ensures that kerT = ker q = Z. The property e∗1 ◦ Tτ = e∗1 implies that

‖Tτ ◦R‖ > |e∗1((Tτ ◦R)x̃3)| = e∗1(R(x̃3)) > 1.

Let y ∈ SX/Z be a point at which ‖(Tτ ◦R)(y)‖ = ‖Tτ ◦R‖. Then y must belong to
cone{x̃1, x̃2} ∪ (− cone{x̃1, x̃2}) because otherwise we would have |f̃3(y)| 6 α and
thus |e∗1(Ry)| = t

α |f̃3(y)| 6 t so that (Tτ ◦ R)y ∈ Tτ (K) ⊂ UE , which contradicts
the estimate ‖(Tτ ◦R)(y)‖ > 1.

Replacing y by−y, if necessary, we may assume that y ∈ SX/Z∩cone{x̃1, x̃2}. Let
g ∈ SE∗ be a supporting functional for [Tτ ◦R](y), that is, g

(
[Tτ ◦R](y)

)
= ‖Tτ ◦R‖.

Then,
(Tτ ◦R)∗g

‖Tτ ◦R‖
is a supporting functional at y, so, by Lemma 2.16,

(Tτ ◦R)∗g

‖Tτ ◦R‖
∈ cone{f̃1, f̃2}

and consequently

q∗
(

(Tτ ◦R)∗g

‖Tτ ◦R‖

)
∈ cone{f1, f2}.
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Since cone{f1, f2} consists only of norm attaining functionals, there is x ∈ SX such
that [

q∗
(

(Tτ ◦R)∗g

‖Tτ ◦R‖

)]
(x) = 1.

From this, we get that

‖T (x)‖ = ‖(Tτ ◦R ◦ q)(x)‖ > g((Tτ ◦R ◦ q)(x))

= (q∗ ((Tτ ◦R)∗g)) (x) = ‖Tτ ◦R‖.

On the other hand, ‖T‖ 6 ‖Tτ ◦R‖, which means that T attains its norm at x.
• Case 2: At least one of x̃1, x̃2 is not a smooth point of SX/Z . Without loss of

generality we may assume that x̃1 is not a smooth point, so there are two linearly
independent functionals g1, g2 ∈ S(X/Z)∗ with g1(x̃1) = g2(x̃1) = 1.

Select a smooth point e1 ∈ SE , and let e∗1 ∈ SE∗ be the supporting functional
at e1. Select e2 ∈ SE ∩ ker e∗1 and define Tτ : E −→ E as in Lemma 2.14. Denote
g = 1

2 (g1 + g2) and choose y ∈ SX/Z ∩ ker g. Denote by R: X/Z −→ E the linear
operator satisfying R(x̃1) = e1 and R(y) = e2. Then, [R∗e∗1](x̃1) = 1, [R∗e∗1](y) = 0,
so R∗e∗1 = g. Let us consider those h1, h2 ∈ E∗ for which R∗h1 = g1 and R∗h2 = g2.
These h1, h2 ∈ E∗ satisfy all the conditions of Lemma 2.15, so for the corresponding
set

A = {x ∈ E: max{|h1(x)| , |h2(x)|} 6 1}

there is 0 < τ < 1 such that Tτ (A) ⊂ BE .
Let us demonstrate that T = Tτ ◦R◦ q: X −→ E attains its norm at x1. Indeed,

T (BX) = Tτ (R(q(BX))) ⊂ Tτ (R(BX/Z))

⊂ Tτ (R({x̃ ∈ X/Z: max{|g1(x̃)| , |g2(x̃)|} 6 1}))
= Tτ (A) ⊂ BE ,

which gives us that ‖T‖ 6 1. But, on the other hand,

T (x1) = Tτ (R(x̃1)) = Tτ (e1) = e1,

so ‖T (x1)‖ = 1. �

Our last goal in this section is to present all the implications proved so far in
the particular case of rank-two operators, and to discuss the possibility of reversing
them.

Let X and Y be Banach spaces of dimension at least two, and let Z be a closed
subspace of X of codimension two. Consider the following properties:

(a) Z is the kernel of a norm-one projection.
(b) Z is proximinal in X.
(c) Z⊥ ⊂ NA(X).
(d) Every T ∈ L (X,Y ) with kerT ⊃ Z is norm attaining.
(e) Every T ∈ L (X,Y ) with kerT = Z is norm attaining.
(♦) There exists T ∈ L (X,Y ) with kerT = Z which is norm attaining.
(f) There are linearly independent f, g ∈ Z⊥ such that cone{f, g} ⊂ Z⊥ ∩

NA(X).
(g) There are linearly independent f, g ∈ Z⊥ ∩ SX∗ and x ∈ SX such that

f(x) = 1 = g(x).
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Then, the following implications hold:
(2.4)

(a) (b) (c) (e) (♦) (f) (g)

(d)

(?) (??) (???)

We now discuss these implications and the possibility of reversing them.
It is immediate that (a) implies (b), but the converse result is obviously false,

even for finite-dimensional (non-Hilbertian) spaces. It is well known that (b) implies
(c), but not conversely, see [20, Section 2] or [34, Section 2] for a discussion of this.
The implication (c)⇒ (d) is Proposition 2.5, and the reverse implication is obvious
using rank-one operators. Next, the implications (d) ⇒ (e) ⇒ (♦) are obvious.

On the other side of condition (♦), we have that (g) ⇒ (f) since, obviously,
cone{f, g} ⊂ NA(X) if (g) holds, but the converse result is not true as follows by
taking X to be a smooth reflexive Banach space. That (f) implies (♦) is exactly
our Theorem 2.9.

So it remains to discuss the possible converses of the implications (?), (??), and
(???).

Let us start by discussing the possibility of the reciprocal result to implication
(?) above to be true. We have two different behaviors, depending on whether the
range space is strictly convex or not (that is, whether the unit sphere of the range
space does not or does contain non-trivial segments).

For non-strictly convex range spaces, we have the following positive result.

Proposition 2.17. Let X be a Banach space, let E be a two-dimensional space
which is not strictly convex and let Z be a two-codimensional closed subspace of X.
If every T ∈ L (X,E) with kerT = Z attains its norm, then Z⊥ ⊂ NA(X).

Proof. Let us start with the simpler case of E = `2∞. Fix ϕ ∈ Z⊥ with ‖ϕ‖ = 1;
our aim is to show that ϕ ∈ NA(X). To get this, consider ψ ∈ Z⊥ with ‖ψ‖ = 1
such that Z⊥ = span{ϕ,ψ} and define T : X −→ `2∞ by Tx =

(
ϕ(x), 1

2ψ(x)
)
for all

x ∈ X. Then, ‖T‖ = 1 and kerT = Z, so T ∈ NA(X, `2∞) by hypothesis. But then,
clearly, ϕ ∈ NA(X), as desired.

Now, suppose that E is a two-dimensional non-strictly convex space. Then, we
may find a bijective norm-one operator U : `2∞ −→ E such that U(1, t) ∈ SE for
every t ∈ [−1, 1] (we just have to use the segment contained in SE). Now, fix
ϕ ∈ Z⊥ with ‖ϕ‖ = 1, our aim is to show that ϕ ∈ NA(X). Again, we consider
ψ ∈ Z⊥ with ‖ψ‖ = 1 such that Z⊥ = span{ϕ,ψ} and this time we define the
operator T : X −→ E by Tx = U(ϕ(x), 1

2ψ(x)) for all x ∈ X. On the one hand,
‖T‖ = 1: consider a sequence {xn}n∈N in SX such that ϕ(xn) −→ 1 and, passing
to a subsequence, we also have that ψ(xn) −→ t0 ∈ [−1, 1] and so

‖Txn‖ = ‖U(ϕ(xn), 1
2ψ(xn)‖ −→ ‖U(1, t0)‖ = 1.

On the other hand, kerT = Z, so T attains its norm by hypothesis. That is, there
is x ∈ SX such that 1 = ‖Tx‖ = ‖U(ϕ(x), 1

2ψ(x))‖. But as ‖U‖ = 1, this implies
that ‖(ϕ(x), 1

2ψ(x))‖∞ = 1 and this immediately gives that |ϕ(x)| = 1, that is,
ϕ ∈ NA(X), as desired. �

When the range space is strictly convex, the above proof is not valid and, actually,
the result is false as the following counterexample shows.

Example 2.18. Let E be a two-dimensional strictly convex Banach space. Then,
there are a Banach space X and a two-codimensional closed subspace Z of X



NORM ATTAINING OPERATORS OF FINITE RANK 11

satisfying that every operator T ∈ L (X,E) with kerT = Z attains its norm, but
Z⊥ is not contained in NA(X).

Proof. Take a two-dimensional Banach space W whose unit sphere SW contains
a segment [a, b], where the endpoints a, b are extreme points of the sphere, the
number of extreme points is countable, and the endpoints a, b are smooth point of
the sphere. Let X = `1 and define an operator U : X = `1 −→ W that maps the
vectors of the unit basis {en} onto all the extreme points of SW with the exception
of ±a and ±b. Then, Z = kerU is a two-codimensional closed subspace of X,
whose annihilator Z⊥ is not contained in NA(X), because if one takes f ∈ W ∗

which attains its norm on [a, b], then U∗f ∈ Z⊥ does not attain its norm. On the
other hand, as U(BX) = BW , X/Z is isometrically isomorphic to W by virtue of
the injectivization Ũ ∈ L (X/Z,W ) of U which satisfies U = Ũq. So, if one takes an
arbitrary norm-one operator T : X −→ E with kerT = Z, then T factors through
U (or, what is the same, through the composition of the quotient map q and Ũ).
That is, T = T̃U for some norm-one operator T̃ : W −→ E, so the image T (BX) of
the closed unit ball is a linear copy (under T̃ ) of U(BX) = BW \ ([a, b] ∪ [−a,−b]).

We shall argue that ‖T̃ (a)‖ 6= 1. Otherwise one could pick some e∗ ∈ SE∗ with
e∗(T̃ (a)) = 1. It follows that w∗ := T̃ ∗(e∗) is a supporting functional at a of norm
one. Any supporting functional at 1

2 (a+b) also supports a, and by smoothness of a
it has to coincide with w∗. Consequently w∗(a) = w∗( 1

2 (a+ b)) = w∗(b) = 1 and so
T̃ (a), T̃ ( 1

2 (a+ b)) and T̃ (b) lie on a non-trivial segment of SE , which is impossible
when E is strictly convex. Likewise ‖T̃ (b)‖ 6= 1. Hence there exists an extreme
point w of BW different from ±a, ±b for which ‖T̃ (w)‖ = 1. This w is of the form
w = U(en) for some n, and we see that T = T̃U attains its norm at this en. �

We would like to emphasize a question related to the example above, which asks
about the possibility of the implication (e)⇒ (f) being true when the range space is
strictly convex (it is true for non-strictly convex range spaces by Proposition 2.17).
The failure of (f) ⇒ (e) will be shown shortly in Example 2.20.

Problem 2.19. Let X be a Banach space, let Z be a closed subspace of X of
codimension two and let E be a two-dimensional strictly convex space. Suppose
that every T ∈ L (X,E) with kerT = Z attains its norm, does then Z⊥ ∩ NA(X)
contain a non-trivial cone?

To show the failure of the converse implication to (??) in diagram (2.4), the next
example works. Note that it also shows that (f) does not imply (e).

Example 2.20. There exists a rank-two operator T ∈ L (`1, `
2
2) such that [kerT ]⊥∩

NA(`1) contains a non-trivial cone, but T does not attain its norm.
Indeed, let T ∈ L (`1, `

2
2) be an operator such that

T (B`1) = conv{±u1,± 1
2u2} \ {±u1}

where {u1, u2} is the canonical basis of `22. This operator can easily be constructed
by mapping the unit vector basis of `1 onto a countable dense subset of the union of
the half-open segments (−u1,

1
2u2] ∪ (u1,

1
2u2] ⊂ `22. Then, ‖T‖ = 1, but the norm

is not attained. Nevertheless, the functionals from the cone in (`22)∗ generated by
2u∗2±u∗1 attain their maxima on T (B`1) at the point 1

2u2, so the image of this cone
under the isomorphic embedding T ∗ is contained in [kerT ]⊥ and consists of norm
attaining functionals.

Finally, it follows from the next example that the converse implication to (???)
in diagram (2.4) fails in general.
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Example 2.21. Let X = `1 and let E be an arbitrary two-dimensional space.
Then, there is T ∈ NA(2)(X,E) such that [kerT ]⊥ ∩ NA(X) does not contain
non-trivial cones.

Indeed, let {zn: n > 2} be a dense subset of the open unit ball of E, let u0 be a
smooth point of SE whose unique support functional is called u∗0 ∈ SE∗ , and define
T : `1 −→ E by means of the unit vector basis {en} of `1 by

T (e1) = u0, T (en) = zn for n > 2.

Clearly, T is onto and attains its norm (at e1), so T ∈ NA(2)(X,E). On the
other hand, since T (B`1) is dense in BE , the adjoint operator T ∗: E∗ −→ (`1)∗

is an isometric embedding. Also, T ∗(E∗) ⊂ [kerT ]⊥ and the dimensions of both
subspaces are equal to 2, so we have [kerT ]⊥ = T ∗(E∗). Now, consider an arbitrary
non-zero h ∈ [kerT ]⊥ ∩ NA(X). Let us write h = T ∗y∗, where y∗ ∈ E∗, and let
x = (x1, x2, . . . ) ∈ B`1 be such that ‖h‖ = h(x). Then

‖y∗‖ = ‖h‖ = h(x) = y∗(Tx) 6 ‖y∗‖‖Tx‖ 6 ‖y∗‖,
so ‖Tx‖ = 1 and y∗ attains its norm at Tx. Taking into account that ‖x‖ =∑∞
n=1 |xn| = 1, that ‖zn‖ < 1 and that

‖Tx‖ 6 |x1|+
∑
n>2

|xn|‖zn‖,

we see that the equality ‖Tx‖ = 1 may happen only if x = x1e1 with |x1| = 1.
Therefore, Tx = ±u0 and y∗ attains its norm at Tx, so y∗ is proportional to u∗0.
We have demonstrated that [kerT ]⊥ ∩ NA(X) ⊂ spanT ∗(u∗0), so NA(X) does not
contain two linearly independent elements of [kerT ]⊥.

3. Density of norm attaining finite rank operators

After discussing the existence of norm attaining finite rank operators, it is now
time to study positive results for the density of such operators. An easy observa-
tion is pertinent, namely, we may restrict ourselves to consider finite-dimensional
codomain spaces if we are interested in results valid for all codomain spaces: if
X has the property that for all Y , all finite rank operators T : X −→ Y can be
approximated by norm attaining operators, then all such T can be approximated
by norm attaining finite rank operators. Indeed, if T : X −→ Y has finite rank,
then we may view T : X −→ T (X), approximate T here, and then compose the
approximating sequence with the isometric inclusion operator from T (X) into Y .

The leading question here is the following open problem.

Problem 3.1. Is it true that every finite rank operator can be approximated by
norm attaining (finite rank) operators?

As in the previous section, we will focus on the domain spaces. So, the general
aim in this section is to provide partial answers to the following question.

Problem 3.2. Find sufficient conditions on a Banach space X so that every fi-
nite rank operator whose domain is X can be approximated by (finite rank) norm
attaining operators.

First, it is immediate that Lindenstrauss’s property (A) on a Banach space X
implies that a finite rank operator whose domain isX can be approximated by norm
attaining finite rank operators (just restrict the codomain to the range space, use
property (A) there and inject the range space again into the codomain). Therefore,
some positive solutions to the problem above are the known sufficient conditions for
property (A) like the Radon-Nikodým property, the property alpha, or the fact that
the unit ball contains a set of uniformly strongly exposed points which generates
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the ball by taking the closed convex hull. We refer to the already cited survey paper
[3] for more information.

If one looks for less restrictive conditions valid for finite rank operators but not
necessarily for all operators, there are such conditions for compact operators. A
detailed account of these properties is given in the survey paper [30]. But all of the
known results of this kind need some sort of approximation property of the dual
space, since they actually provide that every compact operator can be approximated
by norm attaining finite rank operators.

Our main aim here is to try to provide a sufficient condition for the density
of norm attaining finite rank operators which does not require the approximation
property of the dual of the domain space. Here is the result which follows directly
from Proposition 2.5.

Theorem 3.3. Let X be a Banach space satisfying that for every n ∈ N, every
ε > 0 and all x∗1, . . . , x∗n ∈ BX∗ , there are y∗1 , . . . , y∗n ∈ BX∗ such that ‖x∗i −y∗i ‖ < ε
for every i = 1, . . . , n and

span{y∗1 , . . . , y∗n} ⊂ NA(X).

Then, every finite rank operator whose domain is X can be approximated by finite
rank norm attaining operators.

If, moreover, X∗ has the approximation property, then every compact operator
whose domain is X can be approximated by finite rank norm attaining operators.

Before providing the proof of the theorem, let us state the main consequence
which follows immediately from it.

Corollary 3.4. Let X be a Banach space such that there is a norm dense linear
subspace of X∗ contained in NA(X). Then, for every Banach space Y , every oper-
ator T ∈ L (X,Y ) of finite rank can be approximated by finite rank norm attaining
operators.

If, moreover, X∗ has the approximation property, then every compact operator
whose domain is X can be approximated by finite rank norm attaining operators.

We do not know whether there are Banach spaces satisfying the conditions of
Theorem 3.3 but not the ones of Corollary 3.4.

We may now give the pending proof.

Proof of Theorem 3.3. It is enough to show that NA(X,F ) is dense in L (X,F )
for every finite-dimensional space F . We fix an arbitrary finite-dimensional Ba-
nach space F and consider an Auerbach basis {e1, . . . , en} of F [13, Theorem 4.5]
with biorthogonal functionals {e∗1, . . . , e∗n} in F ∗. Given a norm-one operator
T ∈ L (X,F ) and ε > 0, let x∗i = T ∗e∗i ∈ BX∗ for i = 1, . . . , n, and observe
that T =

∑n
i=1 x

∗
i ⊗ ei. By hypothesis, we may find y∗1 , . . . , y

∗
n ∈ BX∗ such that

‖x∗i − y∗i ‖ < ε/n and span{y∗i , . . . , y∗n} ⊂ NA(X). We write S =
∑n
i=1 y

∗
i ⊗ ei ∈

L (X,F ) and first observe that ‖T − S‖ < ε. On the other hand, as S vanishes on⋂n
i=1 ker y∗i we have that [kerS]⊥ ⊂ span{y∗i , . . . , y∗n} ⊂ NA(X). This gives that

S ∈ NA(X,F ) by Proposition 2.5.
Let us show the moreover part: if X∗ has the approximation property, then every

compact operator whose domain is X can be approximated by finite rank operators
(see [25, Theorem 1.e.5] for instance) and the result now follows from the first part
of the proof. �

As a consequence of this result, we may recover some results stated in [21] and
[30, Section 3] on norm attaining compact operators. The main tool provided in
[21] to get solutions to Problem 3.2 is the following easy observation.
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Corollary 3.5 ([21, Lemma 3.1]). Let X be a Banach space such that for all
x∗1, . . . , x

∗
n ∈ BX∗ and every ε > 0, there is a norm-one projection P ∈ L (X,X) of

finite rank such that maxi ‖x∗i −P ∗(x∗i )‖ < ε. Then, every compact operator whose
domain is X can be approximated by norm attaining operators of finite rank.

This result can also easily be deduced from Theorem 3.3 as the hypotheses
imply that X∗ has the approximation property and that the subspace P ∗(X∗) is
contained in NA(X) (indeed, [P ∗(x∗)](BX) = x∗(P (BX)) is compact as P is a
finite rank projection, and P (BX) = BP (X) since ‖P‖ = 1).

This result applies to X = C0(L) for every locally compact Hausdorff space
L [21, Proposition 3.2] and also to L1(µ) for every finite positive measure µ (see
[11, Lemma 3.12] for a detailed proof). For C0(L), we do not know whether it is
actually true that NA(C0(L)) contains a dense linear subspace. In the case of L1(µ)
for a localizable measure µ (see e.g. [14, Def. 211G] for the definition), the subspace
of L1(µ)∗ = L∞(µ) of those functions in L∞(µ) taking finitely many values, i.e.,
the subspace of step functions, is clearly contained in NA(L1(µ)) and it is dense
in L∞(µ). Of course, the hypothesis of being localizable may be dropped, as every
L1(µ) space is isometrically isomorphic to an L1(ν)-space where ν is localizable
(this follows, for instance, by Maharam’s theorem). Let us comment that the fact
that norm attaining compact operators from an L1(µ) space are dense in the space
of compact operators was proved in [12, p. 6].

Let us state these two results.

Corollary 3.6 ([21, Proposition 3.2]). Let L be a locally compact Hausdorff topo-
logical space. Then, X = C0(L) satisfies the hypotheses of Theorem 3.3. Therefore,
every compact linear operator whose domain is C0(L) can be approximated by finite
rank norm attaining operators.

Corollary 3.7 (extension of [12, p. 6]). Let µ be a positive measure. Then, there
is a dense linear subspace of L1(µ)∗ which is contained in NA(L1(µ)). As a conse-
quence, every compact linear operator whose domain is L1(µ) can be approximated
by finite rank norm attaining operators.

Another known case in which Corollary 3.5 applies is the case of isometric pre-
duals of `1 [30, Corollary 3.8]. Here, we are also able to get dense lineability of the
set of norm attaining functionals.

Corollary 3.8 (extension of [30, Corollary 3.8]). Let X be an isometric predual
of `1. Then, there is a norm dense linear subspace of X∗ contained in NA(X).
Therefore, for every Banach space Y , every compact operator T ∈ L (X,Y ) can be
approximated by finite rank norm attaining operators.

Proof. We just have to justify the existence of a dense linear subspace of X∗ con-
tained in NA(X), the rest of the results follows from Corollary 3.4. Indeed, it is
shown in the proof of [30, Corollary 3.8] (based on results by Gasparis from 2002)
that there is a sequence of finite rank norm-one projections Qn ∈ L (X,X) such
that the sequence {Q∗n}n∈N has increasing ranges and converges pointwise to the
identity of X∗. Then,

⋃
n∈NQ

∗
n(X∗) is a subspace contained in NA(X) since each

Qn is a norm-one projection of finite rank; this subspace is dense by the pointwise
convergence of {Q∗n} to the identity. �

Another easy case in which Corollary 3.5 applies is when a Banach space X has
a shrinking monotone Schauder basis [30, Corollary 3.10] but, actually, the result
follows from Corollary 3.4 as NA(X) contains a dense linear subspace in this case
[4, Theorem 3.1].
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Corollary 3.9 ([30, Corollary 3.10] and [4, Theorem 3.1]). Let X be a Banach
space. If X has a shrinking monotone Schauder basis, then NA(X) contains a
dense linear subspace. Therefore, every compact operator whose domain is X can
be approximated by norm attaining finite rank operators.

This applies, in particular, to closed subspaces of c0 with a monotone Schauder
basis, as shown in [29, Corollary 12] using a result of G. Godefroy and P. Saphar
from 1988.

Example 3.10 ([29, Corollary 12]). Let X be a closed subspace of c0 with a mono-
tone Schauder basis. Then, NA(X) contains a dense linear subspace. Therefore,
every compact operator whose domain is X can be approximated by norm attaining
finite rank operators.

Next we get the following result as an obvious consequence of Corollary 3.4 (and
the Bishop-Phelps theorem).

Corollary 3.11. Let X be a Banach space. If NA(X) is a linear subspace of X∗,
then finite rank operators with domain X can be approximated by finite rank norm
attaining operators.

If, moreover, X∗ has the approximation property, then actually compact opera-
tors with domain X can be approximated by finite rank norm attaining operators.

Of course, the result above applies to c0, but also whenX is a finite-codimensional
proximinal subspace of c0, as shown in [15, Remark b on p. 180]. Besides, the non-
commutative case also holds: NA(K (`2)) is also a linear space (see [16, Lemma]),
so Corollary 3.11 applies to it. Moreover, this linearity property of the set of norm
attaining operators passes down to every finite-codimensional proximinal subspace
of K (`2), see [15, Section 3]. Finally, if X is a c0-sum of reflexive spaces, then
clearly NA(X) is a linear subspace of X∗. Let us state all the examples we have
presented so far.

Examples 3.12. The following spaces satisfy that their sets of norm attaining
functionals are vector spaces:

(a) c0 and its finite-codimensional proximinal subspaces;
(b) K (`2) and its finite-codimensional proximinal subspaces;
(c) c0-sums of reflexive spaces.

Therefore, a finite rank operator whose domain is any of the spaces above can be
approximated by norm attaining finite rank operators.

In the simplest case of closed subspaces of c0, we do not know whether the
hypothesis of finite codimension or the hypothesis of proximinality can be dropped
in (a) above. What is easy to show is that there is a closed hyperplane of c0 whose
set of norm attaining functionals is not a vector space (see [15, Remark b on p. 180]
again).

Problem 3.13. Let X be a closed subspace of c0. Is it true that every finite rank
operator whose domain is X can be approximated by norm attaining (finite rank)
operators?

Let us note that there are compact operators whose domains are closed subspaces
of c0 which cannot be approximated by norm attaining operators [29, Proposition 3].

Corollary 3.5 depends heavily on the fact that the norm of the projections is 1
and fails if one considers renormings. By contrast, Theorem 3.3 and its conse-
quence Corollary 3.4 only depend on the set of norm attaining functionals itself, so
both remain valid for renormings which conserve this set. In [10, Theorem 9.(4)],
it is shown that every separable Banach space X admits a smooth renorming X̃
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such that NA(X) = NA(X̃), and this result has recently been extended to weakly
compactly generated spaces (WCG spaces) [18, Proposition 2.3]. Therefore, if The-
orem 3.3 applies for a WCG space X, then so it does for the corresponding X̃. In
particular, we get the following examples.

Examples 3.14. Let X be a WCG Banach space which is equal to C0(L), is
equal to L1(µ), satisfies that X∗ = `1, or is a finite-codimensional proximinal
subspace of c0 or of K (`2). (In the latter cases, X is of course separable.) Let
X̃ be the equivalent smooth renorming of X given in [18, Proposition 2.3] such
that NA(X̃) = NA(X). Then, every compact operator whose domain is X̃ can be
approximated by norm attaining (for the norm of X̃) finite rank operators.

We do not even know whether the particular case of c̃0 can be deduced from
previously known results.

Although it is not directly related to finite rank operators, we would like to
finish the section by providing a condition which extends the known result by
Lindenstrauss [24, Theorem 1] that reflexive spaces have property (A), that is, an
operator whose domain is a reflexive space can be approximated by norm attaining
operators (this fact is actually used in the proof below).

Proposition 3.15. Let X,Y be Banach spaces. Then, every operator T ∈ L (X,Y )
for which [kerT ]⊥ ⊂ NA(X) can be approximated by norm attaining operators
(whose kernels contain kerT ).

Proof. We follow the lines of the proof of Proposition 2.5. As [kerT ]⊥ ⊂ NA(X),
it is immediate from James’s theorem that X/kerT is reflexive (see the proof of
[5, Lemma 2.2]). Now, T factors through X/kerT , that is, there is an operator T̃ :

X/kerT −→ Y such that T = T̃ ◦q, and it is clear that ‖T̃‖ = ‖T‖. By the result of
J. Lindenstrauss just mentioned, [24, Theorem 1], there is a sequence

{
S̃n
}
n∈N of

norm attaining operators from X/kerT into Y which converges in norm to T̃ . On
the one hand, the same argument as the one given in Proposition 2.5 allows us to
see that for every n ∈ N, the operator Sn := S̃n ◦ q: X −→ Y attains its norm. On
the other hand, it is clear that ‖Sn − T‖ 6 ‖S̃n − T̃‖ −→ 0, so {Sn}n∈N converges
to T . �

4. Norm attaining operators onto a two-dimensional Hilbert space

Our aim in this section is to study the special case when the range space is a (two-
dimensional) Hilbert space, where some specific tools can be used, for instance, we
may rotate every point of the unit sphere to any other one. As shown in Remark 2.2,
this study is actually equivalent to the study of the existence of norm attaining
operators of rank two into all Banach spaces of dimension greater than or equal to
two.

We will eventually provide some characterizations of the fact that an operator
from a Banach space onto a two-dimensional Hilbert space attains its norm and
also a characterization of when norm attaining operators onto a two-dimensional
Hilbert space are dense.

Let us observe that the existence of a norm attaining operator T of rank at least 2
from a Banach space X to a Hilbert space H gives the existence of a surjective norm
attaining operator from X onto `22 (just composing T with a convenient orthogonal
projection).

Let T : X −→ `22 be an operator of rank two. One can identify T with a pair
of linearly independent functionals (f, g) ∈ X∗ × X∗. Throughout this section,
we will make this identification without further reference. Note that, obviously,
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‖(σf, σ′g)‖ 6 ‖(f, g)‖ if |σ|, |σ′| 6 1 so, in particular,

‖(±f,±g)‖ = ‖(f, g)‖ and max{‖f‖, ‖g‖} 6 ‖(f, g)‖.
We will also use these facts frequently in this section without recalling them.

Our first goal in this section is to characterize when ‖(f, g)‖ 6 1 in terms of
the functionals f and g, especially in the case when ‖f‖ = 1 and f , g are linearly
independent. We next will use this idea to produce pairs of functionals of this form.

The desired characterization of when ‖(f, g)‖ 6 1 is the following.

Proposition 4.1. Let X be a Banach space, and let f ∈ SX∗ and g ∈ BX∗ be
linearly independent. Then, ‖(f, g)‖ 6 1 if and only if

(4.1) ‖f + tg‖ 6
√

1 + t2 for all t ∈ R.

We need the following easy lemma.

Lemma 4.2. Let X be a Banach space. Fix z0 ∈ X and linearly independent
f, g ∈ X∗, and consider M = ker f ∩ ker g. Then,

dist(z0,M) = sup
(t,s)∈R2\{(0,0)}

|tf(z0) + sg(z0)|
‖tf + sg‖

.

Proof. If we consider z0 = JX(z0) as an element of X∗∗, we have that

dist(z0,M) = dist(JX(z0), JX(M)) = ‖JX(z0)|M⊥‖,
where JX(z0)|M⊥ denotes the restriction of JX(z0) to the subspaceM⊥ of X∗. But
M⊥ is the subspace of X∗ generated by f and g, hence

dist(z0,M) = sup
x∗∈M⊥\{0}

|x∗(z0)|
‖x∗‖

= sup
(t,s)∈R2\{(0,0)}

|tf(z0) + sg(z0)|
‖tf + sg‖

,

and we are done. �

We can now give the pending proof.

Proof of Proposition 4.1. As f and g are linearly independent, there are x0, x1 ∈ X
such that f(x0) = 1, g(x0) = 0 and g(x1) = 1, f(x1) = 0. We then have that
X = M ⊕ span{x0, x1} with M = ker f ∩ ker g. Now, for T := (f, g), ‖T‖ 6 1 if,
and only if,

‖(λ, µ)‖2 = ‖T (m+ λx0 + µx1)‖2 6 ‖m+ λx0 + µx1‖ for all λ, µ ∈ R, m ∈M.

The above is equivalent to

(4.2)
√
λ2 + µ2 6 dist(λx0 + µx1,M) for all λ, µ ∈ R.

If we define |(λ, µ)| = dist(λx0 + µx1,M) for all λ, µ ∈ R, we get a norm on R2.
Now, using Lemma 4.2, we see that

|(λ, µ)| = sup
(t,s)∈R2\{(0,0)}

|λt+ µs|
‖tf + sg‖

.

We deduce that the dual norm of the above norm is given by |(λ, µ)|∗ = ‖λf +µg‖
for all λ, µ ∈ R, since by definition | . | is the dual norm of | . |∗. Taking dual norms
in the inequality (4.2), we get that this inequality is equivalent to

‖λf + µg‖ 6
√
λ2 + µ2 for all λ, µ ∈ R.

The last inequality can be rephrased by saying that ‖g‖ 6 1 and

‖f + tg‖ 6
√

1 + t2 for all t ∈ R. �

Remark 4.3. We observe that (4.1) implies that g(x0) = 0 whenever f(x0) = 1 =
‖x0‖ = ‖f‖.
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To facilitate the notation, we introduce the following vocabulary.

Definition 4.4. Given f ∈ SX∗ , we call an element g ∈ BX∗ \ {0} such that (f, g)
has rank two and ‖(f, g)‖ = 1, a mate of f . This is equivalent to requiring that
‖f + tg‖ 6

√
1 + t2 for all t ∈ R, by Proposition 4.1.

Observe that if g ∈ BX∗ \ {0} is a mate of f ∈ SX∗ , one has that

lim
t→0

‖f + tg‖ − 1

t
= 0 and lim sup

t→0

‖f + tg‖ − 1

t2
6

1

2
<∞.

The last condition suggests another formulation of the existence of mates, which
will be shown next.

Proposition 4.5. Let X be a Banach space and f ∈ SX∗ . Then f has a mate if
and only if there exist h ∈ BX∗ \ {0} and K, ε > 0 such that

‖f + th‖ 6 1 +Kt2 for all t ∈ (−ε, ε),

equivalently,

lim sup
t→0

‖f + th‖ − 1

t2
<∞.

In fact, given f ∈ SX∗ and h ∈ BX∗ \ {0} such that lim sup
t→0

‖f+th‖−1
t2 < ∞, there

exists 0 < s 6 1 such that sh is a mate of f .

Proof. The proof of the necessity of the limsup condition is given in the previous
comment. For the sufficiency, assume that h ∈ BX∗ \ {0}, K, ε > 0 are such that
‖f + th‖ 6 1 + Kt2 for all t ∈ (−ε, ε). (Note that this implies that f and h are
linearly independent.) It is enough to show that there exists 0 < s 6 1 such that
‖f + tsh‖ 6

√
1 + t2 for all t ∈ R. If not, there is a sequence {tn} in R such that

(4.3)
∥∥∥f +

tn
n
h
∥∥∥ >√1 + t2n for all n ∈ N.

Now,

1 +
|tn|
n
‖h‖ >

∥∥∥f +
tn
n
h
∥∥∥ >√1 + t2n

for all n ∈ N, and we deduce that

|tn|
n

<
2‖h‖

n2 − ‖h‖2
6

2

n2 − 1

for n > 1. Then, tn/n −→ 0. From (4.3) we get that

‖f + tn
n h‖

2 − 1

t2n/n
2

> n2

and so

lim sup
t→0

‖f + th‖2 − 1

t2
= +∞.

But ‖f + th‖2 − 1 = (‖f + th‖+ 1)(‖f + th‖− 1) and limt→0 ‖f + th‖+ 1 = 2, and
so

lim sup
t→0

‖f + th‖ − 1

t2
= +∞.

This completes the proof. �

Now, we can formulate a first positive result about the existence of mates.

Lemma 4.6. Let X be a Banach space. If f ∈ SX∗ is not an extreme point of
BX∗ , then f has a mate.
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Proof. Suppose f = 1
2 (f1 + f2), with fj ∈ BX∗ and g := 1

2 (f1 − f2) 6= 0. Clearly,
‖g‖ 6 1, and f and g are linearly independent. We shall show that g is a mate of
f using Proposition 4.1. For t ∈ R we have

‖f + tg‖ =
∥∥∥1

2
f1 +

1

2
f2 +

t

2
f2 −

t

2
f1

∥∥∥ =
∥∥∥1− t

2
f1 +

1 + t

2
f2

∥∥∥.
The latter norm is 6 1 for |t| 6 1 and is 6 |t|−1

2 + 1+|t|
2 = |t| if |t| > 1. In either

case we have ‖f + tg‖ 6
√

1 + t2. �

As an immediate consequence, if X∗ is not strictly convex, then there is f ∈ SX∗
with a mate (this is a not very surprising result, see Proposition 4.9). If actually
X is not smooth, then we get a more interesting result.

Corollary 4.7. Let X be non-smooth Banach space. Then, there is f ∈ NA1(X)
with a mate.

Proof. Suppose x ∈ SX is such that there are distinct f1, f2 ∈ SX∗ with f1(x) =
f2(x) = 1. Then f := 1

2 (f1 + f2) has norm 1 and attains its norm at x, but is not
an extreme point of the dual unit ball and Lemma 4.6 applies. �

We may also provide a characterization of mates in terms of extreme points of
the space of operators.

Proposition 4.8. Let X be a Banach space and f ∈ SX∗ . There is a mate
g ∈ BX∗ \ {0} for f if, and only if, the operator (f, 0) is not an extreme point
of BL (X,`22).

Proof. Suppose g 6= 0 and ‖(f, g)‖ 6 1. Then also ‖(f,−g)‖ 6 1, and so (f, 0) =
1
2

(
(f, g) + (f,−g)

)
is not an extreme point of the unit ball of L (X, `22).

Conversely, if (f, 0) is not an extreme point of the unit ball of L (X, `22), then
there is a nontrivial convex combination in the unit ball of L (X, `22) representing
(f, 0), say (f, 0) = 1

2

(
(f1, g1)+(f2, g2)

)
where (f, 0) 6= (f1, g1). If f1 = f2 = f , then

necessarily g1 6= 0 and hence ‖(f, g1)‖ 6 1 and f and g1 are linearly independent;
if not, then f is not an extreme point of the unit ball, and hence has a mate by
Lemma 4.6. �

We can also ask if there exists some Banach space X of dimension at least
two such that there is no mate for any element in SX∗ , equivalently (f, 0) is an
extreme point of BL (X,`22) for every f ∈ SX∗ . From Lemma 4.6 we know that the
dual of such an example cannot be strictly convex. Indeed, there is no such space
whatsoever.

Proposition 4.9. Let X be a Banach space with dim(X) > 2. Then, there exists
f ∈ SX∗ with a mate. Actually, given linearly independent f ′, g′ ∈ X∗ such that
‖(f ′, g′)‖ = 1, there is a rotation π on `22 such that (f ′, g′) = π ◦ (f, g), f ∈ SX∗
and g is a mate for f .

Proof. Consider the rank two operator T = (f ′, g′) ∈ L (2)(X, `22) with ‖T‖ = 1.
Then, T ∗ ∈ NA(`22, X

∗) and so T ∗∗ ∈ NA(X∗∗, `22), so there is x∗∗0 ∈ SX∗∗ such that
‖T ∗∗(x∗∗0 )‖ = ‖x∗∗0 ‖ = 1. Now, we compose T with a rotation π′ on `22 to get a new
operator S = π′T with ‖S‖ = ‖S∗∗(x∗∗0 )‖ = 1 and S∗∗(x∗∗0 ) = (1, 0). Of course, S
still has rank two and is represented by

(f, g) =
(
cos(ϕ) · f ′ + sin(ϕ) · g′, − sin(ϕ) · f ′ + cos(ϕ) · g′

)
for suitable ϕ ∈ (−π, π]. Then, we have that f ∈ BX∗ , g ∈ BX∗ \ {0} satisfy
that x∗∗0 (f) = 1 and x∗∗0 (g) = 0. Therefore ‖f‖ = 1, (f, g) has rank two, and
‖(f, g)‖ = 1. That is, g is a mate for f . �



20 V. KADETS, G. LÓPEZ, M. MARTÍN, AND D. WERNER

We now use all the previous ideas to study norm attaining operators. First, the
next result explains the link between norm attaining operators and the existence
of mates. It says that, up to rotation and rescaling, norm attaining operators onto
`22 are pairs of the form (f, g) where f ∈ NA1(X) and g is a mate of f .

Theorem 4.10. Let X be a Banach space and let T ∈ L (2)(X, `22) with ‖T‖ = 1.
Then, the following assertions are equivalent:

(i) T ∈ NA(2)(X, `22).
(ii) There are f, g ∈ X∗ \ {0}, x0 ∈ SX and a rotation π on `22 such that

f ∈ NA1(X) with f(x0) = 1, g(x0) = 0, ‖(f, g)‖ 6 1, and T = π ◦ (f, g).
(iii) There are f ∈ NA1(X) with a mate g ∈ BX∗ \ {0} and a rotation on `22

such that T = π ◦ (f, g).

Proof. (i) ⇒ (ii). Suppose T = (f ′, g′) ∈ NA(2)(X, `22), say ‖T‖ = ‖T (x0)‖ = 1 for
some x0 ∈ SX . Using a rotation as in the proof of Proposition 4.9, we get a new
operator S = πT with ‖S‖ = ‖S(x0)‖ = 1 and S(x0) = (1, 0). Now, S = (f, g)
satisfies f(x0) = 1, g(x0) = 0. Hence ‖f‖ = 1 and f ∈ NA1(X), but g 6= 0 since S
has rank two as well, that is, g is a mate for f . The converse implication (ii) ⇒ (i)
is clear as S = (f, g) attains its norm at x0 and so does T = πS.

Finally, (ii) ⇒ (iii) is immediate and (iii) ⇒ (ii) follows from Remark 4.3. �

The following corollary summarizes the results of this section so far.

Corollary 4.11. Let X be a Banach space with dim(X) > 2. Then the following
assertions are equivalent:

(i) NA(2)(X, `22) 6= ∅.
(ii) There is f ∈ NA1(X) with a mate.
(iii) There are f ∈ NA1(X) and g ∈ BX∗ \ {0} such that ‖f + tg‖ 6

√
1 + t2

for all t ∈ R.
(iv) There are f ∈ NA1(X), g ∈ BX∗ \{0}, and ε > 0 such that ‖f+tg‖ 6 1+ t2

2
for all t ∈ (−ε, ε).

(v) There are f ∈ NA1(X), h ∈ BX∗ \ {0}, and ε,K > 0 such that ‖f + th‖ 6
1 +Kt2 for all t ∈ (−ε, ε).

(vi) There are f ∈ NA1(X) and h ∈ BX∗ \{0} such that lim sup
t→0

‖f + th‖ − 1

t2
<

∞.
(vii) There is f ∈ NA1(X) such that (f, 0) is not an extreme point in the unit

ball of L (X, `22).
The above conditions hold automatically if X is non-smooth.

Proof. The equivalence between (i) and (ii) follows from Theorem 4.10. The impli-
cation (ii) ⇒ (iii) is Proposition 4.1 and the implications (iii) ⇒ (iv) ⇒ (v) ⇒ (vi)
are trivial. The implication (vi) ⇒ (ii) is Proposition 4.5. Finally, the equivalence
between (ii) and (vii) is Proposition 4.8.

The validity of the conditions in the non-smooth case is remarked in Proposi-
tion 4.7. �

We note from Corollary 4.11.vii that NA(2)(X, `22) = ∅ if, and only if, (f, 0) is
an extreme point of BL (X,`22) for every f ∈ NA1(X), which implies that every
f ∈ NA1(X) is an extreme point of BX∗ . Again, we see that if X is not smooth
there are norm attaining operators from X onto `22.

The proof of Proposition 4.9 implies the following positive result. We already
know the result from Proposition 2.5 (or even from Theorem 2.9 which shows that
it is valid even with a weaker hypothesis), but we include this alternative proof here
for completeness.
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Corollary 4.12. Suppose X is a Banach space for which NA(X) contains a two-
dimensional subspace. Then, NA(2)(X, `22) 6= ∅.

Proof. Suppose f ′ and g′ are linearly independent so that span{f ′, g′} ⊂ NA(X)
and ‖(f ′, g′)‖ = 1. It was shown in the proof of Proposition 4.9 how to obtain
some f ∈ SX∗ with a mate by performing a rotation; note that this f is a linear
combination of f ′ and g′ and thus, it is norm attaining by the assumption. Hence,
NA(2)(X, `22) 6= ∅ by Theorem 4.10. �

Our final goal in the section is to discuss the density of norm attaining operators
whose range is a two-dimensional Hilbert space in terms of mates.

Proposition 4.13. Let X be a Banach space. Then the following are equivalent:
(i) NA(X, `22) is dense in L (X, `22).
(ii) For every f ∈ SX∗ and g ∈ BX∗ \ {0} such that ‖(f, g)‖ = 1 there are

sequences {fn} in NA1(X) and {gn} in BX∗ \ {0} and a rotation π on
`22 such that ‖fn + tgn‖ 6

√
1 + t2 for all t ∈ R and all n ∈ N, and

limn(fn, gn) = π ◦ (f, g).

Proof. (i) ⇒ (ii): Let f and g be as in (ii), and consider the rank-two operator
T = (f, g) with ‖T‖ = 1. By (i), there is a sequence of norm attaining operators
T ′n = (f ′n, g

′
n) converging to T . The T ′n are also of rank two, at least eventually;

and we may assume that ‖T ′n‖ = 1 for all n ∈ N as well. Pick xn ∈ SX such that
‖T ′n(xn)‖ = 1; i.e.,

f ′n(xn)2 + g′n(xn)2 = 1.

Let us consider a rotation πϕn
by some angle ϕn ∈ [−π, π] mapping T ′n(xn) =

(f ′n(xn), g′n(xn)) to (1, 0). By passing to a subsequence, we may suppose that {ϕn}
converges to some ϕ, and then writing Tn = (fn, gn) := πϕ ◦ (f ′n, g

′
n) for every

n ∈ N, we have that the sequence {Tn} converges to πϕ ◦ (f, g). Note that Tn
belongs to NA(X, `22) for every n ∈ N since every T ′n does and, therefore, we have
the desired inequality by Proposition 4.1 and Theorem 4.10.

(ii)⇒ (i): By the Bishop-Phelps theorem, one can approximate rank 1 operators
by norm attaining ones; and by the rotation argument in the proof of Proposi-
tion 4.9, it is enough to show that operators T = (f, g) in SL (X,`22) with f ∈ SX∗
and g ∈ BX∗ \ {0} can be approximated. From (ii), there are sequences {fn} in
NA1(X) and {gn} in BX∗ \ {0} such that ‖fn + tgn‖ 6

√
1 + t2 for all t ∈ R and

limn(fn, gn) = π ◦ T , for some rotation π. By Theorem 4.10, Tn = (fn, gn) is norm
attaining, hence also π−1 ◦ Tn ∈ NA(X, `22) and π−1 ◦ Tn −→ T . �

We remark that there are sufficient conditions on a Banach space X expounded
in Section 3 to assure that each finite rank operator from X can be approximated by
norm attaining finite rank operators; in particular, this is true for X a C0(L) space,
an L1(µ) space, a predual of `1, or a proximinal subspace of c0 or of K (`2) of finite
codimension. Therefore, for these domain spaces X, item (ii) of Proposition 4.13
holds.

5. A question about Lomonosov’s example

When one speaks about norm attaining functionals, there is no big difference
between the real and the complex case, because a complex functional on a complex
space attains its norm if, and only if, the real part of the functional does and,
besides, a complex functional on a complex Banach space is completely determined
by its real part. Therefore, if X is a complex space, then the set of complex-linear
functionals on X which attain their maximum modulus coincides with the set of
those complex-linear functionals on X whose real parts attain their maximum, so
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this set is dense by the Bishop-Phelps theorem (compare with the situation which
occurs when we consider real-linear operators from X to C ≡ `22, see Section 4).

But in the same papers [6, 7] that deal with norm attaining functionals, Bishop
and Phelps considered an analogous question about functionals that attain their
maximum on a given set C. It is proved that, for a closed bounded convex subset
C of a real Banach space, the set of maximum attaining functionals is dense in X∗
(in [6] this was just a remark at the end of the paper, saying that the proof may
be done in the same way as for norm attaining functionals, and in [7] the result is
given with all details).

Passing to complex functionals, one cannot speak about the maximal value on
a subset C, but it is natural to ask if supx∈C |f(x)| is actually a maximum. Let
us fix some terminology. For a given subset C 6= ∅ of a complex Banach space X,
a non-zero complex functional f ∈ X∗ is said to be a modulus support functional
for C if there is a point y ∈ C (called the corresponding modulus support point
of C) such that |f(y)| = supx∈C |f(x)|. The natural question [32] whether for
every closed bounded convex subset of a complex Banach space the corresponding
set of support functionals is dense in X∗ remained open until 2000, when Victor
Lomonosov [26, 27] constructed his striking example of a closed bounded convex
subset of the predual space of H∞ which does not admit any modulus support
functionals. A similar construction can be made [28] in the predual A∗ of every
dual algebra A of operators on a Hilbert space which is not self-adjoint (i.e., there
is an operator T ∈ A such that T ∗ 6∈ A), contains the identity operator and such
that the spectral radius of every operator in A coincides with its norm.

By a weak compactness argument, examples of such kind cannot live in a reflexive
space. Moreover, they do not exist in spaces with the Radon-Nikodým property by
Bourgain’s result [9], see the argument at the end of page 340 of [32]. Therefore,
in most classical spaces like Lp[0, 1] with 1 < p < ∞ or `p with 1 6 p < ∞ the
complex version of the Bishop-Phelps theorem for subsets is valid. The spaces
`∞, L∞[0, 1] and C[0, 1] have subspaces isometric to any given separable space,
which makes it possible to transfer Lomonosov’s example to these spaces. For the
remaining two classical spaces, c0 and L1[0, 1], the validity of the complex version
of the Bishop-Phelps theorem for subsets is an open question.

In the case of the complex space c0, we have an easy way to define a concrete
closed, bounded and convex subset S for which we don’t know whether its set of
modulus support functionals is dense, and not even whether it is non-empty. The
first author discussed this example with several colleagues, in particular with Victor
Lomonosov, but to no avail. So we decided to use this occasion to appeal to a wider
circle of people interested in the subject by publishing the example here.

Let D = {z ∈ C: |z| < 1} be the open unit disk en ∈ c0 be the elements of the
canonical basis, and e∗n ∈ `1 be the corresponding coordinate functionals. For every
z ∈ D, consider ϕz =

∑∞
n=1 z

nen ∈ c0. The set S ⊂ c0 in question is

(5.1) S = conv{ϕz: z ∈ D}.

Remark that, identifying each element a = (a1, a2, . . .) ∈ `1 with the function
fa on the unit disk by the rule fa(ζ) =

∑∞
n=1 anζ

n for all ζ ∈ D, we identify
c∗0 = `1 with the corresponding algebra ˜̀

1 of analytic functions vanishing at zero
and having an absolutely convergent series of Taylor coefficients, equipped with the
norm ‖fa‖ = ‖a‖1 =

∑∞
n=1 |an|. Taking into account that, in the duality of c0

and `1,

a(ϕz) =

∞∑
n=1

anz
n = fa(z),
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we may identify each element ϕz with the evaluation functional δz at the point z
on ˜̀

1. Having a look at the papers [26, 27], one can see that our S is basically
the same as in Lomonosov’s example, with the difference that the algebra H∞ is
substituted by ˜̀

1. For every a ∈ `1, one has that

sup
x∈S
|a(x)| = sup

z∈D
|fa(z)|,

which is the spectral radius of the element fa ∈ ˜̀
1. Lomonosov uses in his example

that in H∞ the spectral radius of every element is equal to its norm. In ˜̀
1 this is

not the case, which does not permit us to use Lomonosov’s argument in our case.
Nevertheless, many features survive, which makes the existence of modulus support
functionals very questionable.

At first we remark that by the maximummodulus principle for analytic functions,
supz∈D |fa(z)| cannot be attained, so none of the points ϕz is a modulus support
point. Digging deeper, assume that y = (y1, y2, . . .) ∈ S is a modulus support point
that corresponds to the modulus support functional b = (b1, b2, . . .) ∈ `1 \ {0}, that
is

|b(y)| = sup
x∈S
|b(x)| = sup

z∈D
|fb(z)|.

Pick elements wn ∈ conv{ϕz: z ∈ D} that converge to y, wn =
∑
k∈N wn,kϕzk ,

zk ∈ D, where wn,k > 0,
∑
k∈N wn,k = 1, and for every n ∈ N there is an m(n) such

that wn,k = 0 for all k > m(n).
Consider the corresponding probability measures µn =

∑
k∈N wn,kδzk ∈ C(D̄)∗.

By the separability of C(D̄), passing to a subsequence, we may assume without loss
of generality that the sequence {µn} converges in the weak-∗ topology of C(D̄)∗ to
a Borel probability measure µ on D̄. This µ is related to y as follows: for every
j ∈ N, one has that∫

D̄
zj dµ(z) = lim

n→∞

∫
D̄
zj dµn(z) = lim

n→∞
e∗j (wn) = e∗j (y) = yj ,

so ∫
D̄
zjdµ(z) −−−→

j→∞
0.

By a similar argument,∫
D̄
fb(z) dµ(z) = lim

n→∞

∫
D̄
fb(z) dµn(z) = lim

n→∞
b(wn) = b(y),

and consequently ∣∣∣∣∫
D̄
fb(z) dµ(z)

∣∣∣∣ = |b(y)| = sup
z∈D̄
|fb(z)|.

Denoting r = supz∈D̄ |fb(z)|, we deduce from the above property that

suppµ ⊂ {v ∈ D̄: |fb(v)| = r} ⊂ D̄ \ D

and, moreover, the function fb must take a constant value α on suppµ with |α| = r.
These conditions on µ and b are very restrictive, and we don’t know whether such
a wild pair of animals exists.

We finish the section by emphasizing the question we have been discussing here.

Problem 5.1. Let S be the subset of the complex space c0 given in (5.1). Are the
modulus support functionals for S dense in c∗0?
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