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Abstract. Requirements under which the Daugavet equation and the
alternative Daugavet equation hold for pairs of nonlinear maps between
Banach spaces are analysed. A geometric description is given in terms
of nonlinear slices. Some local versions of these properties are also intro-
duced and studied, as well as tests for checking if the required conditions
are satisfied in relevant cases.

1. Introduction

I.K. Daugavet [7] proved his eponymous equation in 1963 which estab-
lishes the norm identity

‖Id + T‖ = 1 + ‖T‖

for a compact linear operator T : C[0, 1] → C[0, 1]. This equation was
extended to more general classes of linear operators on various spaces over
the years. Nowadays investigations on this topic build on the approach of
V. Kadets et al. [10] who defined a Banach space X to have the Daugavet
property if all rank-1 operators on X satisfy the Daugavet equation. This
property can conveniently be characterised in terms of slices of the unit
ball, and it can be shown that on a space with the Daugavet property all
weakly compact operators and all operators not fixing a copy of `1 satisfy
the Daugavet equation; see [1], [10], [11] or [15].

The Daugavet equation has been extended in a number of other ways as
well, replacing the identity operator by a more general reference operator
called a Daugavet centre ([3], [4]) or replacing the linear operators T by
nonlinear ones ([6], [13], [8]). Here we attempt to combine both these ideas.
We study the equation

‖Φ + Ψ‖ = ‖Φ‖+ ‖Ψ‖

where Φ and Ψ are bounded maps on the unit ball of some Banach space
X having values in some (possibly different) Banach space Y and Ψ is in
some sense small with respect to Φ, the norm being the sup norm. Also, the
so-called alternative Daugavet equation

max
|ω|=1

‖Φ + ωΨ‖ = ‖Φ‖+ ‖Ψ‖
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will be considered. We are going to investigate these equations by means of
suitable modifications of the notion of slice continuity introduced in [14]; cf.
Definition 3.1 below. We also rely on some techniques from [6] and [13].

The paper is organised as follows. After the preliminary Section 2, we
study the Φ-Daugavet equation in the third section, giving complete char-
acterisations using the notion of strong slice continuity introduced below.
Likewise, we introduce weak slice continuity in order to deal with the al-
ternative Daugavet equation in Section 4. Finally, Section 5 is devoted to
some technical local versions of these Daugavet type properties which are
obtained by considering suitable subsets of the ones appearing in the defini-
tions studied before. Some tests that guarantee that the requirements in our
main theorems are satisfied are also presented. In particular, examples show
their usefulness, especially for the cases of C(K)-spaces and L1(µ)-spaces.

Let us introduce some fundamental definitions and notation. We will
write T for the set of scalars of modulus 1; the field of scalars can be K = R
or K = C. We write Reω for the real part, Imω for the imaginary part and
ω for the complex conjugate of ω. For a Banach space X, BX is its closed
unit ball, UX its open unit ball and SX its unit sphere, and we will denote
by X∗ its dual space. If L is a Banach lattice, we use the symbol L+ to
denote the positive cone, and BL+ for the set BL∩L+. L(X,Y ) denotes the
space of continuous linear operators from X to Y .

For a bounded mapping Φ : BX → Y , we define its norm to be the sup
norm, i.e.,

‖Φ‖ := sup
x∈BX

‖Φ(x)‖;

the space of all such mappings is denoted by `∞(BX , Y ). In the scalar case
an element of `∞(BX) is typically denoted by x′. The symbol x′ ⊗ y stands
for the mapping x 7→ x′(x)y.

Our main characterizations are given in terms of slices. A slice S(x∗, ε)
of BX defined by a norm one element x∗ ∈ X∗ and an ε > 0 is defined by

S(x∗, ε) = {x ∈ BX : Rex∗(x) ≥ 1− ε}.

When a nonlinear scalar-valued function is considered, the same definition
makes sense; if p : X → K is a function with norm ≤ 1, we write

S(p, ε) = {x ∈ BX : Re p(x) ≥ 1− ε}.

Note that in this case it may happen that S(p, ε) = ∅.

2. Preliminaries

In this section, we prove fundamental characterisations of the Daugavet
and the alternative Daugavet equation. The theorems in this section are
adapted from results in [6] and [14].

Definition 2.1. Let X,Y be Banach spaces and let Φ ∈ `∞(BX , Y ). We say
that Ψ ∈ `∞(BX , Y ) satisfies the Φ-Daugavet equation if the norm equality

‖Φ + Ψ‖ = ‖Φ‖+ ‖Ψ‖ (Φ-DE)

holds. If Φ is the restriction of the identity to BX , we call the above equation
the Daugavet equation (DE).
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To connect the Daugavet equation to a set V ⊂ `∞(BX , Y ), we establish
the following terminology.

Definition 2.2. Let X,Y be Banach spaces and let Φ ∈ `∞(BX , Y ).

(1) Y has the Φ-Daugavet property with respect to V ⊂ `∞(BX , Y ) if
(Φ-DE) is satisfied by all Ψ ∈ V .

(2) Y has the Φ-Daugavet property if ‖Φ + R‖ = ‖Φ‖ + ‖R‖ for all
R ∈ L(X,Y ) with one-dimensional range.

(3) Y has the Daugavet property if (2) holds for X = Y and Φ = Id.

The following lemma (see e.g. [1, Lemma 11.4] or [15] for a proof) fre-
quently simplifies proofs concerning the Daugavet equation, because we only
need to consider maps of norm 1. We will often make use of the lemma with-
out explicitly mentioning it.

Lemma 2.3. Two vectors u and v in a normed space satisfy ‖u + v‖ =
‖u‖ + ‖v‖ if and only if ‖αu + βv‖ = α‖u‖ + β‖v‖ holds for all α, β ≥ 0.
In particular, Ψ satisfies (Φ-DE) if and only if αΨ satisfies (βΦ-DE) for all
α, β ≥ 0.

To prove the first theorem of this section, we need the following lemma.

Lemma 2.4. Let X be a Banach space and assume x′ ∈ `∞(BX) with
‖x′‖ ≤ 1. Let 0 ≤ ε ≤ 1 and x ∈ BX . Then Rex′(x) ≥ 1 − ε implies
|1− x′(x)| ≤

√
2ε.

Proof. First note that

1 ≥ |x′(x)|2 =
(
Imx′(x)

)2
+
(
Rex′(x)

)2 ≥ (Imx′(x)
)2

+ (1− ε)2.

Hence (
Imx′(x)

)2 ≤ 1− (1− ε)2 = 2ε− ε2.

Since Rex′(x) ≥ 1− ε and |x′(x)| ≤ 1, we know that 0 ≤ 1− Rex′(x) ≤ ε.
Thus

|1− x′(x)|2 = |1− Rex′(x)− i Imx′(x)|2

= (1− Rex′(x))2 + (Imx′(x))2

≤ ε2 + 2ε− ε2

= 2ε,

i.e., |1− x′(x)| ≤
√

2ε. �

Theorem 2.5. Let X,Y be Banach spaces. Let Φ ∈ `∞(BX , Y ) and con-
sider a norm one map x′ ∈ `∞(BX) and y ∈ Y \{0}. Then the following are
equivalent:

(1) ‖Φ + x′ ⊗ y‖ = ‖Φ‖+ ‖y‖.
(2) For every ε > 0 there are x ∈ BX and ω ∈ T such that

Reωx′(x) ≥ 1− ε and

∥∥∥∥ωΦ(x) +
y

‖y‖

∥∥∥∥ ≥ ‖Φ‖+ 1− ε.
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Proof. (1) ⇒ (2): By Lemma 2.3, we can assume y ∈ SY . Hence there is an
element x ∈ BX such that

‖Φ‖+ 1− ε

2
≤ ‖Φ(x) + x′(x)y‖

≤ ‖Φ(x)‖+ |x′(x)|‖y‖
≤ ‖Φ‖+ |x′(x)|.

Thus |x′(x)| ≥ 1− ε
2 . Writing ω = |x′(x)|/x′(x) ∈ T we have

Reωx′(x) = |x′(x)| ≥ 1− ε.
Moreover

‖Φ‖+ 1− ε

2
≤ ‖Φ(x) + x′(x)y‖

= ‖ωΦ(x) + ωx′(x)y‖
≤ ‖ωΦ(x) + y‖+ ‖ωx′(x)y − y‖
= ‖ωΦ(x) + y‖+ |ωx′(x)− 1|‖y‖
= ‖ωΦ(x) + y‖+ | |x′(x)| − 1|

≤ ‖ωΦ(x) + y‖+
ε

2
,

and (2) follows.
(2) ⇒ (1): Again, by Lemma 2.3, it suffices to consider the case ‖y‖ = 1.

Let ε > 0 and take x ∈ BX and ω ∈ T such that

Reωx′(x) ≥ 1− ε and ‖ωΦ(x) + y‖ ≥ ‖Φ‖+ 1− ε.
Thus

‖Φ‖+ 1− ε ≤ ‖ωΦ(x) + y‖
= ‖Φ(x) + ωy‖
≤ ‖Φ(x) + x′(x)y‖+ ‖ωy − x′(x)y‖
= ‖Φ(x) + x′(x)y‖+ ‖y − ωx′(x)y‖
= ‖Φ(x) + x′(x)y‖+ |1− ωx′(x)|
≤ ‖Φ(x) + x′(x)y‖+

√
2ε,

where the latter inequality is due to Lemma 2.4. Since ε was arbitrary, (1)
holds. �

Next we present analogous results in the setting of the alternative Dau-
gavet equation.

Definition 2.6. Let X,Y be Banach spaces and Φ,Ψ ∈ `∞(BX , Y ). We
say that Ψ satisfies the alternative Φ-Daugavet equation if

max
|ω|=1

‖Φ + ωΨ‖ = ‖Φ‖+ ‖Ψ‖ (Φ-ADE)

is true. In the case where Φ is the identity, we refer to the above equation
simply as the alternative Daugavet equation (ADE).

We will also make use of the following definitions regarding a set V ⊂
`∞(BX , Y ).

Definition 2.7. Let X,Y be Banach spaces and let Φ ∈ `∞(BX , Y ).
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(a) Y has the alternative Φ-Daugavet property with respect to V ⊂
`∞(BX , Y ) if (Φ-ADE) is satisfied for all Ψ ∈ V .

(b) Y has the alternative Φ-Daugavet property if max|ω|=1 ‖Φ + ωR‖ =
‖Φ‖+ ‖R‖ for all R ∈ L(X,Y ) with one-dimensional range.

(c) Y has the alternative Daugavet property if it has the alternative
Id-Daugavet property.

Now that the notation is fixed, let us look at how the Daugavet and the
alternative Daugavet equation are interrelated.

Remark 2.8. Let X,Y be Banach spaces and Φ,Ψ ∈ `∞(BX , Y ).

(1) Ψ satisfies (Φ-ADE) if and only if there exists ω ∈ T such that ωΨ
fulfills (Φ-DE).

(2) (Φ-DE) implies (Φ-ADE), but, in general, the converse is not true.
For example, −Id always satisfies (ADE), but never (DE).

(3) Ψ satisfies (Φ-ADE) if and only if αΨ satisfies (βΦ-ADE) for every
α, β ≥ 0. This is a consequence of (1) and Lemma 2.3.

Theorem 2.9. Let X,Y be Banach spaces. Let Φ ∈ `∞(BX , Y ) and con-
sider a norm one map x′ ∈ `∞(BX) and y ∈ Y \{0}. Then the following are
equivalent:

(1) max|ω|=1 ‖Φ + ωx′ ⊗ y‖ = ‖Φ‖+ ‖y‖.
(2) For every ε > 0 there exist ω1, ω2 ∈ T and x ∈ BX such that

Reω1x
′(x) ≥ 1− ε and

∥∥∥∥ω2Φ(x) +
y

‖y‖

∥∥∥∥ ≥ ‖Φ‖+ 1− ε.

(3) For every ε > 0 there exist ω ∈ T and x ∈ BX such that∣∣x′(x)
∣∣ ≥ 1− ε and

∥∥∥∥ωΦ(x) +
y

‖y‖

∥∥∥∥ ≥ ‖Φ‖+ 1− ε.

Proof. (1) ⇒ (2): By Remark 2.8(3), we can assume ‖y‖ = 1. According to
(1), there exists ω ∈ T such that ‖Φ +ωx′⊗ y‖ = ‖Φ‖+ 1. Thus, for a given
ε > 0, Theorem 2.5 yields x ∈ BX and ω2 ∈ T such that

Reω2ωx
′(x) ≥ 1− ε and ‖ω2Φ(x) + y‖ ≥ ‖Φ‖+ 1− ε.

Defining ω1 = ω2ω, (2) follows.
(2) ⇒ (3): If Reω1x

′(x) ≥ 1− ε, then

1− ε ≤ Reω1x
′(x) ≤ |x′(x)|.

(3) ⇒ (1): It suffices to consider the case ‖y‖ = 1. For given ε > 0, take
ω ∈ T and x ∈ BX such that

|x′(x)| ≥ 1− ε and ‖ωΦ(x) + y‖ ≥ ‖Φ‖+ 1− ε.
Denote ω1 = |x′(x)|/x′(x) and ω2 = ωω1. Thus

‖Φ(x) + ω2x
′(x)y‖ = ‖Φ(x) + ωω1x

′(x)y‖
= ‖ωΦ(x) + ω1x

′(x)y‖
≥ ‖ωΦ(x) + y‖ − ‖y − ω1x

′(x)y‖
= ‖ωΦ(x) + y‖ − |1− |x′(x)| |
≥ ‖Φ‖+ 1− 2ε,

and we are done since ε > 0 was arbitrary. �
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3. Strong slice continuity

In [14] the notion of slice continuity was introduced to study when the
Daugavet equation holds for a couple of maps Φ and Ψ between Banach
spaces, i.e., when

‖Φ + Ψ‖ = ‖Φ‖+ ‖Ψ‖.
The functions taken into account were either linear or bilinear bounded

maps. In this section, we will extend some of the results from [14] to the
case of bounded nonlinear functions.

The following definition is from [14].

Definition 3.1. Let X,Y be Banach spaces and Φ ∈ `∞(BX , Y ).

(a) If y∗ ∈ Y ∗ with y∗Φ 6= 0, we define Φy∗ : BX → K by

Φy∗(x) =
1

‖y∗Φ‖
y∗Φ(x).

(b) The natural set of slices defined by Φ is given by

SΦ = {S(Φy∗ , ε) : 0 < ε < 1, y∗ ∈ Y ∗, y∗Φ 6= 0}.
(c) We write SΨ ≤ SΦ if for every S(Ψz∗ , ε) ∈ SΨ there is S(Φy∗ , µ) ∈

SΦ with

S(Φy∗ , µ) ⊂ S(Ψz∗ , ε).

In this instance we say that Ψ is slice continuous with respect to Φ.

Now we are ready to introduce the concept of strong slice continuity for
bounded nonlinear maps.

Definition 3.2. Let X,Y be Banach spaces and Φ,Ψ ∈ `∞(BX , Y ). We
use the symbol SΨ < SΦ if for every slice S(Ψz∗ , ε) ∈ SΨ there is a slice
S(Φy∗ , µ) ∈ SΦ such that

S(ωΦy∗ , µ) ⊂ S(ωΨz∗ , ε) for all ω ∈ T.

In this case we say that Ψ is strongly slice continuous with respect to Φ.

Note that the above and similar definitions carry over to bounded func-
tions from X to Y by considering the respective restrictions to BX .

It is clear that strong slice continuity implies slice continuity. The fol-
lowing remark shows that in the case of multilinear maps, the two concepts
coincide.

Remark 3.3. Let X1, . . . , Xn, Z be Banach spaces and A,B : X1×· · ·×Xn →
Z bounded multilinear maps. Then SA < SB if and only if SA ≤ SB.

Proof. We only need to verify that slice continuity implies strong slice con-
tinuity. To this end, let S(Ax∗ , ε) ∈ SA be given. Since SA ≤ SB, we can
find S(By∗ , µ) ∈ SB with S(By∗ , µ) ⊂ S(Ax∗ , ε). For a given ω ∈ T and
(x1, . . . , xn) ∈ S(ωBy∗ , µ), we have

1− µ ≤ Reω
y∗B(x1, . . . , xn)

‖y∗B‖
= Re

y∗B(ωx1, . . . , xn)

‖y∗B‖
,

i.e., (ωx1, x2, . . . , xn) ∈ S(By∗ , µ). This ensures (ωx1, x2, . . . , xn) ∈ S(Ax∗ , ε),
and the multilinearity of A leads to (x1, x2, . . . , xn) ∈ S(ωAx∗ , ε). �
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The canonical example of when the relation SΨ < SΦ holds is given by
the case where Ψ is the concatenation of a map Φ and a bounded linear
operator.

Example 3.4. Let X,Y be Banach spaces. Consider Φ ∈ `∞(BX , Y ) and
a bounded linear operator P : Y → Y . Denote Ψ = P ◦ Φ. Then SΨ < SΦ.

Proof. Let S(Ψy∗ , ε) be a slice in SΨ. First note that since y∗Ψ 6= 0, we
also have (y∗P )Φ = y∗Ψ 6= 0, and thus S(Φy∗P , ε) ∈ SΦ. Take ω ∈ T and
x ∈ S(ωΦy∗P , ε), i.e.,

Reω
(y∗P )Φ

‖(y∗P )Φ‖
(x) ≥ 1− ε.

By construction,

Reω
y∗Ψ

‖y∗Ψ‖
(x) = Reω

(y∗P )Φ

‖(y∗P )Φ‖
(x) ≥ 1− ε,

and therefore x ∈ S(ωΨy∗ , ε). �

The next example shows that there are bounded maps Φ,Ψ with SΨ <
SΦ, but Ψ 6= P ◦ Φ for any bounded linear operator P .

Example 3.5. Let C[0, 1] denote the Banach space of continuous functions
from [0, 1] to K. Let Φ : C[0, 1] ⊕1 K → C[0, 1], Φ(f, α) = f , and Ψ :
C[0, 1]⊕1 K → C[0, 1], Ψ(f, α) = f + α21, where 1 stands for the constant
one function and ⊕1 denotes the direct sum with the 1-norm. Then Ψ and
Φ have norm one. The kernel of Φ is not contained in the kernel of Ψ, since
Φ(0, 1) = 0, but Ψ(0, 1) 6= 0. Thus we do not have Ψ = P ◦ Φ for any
bounded linear operator P . But the slice condition SΨ < SΦ holds. First
note that for any x∗ ∈ C[0, 1]∗\{0}, we have ‖x∗Φ‖ = ‖x∗Ψ‖ = ‖x∗‖ 6= 0.
Consider some x∗ ∈ C[0, 1]∗ with ‖x∗‖ = 1, and let 0 < ε < 1. We claim
S
(
ωx∗Φ, ε2

)
⊂ S (ωx∗Ψ, ε) for all ω ∈ T. To prove this, assume (f, α) ∈

S
(
ωx∗Φ, ε2

)
, i.e., Reωx∗(f) ≥ 1 − ε

2 . In particular, ‖f‖ ≥ 1 − ε
2 , and

therefore |α| ≤ ε/2. Hence

Reωx∗Ψ(f, α) = Reωx∗(f + α21)

= Reωx∗(f) + Reωx∗(α21)

≥ 1− ε.

Consider now a closed subspace Z of a normed space X. Then q : X →
X/Z, q(x) = x + Z, sends the open unit ball UZ of Z onto the open unit
ball UX/Z of X/Z. This motivates the following definition.

Definition 3.6. Let X,Y be Banach spaces. We call Φ ∈ `∞(BX , Y ) a
quotient map if Φ is continuous and Φ(UX) = UY .

Given Φ ∈ `∞(BX , Y ) we set

Y ∗Φ · Y = {y∗Φ⊗ y : y∗ ∈ Y ∗, y ∈ Y }.

Lemma 3.7. Let X,Y be Banach spaces and assume Φ ∈ `∞(BX , Y ) is a
quotient map. Then the following are equivalent:

(1) Y has the Daugavet property.
(2) Y has the Φ-Daugavet property with respect to Y ∗Φ · Y .
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Proof. This is a consequence of the assumptions that Φ is continuous and
Φ(UX) = UY . �

Proposition 3.8. Let X,Y be Banach spaces and assume Y has the Dau-
gavet property. Consider Ψ,Φ ∈ `∞(BX , Y ) such that Φ is a quotient map
and ‖Ψ‖ = 1. Then SΨ < SΦ implies that for every y ∈ SY and y∗ ∈ Y ∗
with y∗Ψ 6= 0

‖Φ + Ψy∗ ⊗ y‖ = 2.

Proof. By Theorem 2.5, it suffices to show that for every ε > 0 there are
ω ∈ T and x ∈ S(ωΨy∗ , ε) such that

‖ωΦ(x) + y‖ ≥ 2− ε.
Thus, let ε > 0 be given. Since SΨ < SΦ, we can find a slice S(Φz∗ , µ) ∈

SΦ with µ ≤ ε such that S(λΦz∗ , µ) ⊂ S(λΨy∗ , ε) for all λ ∈ T. According
to Lemma 3.7, ‖Φ + Φz∗ ⊗ y‖ = 2, therefore Theorem 2.5 gives ω ∈ T and
x ∈ S(ωΦz∗ , µ) satisfying

‖ωΦ(x) + y‖ ≥ 2− µ ≥ 2− ε.
By construction, S(ωΦz∗ , µ) ⊂ S(ωΨy∗ , ε), and the proof is complete. �

Remark 3.9. The above proposition is false if the condition SΨ < SΦ is
removed. To see this, consider bounded linear operators Φ,Ψ : L1[0, 1] ⊕1

L1[1, 2]→ L1[0, 1] given by Φ((f, g)) = f and Ψ((f, g)) = (
∫ 2

1 g dx) ·1, where
(f, g) ∈ L1[0, 1] ⊕1 L1[1, 2]; recall that L1[0, 1] has the Daugavet property.
Clearly, Φ is a quotient map and ‖Ψ‖ = 1. But, if y = 1 ∈ L1[0, 1] and
y∗ = 1 ∈ L∞[0, 1], then ‖Φ + y∗Ψ⊗ y‖ ≤ 1.

We shall now deal with weakly compact maps. Let us start by recalling
the definition of a (nonlinear) weakly compact map.

Definition 3.10. Let X,Y be Banach spaces. A function Ψ ∈ `∞(BX , Y )
is called weakly compact if the weak closure of Ψ(BX) is a weakly compact
set.

Let us now prove the main result of this section, namely Theorem 3.11.

Theorem 3.11. Let X,Y be Banach spaces and let Φ,Υ,Ψ ∈ `∞(BX , Y )
with ‖Φ‖ = ‖Υ‖ = ‖Ψ‖ = 1. Assume Y has the Φ-Daugavet property with
respect to Y ∗Υ · Y . Then, if SΨ < SΥ and Ψ is weakly compact,

‖Φ + Ψ‖ = 2.

Proof. Since the set K = co(TΨ(BX)) is weakly compact by Krein’s the-
orem, we can conclude that K coincides with the closed convex hull of its
strongly exposed points ([5], [2, Cor. 5.18]). Therefore, given ε > 0, we may
take a strongly exposed point y0 ∈ K with ‖y0‖ > 1 − ε. Because y0 is a
strongly exposed point, there are z∗ ∈ Y ∗ and η > 0 such that the set

{y ∈ K : Re z∗(y) ≥ Re z∗(y0)− η}
has diameter less than ε and Re z∗(y0) > Re z∗(y) for all y ∈ K\{y0}. After
defining y∗0 = z∗/Re z∗(y0) and δ = min{ ε2 , η/Re z∗(y0)}, we have found a
slice

S = {y ∈ K : Re y∗0(y) ≥ 1− δ}
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containing y0 and having diameter less than ε. In particular,

y ∈ K, Re y∗0(y) ≥ 1− δ ⇒ ‖y − y0‖ < ε.

Also note that since K is balanced,

sup
y∈K

Re y∗0(y) = sup
y∈K
|y∗0(y)| = 1.

Denote ψ := y∗0 ◦Ψ. We have

‖ψ‖ = sup
x∈BX

|y∗0(Ψ(x))| = sup
y∈K
|y∗0(y)| = 1,

hence S(ψ, δ) ∈ SΨ. On account of SΨ < SΥ, there are µ ≤ δ and
S(Υz∗ , µ) ∈ SΥ such that

S(λΥz∗ , µ) ⊂ S(λψ, δ) for all λ ∈ T.

Since by assumption ‖Φ + Υz∗ ⊗ y0‖ = 1 + ‖y0‖, Theorem 2.5 yields ω ∈ T
and x ∈ S(ωΥz∗ , µ) so that∥∥∥∥ωΦ(x) +

y0

‖y0‖

∥∥∥∥ ≥ 2− µ ≥ 2− ε.

By construction, x ∈ S(ωΥz∗ , µ) ⊂ S(ωψ, δ), and therefore

Re y∗0(ωΨ(x)) = Reωψ(x) ≥ 1− δ,

so the fact that ωΨ(x) ∈ K gives ‖ωΨ(x)− y0‖ < ε.
We calculate

‖y0 + ωΦ(x)‖ ≥
∥∥∥∥ωΦ(x) +

y0

‖y0‖

∥∥∥∥− ∥∥∥∥y0 −
y0

‖y0‖

∥∥∥∥
=

∥∥∥∥ωΦ(x) +
y0

‖y0‖

∥∥∥∥− | ‖y0‖ − 1|

≥ 2− 2ε.

Finally,

‖Φ + Ψ‖ ≥ ‖Φ(x) + Ψ(x)‖
= ‖ωΦ(x) + ωΨ(x)‖
≥ ‖ωΦ(x) + y0‖ − ‖ωΨ(x)− y0‖
≥ 2− 3ε.

Letting ε ↓ 0 we conclude that Ψ satisfies (Φ-DE). �

Remark 3.12. The requirement on the weak compactness of the function Ψ
can be substituted in the result above by the more general notion of Radon-
Nikodým function, which fits exactly with what is needed; see the definition
and how to use it in this setting for example in [4]. One way of defining
the Radon-Nikodým property for a closed convex set A is that every closed
convex subset B ⊂ A is the closed convex hull of its strongly exposed points.
(See [2, Th. 5.8 and Th. 5.17].) So, a function is said to be a Radon-Nikodým
function if the closure of T (BX) has the Radon-Nikodým property.
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Corollary 3.13. Let X,Y be Banach spaces and assume Y has the Daugavet
property. Consider Φ,Ψ ∈ `∞(BX , Y ) such that Φ is a quotient map and
‖Ψ‖ = 1. If SΨ < SΦ and Ψ is weakly compact, then

‖Φ + Ψ‖ = 2.

Proof. In Lemma 3.7 we observed that if Y has the Daugavet property and
Φ is a quotient map, then Y has the Φ-Daugavet property with respect to
Y ∗Φ · Y . Thus, Theorem 3.11 yields ‖Φ + Ψ‖ = 2. �

Remark 3.14. The above corollary is not valid if the condition SΨ < SΦ is
removed. For instance, consider Φ,Ψ : L1[0, 1]⊕1L2[1, 2]→ L1[0, 1] given by
Φ((f, g)) = f and Ψ((f, g))(x) = g(x+ 1), where (f, g) ∈ L1[0, 1]⊕1 L2[1, 2].
Then Ψ is weakly compact and ‖Φ‖ = ‖Ψ‖ = 1, but ‖Φ + Ψ‖ ≤ 1.

Theorem 3.15. Let X,Y be Banach spaces and let Z be a linear subspace
of `∞(BX). Assume Φ ∈ `∞(BX , Y ) with ‖Φ‖ = 1. Then the following are
equivalent:

(1) For every x′ ∈ Z and every y ∈ Y , x′ ⊗ y satisfies (Φ-DE).
(2) For every x′ ∈ SZ , every y ∈ SY , and every ε > 0, there exist ω ∈ T

and x ∈ BX such that

Reωx′(x) ≥ 1− ε and ‖ωΦ(x) + y‖ ≥ 2− ε.

(3) Every weakly compact Ψ ∈ `∞(BX , Y ) such that y∗ ◦Ψ ∈ Z for all
y∗ ∈ Y ∗ satisfies (Φ-DE).

Proof. (1) ⇔ (2): This equivalence follows from Theorem 2.5.
(1) ⇒ (3): Let Ψ be as in (3). Because of (1), Y has the Φ-Daugavet

property with respect to Y ∗Ψ · Y . Since trivially SΨ < SΨ, Theorem 3.11
gives (3).

(3) ⇒ (1): Given x′ ∈ Z and y ∈ Y , x′ ⊗ y has finite-dimensional range
and consequently is a weakly compact map. �

For completeness we note the n-linear version of [14, Cor. 3.10].

Corollary 3.16. Let X1, . . . , Xn, Y be Banach spaces and consider a con-
tinuous multilinear map B0 : X1×· · ·×Xn → Y satisfying B0(UX1×···×Xn) =
UY . Consider the subsets R, C and WC of L(Y, Y ) of rank one, compact
and weakly compact linear operators. Denote R ◦ B0 = {T ◦ B0 : T ∈ R},
C ◦ B0 = {T ◦ B0 : T ∈ C} and WC ◦ B0 = {T ◦ B0 : T ∈ WC}. Then the
following are equivalent:

(1) Y has the Daugavet property.
(2) Y has the B0-Daugavet property with respect to R ◦B0.
(3) Y has the B0-Daugavet property with respect to C ◦B0.
(4) Y has the B0-Daugavet property with respect to WC ◦B0.

Proof. The equivalence of (1) and (2) follows from Lemma 3.7. (2) and (4)
are equivalent by letting Z = {y∗ ◦ B0 : y∗ ∈ Y ∗} in Theorem 3.15. The
implications (4) ⇒ (3) ⇒ (2) are due to the inclusions R ⊂ C ⊂WC. �
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4. Weak slice continuity

In the previous section we defined the notion of strong slice continuity
and related it to the Daugavet equation. This section is the analogue of
Section 3 for the alternative Daugavet equation. We introduce the concept
of weak slice continuity to further investigate when two maps Ψ,Φ satisfy
the alternative Daugavet equation, i.e., when

max
|ω|=1

‖Φ + ωΨ‖ = ‖Φ‖+ ‖Ψ‖.

Definition 4.1. Let X be a Banach space, x′ ∈ `∞(BX) with ‖x′‖ = 1 and
ε > 0. We write

S′(x′, ε) = {x ∈ BX : |x′(x)| ≥ 1− ε}
for the weak slice of BX determined by x′ and ε.

In a second step we extend the above definition to Banach space valued
functions.

Definition 4.2. Let X,Y be Banach spaces and Φ ∈ `∞(BX , Y ). The
natural set of weak slices defined by Φ is given by

S ′
Φ = {S′(Φy∗ , ε) : 0 < ε < 1, y∗ ∈ Y ∗, y∗Φ 6= 0}.

Now we are in a position to define weak slice continuity in analogy to
strong slice continuity; cf. Definition 3.2.

Definition 4.3. Let X,Y be Banach spaces and Φ,Ψ ∈ `∞(BX , Y ). We
write S ′

Ψ < S ′
Φ if for every weak slice S′(Ψz∗ , ε) ∈ S ′

Ψ there is a weak slice
S′(Φy∗ , µ) ∈ S ′

Φ such that

S′(Φy∗ , µ) ⊂ S′(Ψz∗ , ε).

In this case we say that Ψ is weakly slice continuous with respect to Φ.

If Φ,Ψ are two maps such that Ψ is strongly slice continuous with respect
to Φ, then Ψ is also slice continuous with respect to Φ. Let us check that a
similar implication holds for strong and weak slice continuity.

Remark 4.4. Let X,Y be Banach spaces and Φ,Ψ ∈ `∞(BX , Y ). Then
SΨ < SΦ implies S ′

Ψ < S ′
Φ.

Proof. Assume S′(Ψz∗ , ε) ∈ S ′
Ψ. Since SΨ < SΦ, there is S(Φy∗ , µ) ∈ SΦ

satisfying S(λΦy∗ , µ) ⊂ S(λΨz∗ , ε) for all λ ∈ T. We claim S′(Φy∗ , µ) ⊂
S′(Ψz∗ , ε). To prove this, let x ∈ BX with |Φy∗(x)| ≥ 1 − µ and denote
ω = |Φy∗(x)|/Φy∗(x). Then ReωΦy∗(x) = |Φy∗(x)| ≥ 1 − µ and therefore
ReωΨz∗(x) ≥ 1− ε. In particular, |Ψz∗(x)| ≥ 1− ε, i.e., x ∈ S′(Ψz∗ , ε). �

The next example shows that the reverse implication in the above remark
does not hold.

Example 4.5. Let Ψ : R→ R be defined by

Ψ(x) =

{
1 if x = 0,

−|x| if x 6= 0.

Then Ψ is weakly slice continuous with respect to the identity, but Ψ is not
strongly slice continuous with respect to the identity.
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Proof. Consider the slice S(Ψ, 1/2) ∈ SΨ. Then S(c Id, ε) 6⊂ S(Ψ, 1/2) for
any c ∈ {−1, 1} and 0 < ε < 1. Thus Ψ is not strongly slice continuous
with respect to Id. But if c ∈ {−1, 1} and 0 < ε < 1 are given, then
S′(Id, ε) ⊂ S′(cΨ, ε). Therefore Ψ is weakly slice continuous with respect to
Id. �

Example 4.6. Let X,Y be Banach spaces. Consider Φ ∈ `∞(BX , Y ) and
a bounded linear operator P : Y → Y . Denote Ψ = P ◦Φ. Then S ′

Ψ < S ′
Φ.

Proof. According to Example 3.4, the assumptions imply SΨ < SΦ. Hence
S ′

Ψ < S ′
Φ by Remark 4.4. �

Note that we have shown in Example 4.5 that there are bounded maps
Φ,Ψ with S ′

Ψ < S ′
Φ, but Ψ 6= P ◦ Φ for any bounded linear operator P .

Recall from Definition 3.6 that a quotient map is a continuous function
mapping the open unit ball of its domain onto the open unit ball of its range
space. These properties allow for the following lemma.

Lemma 4.7. Let X,Y be Banach spaces and assume Φ ∈ `∞(BX , Y ) is a
quotient map. Then the following are equivalent:

(1) Y has the alternative Daugavet property.
(2) Y has the alternative Φ-Daugavet property with respect to Y ∗Φ · Y .

Proposition 4.8. Let X,Y be Banach spaces and assume Y has the al-
ternative Daugavet property. Consider Ψ,Φ ∈ `∞(BX , Y ) such that Φ is a
quotient map and ‖Ψ‖ = 1. Then S ′

Ψ < S ′
Φ implies that for every y ∈ SY

and y∗ ∈ Y ∗ with y∗Ψ 6= 0

max
|ω|=1

‖Φ + ωΨy∗ ⊗ y‖ = 2.

Proof. We will use Theorem 2.9, i.e., we need to show that for every ε > 0
there exist ω ∈ T and x ∈ S′(Ψy∗ , ε) such that

‖ωΦ(x) + y‖ ≥ 2− ε.

Since S ′
Ψ < S ′

Φ, there is a slice S′(Φz∗ , µ) ∈ S ′
Φ such that S′(Φz∗ , µ) ⊂

S′(Ψy∗ , ε) and µ ≤ ε. The alternative Daugavet property of Y in conjunction
with Lemma 4.7 yields the norm equality max|ω|=1 ‖Φ + ωΦy∗ ⊗ y‖ = 2.
Hence another application of Theorem 2.9 gives ω ∈ T and x ∈ S′(Φy∗ , µ)
such that

‖ωΦ(x) + y‖ ≥ 2− µ ≥ 2− ε.
Because of S′(Φz∗ , µ) ⊂ S′(Ψy∗ , ε), we also have x ∈ S′(Ψy∗ , ε), which

completes the proof. �

Remark 4.9. In the above proposition, the assumption S ′
Ψ < S ′

Φ cannot be
removed. This can be shown by using the functions from Remark 3.9.

Theorem 4.10. Let X,Y be Banach spaces and let Φ,Υ,Ψ ∈ `∞(BX , Y )
with ‖Φ‖ = ‖Υ‖ = ‖Ψ‖ = 1. Assume Y has the alternative Φ-Daugavet
property with respect to Y ∗Υ · Y . Then, if S ′

Ψ < S ′
Υ and Ψ is weakly

compact,

max
|ω|=1

‖Φ + ωΨ‖ = 2.
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Proof. Denote K = co(TΨ(BX)) and let ε > 0 be given. In the same way
as in the proof of Theorem 3.11, we may find y0 ∈ K with ‖y0‖ > 1 − ε,
δ ∈ (0, ε/2) and y∗0 ∈ Y ∗ such that

y ∈ K, Re y∗0(y) ≥ 1− δ ⇒ ‖y − y0‖ < ε

and
sup
y∈K
|y∗0(y)| = 1.

Setting ψ := y∗0 ◦Ψ, we get

‖ψ‖ = sup
x∈BX

|y∗0(Ψ(x))| = sup
y∈K
|y∗0(y)| = 1,

i.e., S′(ψ, δ) ∈ S ′
Ψ. From S ′

Ψ < S ′
Υ we deduce the existence of µ ≤ δ

as well as S′(Υz∗ , µ) ∈ S ′
Υ satisfying S′(Υz∗ , µ) ⊂ S′(ψ, δ). Since Y has

the alternative Φ-Daugavet property with respect to Y ∗Υ · Y , we can use
Theorem 2.9 to get ω1 ∈ T and x ∈ S′(Υz∗ , µ) such that∥∥∥∥ω1Φ(x) +

y0

‖y0‖

∥∥∥∥ ≥ 2− µ ≥ 2− ε.

In particular, x ∈ S′(Υz∗ , µ) ⊂ S′(ψ, δ). Writing ω2 = |ψ(x)|/ψ(x) we
observe

Re y∗0(ω2Ψ(x)) = Reω2ψ(x) = |ψ(x)| ≥ 1− δ,
so the fact that ω2Ψ(x) ∈ K gives

‖ω2Ψ(x)− y0‖ < ε.

On the other hand,

‖y0 + ω1Φ(x)‖ ≥
∥∥∥∥ω1Φ(x) +

y0

‖y0‖

∥∥∥∥− ∥∥∥∥y0 −
y0

‖y0‖

∥∥∥∥
=

∥∥∥∥ω1Φ(x) +
y0

‖y0‖

∥∥∥∥− | ‖y0‖ − 1|

≥ 2− 2ε.

Altogether

max
|ω|=1

‖Φ + ωΨ‖ ≥ ‖Φ + ω1ω2Ψ‖

≥ ‖Φ(x) + ω1ω2Ψ(x)‖
= ‖ω1Φ(x) + ω2Ψ(x)‖
≥ ‖ω1Φ(x) + y0‖ − ‖ω2Ψ(x)− y0‖
≥ 2− 3ε,

which proves the assertion because ε > 0 was chosen arbitrarily. �

Corollary 4.11. Let X,Y be Banach spaces and assume Y has the alter-
native Daugavet property. Consider Φ,Ψ ∈ `∞(BX , Y ) such that Φ is a
quotient map and ‖Ψ‖ = 1. If S ′

Ψ < S ′
Φ and Ψ is weakly compact, then

max
|ω|=1

‖Φ + ωΨ‖ = 2.

Proof. Y has the alternative Φ-Daugavet property with respect to Y ∗Φ · Y
by Lemma 4.7. Therefore Ψ satisfies the alternative Φ-Daugavet equation
according to Theorem 4.10. �
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Remark 4.12. In the above corollary, the assumption S ′
Ψ < S ′

Φ cannot be
dropped. For instance, this follows with the help of the functions constructed
in Remark 3.14.

Theorem 4.13. Let X,Y be Banach spaces and let Z be a linear subspace
of `∞(BX). Assume Φ ∈ `∞(BX , Y ) with ‖Φ‖ = 1. Then the following are
equivalent:

(1) For every x′ ∈ Z and every y ∈ Y , x′ ⊗ y satisfies (Φ-ADE).
(2) For every x′ ∈ SZ , every y ∈ SY , and every ε > 0, there exist

ω1, ω2 ∈ T and y ∈ BX such that

Reω1x
′(x) ≥ 1− ε and ‖ω2Φ(x) + y‖ ≥ 2− ε.

(3) For every x′ ∈ SZ , every y ∈ SY , and every ε > 0, there exist ω ∈ T
and x ∈ BX such that∣∣x′(x)

∣∣ ≥ 1− ε and ‖ωΦ(x) + y‖ ≥ 2− ε.
(4) Every weakly compact Ψ ∈ `∞(BX , Y ) such that y∗ ◦Ψ ∈ Z for all

y∗ ∈ Y ∗ satisfies (Φ-ADE).

Proof. The equivalence of (1), (2) and (3) is a consequence of Theorem 2.9.
The implication (1) ⇒ (4) follows from Theorem 4.10 since trivially S ′

Ψ <
S ′

Ψ for any Ψ as in (4). The direction (4) ⇒ (1) is true because finite-rank
maps are weakly compact. �

The following corollary is analogous to Corollary 3.16.

Corollary 4.14. Let X1, . . . , Xn, Y be Banach spaces and consider a contin-
uous multilinear map B0 : X1 × · · · ×Xn → Y satisfying B0(UX1×···×Xn) =
UY . Consider the subsets R, C and WC of L(Y, Y ) of rank one, com-
pact and weakly compact operators. Denote R ◦ B0 = {T ◦ B0 : T ∈ R},
C ◦ B0 = {T ◦ B0 : T ∈ C} and WC ◦ B0 = {T ◦ B0 : T ∈ WC}. Then the
following are equivalent:

(1) Y has the alternative Daugavet property.
(2) Y has the alternative B0-Daugavet property with respect to R ◦B0.
(3) Y has the alternative B0-Daugavet property with respect to C ◦B0.
(4) Y has the alternative B0-Daugavet property with respect to WC ◦B0.

Proof. The equivalence of (1) and (2) is due to Lemma 4.7. (2) and (4)
are equivalent by letting Z = {y∗ ◦ B0 : y∗ ∈ Y ∗} in Theorem 4.13. The
implications (4) ⇒ (3) ⇒ (2) follow from the inclusions R ⊂ C ⊂WC. �

5. Local Φ-Daugavet type properties and applications

After the explanation of our main results given in the previous part of the
paper, we are ready to present more technical versions of the tools obtained
there. All of them can be proved using the same arguments and are useful
for applications. Essentially, we introduce the notion of norm determining
set Γ ⊂ BX for a class of functions and some new elements that allow to
define the notion of Φ-Daugavet property with respect to particular sets of
scalar functions and vectors in Y , with a norm that can be defined as the
supremum of the evaluation of the functions involved just for some subset
of vectors in SX .
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In this section all Banach spaces are supposed to be R-vector spaces for
simplicity of notation.

Let X and Y be Banach spaces, and let V ⊂ `∞(BX , Y ). We say that a
subset Γ ⊂ BX is norm determining for V if

‖Ψ‖ = ‖Ψ‖Γ := sup
x∈Γ
‖Ψ(x)‖

for all Ψ ∈ V .
Let us start by formulating a version of Theorem 2.5 considering norm

determining subsets for the functions involved. Its proof follows the same
lines as the proof of that theorem, so we omit it.

Proposition 5.1. Let X and Y be Banach spaces and let Γ ⊂ BX . Let
Φ ∈ `∞(BX , Y ) be a norm one map, and consider a norm one function
x′ ∈ `∞(BX). Let y ∈ SY . The following assertions are equivalent.

(1) ‖Φ + x′ ⊗ y‖Γ = 2.
(2) For every ε > 0 there is some ω ∈ T and an element x ∈ S(ωx′, ε)∩Γ

such that
‖ωΦ(x) + y‖ ≥ 2− 2ε.

Remark 5.2. Notice that the condition in the result above implies that for
a norm one scalar function x′ ∈ `∞(BX , Y ),

2 ≤ ‖x′ ⊗ y + Φ‖Γ ≤ ‖x′‖Γ‖y‖+ ‖Φ‖ ≤ ‖x′‖Γ + 1,

and so ‖x′‖Γ = ‖x′‖ = 1. Thus Γ is norm determining for x′; the same
argument gives that it is so for Φ.

Let us define now some sort of “local version” of the notion of Φ-Daugavet
property.

Definition 5.3. Let X and Y be Banach spaces and let Φ : BX → Y
be a norm one function. Let Γ ⊂ BX be a norm determining set for Φ
and consider subsets W ⊂ `∞(BX) and ∆ ⊂ SY . We say that Y has the
Φ-Daugavet property with respect to (Γ,W ,∆) if for every x′ ∈ W and
y ∈ ∆

sup
x∈Γ
‖Φ(x) + x′(x)y‖ = 2.

The reader can notice that this definition is related to the one of Daugavet
centre given in Definition 1.2 of [4] and that of the almost Daugavet property
from [9].

Let us provide a concrete example of a function Φ and sets Γ, W and ∆
for which every Banach space has the Φ-Daugavet property with respect to
(Γ,W ,∆).

Example 5.4. Let X be a real Banach space and take Y = X. Consider
the sets Γ = BX ,

W = {x′ ∈ `∞(BX) : |x′(x)| = 1 and x′(x) = x′(−x) for all x ∈ SX},
and ∆ = SX . Let Φ : BX → X be a norm one function such that Φ(SX) =
SX and Φ(−x) = −Φ(x) for all x. Take ε > 0. Fix a norm one function
x′ ∈ W . If y ∈ SX , take x0 ∈ SX such that Φ(x0) = y. If x′(x0) = 1, then

sup
x∈Γ
‖Φ(x) + x′(x)y‖ ≥ ‖Φ(x0) + x′(x0)y‖ ≥ 2‖y‖ = 2.
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If x′(x0) = −1 = x′(−x0), then Φ(−x0) = −Φ(x0) = −y, and thus

sup
x∈Γ
‖Φ(x) + x′(x)y‖ ≥ ‖Φ(−x0) + x′(−x0)y‖ ≥ ‖−y − y‖ = 2.

Therefore, X has the Φ-Daugavet property with respect to (Γ,W ,∆).
The space `∞ and the function Φ(x) = x3 show an example of this situa-

tion, although `∞ does not have the Daugavet property.

The proof of the following result is a direct application of Proposition 5.1.

Corollary 5.5. Let X and Y be Banach spaces and consider Φ, Γ, W and
∆ as in Definition 5.3. The following statements are equivalent.

(1) Y has the Φ-Daugavet property with respect to (Γ,W ,∆).
(2) For every y ∈ ∆, for every x′ ∈ W of norm one and for every ε > 0

there are ω ∈ T and an element x ∈ S(ωx′, ε) ∩ Γ such that

‖ωΦ(x) + y‖ ≥ 2− 2ε.

Remark 5.6. Let us show that, under the assumption that the function Φ
maps BX onto BY , the Daugavet property for Y implies the Φ-Daugavet
property with respect to Γ = BX , W = {x′ : X → R : x′ = y∗◦Φ, y∗ ∈ SY ∗}
and ∆ = SY . This case is canonical, and in a sense also trivial, since the
result is a consequence of some simple computations. However, there are
more examples that show that not all the cases can be obtained in this way,
i.e., there are families of functions W whose elements are not compositions
of a given Φ and the functionals of SY ∗ for which Φ satisfies the Daugavet
equation.

(1) Let us first show the statement announced above. Let Y be a Banach
space with the Daugavet property and let Φ : BX → Y satisfy Φ(BX) =
BY . Let us show that then Y has the Φ-Daugavet property with respect to
(BX , W , SY ), where W = {x′ : X → R : x′ = y∗ ◦ Φ, y∗ ∈ SY ∗}.

To see this, suppose that Φ : BX → Y satisfies Φ(BX) = BY . Then we
claim that for each ε > 0, y∗ ∈ SY ∗ and y ∈ SY there is x ∈ S(y∗ ◦ Φ, ε)
such that

‖Φ(x) + y‖ ≥ 2− 2ε.

Indeed, let ε > 0, y ∈ SY and y∗ ∈ SY ∗ . Then by the Daugavet property
for Y there is an element z ∈ S(y∗, ε) such that ‖z + y‖ ≥ 2 − 2ε. Since Φ
maps BX onto BY , we find x ∈ BX such that Φ(x) = z ∈ S(y∗, ε), and so
〈Φ(x), y∗〉 = y∗ ◦ Φ(x) > 1− ε and ‖Φ(x) + y‖ ≥ 2− 2ε. An application of
Corollary 5.5 gives the result.

(2) There are also other families of functions W for which the Daugavet
equation is satisfied with a function Φ, but they cannot be defined by com-
position as in (1). For example, take X = Y = C(K), where K is a perfect
compact Hausdorff space, and define W as the set of continuous linear func-
tionals on C(K). Consider the function x 7→ Φ(x) = x3. Clearly, a linear
functional cannot be written as a composition of Φ and some other lin-
ear functional. However, for each norm one element y ∈ SC(K) we find an

element x ∈ SC(K) such that x3 = y. This, together with the Daugavet prop-
erty of C(K), implies (2) in Corollary 5.5. To see this, just take into account
that by the Daugavet property of C(K), for each ε > 0, each y ∈ SC(K) and
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each y∗ ∈ SC(K)∗ there is x ∈ S(y∗, ε/2) such that

‖x+ y‖ > 2− 2(ε/2) = 2− ε > 2− 2ε.

Take z ∈ SC(K) such that z3 = x, and so ‖z3 + y‖ > 2 − 2ε. Let us
show that z ∈ S(y∗, ε) too, that is, (2) in Corollary 5.5 holds. Consider
the measurable sets defined by setting A+ := {w ∈ K : z(w) ≥ 0} and
A− := {w ∈ K : z(w) < 0}. Take the decomposition of the measure µ
that defines the functional y∗ as a difference of positive disjointly supported
measures µ = µ+ − µ−. Then, using that |z3| ≤ |z|, we get

1− ε/2 ≤
∫
K
z3 dµ

=

∫
A+

|z3| dµ+ +

∫
A−
|z3| dµ− −

∫
A+

|z3| dµ− −
∫
A−
|z3| dµ+

≤
∫
A+

|z| dµ+ +

∫
A−
|z| dµ−

≤ µ+(A+) + µ−(A−) ≤ 1.

Hence

µ+(A−) + µ−(A+) ≤ ε/2.
Consequently,

1 ≥
∫
K
z dµ

=

∫
A+

|z| dµ+ +

∫
A−
|z| dµ− −

∫
A+

|z| dµ− −
∫
A−
|z| dµ+

≥ (1− ε/2)− (µ−(A+) + µ+(A−))

≥ 1− 2(ε/2) = 1− ε.

Then z ∈ S(y∗, ε), and we get the result.
(3) Surjectivity of Φ is sometimes not needed if the sets Γ, W and ∆

are adequately chosen. Take now X = Y = C(K), Φ(x) = |x|1/4 and W
the set of probability measures P(K) ⊂ C(K)∗. Take also Γ = BC(K)+

and ∆ = SC(K)+ . Then the Φ-Daugavet property with respect to (Γ,W ,∆)
is satisfied, as a consequence of Corollary 5.5. To see this, note that if
y ∈ SC(K)+ and µ ∈ P(K), then for ω = 1 we obtain by the Daugavet
property of C(K), given ε > 0, a (positive) function x of norm one in SC(K)

such that
∫
K x dµ ≥ 1 − ε and ‖x + y‖ ≥ 2 − 2ε. Then since 1 ≥ x1/4 ≥ x

we obtain

‖x1/4 + y‖ ≥ ‖x+ y‖ ≥ 2− 2ε,

i.e., the Φ-Daugavet property with respect to (Γ,W ,∆) is satisfied. Again,
the elements of P(K) cannot be factored through Φ.

The following result gives the main tool for extending the Daugavet equa-
tion to other functions not belonging to the set of products of scalar func-
tions of W and elements of the unit sphere of Y . In particular, well-known
arguments provide the condition of the following theorem, concerning the
inclusion of the image of a slice in a small ball, for the big class of the strong
Radon-Nikodým operators. Notably, this class contains the weakly compact
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operators (see for example the first part of [10], or Theorem 1.1 in [6] for a
version directly related with the present paper).

Theorem 5.7. Let Ψ : BX → Y be a norm one function. If the Banach
space Y has the Φ-Daugavet property with respect to (Γ,W ,∆) for W ⊂
`∞(BX), and for all ε > 0 there are x′ ∈ W , δ > 0 and y ∈ ∆ such that for
all ω ∈ T, Ψ(S(ωx′, δ) ∩ Γ) ⊂ Bε(ωy), then

‖Φ + Ψ‖Γ = 2.

Proof. Fix ε > 0. By the hypothesis there are x′0 ∈ W and y ∈ ∆ such that
for every ω ∈ T, ‖Ψ(x)− ωy‖ < ε for all x ∈ S(ωx′0, δ) ∩ Γ.

By Corollary 5.5, for x′0 and y there are ω0 ∈ T and x0 ∈ S(ω0x
′
0, δ) ∩ Γ

such that ‖ω0Φ(x0) + y‖ ≥ 2− 2ε. Then,

‖Φ + Ψ‖Γ ≥ ‖Φ(x0) + Ψ(x0)‖
≥ ‖Φ(x0) + ω0y‖ − ‖Ψ(x0)− ω0y‖
= ‖ω0Φ(x0) + y‖ − ‖Ψ(x0)− ω0y‖
≥ 2− 2ε− ε = 2− 3ε.

Since this happens for each ε > 0, we obtain that ‖Φ + Ψ‖Γ = 2. �

The proof of the following corollary is just an application of Theorem 5.7
for W := {x′ = y∗ ◦ Ψ : y∗ ∈ Y ∗, ‖y∗ ◦ Ψ‖ = 1}, Γ = BX and ∆ = SX ,
together with the argument in the proof of Theorem 3.11 regarding weakly
compact sets that gives the condition for applying Theorem 5.7. The same
comments regarding Radon-Nikodým functions given in Remark 3.12 apply
in the present case.

Corollary 5.8. Let Φ : BX → Y be a norm one function such that Φ(BX) =
BY and let Ψ : BX → Y be a norm one weakly compact function. Suppose
Y has the Φ-Daugavet property. Then ‖Φ + Ψ‖ = 2.

We finish the paper by showing some special new tools for obtaining
applications in the case of C(K)-spaces and L1(µ)-spaces.

5.1. A general test for the Φ-Daugavet property: the case of func-
tions on C(K)-spaces. The requirement Ψ(S(ωx′, δ) ∩ Γ) ⊂ Bε(ωy) in
Theorem 5.7 seems to be a difficult property to check directly . The next re-
sult provides a simpler test that can be used in some cases. We will use this
new tool to analyse the Daugavet equation for functions on C(K)-spaces.

Proposition 5.9. Let X be a Banach space. Let z ∈ SX , K > 0 and let
Φ,Ψ : BX → X be norm one functions. Take a subset B ⊂ BX . The
following statements are equivalent.

(1) There is a w∗-compact convex set V ⊂ X∗ such that for all finite
sequences x1, . . . , xn ∈ B and positive scalars α1, . . . , αn such that∑n

i=1 αi = 1 we have

n∑
i=1

αi‖Ψ(xi)− z‖ ≤ K sup
x∗∈V

(
1−

〈 n∑
i=1

αiΦ(xi), x
∗
〉)
.
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(2) For each ε > 0 there exists x∗0 ∈ V such that

‖Ψ(x)− z‖ ≤ K(1− 〈Φ(x), x∗0〉)

for all x ∈ BX .

These equivalent properties imply that for each ε > 0 there exists x∗0 ∈ V
such that Ψ(S(x∗0 ◦ Φ, ε) ∩B) ⊂ BKε(z).

Proof. We shall obtain this result as a consequence of Ky Fan’s lemma (see
[12, p. 40]), so it is in essence a consequence of the Hahn-Banach theorem.

We only sketch the proof. Consider the concave set of convex functions
Υ : V → R defined by

Υ(x∗) :=

n∑
i=1

αi‖Ψ(xi)− z‖ −K
(

1−
〈 n∑
i=1

αiΦ(xi), x
∗
〉)
,

where αi > 0,
∑n

i=1 αi = 1 and x1, . . . , xn ∈ B. The inequality in (1)
provides for such a Υ an element x∗Υ ∈ V such that Υ(x∗Υ) ≤ 0. Ky Fan’s
Lemma gives an element x∗0 ∈ V such that Υ(x∗0) ≤ 0 for all the functions
Υ in the family. This proves (1) ⇒ (2), and the converse is obvious.

On the other hand, if x ∈ S(x∗0 ◦ Φ, ε) ∩B, then

‖R(x)− z‖ ≤ K(1− 〈Φ(x), x∗0〉) ≤ Kε.

This proves the final statement. �

Example 5.10. Let us show an application of the criterion given in Propo-
sition 5.9. Let X = C(K) and V = BC(K)∗ . Take a positive norm one
function f in C(K). Define the class of functions C by

C = {g ∈ BC(K) : g2 ≤ f ≤ |g|}.

Let us see that the requirements of Proposition 5.9 are satisfied for B = C
and Φ and Ψ defined by Φ(g) = g2 and Ψ(g) = |g|. Note that for all positive
functions h ∈ BC(K), 1−h ≤ 1−h2. Then for all g1, . . . , gn ∈ C and positive

α1, . . . , αn such that
∑n

i=1 αi = 1, we obtain

n∑
i=1

αi‖|gi| − 1‖ ≤
n∑
i=1

αi‖1− f‖ = ‖1− f‖ ≤
n∑
i=1

αi‖1− g2
i ‖

≤ sup
x∗∈BC(K)∗

(
1−

〈 n∑
i=1

αig
2
i , x
∗
〉)
.

Consequently, an application of the proposition shows that for each ε > 0
there exists x∗0 ∈ C(K)∗ such that Ψ(S(x∗0 ◦ Φ, ε) ∩ C) ⊂ BKε(1).

Note that for applying Proposition 5.9 in a nontrivial way, it must be
assumed that S(x∗ ◦ Φ, ε) ∩ B 6= ∅. For example, in the next corollary the
requirement is satisfied, since B = BX . Note also that the requirement on
Φ of being surjective from BX to BX ensures that the slices S(x∗ ◦Φ, ε) are
not empty themselves.

Corollary 5.11. Let Φ,Ψ : BX → X be norm one functions. If there exist
z ∈ SX and K > 0 such that for all x1, . . . , xn ∈ BX and α1, . . . , αn ≥ 0
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such that
∑n

i=1 αi = 1 there is an element x ∈ BX such that the inequality

n∑
i=1

αi‖Ψ(xi)− z‖ ≤ K
∥∥∥x− n∑

i=1

αiΦ(xi)
∥∥∥

holds, then for each ε > 0 there exist δ > 0 and x∗0 ∈ SX∗ such that Ψ(S(x∗0 ◦
Φ, δ)) ⊂ BKε(z).

Proof. Fix some x1, . . . , xn ∈ X and α1, . . . , αn and consider the element
x ∈ BX given in the statement. Using the inequality we obtain

n∑
i=1

αi‖Ψ(xi)− z‖ ≤ K sup
x∗∈BX∗

〈
x−

n∑
i=1

αiΦ(xi), x
∗
〉

≤ K sup
x∗∈BX∗

(
1−

〈 n∑
i=1

αiΦ(xi), x
∗
〉)
.

An application of Proposition 5.9 gives the result. �

Example 5.12. Take X = C(K) for a perfect K, Φ(x) = x2 and Ψ(x) =
(
∫
K x

2 dµ)y for a probability measure on K and a fixed function y ∈ SC(K).
Then taking z = y we get

n∑
i=1

αi

∥∥∥(∫
K
x2
i dµ

)
y − z

∥∥∥ ≤ n∑
i=1

αi

(
1−

∫
K
x2
i dµ

)
‖z‖

=

∫
K
dµ−

n∑
i=1

αi

∫
K
x2
i dµ

≤
∥∥∥1− n∑

i=1

αix
2
i

∥∥∥
for each finite set of functions x1, . . . , xn ∈ BC(K) and 0 ≤ α1, . . . , αn such

that
∑n

i=1 αi = 1.
Consequently, the result holds and for each ε > 0 there is a slice S(x∗0 ◦

Φ, δ) such that Ψ(S(x∗0 ◦ Φ, δ)) ⊂ Bε(z). However, observe that the slices
S(x∗0 ◦Φ, δ) can be empty in this case, and so the Daugavet equation cannot
be assured in general by applying Remark 5.6(1). In fact, the equation does
not hold if one takes for example y = −1; in this case,

sup
x∈BC(K)

∥∥∥x2 +
(∫

K
x2 dµ

)
(−1)

∥∥∥ ≤ 1.

However, if we take y = 1, we obtain supx∈BC(K)
‖x2 + (

∫
K x

2 dµ)1‖ = 2,

and the Daugavet equation holds.
Note that Remark 5.6(1) provides the Daugavet equation for the “or-

der 3 version” of this result, since Φ(x) = x3 satisfies Φ(BC(K)) = BC(K).
Therefore, due to the Daugavet property of C(K), for every µ ∈ SC(K)∗ and
y ∈ SC(K) we have

sup
x∈BC(K)

∥∥∥x3 +
(∫

K
x3 dµ

)
y
∥∥∥ = 2.
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5.2. The case of L1(µ)-spaces for non-atomic measures µ. In this
subsection we analyse several functions Φ that are natural candidates for
being functions Φ on (the unit ball of) L1 in the results exposed in the
previous sections.

Some cases that are in a sense canonical for applying our results are the
following. The first one given by the function Φ0(f) := |f |, f ∈ L1(µ). The
second case is the function Φ∗ := BL1[0,1] → BL1[0,1] given by the expression

Φ∗(f) = |f | ∗ |f |, where ∗ denotes the convolution in L1[0, 1]; the third one
is given by the formula Φ2(f) := (

∫
Ω |f | dµ) ·f . Adapting the proof of Theo-

rem 2.6 and Proposition 2.7 in [13] that is based in some classical arguments
for the Daugavet property in L1(µ), we obtain the following results, which
can be applied to these examples.

Lemma 5.13. Let (Ω,Σ, µ) be a non-atomic measure space. Let W be a set
of norm one scalar functions in `∞(BL1(µ)). Let Φ : BL1(µ) → L1(µ) be a
norm one function such that ‖Φ(z)‖ = 1 for each z ∈ SL1(µ) and satisfying

also that for each δ, ε > 0 and x′ ∈ W we can find a norm one simple
function z such that µ(supp Φ(z)) < δ and |x′(Φ(z))| > 1− ε. Then

‖Φ + x′ ⊗ y‖ = 2

for all x′ ∈ W , y ∈ SL1(µ).

Proof. We use Proposition 5.1. Let ε > 0, x′ ∈ W and y ∈ SL1(µ). Let us

show that we can find ω and an element x ∈ S(ωx′, ε) such that

‖ωΦ(x) + y‖ > 2− 2ε.

First note that there exists δ > 0 such that
∫
A |y| dµ < ε for each A ∈ Σ

such that µ(A) < δ. By the requirement on Φ for these δ > 0 and ε > 0 and
choosing an ω ∈ T such that ωx′(z) = |x′(z)|, we have that z ∈ S(ωx′, ε).
Thus we obtain

‖y + ωΦ(z)‖ =

∫
Ω\supp Φ(z)

|y| dµ+

∫
supp Φ(z)

|y + ωΦ(z)| dµ

≥ ‖y‖ −
∫

supp Φ(z)
|y| dµ+ ‖Φ(z)‖ −

∫
supp Φ(z)

|y| dµ

> 2− 2ε.

Proposition 5.1 gives the result. �

Lemma 5.14. Let (Ω,Σ, µ) be a non-atomic measure space. Let W be a
set of norm one scalar functions from L1(µ) that are weakly sequentially
continuous. Let Φ : BL1(µ) → L1(µ) be a norm one map that maps SL1(µ)

onto SL1(µ). Then

‖Φ + x′ ⊗ y‖ = 2

for all x′ ∈ W , y ∈ SL1(µ).

Proof. Let x′ ∈ W and let δ, ε > 0. Since it is weakly sequentially continu-
ous, by Lemma 2.5 in [13], we can find a norm one simple function x such
that µ(suppx) < δ and |x′(Φ(x))| > 1 − ε. The surjectivity of Φ provides
an element z ∈ SL1(µ) such that Φ(z) = x. This z satisfies the requirement
for Φ in Lemma 5.13; hence the result holds. �
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In order to adapt the results on weak sequential continuity that are shown
to be useful in the case of the polynomial Daugavet property for L1(µ) (see
[13]), there are two requirements on Φ that are useful and are included in
the following definition.

In the next proposition, we call a function Φ : BL1(µ) → L1(µ) admissible
if the following requirements are satisfied.

(i) Φ must send functions of small support to functions of small support,
i.e., for each δ > 0 there is a δ′ > 0 such that for a function f ∈ L1(µ) with
support satisfying µ(supp f) < δ′, we have that µ(suppΦ(f)) < δ.

(ii) For all f ∈ SL1(µ), ‖Φ(f)‖ = 1.
Note that the mappings Φ0,Φ∗ and Φ2 mentioned at the beginning of this

subsection are admissible.

Proposition 5.15. Let (Ω,Σ, µ) be a non-atomic measure space. Let Φ :
BL1(µ) → L1(µ) be a norm one admissible function. Let W ⊂ `∞(BL1(µ))

be a set of norm one scalar functions from BL1(µ) to K such that x′ ◦ Φ is

norm one and weakly sequentially continuous for each x′ ∈ W . Then

‖Φ + x′ ⊗ y‖ = 2

for all x′ ∈ W , y ∈ SL1(µ).

Proof. We use Lemma 5.13. Let ε, δ > 0 and p ∈ W . Note that since Φ is
admissible, there is a δ′ > 0 such that if f ∈ L1(µ) and µ(supp f) < δ′, we
have that µ(supp Φ(f)) < δ.

Since x′ ◦ Φ is weakly sequentially continuous, by Lemma 2.5 in [13],
we can find a norm one simple function z such that µ(supp z) < δ′ and
|x′(Φ(z))| > 1− ε. Finally, notice that we also have that µ(supp Φ(z)) < δ,
by the admissibility of Φ. Lemma 5.13 gives the result. �
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Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain.

E-mail address: easancpe@mat.upv.es

Department of Mathematics, Freie Universität Berlin, Arnimallee 6,
D-14 195 Berlin, Germany

E-mail address: werner@math.fu-berlin.de


