
Bachelor of Science Thesis

Monitoring and Inspection of RPKI repositories

Andreas Reuter

Matr. 4569130

Supervisor: Prof. Dr.-Ing. Jochen Schiller
Dipl.-Inf. Matthias Wählisch

Institute of Computer Science, Freie Universität Berlin, Germany

May 19, 2015

iii

I hereby declare to have written this thesis on my own. I have used no other literature and
resources than the ones referenced. All text passages that are literal or logical copies from
other publications have been marked accordingly. All figures and pictures have been created
by me or their sources are referenced accordingly. This thesis has not been submitted in the
same or a similar version to any other examination board.

Berlin, May 19, 2015
(Andreas Reuter)

Abstract

Abstract

The Internet routing infrastructure is vulnerable to various BGP attacks. To secure inter-
domain routing against these threats the IETF working group SIDR has designed the RPKI.
The RPKI is a public key infrastructure that provides a trusted mapping from IP prefixes
to Autonomous Systems authorized to originate them. This mapping is published in dis-
tributed repositories. Relying parties lack an easy way of monitoring a RPKI repository
and inspecting its content in detail. This thesis presents the design and implementation
of (i) a distributed monitoring system for RPKI repositories and (ii) a web application for
inspection of RPKI objects. It also explains the purpose and workings of the RPKI and
discusses the structure of RPKI repositories.

Contents

List of Figures ix

List of Tables xi

Listings xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem . 2
1.3 Thesis Structure . 2

2 Technical Background 3
2.1 Internet Routing . 3

2.1.1 IP Prefixes and Autonomous Systems 3
2.1.2 Border Gateway Protocol . 4

2.2 Public Key Infrastructures . 6
2.2.1 Public Key Cryptography . 7
2.2.2 Roles in a Public Key Infrastructure 8
2.2.3 X.509 . 8

2.3 Resource Public Key Infrastructure . 12
2.3.1 Resource Certificates . 13
2.3.2 RPKI Signed Objects . 15
2.3.3 Route Origin Authorization . 15
2.3.4 Deployment . 16

3 System Design 19
3.1 Requirements . 19

3.1.1 High-Level Functional Requirements 20
3.1.2 Non-Functional Requirements . 21
3.1.3 Architecture . 21

3.2 Validator . 21
3.2.1 Downloading and Parsing . 22
3.2.2 Data Model . 24
3.2.3 Validation . 25
3.2.4 Statistics . 26
3.2.5 Export . 27

viii Contents

3.3 Browser . 27
3.3.1 RPKI Browser . 27
3.3.2 Statistics . 28
3.3.3 Model Updater . 28

4 Implementation 31
4.1 Choice of Technology . 31

4.1.1 Programming Language . 31
4.1.2 Framework . 32

4.2 Validator . 32
4.2.1 Data Model . 32
4.2.2 Processing Chain Overview . 34
4.2.3 Downloading and Parsing . 35
4.2.4 Validation . 36
4.2.5 Statistics . 39
4.2.6 Export . 40

4.3 Browser . 40
4.3.1 Overview . 41
4.3.2 ModelUpdater . 41
4.3.3 User Sessions . 44

5 Evaluation 51
5.1 Performance . 51

5.1.1 Test Setup . 51
5.1.2 Results . 52

5.2 Repository Structure Analysis . 52

6 Outlook 57
6.1 Summary . 57
6.2 Future Work . 58

Bibliography 59

List of Figures

2.1 BGP Update message propagation . 5
2.2 BGP Prefix Hijack attack . 6
2.3 PKI user authentication example . 9
2.4 Certificate Path Validation . 12
2.5 RPKI Signed Object structure . 16
2.6 RPKI deployment structure . 17

3.1 Logical structure of a RPKI repository . 20
3.2 Hierarchical repository structure . 23
3.3 Flat repository structure . 23
3.4 RIPE goes hierarchical . 24
3.5 Data model in UML . 25

4.1 Browser component overview . 41
4.2 Model distribution . 44
4.3 Visualization of Listing 4.13 . 45
4.4 Detail View overview . 48
4.5 RPKIBrowser with default RAP theme . 49
4.6 RPKIBrowser with custom CSS theme . 50
4.7 Statistics with custom CSS theme . 50

5.1 Loosely and strictly hierarchical repository structures 54

List of Tables

2.1 RIRs and their covered regions . 4

5.1 Prefetched URIs for RIR repositories . 53
5.2 Performance comparison of collecting RPKI data with and without prefetching 53
5.3 Average percentage of repository files downloaded per rsync call 55

Listings

2.1 Example Resource Certificate . 13

3.1 Fetch algorithm for a logical repository . 22

4.1 X509CertificateUtil.getAuthorityInformationAccess from rpki-commons . . . 33
4.2 CertificateObject class . 33
4.3 Implementation of the processing chain . 34
4.4 Directory path conversion . 35
4.5 ResourceCertificateTree.populate . 35
4.6 ResourceCertificateTree.getChildren . 35
4.7 ResourceCertificateTreeValidator.fetchURI 36
4.8 TopDownValidator with validate method . 37
4.9 ResultExtractor . 39
4.10 Result . 39
4.11 ModelUdpater.run . 41
4.12 ModelUpdater.update . 43
4.13 Initialization of the GUI . 45
4.14 RepositoryView interface . 46
4.15 RepositoryViewContainer . 46
4.16 ResourceCertificateTreeFilter . 47
4.17 ResourceHoldingObjectFilter interface . 47
4.18 JFace Databinding to StructuredViewer objects 48

CHAPTER 1

Introduction

1.1 Motivation

The Internet connects billions of devices across the world. It has become the most important
means to distribute and obtain information and has led to the rise of whole new industries.
With its enormous growth, the Internet has gained great importance for almost all branches
of society and has been classified as critical infrastructure in several countries. As society
comes to rely more and more on the Internet, the potential damage from attacks on it
increases.

The Internet is a network of networks. It is made up of thousands of interconnected Au-
tonomous Systems (AS), identified by their Autonomous System Number (ASN). Each AS
owns a set of IP addresses, usually aggregated as an IP prefix, that are assigned to the
devices in its network. Autonomous systems announce their IP prefixes together with their
ASN to other AS using the Border Gateway Protocol (BGP). An AS receiving an announce-
ment can add its own ASN to the announcement and propagate it further to other AS. The
BGP protocol is built on trust, since by the time it was designed the Internet consisted of
only a few cooperative AS. This means an AS receiving an announcement must trust that
the AS that sent it legitimately owns the IP prefixes contained in the announcement. This
makes BGP, and with it the Internet, an easy target for malicious AS that use false routing
information to disrupt or divert traffic flow.

Attacks on Internet routing have become more frequent over the last few years. While the
majority of them only affected prefixes with relatively little incoming traffic, there were
some incidents involving popular prefixes that affected large numbers of Internet users. To
prevent certain routing attacks the Resource Public Key Infrastructure (RPKI) was defined
by the IETF. Once fully deployed, RPKI prevents AS from announcing IP prefixes they do
not legitimately own.

2 1 Introduction

1.2 Problem

The RPKI is a Public Key Infrastructure using extended X.509 certificates and Certificate
Revocation Lists. It also defines multiple non-X.509 cryptographic objects, such as Route
Origin Authorizations (ROAs) and Manifests. ROAs are used to bind IP prefixes to an
ASN and signify ownership of these prefixes by that AS. All objects part of the RPKI are
published in repositories and can be downloaded by relying parties.

There exist some tools to inspect the content of certain RPKI objects [1], they are however
extremely limited. The purpose of this bachelors thesis is to implement a tool that allow
the inspection and monitoring of RPKI repositories and their contents. The software should
allow network operators to:

1. Download RPKI repositories.

2. Cryptographically validate all RPKI objects in a repository and show validation re-
sults.

3. Find specific RPKI objects.

4. Inspect the contents of RPKI objects in detail.

5. Display RPKI objects in relation to each other.

6. Give basic statistics about the repositories.

The security benefits provided by the RPKI also empower centralized authorities to unilat-
erally take down any IP prefixes under their control [2], given wide enough deployment of
the RPKI. Tools like the one proposed in this thesis are needed to increase transparency
and give RPKI participants an option to detect misbehavior by RPKI authorities.

Analysis of the BGP attacks the RPKI is meant to prevent, has shown the need for appro-
priate tools that can help detect common mistakes by network operators. This could lead
to improved training or automated detection of misconfigurations [3].

1.3 Thesis Structure

Section 2 of this thesis explains the technical background necessary to understand the pur-
pose and design of the RPKI. Firstly we explain the fundamentals of a Public Key Infrastruc-
ture and present the widely used X.509 standard, which is also the basis for RPKI. Secondly
we explain the RPKI itself, presenting the different kinds of objects and its deployment
scheme in detail.

In section 3 we discuss the requirements for the system and present its architecture. Section
4 deals with the implementation of system. Afterwards we evaluate the performance of the
system and analyze an important RPKI deployment issue. We summarize our work and
discuss further development.

CHAPTER 2

Technical Background

2.1 Internet Routing

At the core of the technology powering the Internet is the Internet Protocol (IP) [4]. It
enables the delivery of data packets across interconnected computer networks. Two versions
of the Internet Protocol are in common use, version 4 and 6. Each participating host is
identified by an IP address with a length of 32-bit for IPv4 and 128-bit for IPv6. For
simplicity’s sake we will exclusively use IPv4 addresses, written as 4 8-bit integers separated
by dots.

2.1.1 IP Prefixes and Autonomous Systems

An IP prefix describes a set of IP addresses that share a common prefix. As an example,
the IP prefix 192.168.178.0/24 describes all IP addresses that share the first 24 bit of the IP
address 192.168.178.0. In this example that includes all IP addresses from 192.168.178.0 to
192.168.178.255.

The Internet is made up of thousands of computer networks called Autonomous Systems
(AS), identified by their unique 32-bit Autonomous System Number (ASN). An AS is a
connected group of one or more IP prefixes run by one or more network operators which
has a single and clearly defined routing policy [5]. IP prefixes and ASNs are managed by
the Internet Assigned Numbers Authority (IANA) which allocates them to the 5 Regional
Internet Registries (RIRs) listed in Table 2.1. The RIRs then further allocate the prefixes
and ASNs they were given by IANA to National Internet Registries (NIRs), Local Internet
Registries (LIRs), and other organizations such as corporations, academic institutions, and
ISPs [6].

4 2 Technical Background

Registry Region

AFRINIC African

APNIC Asia/Pacific

ARIN North America

LACNIC Latin America and some Caribbean Islands

RIPE NCC Europe, the Middle East, Central Asia

Table 2.1: RIRs and their covered regions

2.1.2 Border Gateway Protocol

The Border Gateway Protocol (BGP) was first published in June 1989 in RFC 1105 titled "A
Border Gateway Protocol" [7]. Its most recent version (BGP-4) was published in 2006 [8].
Each AS connected to the Internet operates at least one BGP speaking router. Routers
of different AS exchange prefix reachability information in the form of BGP Update mes-
sages [8]. An AS can use BGP Update messages to announce to other AS which IP prefixes
it originates. It can also announce IP prefixes that it doesn’t originate, but can reach via
a sequence of other AS, referred to as an AS path. The AS path is an attribute of BGP
Update messages. It is a list of AS that a data packet will pass through in order to reach
a certain prefix. Which prefixes an AS will announce depends on its peers and its routing
policy.

When an AS receives an update which contains a new route, it can send this information
to its other neighbors after prepending itself to the AS path. This propagation of routing
information is essential for reachability between AS that are not immediate neighbors.

The BGP route finding process is based on trust. This means that there is no inherent
mechanism that prevents an AS from sending BGP Update messages containing wrong
information. A malicious AS can exploit this trust by announcing fabricated or altered
BGP Updates. This can cause the traffic flow to be diverted. For this thesis, we classify
these attacks into two categories.

Prefix Hijacks

A prefix hijack is an attack wherein an AS announces to be the origin for a prefix it does
not actually own. This invalid announcement can cause other AS to drop their previous
route to the target prefix in favor of a more preferable route which leads to the attacking
AS. Generally speaking BGP routers will prefer to send packets to the shortest available
route, unless some routing policy is in place that overrides this behavior. Thus a prefix
hijack attack will cause some parts of the Internet to use the bogus route, diverting traffic
away from the legitimate owner AS. The degree of acceptance of the bogus route depends
on multiple factors like the Internet topology hierarchy and routing policies [9, 10] as well
as the type of prefix hijack [11]:

1. Regular prefix hijack, where the attacker claims to be the origin of an existing prefix.
In this case only some parts of the Internet will use the bogus route and some AS will

2.1 Internet Routing 5

BGP Update:
Prefix: 109.45.0.0/16
Origin: AS1
AS Path: AS1

BGP Update:
Prefix: 109.45.0.0/16
Origin: AS1
AS Path: AS1

BGP Update:
Prefix: 109.45.0.0/16
Origin: AS1
AS Path: AS4 AS1

AS1

AS4

AS5AS3

AS2

BGP Update:
Prefix: 109.45.0.0/16
Origin: AS1
AS Path: AS2 AS1

Figure 2.1: BGP Update message propagation: AS1 owns and originates 109.45.0.0/16. AS2 and
AS4 prepend themselves to the AS Path before propagating the Update message.

still prefer the valid route.

2. Subprefix hijack, where the attacker claims to be the origin of a subprefix of an existing
prefix. This will cause most of the Internet to accept the bogus route due to longest
prefix matching.

In both cases of prefix hijacks once some or all of the traffic for the target prefix has been
successfully diverted, the attacker now has multiple options. We classify these according to
the convention in [12]:

Blackholing
The attacker simply drops the hijacked traffic.

Imposture
The attacker responds to the hijacked traffic, imitating the actual destinations re-
sponses. This can be used to obtain sensitive information.

Interception
The attacker becomes a man-in-the-middle by redirecting the traffic back to the victim
AS. This allows recording and manipulating the hijacked traffic before it reaches its
true destination. Note that in order to be able to forward the traffic to the legitimate
destination, the attacker AS requires a valid route to the victim AS. This means that
when performing the prefix hijack, the attacker has to make sure not to pollute the
routing table of the AS needed for a route to the victim.

It is not clear how frequently these attacks occur. One of the most notable incidents oc-
curred in 2008, when Pakistan Telekom (AS17557) started an invalid announcement of
208.65.153.0/24, a subprefix of YouTube’s 208.65.152.0/22. This caused YouTube to be un-

6 2 Technical Background

BGP Update:
Prefix: 109.45.0.0/16
Origin: AS1
AS Path: AS1

BGP Update:
Prefix: 109.45.0.0/16
Origin: AS1
AS Path: AS1

BGP Update:
Prefix: 109.45.0.0/16
Origin: AS1
AS Path: AS4 AS1

AS1

AS4

AS5AS3

AS2

BGP Update:
Prefix: 109.45.0.0/16
Origin: AS1
AS Path: AS2 AS1

AS6

BGP Update:
Prefix: 109.45.0.0/16
Origin: AS6
AS Path: AS6

BGP Update:
Prefix: 109.45.0.0/16
Origin: AS6
AS Path: AS6

Figure 2.2: BGP Prefix Hijack attack: AS6 illegitimately announces 109.45.0.0/16 to AS3 and AS5.
Since the AS Path to AS6 is shorter than to AS1, both AS prefer the bogus route to
AS6.

available for large swaths of the Internet. A similar incident occurred in 2010 when China
Telecom wrongly asserted ownership of a large number of prefixes. Both of these incidents
have been attributed to misconfigurations of BGP routers.

AS path attacks

An AS path attack occurs when a BGP router announces a route with an unauthorized
AS_PATH attribute in order to redirect traffic. The attacker can choose to divert the
traffic away from its destined AS into its own network. Once the traffic has been successfully
diverted to an AS of the attackers choosing, the attacker has the same options as in a prefix
hijack.

2.2 Public Key Infrastructures

A public key infrastructure (PKI) is a set of technologies and procedures that, in its most
basic form, enables entities to communicate with confidentiality, integrity and authen-

2.2 Public Key Infrastructures 7

ticity. Public key infrastructures rely on public key cryptography to achieve these properties.

2.2.1 Public Key Cryptography

In Public Key Cryptography, also referred to as asymmetric cryptography, each commu-
nicating entity generates two keys referred to as public key and private key. These keys
can be used to encrypt a message M into a ciphertext C. The mathematical relationship
between the two keys ensures that the encrypt and decrypt operations are inverse functions
of another and thus means that a message encrypted with the public key can be decrypted
only with the private key and vice versa:

ENCRY PT (M,Kpub) = C (2.1)
DECRY PT (C,Kpriv) = M (2.2)

and

ENCRY PT (M,Kpriv) = C (2.3)
DECRY PT (C,Kpub) = M (2.4)

The private key must be kept safe and only accessible by its owner. The public key is
published. For two communicating entities, here called Alice and Bob, this setup offers

Confidentiality
Both Alice and Bob can be sure that only the other party can decrypt and read their
messages. This is achieved by encrypting the message with the recipients public key.
Once the message has arrived at the other end, they can use their private key to
decrypt it. An adversary eavesdropping can not decrypt the message, providing they
don’t have access to the recipients private key.

Integrity
Both Alice and Bob can be sure that the messages they receive from each other have
not been altered in any way and have legitimately been sent by the other party. This
is achieved by encrypting the message with ones own private key. Once the message
has arrived at the other end, the recipient can use the senders public key to decrypt
it. An adversary cannot fake or alter a message, providing they don’t have access to
the senders private key.

These two properties enable Alice and Bob to communicate securely. However they do not
offer authenticity. In practice to achieve both confidentiality and integrity, the sender
has to encrypt the plaintext message first with the recipients public key resulting in Cconf .
As a second step the sender has to encrypt Cconf using their own private key, resulting
in Cconf+integ. The sender can then safely send Cconf+integ to the other party. Note that
typically the second step involves not encrypting the entirety of Cconf . Instead a hash of
the plaintext message is encrypted, resulting in a digital signature that is then sent along
with Cconf . When communicating with Bob using this scheme, Alice can be sure that
the conversation can neither be overheard nor manipulated by a third party. However,
an adversary can still pose as Bob using their own public and private key. The message
exchange would be perfectly secure, but Alice would have no way of knowing that she is not

8 2 Technical Background

actually talking to Bob. There is no inherent way of verifying the identity of the public key
owner one is communicating with. This is what is meant with a lack of authenticity. As an
example, an adversary could mount a man-in-the-middle attack and imitate a users bank
website. From the victims point of view, the connection to the bank website is perfectly
secure. However, entering their online banking credentials would be fatal. A public key
infrastructure is one way of solving this authentication problem.

2.2.2 Roles in a Public Key Infrastructure

At its core, in order to achieve authenticity a public key infrastructure associates a public
key with its owner. This gives users of public keys assurance that the corresponding private
key is owned by the correct entity. This assurance is obtained by the use of public key
certificates, also known as digital certificates [13]. Public key certificates are digitally signed
data structures that contain some representation of an identity and a corresponding public
key [14, Chapter 3]. In every PKI, there exist at least one self-signed certificate, also
sometimes referred to as a trust anchor. Every entity participating in the PKI implicitly
trust the owners of these self-signed certificates. The trust anchor can be used to issue more
certificates, signing them with the corresponding private key. Using their private keys, the
owners of these certificates can then in turn also issue certificates. Note however that not
all certificates can be used to issue other certificates. An entity holding a certificate capable
of signing other certificates is called a Certificate Authority (CA) and those certificates
are sometimes referred to as CA certificates. CAs can have different methods of verifying
an entities identity before issuing them a certificate. The content and the integrity of
a certificate can be verified by using the CAs public key on the digital signature in the
certificate. In a PKI there also needs to be a revocation mechanism in place that allows
issued certificates to be invalidated. Another element of a PKI is a repository which gives
communicating entities means to locate each others certificates. Some PKIs consist of more
components. For instance, some choose to have a separate Registration Authority (RA) take
care of verifying and accepting requests for certificates [15].

2.2.3 X.509

X.509 is a standard published by the ITU Telecommunication Standardization Sector (ITU-
T). It defines a public key certificate framework to implement PKI-based public-private key
security [16]. In 1995 the Public Key Infrastructure X.509 (PKIX) IETF working group
was established with the goal of adapting the X.509 Standard to the Internet environment
and defining a Internet Public Key Infrastructure (IPKI) [17]. The PKIX working group
assumes a PKI model made up of the following components:

End Entity
A certificate user and/or end user system that is subject of a certificate.

Certificate Authority (CA)

Registration Authority (RA), optional

CRL Issuer
A system that issues Certificate Revocation Lists (CRLs). These are signed

2.2 Public Key Infrastructures 9

User

Repository

Relying Party

1.
Re
qu
es
t c
er
tifi

ca
te

2.
1.

Co
nfi
rm

id
en
tit
y,
iss
ue

ce
rt
ifi
ca
te

3. Send signed message, attach certificate

4. Validate
legitim

acy
of certificate

CA
2.2 Publish certificate

Figure 2.3: PKI user authentication example

objects used to revoke certificates. This can be a Certificate Authority.

Repository
A structure that holds certificates and CRLs and allows End Entities to access
them.

X.509 certificates

The PKIX working group defines the profile for the use of X.509 certificates within Internet
applications [13]. It is designed to grant interoperability and reusability. Certificates are
defined using the ASN.1 syntax standard. The X.509 certificate format consists of these
basic fields:

• Version Number
Defines the X.509 version of the certificate. The current version is 3.

• Serial Number
Number assigned by the issuer. The numbers are unique for each certificate issuer.

• Signature Algorithm ID
Contains the identifier for the algorithm used to sign this certificate.

• Issuer Name
Identifies the CA that issued the certificate. This is normally a hierarchical sequence
of strings.

• Validity Period
Defines the time period in which this certificate is valid. Consists of a not-before date
and a not-after date.

10 2 Technical Background

• Subject Name
Identifies the entity associated with the public key stored in the certificate. If this
entity is a CA, the subject field must match the contents of the issuer field in all
certificates issued by this CA.

• Subject Public Key
Holds the certificates owner public key and identifies the algorithm with which the
public key is used.

In addition to these basic fields, there are are some optional fields:

• Issuer Unique Identifier
Allows two issuers to have the same issuer field value, as long as the issuer unique
identifiers are different.

• Subject Unique Identifier
Allows two subjects to have the same subject field value, as long as the subject unique
identifiers are different.

With the introduction of version 3 of X.509 certificates, the option of adding arbitrary
extension was added. An extension consists of an Object Identifier (OID) and a ASN.1
structure and can only occur once within a certificate. This allows communities to create
extensions that are tailored to carry specialized information that may be unique to the
communities domain. Extensions can be marked critical. This means that if a certificate-
using system encounters a certificate with a critical extension that it does not recognize, it
must reject the certificate. A non-critical unrecognized extension will be ignored.
The PKIX working group has defined some extensions that every conforming CA must
support:

• Basic Constraints
Defines whether the subject of this certificate is a CA or not. Only public keys
contained in CA certificates can be used to verify certificate signatures.

• Key Usage
Defines the purpose of the public key contained in this certificate. As an example, a key
might only be used for key management and shall never be used to verify signatures.

• Authority Key Identifier
This field is used to identify the public key associated with the private key that was
used to sign this certificate. This is used when an issuer has multiple signing keys.

• Subject Key Identifier
This field is used to identify certificates containing a particular public key. If the
subject of this certificate is a CA, all certificates issued must have the CAs Subject
Key Identifier value in their Authority Key Identifier field.

• Certificate Policies
This field defines the set of policies which are adhered to during the certificate creation
process. A certificate policy is defined by the X.509 Recommendation [X.509-00] as

a named set of rules that indicates the applicability of a certificate to a particular
community and/or class of application with common security requirements.

2.2 Public Key Infrastructures 11

In addition to those, there are some optional extensions that are necessary to explain in
order to fully understand the RPKI:

• CRL Distribution Points
This field defines how entities can obtain CRL information on this certificate.

• Authority Information Access
This field defines the location and access methods for services and information about
the issuer of this certificate.

• Subject Information Access
This field defines the location and access methods for services and information about
the subject of this certificate.

Certificate Revocation

In some circumstances a CA may wish to invalidate a certificate before the end of its validity
period. This may be for example because the corresponding private key was compromised
or the subject name changed. In the X.509 standard, certificates are revoked using a cer-
tificate revocation list (CRL). CRLs are signed objects that are periodically published by
the CA. They contain a list of the serial numbers of unexpired revoked certificates and their
revocation time. The CRL fields defined by the IETF are:

• Signature Algorithm ID
Contains the identifier for the algorithm used to sign this CRL.

• Issuer Name
This field identifies the entity that issued this CRL.

• This Update
Indicates the time when this CRL was issued.

• Next Update
Indicates the time when the next CRL will be issued at the latest.

• Revoked Certificates
This field lists revoked certificates by their serial number and revocation date. It is
optional and is not present if there are no revoked certificates.

Analogous to certificates, communities have the option the define private CRL extensions.

Certificate Validation

The goal of certificate validation is to verify the binding of the subject of the certificate
to the public key contained in the certificate. A certificate Cn is considered to be issued
by certificate Cn−1 if the content of Cn’s issuer field matches the content of Cn−1’s subject
field. In order for a certificate Cn issued by a certificate Cn−1 to be considered valid, these
two conditions need to be met:

1. Basic certificate processing succeeds. This involves these steps:

a) Verify the signature on Cn with the algorithm indicated in the signature algorithm

12 2 Technical Background

ID field of Cn using the public key found in Cn−1.

b) Verify that the validity period of Cn includes the current time.

c) Verify that Cn has not been revoked at the current time.

d) Verify that the contents of the issuer field in Cn match the subject field in Cn−1.

2. There is a path {C1, C2, ...Cn−1, Cn} of certificates in which for all pairs (Ci−1, Ci)
basic certificate processing succeeds. At the start of the path lies a trusted certificate,
also called a trust anchor.

Note that communities can augment the basic algorithm and implement stricter checks that
may be more appropriate for their domain.

C1, trusted
Subject
Issuer
Public Key
Signature

C2

Subject
Issuer
Public Key
Signature

C3

Subject
Issuer
Public Key
Signature

C3

Subject
Issuer
Public Key
Signature

C3

Subject
Issuer
Public Key
Signature

Cn−1

Subject
Issuer
Public Key
Signature

Cn

Subject
Issuer
Public Key
Signature

Equal

Verify Signature

Figure 2.4: Simplified illustration of Certificate Path Validation

2.3 Resource Public Key Infrastructure

The RPKIs goal is to bind Internet Number Resources, defined as Autonomous System
Numbers (ASNs) and IP addresses, to their legitimate owner. It is a X.509 PKI whose
structure mirrors the allocation of Internet Number Resources by IANA. The RPKI also
allows a prefix owner to authorize one or more AS to announce that prefix [18]. That
authorization mechanism serves to detect and prevent prefix hijack attacks discussed in
2.1.2, however it offers no protection against AS path attacks. In order to secure the AS
path attribute, work has begun on a BGP extension called BGPSEC [19]. The extension
defines a new BGP Update message format, which contains the BGPsec_path attribute
instead of the as_path attribute of regular update messages. The BGPsec_path attribute
carries a digital signature for every AS that propagated the update message. This allows
BGP speakers to validate an updates message AS path using the public keys of the AS
seen in the path. BGPsec will use the RPKI structure to bind ASN to public keys. The
corresponding private keys will then be used by BGP speakers to sign the path attribute.

2.3 Resource Public Key Infrastructure 13

2.3.1 Resource Certificates

The certificates used in the RPKI are called Resource Certificates. In this context a resource
refers to an IP address or ASN. Resource certificates have, in addition to all the basic fields
and extensions of X.509 certificates presented in 2.2.3, two critical extensions:

• IP Resources
This field contains a set of IP addresses. This extension may also specify whether
certain IPs are to be inherited from the issuing certificate.

• AS Resources
This field contains a set of ASN. This extension may also specify whether certain ASN
are to be inherited from the issuing certificate.

In a well formed resource certificate at least one of these extensions needs to be present.
A certificates IP and AS resources must always be a subset of the resources held by the
issuing certificate. This is because IP address space and ASN are allocated in a hierarchical
manner.

In contrast to a normal PKI, the subject names in the certificates do not attest the identity
of the public key owner. This is because the purpose of the RPKI is not to bind a public
key to an identity, but to bind it to a set of resources.

For repository access the RPKI uses the open source file transfer protocol rsync [20]. There
are three important fields containing rsync URIs in a resource certificate [21] [22], shown in
Listing 2.1. These fields were presented as part of the X.509 standard already, but defined
in a rather general and vague way.

• CRL Distribution Points (Line 44-47)
The location of the CRL associated with the issuer of this certificate. In other words,
the location of the CRL which could be used to revoke this certificate. This field must
be omitted in self signed resource certificates.

• Subject Information Access (Line 38 - 41)
The location of the directories which contains all signed objects published by this
certificate authority. These directories are also referred to as publishing points.

• Authority Information Access (Line 54 - 56)
The location of the directory in which the issuing certificate was published. This field
must be omitted in self signed resource certificates.

1 C e r t i f i c a t e :
2 Data :
3 Vers ion : 3 (0 x2)
4 S e r i a l Number :
5 f2 : cc : d6 : 8 e : 1 0 : 1 1 : 9 1 : 5 9 : 7 d : c6 : 0 7 : 5 5 : 7 3 : a6 : 1 c : a0 : 0 3 : cc : cc
6 S ignature Algorithm : sha256WithRSAEncryption
7 I s s u e r : CN=2a246947−2d62−4a6c−ba05−87187 f0099b2
8 Va l i d i t y
9 Not Before : Dec 10 15 : 45 : 00 2013 GMT

10 Not After : Dec 10 15 : 45 : 00 2023 GMT
11 Subject : CN=f0421b26 −017d−4996−83ed−00d627f7 fd53
12 Subject Publ ic Key In fo :
13 Publ ic Key Algorithm : rsaEncrypt ion
14 Public−Key : (2048 b i t)
15 Modulus :
16 00 : b5 : f a : ee : 1 d : 5 3 : ae : 6 5 : 1 4 : 8 8 : 0 3 : 0 7 : f a : 4 7 : a f :
17 8c : 0 2 : 6 4 : 4 7 : 6 4 : 1 7 : 2 9 : 8 d : 7 1 : 8 b : 9 3 : a0 : 9 d : 4 e : 2 b :
18 ee : b7 : 2 c : 1 a : c1 : 4 d : 5 1 : df : 0 e : 8 0 : 8 5 : dc : 0 1 : d5 : 8 2 :
19 1d : 6 5 : 4 b : ab : c f : 3 e : 2 0 : cc : 1 9 : 5 7 : 3 4 : a7 : 9 1 : 8 8 : 2 5 :
20 dd : e9 : 1 a : 9 7 : e1 : 5 7 : 9 0 : b1 : 6 9 : a f : 8 e : e8 : b9 : 8 b : 2 f :
21 8 f : c f : 6 0 : d3 : 1 8 : 1 c : c4 : 9 c : 5 b : e1 : f 2 : 1 1 : 6 c : f 5 : bf :
22 2 f : 5 d : 6 b : 2 f : 7 5 : da : 7 e : 5 0 : 6 5 : f 8 : 4 a : f 1 : b0 : 4 b : e f :
23 f9 : 0 2 : 4 d : e7 : e3 : b6 : 8 c : 2 d : fd : 6 1 : 1 c : 3 f : d1 : f 9 : 6 5 :

14 2 Technical Background

24 2d : 0 f : 1 5 : 2 8 : 2 3 : 9 9 : 5 5 : 8 c : 8 0 : 8 f : 6 f : 3 1 : 8 7 : 8 a : 1 3 :
25 2e : b7 : 8 1 : 8 4 : 1 b : 4 3 : 9 c : f 1 : c8 : 0 f : a5 : dd : 8 8 : 4 b : 2 2 :
26 79 : 5 5 : aa : bc : 7 0 : 2 2 : 7 9 : 7 9 : 5 3 : 8 1 : 3 e : 2 b : f 7 : 8 9 : 9 d :
27 f0 : 9 2 : 6 0 : ca : 5 1 : 8 3 : 5 d : 9 2 : be : 9 d : 6 e : 1 f : 4 4 : 7 d : d2 :
28 7d : f7 : 3 e : 4 1 : f 4 : e1 : 2 1 : e8 : e0 : d9 : d3 : 1 5 : cb : e8 : 2 e :
29 9 f : b8 : 5 6 : 8 3 : 1 7 : 8 2 : b6 : ad : 9 a : 7 5 : 8 8 : 5 c : ee : a f : 2 3 :
30 3b : 4 d : 7 a : 5 3 : a1 : 2 d : 8 5 : c7 : 6 b : 0 4 : 0 7 : 0 4 : 1 4 : 2 f : 7 c :
31 24 : e0 : 8 d : 8 c : b6 : 8 d : b0 : 6 e : d8 : 7 1 : ca : 3 6 : f 5 : eb : 5 9 :
32 91 : 0 8 : a3 : 7 d : d5 : 7 2 : 2 8 : 8 2 : ce : a5 : b7 : 0 9 : cc : 2 9 : 0 c :
33 1c : cd
34 Exponent : 65537 (0 x10001)
35 X509v3 ex t en s i on s :
36 X509v3 Subject Key I d e n t i f i e r :
37 FA: 1 8 : B4 : F7 : 9A: 0 6 : E3 :B0 : 1 1 : 9 9 : 6B:CC: 2 3 : 1 9 : 7A: 0 4 : B0 : 3 9 : 3 6 :A3
38 Subject In format ion Access :
39 CA Repos itory − URI : rsync :// rpk i . a r in . net / r epo s i t o r y / ar in−rpki−ta /5 e4a23ea−

e80a−403e−b08c−2171da2157d3/2a246947−2d62−4a6c−ba05−87187 f0099b2 / f0421b26
−017d−4996−83ed−00d627f7 fd53 /

40 1 . 3 . 6 . 1 . 5 . 5 . 7 . 4 8 . 1 0 − URI : rsync :// rpk i . a r in . net / r epo s i t o r y / ar in−rpki−ta /5
e4a23ea−e80a−403e−b08c−2171da2157d3/2a246947−2d62−4a6c−ba05−87187 f0099b2 /
f0421b26 −017d−4996−83ed−00d627f7 fd53 / f0421b26 −017d−4996−83ed−00d627f7 fd53 .
mft

41
42 X509v3 Basic Const ra int s : c r i t i c a l
43 CA:TRUE
44 X509v3 CRL Di s t r i bu t i on Points :
45
46 Ful l Name :
47 URI : rsync :// rpk i . a r in . net / r epo s i t o r y / ar in−rpki−ta /5 e4a23ea−e80a−403e−b08c

−2171da2157d3/2a246947−2d62−4a6c−ba05−87187 f0099b2 /2a246947−2d62−4a6c−
ba05−87187 f0099b2 . c r l

48
49 X509v3 Authority Key I d e n t i f i e r :
50 keyid :C8 : 9D:5A: 4 5 : 6 4 : 1A:6B:D2 : 2 3 :FA:CA: 9 6 : 8 2 : 3 0 : 8E:D6 :D2 : 7 6 :AD:7C
51
52 X509v3 Key Usage : c r i t i c a l
53 C e r t i f i c a t e Sign , CRL Sign
54 Authority Informat ion Access :
55 CA I s s u e r s − URI : rsync :// rpk i . a r in . net / r epo s i t o r y / ar in−rpki−ta /5 e4a23ea−e80a

−403e−b08c−2171da2157d3/2a246947−2d62−4a6c−ba05−87187 f0099b2 . ce r
56
57 sbgp−ipAddrBlock : c r i t i c a l
58 IPv4 :
59 199 .66 . 236 . 0/22
60
61 sbgp−autonomousSysNum : c r i t i c a l
62 Autonomous System Numbers :
63 29834
64
65 X509v3 C e r t i f i c a t e P o l i c i e s : c r i t i c a l
66 Po l i cy : 1 . 3 . 6 . 1 . 5 . 5 . 7 . 1 4 . 2
67 CPS: https ://www. a r in . net / r e s ou r c e s / rpk i / cps . html
68
69 Signature Algorithm : sha256WithRSAEncryption
70 7b : a2 : 8 4 : c7 : 1 a : 6 2 : 6 9 : 9 1 : f 1 : 5 c : 4 4 : 1 2 : ec : 1 2 : f 0 : 5 3 : b1 : 0 d :
71 f2 : 9 a : 6 2 : 9 7 : bd : d3 : 8 0 : e2 : 9 6 : 1 3 : a3 : df : 6 8 : 8 e : 7 f : 3 f : c4 : 6 e :
72 b3 : 9 9 : da : d6 : 8 3 : 8 9 : e8 : 3 7 : 3 e : 2 1 : 1 a : b9 : 0 a : db : e5 : 7 f : d0 : 7 b :
73 42 : c3 : 2 b : 0 f : 8 5 : 6 8 : a0 : 4 d : 0 e : 2 2 : b3 : eb : 8 5 : 2 d : b5 : 2 e : b2 : 5 5 :
74 3c : f 0 : 5 e : 4 1 : 0 0 : 6 b : 4 1 : d8 : eb : f 1 : 9 1 : 9 7 : 6 b : 2 7 : 7 2 : ba : 0 5 : 5 9 :
75 0c : db : 0 0 : ae : b7 : 9 f : c8 : e6 : 1 d : 2 b : 6 d : 6 d : 6 5 : 1 4 : c0 : 3 7 : aa : f f :
76 6a : a7 : c1 : 1 6 : 4 f : ce : 9 3 : 9 d : 4 b : d0 : d8 : ac : 8 0 : 1 7 : 2 7 : d4 : 8 5 : 4 2 :
77 5e : 3 d : 0 3 : 5 7 : 9 6 : 6 c : 3 8 : a7 : 1 e : b8 : 5 5 : c1 : 6 f : 0 1 : 1 c : 7 d : 8 5 : 4 6 :
78 10 : d5 : 4 1 : 8 8 : 6 9 : 3 a : a8 : 3 2 : 0 0 : 5 0 : c6 : ec : 9 1 : 7 b : 3 6 : ba : a1 : d8 :
79 0 0 : 8 7 : 4 2 : 6 6 : 0 6 : 4 2 : d2 : d4 : 9 5 : b2 : 2 c : 1 d : 5 b : 3 4 : 9 0 : f 8 : cc : c6 :
80 a3 : 6 1 : 6 7 : 3 2 : 1 5 : ba : 0 6 : b9 : 5 4 : d4 : cd : 5 c : 8 8 : 1 8 : df : 4 b : e3 : f 0 :
81 ba : 7 a : c8 : d0 : 2 8 : 8 9 : b6 : ba : 8 5 : eb : c4 : cc : 7 9 : 9 6 : 0 c : 1 b : f f : 3 1 :
82 a8 : 2 d : 1 6 : 9 d : a1 : 0 e : 0 0 : 9 5 : ee : 5 5 : ed : 1 d : d9 : 3 b : 1 b : 5 6 : 4 d : 2 f :
83 b4 : 5 5 : de : 0 a : e f : f 8 : 8 d : a6 : da : 9 f : 4 d : 7 3 : 8 5 : 3 9 : 9 9 : ec : ac : 7 a :
84 51 : a0 : 2 b :07

Listing 2.1: Example Resource Certificate

These fields can be used to easily build up a path of certificates C1, C2, ..., Cn for validation
and access CRL information, as described in section 2.2.3. Certificate validation in the
RPKI involves one additional condition to be met during basic certificate processing:

e) Verify that the contents of the resource fields in Cn are fully encompassed by the
resources held by Cn−1

This step enforces the hierarchical structure of resource ownership. Each of the five RIRs
holds a self signed resource certificate used as a trust anchor in the global RPKI. The
resource fields of a RIR trust anchor contain all IP prefixes and ASNs that were allocated

2.3 Resource Public Key Infrastructure 15

to that RIR by IANA, or have been transferred from another RIR. Hence a trust anchor
can only be used to validate certificates which hold subsets of its resources. In practice this
means in order to validate a certificate holding a resource allocated by RIPE, one needs to
use the RIPE trust anchor certificate.

In order for relying parties to be able to access a trust anchor, RIRs publish a Trust Anchor
Locator (TAL). A TAL is formatted data that can be used to retrieve and verify the au-
thenticity of a trust anchor [23]. It contains the URI of the trust anchor as well as its public
key. This setup gives RIRs operational flexibility. However, since a TAL does not offer any
assurances about the identity of the referenced trust anchors owner, relying parties should
have great confidence in the issuers of the trust anchor they are using [23].

Resource certificates establish a binding between a set of resources and a public key. How-
ever, this by itself is not sufficient information for a BGP router to recognize illegitimate
announcements with. To allow prefix owners to authorize any AS of their choosing to an-
nounce their prefixes, additional functionality is needed. This comes in the form of RPKI
signed objects called Route Origin Authorizations (ROAs).

2.3.2 RPKI Signed Objects

In this context, a signed object refers to a digitally signed, non-X.509 data structure that
conforms to the Signed Object Template for RPKI [24] and uses the Cryptographic Message
Syntax (CMS) as its standard encapsulation format. The signed object template is designed
to be extendable.

One of the template fields, labeled certificate, is of particular interest because it pertains to
the validation and revocation of RPKI signed objects. It contains the resource certificate
that was used to sign the RPKI signed object. This certificate is called a End-Entity (EE)
certificate. Unlike CA certificates, an EE resource certificate can not be used to issue other
resource certificates. Its exclusive purpose is to sign and verify a single signed object,
this means there is a one-to-one correspondence between end-entity certificates and signed
objects [18]. This setup allows the revocation of signed objects by revoking the end-entity
certificate that was used to sign it.

2.3.3 Route Origin Authorization

A ROA is a RPKI signed object that a prefix owner can issue in order to authorize an AS
to originate a set of his prefixes [25]. In addition to all fields defined in the signed object
template, a ROA also consists of these extension fields:

• AS ID
Contains the ASN of the system which is given authorization.

• IP address blocks
Contains the IP address blocks that this ASN is being authorized to originate. In this
context an IP address block is an IP prefix coupled with a maximum prefix length.
The maximum prefix length specifies how long the most specific prefix that the ASN
is authorized to originate is allowed to be.

16 2 Technical Background

RPKI Signed Object

CA Resource Certificate
Subject
Issuer
Public Key
Signature

certificate version

digestAlgorithms

signerInfo

signature

...

...

EE Resource Certificate
Subject
Issuer
Public Key
Signature

Equal

Verify Signature

Figure 2.5: RPKI Signed Object structure: The RPKI Signed Object can be invalidated by revoking
its EE resource certificate.

An example ROA might contain the following:

Prefix 167.120.0.0/22

Max. Length 24

ASN 1678

This means the AS with ASN 1678 is allowed to originate the prefix 167.120.0.0/22 and any
of its /23 and /24 subprefixes, but not /25 or higher.

ROA validation

These conditions need to be met in order for a ROA to be considered valid:

1. The ROA needs to be a well formed RPKI signed object, i.e. conform to the RPKI
signed object template.

2. The EE resource certificate contained within the ROA needs to be valid.

3. Each of the IP prefixes in the ROA needs to be contained within the IP resources
extension of the EE certificate.

The information contained within ROAs is what BGP routers within the RPKI will base
their routing decisions on. However, it is not feasible for a router to download all published
ROAs periodically and store them as signed objects.

2.3.4 Deployment

The RPKI needs to offer routers a simple and reliable mechanism to access the information
within ROAs. Since downloading, validating and storing the resource certificates and ROAs
is not feasible for BGP routers, this function is delegated to Local Caches. Overall the RPKI
deployment scheme is three-layered and consists of these components [26]:

2.3 Resource Public Key Infrastructure 17

The Global RPKI
Consists of the entirety of all RPKI repositories. Those can either be hosted, which
means they are managed by a RIR, or organizations like LIRs or ISP can choose to
manage their own RPKI. This is referred to as delegated. In this context a repository
means the set of all objects, such as resource certificates, CRLs and ROAs, that are
currently published by an organization.

Local Caches
A periodically refreshed cache of the validated global RPKI. Also referred to as Relying
Parties (RPs)

Routers
BGP routers that fetch data from local caches. Note that a router or other relying
parties fetching data from a local cache needs to have a trusted relationship with that
cache.

Local Caches

Cache CacheCacheCache Cache

Routers

R R R R R R R R R

R R R R R R R R R

Routers

rsync protocol

rpki-rtr protocol

Global RPKI

RIR RIR RIR RIR RIR

hosted

ISP

NIR

LIRNIR

LIR ISP

delegated

Figure 2.6: RPKI deployment structure

The 3-layered setup as presented here offers a simple and reliable mechanism for routers
to access the RPKI information they need. However, an adversary can still attack the
deployment structure itself in an attempt to manipulate BGP router behavior. Since all
objects contained in the global RPKI are digitally signed, any modification would be easily
detectable. But the attacker could still remove objects from a repository or replace them
with a "stale" version. "Stale" in this context meaning an older but still valid version of
the object. To defend against such attacks, publishers make use of signed objects called
manifests [27].

18 2 Technical Background

Manifests

A manifest in the context of RPKI is a signed object which, like ROAs, conforms to the
template for RPKI signed objects [24]. This means it is signed by the end-entity certificate
that it contains and can thus be revoked by revoking that certificate. Similar to CRLs,
manifests are issued periodically and contain the date of the next expected update. A
manifest is issued by a CA and contains a list of all objects that CA has published at
a particular publishing point (CAs may have multiple publishing points and consequently
multiple manifests). The list contains file name and hash value for each published object
such as resource certificates, ROAs, and CRLs. This allows a relying party to detect whether
an object is stale (wrong hash) or missing (not in manifest).

CHAPTER 3

System Design

This chapter deals with the design of our software system: Monitoring and Inspection of
RPKI Objects (MIRO). In the first section, we present the requirements which we have
chosen to seperate into the functional and non-functional categories. We also discuss archi-
tectural decisions, derived from the requirements.

Sections 3.2 and 3.3 deal with the components of the system in more detail.

3.1 Requirements

The goal of the MIRO software system is to allow users to monitor and inspect RPKI objects.
In this context, RPKI objects refer to Resource Certificates, Route Origin Authorizations
(ROAs), Certificate Revocation Lists (CRLs), and Manifests (MFTs) found in RPKI reposi-
tories. The separate types of RPKI objects are logically linked to each other in the following
way:

The resource certificates contain three fields that give information about the location of
related RPKI objects:

1. Subject Information Access: This field contains the location of the resource certificate’s
publishing points. These publishing points are directories that must contain all objects
issued by this resource certificate.

2. Authority Information Access: This field contains the location of the resource certifi-
cate that issued this resource certificate.

3. CRL Distribution Points: This field contains the location of the CRLs which can be
used to revoke this resource certificate.

All locations are given in the URI format [28]. In the context of MIRO, we call the collection
of RPKI objects that can be “reached” via the URIs contained in those fields starting at
a given resource certificate a logical repository. A logical repository for a given resource
certificate includes all RPKI objects issued by that certificate as well as all objects issued by
those objects. The three fields presented above can be used to build up a complete logical
repository from any given resource certificate. In the case of a self-signed certificate (trust

20 3 System Design

anchor), one can obtain all issued objects by following the URIs in the Subject Information
Access field. This process can then be repeated recursively on any resource certificates found
in the publishing points to obtain the complete logical repository. Given a non self-signed
resource certificate, this process can simultaneously be used in the “reverse direction” by
following the URI in the Authority Information Access field.

CRL of R. Certificate 0

R. Certificate 1 R. Certificate 2

R. Certificate 0

Publishing Point of 0

CRL of R. Certificate 1

R. Certificate 3 R. Certificate 4

Publishing Point of 1

CRL of R. Certificate 2

R. Certificate 5 R. Certificate 6

Publishing Point of 2

CRL Distribution Point URI

Subject Information Access URI

Authority Information Access URI

Figure 3.1: Logical structure of a RPKI repository: Resource certificate 0 is the trust anchor

3.1.1 High-Level Functional Requirements

The core functional requirement of MIRO is offering users an intuitive way to inspect RPKI
objects , grouped by for example logical repositories, and browse through them using a
graphical user interface (GUI). The GUI should mimic the tree structure of the logical
repositories and display all information relevant to a given RPKI object including validation
results. It should also offer filter functionality, which gives the user the opportunity to search
for specific RPKI objects by field content.

The primary inputs for the system are self-signed trusted resource certificates, from here on
called trust anchors. Starting from a trust anchor, its logical repository must be downloaded

3.2 Validator 21

and each RPKI object validated before it is passed to the GUI. The process of downloading,
validating, and displaying a logical repository must be dynamically triggerable by other
processes. This allows for periodic, but also on-demand, updating of repositories. The
functionality to update repositories is very important since all RPKI objects validity is time
dependent. The system should also offer a way to dynamically and seamlessly add or remove
repositories during run-time. It should also allow for distributed monitoring to be able to
detect inconsistencies in the global RPKI.

In addition to the above, basic statistics about validated repositories should be gathered,
archived and displayed to the user.

3.1.2 Non-Functional Requirements

The system should be a web application to make it easily accessible to users. Installation,
deployment, and configuration must be simple in order to allow owners of delegated and
private RPKIs to use it to monitor their own setups. It should be robust and deal with invalid
inputs and unforeseen failures while downloading, parsing, validating, and displaying RPKI
objects.

In anticipation of the growth of the global RPKI, the system needs to be scalable and offer
good performance in downloading, validating, and displaying substantial quantities of data.

It is possible that in the future more types of RPKI objects will be added such as BGPSEC
router certificates used for AS path validation [29]. Thus the design of the system must be
able to accommodate these additions using loosely coupled, modular components.

3.1.3 Architecture

From the requirements of the system emerges a clear distinction of tasks. One group of tasks
deals with collecting, parsing, and validation of RPKI objects, another with displaying this
data to the user. These task can be classified within a Model-View-Controller pattern:

Model: Logical repositories and their content. This also includes basic statistics about the
repositories.

Controller: Downloading, parsing, validating, and updating the model. This also includes
gathering and archiving basic repository statistics.

View: Displaying the model to the user.

We decided to split the system in two separate components. Firstly a Validator which
corresponds to the controller in the MVC pattern. It also includes the definition of the
model. Secondly a Browser, which represents the view part of the MVC pattern and displays
the model passed to it by the Validator.

3.2 Validator

The Validator component needs to handle the tasks of downloading, parsing, validating,
gathering statistics about, and exporting logical repositories. We call this sequence of task

22 3 System Design

our processing chain. As its input the Validator takes trust anchors, its output is the
validated repository and basic statistics about its content. This section presents each step
in the processing chain.

3.2.1 Downloading and Parsing

Downloading and parsing of RPKI objects must occur intermittently. This is because the
publishing points for a certificate are stored in the subject information access field of the
certificate. Because of this in order to download the objects issued by a given certificate,
one needs to parse this field first.

The process for a repository starts with parsing the trust anchor and fetching all directories
found in its subject information access field. Note that these directories may also be used
as publishing points by other resource certificates. Hence, one cannot assume that every
object in those directories was issued by the trust anchor.

For each CA resource certificate issued by the trust anchor found in the downloaded pub-
lishing points, the process is recursively repeated. The following pseudo code shows an
algorithm that, when called with a trust anchor, downloads the complete logical repository:

1 de f f e t ch I s s u ed (re sourceCer t) :
2 f o r pubPoint in re sourceCer t . sub j ec t In fo rmat ionAcce s s :
3 d i r = downloadDir (pubPoint)
4 f o r obj in d i r :
5 i f obj . i s s u e r == resourceCer t . sub j e c t :
6 addToRepository (obj)
7 i f obj . type == CA_ResourceCerti f icate :
8 f e t ch I s s u ed (obj)

Listing 3.1: Fetch algorithm for a logical repository

Being able to fetch an entire repository only using the trust anchor as the starting point
is an elegant and simple solution. However, the efficiency of this method depends on the
structure of the logical repository. Consider a repository whose certificates publishing points
are arranged hierarchically. This means the publishing points of a certificate would contain
all of its issued certificates publishing points. As illustrated in Figure 3.2, this repository
structure will be downloaded fully by the first call to fetchIssued(). Further calls could safely
skip the downloading of publication points if we add a check that indicates if the publishing
point was already downloaded previously.

It is also possible to structure a repository in a way that forces us to download more than
just the publishing points of the trust anchor. In fact, the worst case would be a repository
structure whose publishing points are arranged in a completely non-hierarchical manner with
no publishing point containing any other publishing points, illustrated in Figure 3.3. This
would cause every publishing point to be downloaded separately causing massive overhead as
for each point a connection has to be built up and closed down. The structure of a repository
can make an enormous difference. In October 2011, RIPE changed their repository structure
to be completely hierarchical. The effects on the number of connections needed to fetch the
repository can be seen in Figure 3.4.

3.2 Validator 23

Trust Anchor

rpki.example.com/repository/

rpki.example.com/repository/1 rpki.example.com/repository/2

R. Certificate 1 R. Certificate 2

...

Subject Information Access URI

Figure 3.2: Hierarchical repository structure: This repository can be downloaded completely by
fetching the trust anchors publishing point

Trust Anchor

rpki.example.com/repository/

R. Certificate 1 R. Certificate 2

rpki.example.com/1

... ...

rpki.example.com/2

... ...

Subject Information Access URI

Figure 3.3: Flat repository structure: All three publishing points need to be downloaded separately

Prefetching

In order to minimize the amount of separate rsync calls, we make use of so called Prefetching.
Prefetching means that before doing anything else we download as many publishing points
as possible in bulk, which otherwise would have been downloaded using many individual
calls. This saves us the overhead cost of opening and closing a connection for each call. As
an example, consider that we are downloading a non-hierarchical repository and find these
publishing point URIs:

Certificate Publishing point

certificate1 rsync://rpki.example.com/repository/1/1/

certificate2 rsync://rpki.example.com/repository/1/2

certificate3 rsync://rpki.example.com/repository/1/3

All of these publishing points could be prefetched by downloading rsync://rpki.example.
com/repository/1. This of course requires prior knowledge of the location of those pub-

rsync://rpki.example.com/repository/1
rsync://rpki.example.com/repository/1

24 3 System Design

Figure 3.4: RIPE goes hierarchical: Connections needed to download the complete RIPE repository
dropped dramatically once a hierarchical repository structure was adapted [30]

lishing points. To get this information we can run the download algorithm one time without
prefetching and log the location of all downloaded publishing points. From that list of
URIs we can derive a minimal set of Prefetch-URIs that contains the longest common pre-
fixes of the URIs in the list. For table 3.1, the Prefetch-URI set would consist of only
rsync://rpki.example.com/repository/1. Note that this method will download all data
contained within that directory. This can be a problem if it contains data that is not
part of the RPKI, leading to unnecessary downloads. This is a trade of between avoiding
unnecessary rsync calls and possibly downloading unneeded data.

Prefetching is a crucial problem to solve since without it a huge, flat repository could cause
thousands of individual rsync calls resulting in hours of overhead making updating a very
tedious process.

3.2.2 Data Model

To represent the data we decided to adopt a model which mirrors the hierarchical relation-
ships between the RPKI objects. As seen in Figure 3.5, in our model a CertificateObject
holds references to all objects it issued: manifest, crl, and its ResourceHoldingObject chil-
dren. It also holds a reference to its parent object. It is important to note that in our
model, the CRL a CertificateObject is referencing is not the CRL pointed at by the cer-
tificates “CRL distribution points” field. Rather the referenced CRL is the one that was
issued by this certificate and pertains to the revocation status of other objects issued by the

rsync://rpki.example.com/repository/1

3.2 Validator 25

certificate.

At the top of the CertificateObject hierarchy is the trust anchor. In turn, it is contained
by the ResourceCertificateTree class which also holds the name and download timestamp.
Adapting the hierarchical nature of RPKI objects into our data model makes it easy for a
front end to present it in a intuitive manner. It is also very convenient for validation, since
a CertificateObject references all objects needed for the validation and the validation of its
issued MFT, CRL and ROAs.

From here on we will call all objects issued by a certificate C the children of C. In the
case of RPKI signed objects like ROAs and MFTs, which are technically issued by the EE
certificate they contain, we will still refer to them as children of the certificate that issued
the EE certificate.

Figure 3.5: Data model in UML: Associations between classes have been omitted for clarity

3.2.3 Validation

Validation occurs once the complete repository has been downloaded and parsed. We iterate
over the data in a top-down fashion, starting with the trust anchor. After the trust anchor
itself is validated by making sure it conforms to [13] and [22], its MFT, CRL, and any
children certificates are validated. For the validation of a non self-issued certificate it is
necessary to obtain the CRL and MFT of the parent certificate, as mentioned in sections
2.2 and 2.3. Our data model makes this easy, since every non self-issued certificate contains

26 3 System Design

a reference to its parent certificate, which in turn contains a reference to its MFT and CRL.

For a given RPKI object, the validation can yield three different results. Note that these
categories are not part of the official RPKI specification and are used by us in the context
of the MIRO system:

1. Valid : The object conforms fully to the RFC specifications. In the case of resource
certificates and CRLs, there must be a path of valid resource certificates starting from
the issuing certificate to the trust anchor. In case of a RPKI signed object like a ROA
or MFT, this path starts with the contained EE certificate and also ends at the trust
anchor.

2. Warning : There exists a path of valid certificate as described above and this object
is treated as valid. However, some inconsistencies with the specification exist such as
a missing attribute, using wrong ASN.1 types, or the object is stale (still considered
valid, but a newer version of it has been published). The warning status is used for
objects that do not conform to the specifications completely, but whose diversions
from it are minor and not problematic from a security point of view.

3. Invalid : There are multiple reasons why an object is considered to be invalid. If there
exist no path of valid certificates to the trust anchor as described above, it is invalid.
Likewise, if the signature on the object can not be verified using its supposed parent
certificate. An expired object will also be considered invalid. In the case of resource
certificates and ROAs, the resource extensions can be a cause for invalidity if the
object does not contain a subset of the resources of its parent.

A top-down validation algorithm could look like this:
1 de f va l i da t eRepos i t o ry (trustAnchor) :
2 workingQueue . add (trustAnchor)
3 whi le (workingQueue . notEmpty) :
4 c e r t i f i c a t e = workingQueue . pop ()
5 va l i da t eMan i f e s t (c e r t i f i c a t e . mani fes t)
6 validateCRL (c e r t i f i c a t e .CRL)
7 v a l i d a t eC e r t i f i c a t e s (c e r t i f i c a t e . i s s u e dC e r t i f i c a t e s)
8 validateROAs (c e r t i f i c a t e . issuedROAs)
9 workingQueue . addAll (c e r t i f i c a t e . i s s u e dC e r t i f i c a t e s)

Note that top-down validation is only one way of validating a repository. However, all valida-
tion algorithm must perform the same amount of validation operations. Therefore choosing
an appropriate algorithm depends on the preferred way of iterating over the repository. In
our case, we chose a top-down validation algorithm because it is simple, intuitive, and uses
the hierarchical nature of our data model.

After a repository has been validated completely, we can gather statistics about it.

3.2.4 Statistics

Since MIROs primary purpose is inspection of RPKI objects and there are already a number
of sources [31, 32, 33, 34] publishing detailed statistics about the global RPKI we decided
to only gather some basic figures:

1. Total amount of objects

2. Total amount of objects with Valid validation status.

3. Total amount of objects with Warning validation status.

3.3 Browser 27

4. Total amount of objects with Invalid validation status.

For each of these numbers we also gather the amount of each object type, object type being
certificate, ROA, MFT, or CRL. All causes for Warning and Invalid are logged and counted
as well. In addition to those, we also break the objects down by host to see how distributed
a repository is, which can lower the efficiency of prefetching. These numbers also allow us
to verify that the Validator is working correctly, since we can compare them to statistics
gathered by similar systems.

3.2.5 Export

Once we have the validated repository and statistics as Java objects, the last step in our
processing chain is exporting. We have two distinct objects to export:

1. ResourceCertificateTree: Contains the validated trust anchor from which the rest of
the validated repository is referenced. Also contains the timestamp from when the
download of the repository started. It further holds some descriptive name for the
repository.

2. RPKIRepositoryStats: Contains the statistics gathered about a repository. Also con-
tains a descriptive name, download timestamp, and the filename of the trust anchor
of the repository.

The information contained in both of these objects needs to be passed to the Browser
component. We follow a modular approach, and define an interface RepositoryExporter
with export methods for each object. This makes it easy to implement exporting using a
specific format like JSON, CVS or exporting to a database.

3.3 Browser

The task of the Browser component is to display the data exported by the Validator and
allow users to explore it. Since the Validator outputs two different types of data we chose
to separate the front end into two parts that we present in this section. The RPKI Browser
part displays the validated repository, the Statistics part displays visualizations of the stats.
In addition to those two, we present the Model Updater as the third part of the Browser
component. It offers the functionality to obtain current RPKI data from the Validator.

3.3.1 RPKI Browser

The RPKI Browser is the graphical user interface which enables users to inspect repositories
and their content in detail. It is not feasible to display multiple repositories at once in a
clean and pleasing fashion, hence only one is shown at a time. The user can choose which
repository to display. A repository is shown in two parts:

1. Repository View : Shows the user the resource certificates and ROAs contained in a
repository. The default repository view arranges them in a tree structure that mirrors
the hierarchical relationships between the objects. Other views can be added by
implementing the RepositoryView interface. Manifest are not shown in the repository

28 3 System Design

view since they exist to ensure secure transfer of files from the global RPKI and are
of little interest on their own. CRLs are not shown either, since they only pertain to
the validity of certificates.

2. Detail View : Users can select objects in the Repository View which then will be
displayed in detail in the Detail View. For resource certificates shown in the repository
view, the detail view includes their most recently issued Manifest and CRL. For ROAs
it includes the EE certificate contained within the ROA.

For every object, the detail view shows: Validation Status, Filename, and Location
URI. Also a list of all (if any) validation warnings or errors.

For resource certificates these fields are shown additionally: Resources, Validity Period,
Subject, Issuer, Subject Key Identifier, Authority Key Identifier, Serial Number, and
Public Key.

For ROAs: ASN, Signing Time, and IP address blocks

Manifest show the list of files and hashes they contain and CRLs a list of serial numbers
and revocation times.

In order to allow users to find specific objects within the Repository View, the RPKI Browser
includes filter functionality.

Filter

The filter enables users to find specific objects or specific sets of objects without having
to browse through the repository manually. It is coupled to the Repository View and
constraints it to only show the objects that match the currently set filter criteria. The
available filter criteria are all attributes listed in the Detail View as well as the option of
filtering for object type (i.e. CA resource certificates and ROAs). An example filter setting
could be described as:

issuer == "root trust anchor lacnic" ∧ validation_status == VALID

Applying this filter would show only valid objects that were issued by the LACNIC trust
anchor.

3.3.2 Statistics

The Statistics part of the Browser component will display the information described in
section 3.2.4 for each repository. The amounts of total, valid, invalid, and warned objects
will be visually broken down by object type and, if historical data is available, plotted over
time.

3.3.3 Model Updater

The purpose of the Model Updater is to offer an interface for outside processes to trigger the
execution of the Validator processing chain described in section 3.2. Once the Validator has
finished execution and has exported the validated repository data to the Browser component,
it is the Model Updater’s task to update the front end with the new data. It is important

3.3 Browser 29

to emphasize that the Model Updater is not responsible for scheduling the update, only for
executing them. The decision when to update lies solely on the outside process triggering
the Model Updater. The triggering process must not necessarily run on the same machine
as MIRO.

CHAPTER 4

Implementation

This chapter deals with the implementation of the MIRO system. In the first section, we
present the criteria we considered while choosing a programming language. We also present
the development environment and platform. The second and third sections deal with the
Validator and Browser components respectively. Here we show the implementation details
of the requirements and problems determined in chapter 3.

4.1 Choice of Technology

4.1.1 Programming Language

For the implementation of the MIRO system we evaluated programming languages on these
criteria:

Versatility
In order to manage project complexity and future maintainability, we decided
to use the same programming language for both the Validator and Browser
component. Fulfilling this criteria requires a certain degree of versatility which
not all languages can provide. This requirement excluded languages such as
JavaScript, C, and C++. The former being unfit to handle the resource inten-
sive processing chain of the Validator and the latter two being unfit to build a
front-end with.

Performance and Scalability
Anticipating the growth of the global RPKI, we needed a language that of-
fers acceptable performance and scaling properties. The nature of RPKI data
makes the processing chain of the Validator component a good candidate for
parallelization: Logical repositories can be processed in parallel since they do
not share any data.

Portability
The MIRO system should be as independent of the underlying OS as possible,
so it can be deployed on a multitude of different systems. The system should

32 4 Implementation

come in a self-contained format that requires only minimal dependencies. This
allows for easier distributed monitoring mentioned in section 3.1.1.

Existing software libraries

Taking into account proficiency and preference of the authors, we considered the languages
Java and Python. Ultimately we have decided to use Java for these reasons:

The Global Interpreter Lock (GIL) of the widely used default python implementation
CPython prevents true concurrent execution of python threads. This forces program-
mers to use separate CPython interpreter processes, which makes it difficult to ef-
fectively share data between them in a OS independent way. Java allows for true
concurrent thread execution.

There already exist Java libraries that support the RPKI resource certificate extensions
and validation of RPKI objects.

4.1.2 Framework

The MIRO system was developed using the Eclipse IDE Plugin Development Environment.
Both the Validator and the Browser component are implemented as Eclipse Plugins. Eclipse
Plugins are an abstraction layer that offers a format to explicitly define dependencies and
export interfaces. This gives third parties that want to reuse the MIRO code a clean and
modular approach. Note that the usage of Eclipse Plugins does not preclude using the code
in other environments, it is merely an additional development convenience.

4.2 Validator

This section presents the implementation of the processing chain described in section 3.2.3.

4.2.1 Data Model

The Validator component makes heavy use of the open source Java library rpki-commons [35],
developed by RIPE NCC and used in their RPKI Validator [36] system. The rpki-commons
library offers an API to instantiate resource certificates, manifests, CRLs, and ROAs as Java
objects:

RPKI Object Java Object in rpki-commons

Resource Certificate X509ResourceCertificate

Route Origin Authoriziation (ROA) RoaCms

Manifest ManifestCms

CRL X509Crl

However, they contain no references to each other and therefore do not conform to the data
model we specified in section 3.2.2. Rpki-commons offers static access functions for these
java objects for all relevant fields described in section 3.3.1. These functions often involve

4.2 Validator 33

a relatively high amount of operations, a property that is undesirable for frequent use by,
for instance, a front end. As an example of that consider Listing 4.1 showing the access
method for the Authority Information Access field of a X509Certificate, the parent class of
X509ResourceCertificate.

1 public stat ic X509Cer t i f i c a t e In f o rmat i onAcce s sDesc r ip to r []
ge tAuthor i ty In format ionAccess (X509Cer t i f i c a t e c e r t i f i c a t e) {

2 try {
3 byte [] extens ionValue = c e r t i f i c a t e . getExtens ionValue (org

. bouncycast l e . asn1 . x509 . X509Extension .
au tho r i t y In f oAcce s s . ge t Id ()) ;

4 i f (extens ionValue == null) {
5 return null ;
6 }
7 Acce s sDesc r ip t i on [] a c c e s sDe s c r i p t i o n s =

Author i tyIn format ionAccess . g e t In s tance (
X509ExtensionUti l . fromExtensionValue (extens ionValue)) .
g e tAcce s sDe s c r i p t i on s () ;

8 return X509Cer t i f i c a t e In f o rmat i onAcce s sDesc r ip to r .
conve r tAcce s sDesc r ip to r s (a c c e s sDe s c r i p t i on s) ;

9 } catch (IOException e) {
10 throw new X509Cert i f i cateOperat ionExcept ion (e) ;
11 }
12 }

Listing 4.1: X509CertificateUtil.getAuthorityInformationAccess from rpki-commons

To avoid calling these intensive access functions unnecessarily, we implemented the data
model described in section 3.3.1 and used memoization. This means we only call these
expensive functions once on instantiation and store their result in an instance variable. As
an example, Listing 4.2 shows relevant parts of our data models CertificateObject class
instance variables, constructor, and access methods.

1 public class Ce r t i f i c a t eOb j e c t extends ResourceHoldingObject {
2 [. . .]
3 private X509Cer t i f i c a t e In f o rmat i onAcce s sDesc r ip to r [] a i a s ;
4
5 public Ce r t i f i c a t eOb j e c t (. . . , X509ResourceCer t i f i ca te c e r t i f i c a t e

) {
6 [. . .]
7 a i a s = c e r t i f i c a t e . getAuthor i ty In format ionAccess () ;
8 [. . .]
9 }

10
11 . . .
12 public X509Cer t i f i c a t e In f o rmat i onAcce s sDesc r ip to r [] getAias () {
13 return a i a s ;
14 }
15 [. . .]
16 }

Listing 4.2: CertificateObject class

34 4 Implementation

The instantiation of Certificate, Roa, Manifest, and CRLObjects is performed by the Repos-
itoryObjectFactory class, using static factory methods instead of constructors as described in
[37]. This gives the advantage of clearer names and the ability of returning subtypes of the
return type. As an example, a static factory function called createResourceHoldingObject()
can return instances of CertificateObject or RoaObject.

4.2.2 Processing Chain Overview

An instance of the ResourceCertificateTreeValidator (RCTValidator) class initiates all steps
in the Validator processing chain with the exception of Statistics. The implementation of
downloading, parsing, and validation is delegated to other classes.

The Validator input consists of a trust anchor certificate, as described in section 3.2. How-
ever, in section 2.3 we discussed Trust Anchor Locators (TALs) which offer a convenient
mechanism to locate a trust anchor. Using TALs also ensures that the most recent version
of the trust anchor is downloaded. Therefore, the Validator additionally offers a method
that allows users to input a TAL instead of a trust anchor.

Once the trust anchor is downloaded, execution of the processing chain can begin. Shown
here is the RTCValidator method that implements the processing chain on the highest
abstraction level:

1 public Resou r c eCe r t i f i c a t eTre e c r e a t eRe sou r c eCe r t i f i c a t eTr e e (URI
taLocat ion , S t r ing repoName , S t r ing timestamp)

2 {
3 [. . .]
4
5 /∗ Download the t r u s t anchor ∗/
6 St r ing taPath = downloader . f e t chObjec t (taLocat ion , BASE_DIR) ;
7
8 /∗ I n s t a n t i a t e the t r u s t anchor ∗/
9 Va l ida t i onResu l t r e s u l t = Va l ida t i onResu l t . withLocat ion (taPath) ;
10 Ce r t i f i c a t eOb j e c t trustAnchor = createTrustAnchor (taPath , r e s u l t) ;
11
12 [. . .]
13
14 /∗ S ta r t the proce s s ing chain ∗/
15 Resou r c eCe r t i f i c a t eTre e t r e e = new Resour c eCe r t i f i c a t eTre e (this ,

repoName , trustAnchor , r e su l t , timestamp , BASE_DIR) ;
16 t r e e . populate () ;
17 t r e e . v a l i d a t e () ;
18 t r e e . e x t r a c tVa l i da t i onRe su l t s () ;
19 cer tTree = t r e e ;
20 return ce r tTree ;
21 }

Listing 4.3: Implementation of the processing chain

Some notes on Listing 4.3

:

BASE_DIR, Line 6,15 : This static string is the path to the local directory the downloaded

4.2 Validator 35

files will be written to. URIs such as the “taLocation” parameter can be converted as
shown in Listing 4.4 to find the location of the downloaded file in the local filesystem:

1 public stat ic St r ing toPath (URI u r i) {
2 return BASE_DIR + ur i . getHost ()+ur i . getPath () ;
3 }

Listing 4.4: Directory path conversion

ValidationResult, Line 9 : The ValidatonResult class is part of the rpki-commons library. It
stores validation results in a HashMap using Strings or URIs as keys. Line 9 instanti-
ates the ValidationResult objects that will be used for this ResourceCertificateTree. It
is given the local location of the trust anchor as a key and passed onto createTrustAn-
chor() in Line 10 so the result of syntax checks of the trust anchor file can be recorded.

The next sections explain the implementation of the processing chain in more detail, in
particular lines 15-20 of Listing 4.3.

4.2.3 Downloading and Parsing

The downloading and parsing of the logical repository is done in the populate() method,
called in line 16 of Listing 4.3. The method is part of the ResourceCertificateTree class.
The populate method implements the algorithm presented in section 3.2.1:

1 public void populate () {
2 Queue<Cer t i f i c a t eOb j e c t > workingQueue = new LinkedList<

Ce r t i f i c a t eOb j e c t >() ;
3 workingQueue . add (trustAnchor) ;
4 Ce r t i f i c a t eOb j e c t c e r t ;
5 while (! workingQueue . isEmpty ()) {
6 c e r t = workingQueue . p o l l () ;
7 getChi ldren (c e r t) ;
8 workingQueue . addAll (g e tCe r t i f i c a t eOb j e c tCh i l d r en (c e r t .

ge tChi ldren ())) ;
9 }
10 log . l og (Leve l . INFO, "Reading done") ;
11 }

Listing 4.5: ResourceCertificateTree.populate

We iterate over the workingQueue queue, which initially only holds the trust anchor. The
getChildren() function in line 7 populates the children, manifest, and crl instance variables
defined in our data model in section 3.2.2. In line 8 we then add the next list of Certifica-
teObjects to iterate over.

The implementation of the getChildren() method is shown in Listing 4.5:

1 public void getChi ldren (Ce r t i f i c a t eOb j e c t cw) {
2 for (X509Cer t i f i c a t e In f o rmat i onAcce s sDesc r ip to r

a c c e s sDe s c r i p t o r : cw . g e tC e r t i f i c a t e () .
ge tSub jec t In fo rmat ionAcces s ()) {

3
4 i f (! i sPub l i s h i ngPo in t (a c c e s sDe s c r i p t o r))

36 4 Implementation

5 continue ;
6
7 int r t v a l = va l i d a t o r . fetchURI (a c c e s sDe s c r i p t o r .

getLocat ion ()) ;
8 i f (r t v a l != 0) {
9 log . l og (Leve l .WARNING, "Could not download pub l i sh ing

po int : " + ac c e s sDe s c r i p t o r . getLocat ion ()) ;
10 continue ;
11 }
12 f indMan i f e s t (cw) ;
13 findCRL (ac c e s sDe s c r i p t o r . getLocat ion () , cw) ;
14 f indCh i ld r en (a c c e s sDe s c r i p t o r . getLocat ion () ,cw) ;
15 }
16 }

Listing 4.6: ResourceCertificateTree.getChildren

The getChildren function takes a CertificateObject cert as input. For each publishing point,
listed in the Subject Information Access Field of the certificate, the manifest, CRL, and any
children are found and references to them are added to cert. In line 7, the publishing point
is downloaded within the RTCValidator method fetchURI:

1 public int fetchURI (URI desc) {
2 St r ing r e s u l t = toPath (desc) ;
3 i f (wasPrefetched (desc))
4 return 0 ;
5 return downloader . downloadData (desc , r e s u l t) ;
6 }

Listing 4.7: ResourceCertificateTreeValidator.fetchURI

In line 3 the fetchURI method checks whether the input URI has been prefetched to avoid
redundant downloads. If the URI has not been prefetched, it is downloaded with a call to
rsync within the downloadData method.

Prefetching

In section 3.2.1. we presented an option of how prefetching can be implemented. However,
due to time constraints this approach has not been implemented yet. Instead we used the
simpler, less elegant solution of manually determining the Prefetch URIs for the repositories
of the five RIRs. The URIs are stored in a file and read by the Validator. The implementation
of the solution we presented in section 3.2.1 is planned for the future.

4.2.4 Validation

The rpki-commons library includes functionality for the validation of X509ResourceCertificate,
X509Crl, RoaCms, and ManifestCms objects. The results of the validation are recorded in
a ValidationResult object, mentioned in section 4.2.2. Using this data structure and func-
tionality, we implemented the top-down validation algorithm discussed in section 3.2.3.
Rpki-commons also offers the CertificateRepositoryObjectValidationContext class, a data

4.2 Validator 37

structure that represents a validation context. The context keeps track of the state of the
validation process. It contains the current “parent” certificate, i.e. the certificate whose
public key is being used to verify the signature on the object that is being validated. The
CertificateRepositoryObjectValidationContext also keeps track of the IP resources of the
parent certificate and offers methods to verify a child’s IP resources against them, as ex-
plained in section 2.3.1.

The logical repository is fully downloaded and parsed in the populate function (provided
the rsync connections did not fail). Validation starts with the call to the validate method
of the ResourceCertificateTree instance, found in line 17 of the createResourceCertificateTree
function in Listing 4.3. This method further delegates the validation to an instance of the
TopDownValidator class:
1 public class TopDownValidator {
2 [. . .]
3 private Val idat i onResu l t r e s u l t ;
4 private Resou r c eCe r t i f i c a t eLoca to r l o c a t o r ;
5 private Val idat ionOpt ions opt ions ;
6 private Queue<Cer t i f i c a t eOb j e c t > workQueue ;
7 private Cer t i f i c a t eRepos i t o ryOb j e c tVa l i da t i onContex t context ;
8
9 public TopDownValidator (Va l ida t i onResu l t r e su l t ,

Re sou r c eCe r t i f i c a t eLoca to r l o ca to r , C e r t i f i c a t eOb j e c t
trustAnchor) {

10 this . r e s u l t = r e s u l t ;
11 this . l o c a t o r = l o c a t o r ;
12 this . opt ions = new Val idat ionOpt ions () ;
13 this . workQueue = new LinkedList<Ce r t i f i c a t eOb j e c t >() ;
14 this . context = new

Cer t i f i c a t eRepos i t o ryOb j e c tVa l i da t i onContex t (URI . c r e a t e (
trustAnchor . getFi lename ()) , trustAnchor . g e tC e r t i f i c a t e ()) ;

15 this . workQueue . add (trustAnchor) ;
16 }
17
18 public void va l i d a t e () {
19 while (! workQueue . isEmpty ()) {
20
21 /∗ Get next C e r t i f i c a t e ∗/
22 Ce r t i f i c a t eOb j e c t parent = workQueue . remove () ;
23
24 /∗ I f i t s not a t r u s t anchor , s e t up a new con t ex t ∗/
25 i f (! parent . get I sRoot ()) {
26 this . context = this . context . c reateChi ldContext (URI .

c r e a t e (parent . getFi lename ()) , parent . g e tC e r t i f i c a t e
()) ;

27 }
28
29 /∗ Ver i fy t ha t mft and c r l are not missing , rpk i−commons

does not do t h i s ∗/
30 r e s u l t . s e tLoca t i on (new Val idat ionLocat ion (parent .

getFi lename ())) ;
31 r e s u l t . warnI fNul l (parent . ge tMani f e s t () , "miss ing . mani f e s t

") ;

38 4 Implementation

32 r e s u l t . warnI fNul l (parent . ge tCr l () , "miss ing . c r l ") ;
33
34 va l i da t eMan i f e s t (parent . ge tMani f e s t ()) ;
35 va l i d a t eCr l (parent . ge tCr l ()) ;
36
37 /∗ Val ida t e ch i l d ren , e . g . Ce r t i f i c a t eOb j e c t , RoaObject

∗/
38 /∗ This a l s o adds the v a l i d a t e d Ce r t i f i c a t eOb j e c t s to the

workQueue ∗/
39 va l i da t eCh i l d r en (parent) ;
40 }
41 log . l og (Leve l . INFO, "Va l idat ing done") ;
42 }
43 [. . .]
44 }

Listing 4.8: TopDownValidator with validate method

The TopDownValidator uses a queue, stored in an instance variable, to iterate over the
logical repository. The queue holds validated CertificateObjects, which initially is only the
trust anchor, added in line 15. The validateChildren function is responsible for adding any
validated CertificateObjects to the workQueue, ensuring that the entire repository is iter-
ated over. The CertificateRepositoryObjectValidationContext mentioned previously is also
stored as a instance variable. It is initialized with the trust anchors X509ResourceCertificate
object, since the trust anchor is the first CertificateObject in the workQueue. For the Cer-
tificateObjects in further iterations, a new context is derived from the previous one in line
26. We decided to implement two additional validation checks that were missing from rpki-
commons. In line 34 and 35 the existence of the CertificateObjects manifest and CRL are
checked and, if missing, a warning is added to the validation result of the CertificateObject.
The actual validation of the RPKI objects happens within the validateManifest, validateCrl
and validateChildren methods, using rpki-commons functionality.

After the validate function returns, the validation results are copied from the rpki-commons
ValidationResult data structure into fields of the RepositoryObjects. This is done for con-
venience, so that every RepositoryObject is self-contained and gives information about its
validity without the necessity of looking it up in the ValidationResult HashMap. This is
done in line 18, Listing 4.3. With the return of this function, the repository is now fully
validated and ready to be used within the Browser Component.

Validation Correctness

To confirm the correctness of our validation we looked at the validation result from two
other systems, RIPE NNCs rpki-validator [36] and Rob Austeins rcynic [38].

The rpki-validator also uses the rpki-commons library for parsing and validation, so as ex-
pected their validation results match ours. Rcynics validation results however showed some
discrepancies to MIROs and rpki-validator results, namely a difference in RPKI object count
and number of objects that passed validation with warnings. After further investigation the
object count difference could be explained by rcynics susceptibility to connection problems,
since it does not employ any prefetching and consequently more rsync calls are made. The

4.2 Validator 39

discrepancy in warning messages was explained by incorrect validation behavior of the rpki-
commons library. We have implemented a fix and submitted a pull-request to RIPE NCC
which was subsequently merged into the master branch. This eliminated major differences
in validation results between rcynic and rpki-validator/MIRO. Note that some differences
still exist, they are however caused by different validation strictness of the systems.

4.2.5 Statistics

Gathering the statistics about the logical repository was not implemented as part of the
processing chain discussed in the previous section. We decided to offer a separate method to
gather the statistics, so users can decide according to their own needs. The ResultExtractor
class can be used to obtain the statistics:

1 public class Resu l tExtractor {
2
3 private Resour c eCe r t i f i c a t eTre e currentTree ;
4 private Result t o t a lRe su l t ;
5 private List<Result> hos tResu l t s ;
6
7 public Resu l tExtractor (Re sou r c eCe r t i f i c a t eTre e t r e e) {
8 currentTree = t r e e ;
9 t o t a lRe su l t = new Result ("Total ") ;
10 hos tResu l t s = new ArrayList<Result >() ;
11 }
12
13 public void gather () {
14 [. . .]
15 }
16 [. . .]
17 }

Listing 4.9: ResultExtractor

After being initialized with a ResourceCertificateTree, the ResultExtractor gathers the
statistics described in chapter 3. Each Result object stores these statistics in HashMaps:

1 public class Result {
2
3 private HashMap<Str ing , Integer> counter ;
4 private HashMap<Str ing , Integer> warning ;
5 private HashMap<Str ing , Integer> e r r o r ;
6
7 private St r ing d e s c r i p t o r ;
8
9 public Result (S t r ing desc) {
10 d e s c r i p t o r = desc ;
11
12 counter = new HashMap<Str ing , Integer >() ;
13
14 warning = new HashMap<Str ing , Integer >() ;
15
16 e r r o r = new HashMap<Str ing , Integer >() ;

40 4 Implementation

17 }
18
19 [. . .]
20 }

Listing 4.10: Result

The counter HashMap stores the statistics listed in section 3.2.4, the warning and error
HashMaps store the frequency of validation warnings and errors. For each distinct host that
is part of the repository, a separate Result object is stored as discussed in the requirements.
Users can obtain these statistics in the form of a RPKIRepositoryStats object returned by
a method of the ResultExtractor. The RPKIRepositoryStats object contains all results as
well as the repository name, timestamp and trust anchor name.

4.2.6 Export

Both the Validator and Browser component were developed in Java. For the Browser this
means obtaining the ResourceCertificateTree object is as simple as calling the createRe-
sourceCertificateTree method discussed in section 4.2.2. A simple RepositoryExporter inter-
face can be implemented for export outside of the JVM. Using Google’s gson library [39]
an option for JSON export was added in order to offer users a way of persistently storing
validated repositories.

4.3 Browser

The Browser component was developed using the Eclipse Remote Application Platform
(RAP). RAP is a web framework with a pure Java API [40]. The RAP framework includes
an implementation of the Standard Widget Toolkit (SWT). SWT is a mature, open-source
widget toolkit that is used to develop the Eclipse IDE user interface. The RAP implemen-
tation of SWT is called the RAP Widget Toolkit (RWT) and compiles to JavaScript. The
RAP framework was chosen for several reasons:

1. SWT is a mature and proven widget toolkit specifically designed to build complex
graphical user interfaces. It is enhanced by JFace [41], a library built on top of
SWT that offers additional widgets and functionality such as StructuredViewers and
Databinding.

2. Cross browser support: RAP works with all relevant web browsers. This eases devel-
opment significantly.

3. Ease of deployment: An RAP application can be exported as a Web Application
Archive (WAR) file and can then be deployed easily with any servlet container.

4. Single sourcing: Since RAP implements SWT, the code can be reused for a possible
Eclipse Rich Client Platform (RCP) application which runs on the desktop. This is an
added perk and not something we plan to take advantage of in the immediate future.

5. It is integrated in the Eclipse IDE environment and is based on Eclipse plugins, like
the Validator component.

4.3 Browser 41

4.3.1 Overview

The Browser component implementation can be separated into two parts:

User Sessions: This part is responsible for interaction with the user via RWT widgets.
The user session code is run in a separate thread for every client that connects to
the application server. The creation and termination of the separate user sessions
is managed by the RAP framework. A user session includes the RPKIBrowser and
Statistics parts presented in section 3.

Model Updater: This part is responsible for obtaining the ResourceCertificateTree object
from the Validator component and distribute it to the user session threads. An update
is triggered via an interface that the Model Updater exposes to other processes, as
previously mentioned in section 3.3.3. The Model Updater code runs in its own thread,
separated from user sessions.

External Process

triggers updateUser Session

User Session

User Session

User Session

Eclipse RAP

Model Updater

Validator

distributes

creates/terminates

gets model

Figure 4.1: Browser component overview

4.3.2 ModelUpdater

In this section we present the different tasks that the ModelUpdater is responsible for and
discuss their implementation. The ModelUpdater class implements the Runnable interface
from the standard Java API. Its run method is called once the thread is started:

1 @Override
2 public void run () {
3 log . l og (Leve l . INFO, "Thread s t a r t ed ") ;
4 ServerSocket t r i g g e rSo ck e t ;
5 Socket c l i e n t S o c k e t ;
6 URI [] prefetchURIs ;
7 try {
8 readConf ig (CONFIG_FILE_LOCATION) ;

42 4 Implementation

9 prefetchURIs = readPrefetchURIs (PREFETCH_URI_FILE_LOCATION) ;
10 t r i g g e rSo ck e t = new ServerSocket (UPDATE_PORT) ;
11 } catch (IOException e) {
12 log . l og (Leve l .SEVERE, e . t oS t r i ng () , e) ;
13 throw new RuntimeException (e) ;
14 }
15
16 update (prefetchURIs) ;
17 while (run) {
18 try {
19 c l i e n t S o c k e t = t r i g g e rSo ck e t . accept () ;
20 i f (c l i e n t S o c k e t . get InetAddress () . isLoopbackAddress ()) {
21 update (prefetchURIs) ;
22 }
23 } catch (IOException e) {
24 log . l og (Leve l .SEVERE, e . t oS t r i ng () , e) ;
25 log . l og (Leve l .SEVERE, "Update f a i l e d ") ;
26 continue ;
27 }
28 }
29
30 try {
31 t r i g g e rSo ck e t . c l o s e () ;
32 } catch (IOException e) {
33 log . l og (Leve l .SEVERE, e . t oS t r i ng () , e) ;
34 }
35 log . l og (Leve l . INFO, "Quitt ing thread ") ;
36 }

Listing 4.11: ModelUdpater.run

The config files are read in line 8 and 9. They contain the network port to listen on, the
URIs that are to be prefetched, the input directory containing trust anchor locators, and
the directory that the Validator component should use when downloading the repositories.

Update Trigger

For greater flexibility, we decided to allow triggering of updates via the network. Due to
time constraints, we chose a very simple, temporary solution. The ModelUpdater listens
on the hosts loopback network interface for incoming connections. Once a connection has
been made, the ModelUpdater starts the update process. This allows processes running
on the same host as MIRO to trigger updates, but not any processes running on other
hosts since they cannot connect to the loopback interface. Using the loopback interface also
precludes the need for authentication, since only known processes can connect to it. The
implementation is simply a ServerSocket listening for incoming connections with a blocking
accept call (Listing 4.11, line 19). Incoming connections trigger the update provided they
were received over the loopback network interface (Listing 4.11, line 20 and 21).

A more sophisticated solution is planned for later stages of development, allowing triggering
updates not just via the loopback interface. Allowing external processes (that are not
running on the MIRO host) to trigger updates necessitates authentication.

4.3 Browser 43

Updating

The updating process starts with the update method of the ModelUpdater:

1 public void update (URI [] prefetchURIs) {
2 getModels (prefetchURIs) ;
3 no t i f yObse rve r s () ;
4 }
5
6 public void getModels (URI [] u r i s) {
7 log . l og (Leve l . INFO, "Gett ing models ") ;
8
9 RPKIRepositoryStats s t a t s ;

10 Re sou r c eCe r t i f i c a t eTre e cer tTree ;
11 int index = 0 ;
12 St r ing name = "" ;
13 F i l e [] t a l F i l e s = new F i l e (TALDirectory) . l i s t F i l e s () ;
14 St r ing [] s tatsKeys = new St r ing [t a l F i l e s . l ength] ;
15 St r ing [] modelKeys = new St r ing [t a l F i l e s . l ength] ;
16 St r ing key ;
17
18 cleanInputPath () ;
19 Re sou r c eCe r t i f i c a t eTre eVa l i da to r t r e eVa l i da t o r = new

Resou r c eCe r t i f i c a t eTre eVa l i da to r (inputPath) ;
20 t r e eVa l i da t o r . preFetch (u r i s) ;
21 for (F i l e t a l F i l e : t a l F i l e s) {
22
23 /∗ Get repo name from TAL f i l e , g e t ResourceCer t i f i ca teTree ,

save i t to a p p l i c a t i o n con t ex t and remember the key ∗/
24 name = getRepositoryName (t a l F i l e . getName ()) ;
25 cer tTree = t r e eVa l i da t o r . getTreeWithTAL(t a l F i l e . t oS t r i ng () ,

name) ;
26 key = cer tTree . getName () ;
27 context . s e tAt t r i bu t e (key , ce r tTree) ;
28 modelKeys [index] = key ;
29
30 /∗ Get s t a t s about the tree , save them to disk , save them to

con t ex t and remember the key ∗/
31 s t a t s = getRPKIRepositoryStats (ce r tTree) ;
32 Resu l tExtractor . a r ch i v eS ta t s (s t a t s , STATS_ARCHIVE_DIRECTORY +

name) ;
33 key = STATS_NAME_PREFIX + name ;
34 context . s e tAt t r i bu t e (key , s t a t s) ;
35 statsKeys [index] = key ;
36
37 index++;
38 }
39
40 /∗ Get g l o b a l RPKI s t a t s over a l l processed r e p o s i t o r i e s ∗/
41 RPKIRepositoryStats t o t a l S t a t s = ge tTota lS ta t s (s tatsKeys) ;
42 key = STATS_NAME_PREFIX + to t a l S t a t s . getName () ;
43 context . s e tAt t r i bu t e (key , t o t a l S t a t s) ;
44

44 4 Implementation

45 St r ing [] a l l S t a t sKeys = prependToStringArray (statsKeys , key) ;
46 Arrays . s o r t (s tatsKeys) ;
47
48 context . s e tAt t r i bu t e (MODEL_NAMES_KEY, modelKeys) ;
49 context . s e tAt t r i bu t e (STATS_NAMES_KEY, a l l S ta t sKeys) ;
50 }

Listing 4.12: ModelUpdater.update

After prefetching the URIs given as arguments, a loop iterates over trust anchor locators. For
every trust anchor locator, the repository name is derived and the ResourceCertificateTree is
acquired (line 24, 25). To distribute the ResourceCertificateTree objects to the user sessions,
the ApplicationContext is used. An ApplicationContext represents an RAP application and
contains a thread-safe, generic HashMap which can be accessed application-wide. In line 26
and 27, the ResourceCertificateTree is stored in the ApplicationContext and its key is written
to the “modelKeys” array. This array is also placed in the ApplicationContext (line 48). It is
distributed using the Observer design pattern [42], whereas the user sessions add themselves
as observers to the ModelUpdater and get notified when an update is performed. Once
they acquired the “modelKeys” array, the user sessions can get the ResourceCertificateTree
objects from the ApplicationContext and display them. The distribution process for the

Model UpdaterUser Session
1. Add to observers

2. Store models

3. Store model keys

4. Notify observers, pass “modelKeys”

5. Get model keys

6. Get models

... ...

ApplicationContext

k1 model1
k2 model2
k3 model3

... ...
modelKeys [k1,k2,k3...]

Figure 4.2: Model distribution: The ApplicationContext includes a generic, thread-safe HashMap
that we use to store ResourceCertificateTree objects.

RPKIRepositoryStats objects is identical.

4.3.3 User Sessions

Once a user connects to the application, server side execution starts at a registered class
that implements the AbstractEntryPoint interface defined in RAP. Client side execution is
fully managed by the RAP framework.

4.3 Browser 45

The AbstractEntryPoint implementation is responsible for building up the user interface
using SWT widgets. SWT comes with a number of useful widgets such as tables and trees
for data representation, various buttons, text containers, and tab folders. Developers can
build new widgets out of existing ones by using the Composite widget, which is essentially
a widget container. A composite can have a layout, which determines how its containing
widgets are displayed. An AbstractEntryPoint implementation is passed a reference to a
composite which represents the web browser window of the client. In the following sections,
all classes referred to as “widget” extend the Composite class.

We define a very simple UI layout for our application, consisting of a header bar containing
navigation buttons and a content area that shows either the RPKIBrowser or the Statistics
widget:

1 [. . .]
2 FormLayout layout = new FormLayout () ;
3 parent . setLayout (layout) ;
4
5 HeaderBar header = new HeaderBar (parent , SWT.NONE) ;
6 ContentContainer content = new ContentContainer (parent , SWT.NONE) ;
7 [. . .]
8 parent . layout () ;

Listing 4.13: Initialization of the GUI

HeaderBar

ContentContainer

parent (Web Browser Window)

Figure 4.3: Visualization of Listing 4.13

RPKIBrowser

The RPKIBrowser widget contains the implementation of the Repository View and Detail
View parts presented in section 3.3.1.

Repository View

The purpose of the Repository View is to give the user a structured way to browse RPKI
objects within a logical repository. As mentioned previously in section 3.3.1, manifests and
CRLs are not shown in the Repository View since on their own they contain no relevant

46 4 Implementation

information to the user. They are however shown in the Detail View where they are linked
to a resource certificate.

For the implementation of the Repository View part, we define this interface:

1 public interface RepositoryView {
2
3 public void s e t Input (Re sou r c eCe r t i f i c a t eTre e t r e e) ;
4 public Resour c eCe r t i f i c a t eTre e getInput () ;
5 public void s e t S e l e c t i o n (ResourceHoldingObject obj) ;
6 public ResourceHoldingObject g e t S e l e c t i o n () ;
7 public ViewerF i l t e r [] g e t F i l t e r s () ;
8 public void s e t F i l t e r s (V i ewerF i l t e r [] f i l t e r s) ;
9 public void r e s e t F i l t e r s () ;
10 public RepositoryViewType getType () ;
11 public StructuredViewer getViewer () ;
12 public enum RepositoryViewType {
13 TREE, TABLE
14 }
15 }

Listing 4.14: RepositoryView interface

A RepositoryView object needs to display logical repositories (setInput, getInput), allow
selection of objects (setSelection, getSelection), and allow filtering (setFilters, getFilters,
resetFilters). A RepositoryView is identified by its RepositoryViewType, of which we define
Tree and Table. These correspond to the JFace widgets TreeViewer and TableViewer, both
subclasses of StructuredViewer.

Since multiple RepositoryView implementations exists, a mechanism to switch between them
is needed. This is the task of the RepositoryViewContainer, a child-widget of the RPKI-
Browser. It offers the functionality of switching between different RepositoryView objects
by using a HashMap to store them by type:

1 public class RepositoryViewContainer extends Composite {
2
3 private HashMap<RepositoryViewType , RepositoryView> viewMap ;
4 private StackLayout layout ;
5 private RepositoryView currentView ;
6
7 public RepositoryViewContainer (Composite parent , int s t y l e) {
8 super (parent , s t y l e) ;
9 viewMap = new HashMap<RepositoryView . RepositoryViewType ,

RepositoryView >() ;
10 [. . .]
11 in i tV i ews () ;
12 showView (RepositoryViewType .TREE) ;
13 }
14 [. . .]
15 }

Listing 4.15: RepositoryViewContainer

4.3 Browser 47

Filter

In section 3.3.1 we described filter functionality that is coupled to the Repository View and
constraints it to only show objects that pass the filter criteria. To implement this, we used
the JFace ViewerFilter API, which works in conjunction with the JFace StructuredViewers
that were used for the RepositoryView implementations. We extend the ViewerFilter class
and implement its select method:

1 public class Re s ou r c eCe r t i f i c a t eT r e eF i l t e r extends ViewerF i l t e r {
2
3 private List<ResourceHold ingObjectFi l t e r> f i l t e r s ;
4
5 public Re s ou r c eCe r t i f i c a t eT r e eF i l t e r () {
6 f i l t e r s = new ArrayList<ResourceHold ingObjectFi l t e r >() ;
7 }
8
9 @Override

10 public boolean s e l e c t (Viewer viewer , Object parentElement , Object
element) {

11 ResourceHoldingObject obj = (ResourceHoldingObject) element ;
12 boolean s e l e c t e d = matchesAll (obj) ;
13 return g e tS e l e c tRe su l t (s e l e c t ed , viewer , obj) ;
14 }
15
16 public boolean matchesAll (ResourceHoldingObject obj) {
17 boolean matches = true ;
18 for (ResourceHo ld ingObjec tF i l t e r f i l t e r : f i l t e r s) {
19 matches &= f i l t e r . isMatch (obj) ;
20 }
21 return matches ;
22 }

Listing 4.16: ResourceCertificateTreeFilter

For a given ResourceHoldingObject, the select method decides if this object passes the filter
and is to be displayed or not. For each filter criteria described in section 3.3.1 exists an
implementation of the ResourceHoldingObject interface that are stored in the filters list of
the ResourceCertificateTreeFilter class. The matchesAll method (Listing 4.16, line 16 - 21)
checks whether an object matches all filter criteria.

1 public interface ResourceHo ld ingObjec tF i l t e r {
2 public boolean isMatch (ResourceHoldingObject obj) ;
3 }

Listing 4.17: ResourceHoldingObjectFilter interface

Detail View

The Detail View shows detailed information about CertificateObjects and RoaObjects. We
implemented a widget for each of the four supported RPKI objects, displaying all relevant
information using SWT Text widgets and JFace StructuredViewers. Since there are two

48 4 Implementation

kinds of objects that can be selected in the RepositoryView, CertificateObjects and RoaOb-
jects, we implemented two different DetailViews: CertificateView and RoaView. Both Views
are implemented as TabFolders, allowing child-widgets to be navigated using tabs. The Cer-
tificateView contains a CertificateWidget, a ManifestWidget, and a CRLWidget to display
all information relevant to a resource certificate. The RoaView contains a RoaWidget and a
CertificateWidget. The latter displays the EE resource certificate of the ROA, as presented
in section 2.3.2. Once the user selects an objects in the RepositoryView, we want it displayed

CertificateView

Certificate
Widget

Manifest
Widget

CRL
Widget

RoaView

Certificate
Widget

ROA
Widget

RepositoryView

a) Selection is CertificateObject

b) Selection is RoaObject

Figure 4.4: Detail View overview: The user selects a ResourceHoldingObject in the RepositoryView.
The CertificateView or RoaView is shown to the user, depending on the subtype of the
selection.

in the DetailView. To achieve this we use the JFace Databinding API. It allows us to bind
the selection of a JFace StructuredViewer, which we used to implement the RepositoryView,
to SWT Text widgets. The initDatabindings method of the RPKIBrowser class binds the
abstract selection of each viewer to the CertificateView and RoaView:

1 private void i n i tDatab ind ing s () {
2 StructuredViewer viewer ;
3 IViewerObservableValue s e l e c t i o n ;
4 DatabindingContext dbc ;
5 for (RepositoryView view : repos i toryViewConta iner . getAl lViews

()) {
6 viewer = view . getViewer () ;
7 s e l e c t i o n = ViewersObservables . o b s e r v eS i n g l e S e l e c t i o n (

viewer) ;
8 dbc = new DatabindingContext () ;
9 deta i lViewConta iner . bindViews (s e l e c t i o n , dbc) ;
10 }
11 }

Listing 4.18: JFace Databinding to StructuredViewer objects

4.3 Browser 49

DetailView and RepositoryView work together to allow the user to browse and inspect
RPKI objects of a given logical repository. The functionality to filter a repository, switch
to another RepositoryView, and switch to another logical repository is offered to the user
via a toolbar. The finished RPKIBrowser is shown in Figure 4.5.

Figure 4.5: RPKIBrowser with default RAP theme.

Styling

The eclipse RAP framework offers an interface to a subset of CSS 2.1. This allows developers
to style their widgets independent of their implementation. Figure 4.6 shows the finished
RPKIBrowser with a custom CSS theme.

Stats

The Statistics part of the Browser component was implemented using the rap-d3charts
library [43], an adaption of the d3 JavaScript library for eclipse RAP. However, due to
performance issues we decided to reimplement the Statistics part using pure JavaScript.

50 4 Implementation

Figure 4.6: RPKIBrowser with custom CSS theme

Figure 4.7: Statistics with custom CSS theme

CHAPTER 5

Evaluation

5.1 Performance

To test the performance of the MIRO software system we decided to use Apache JMeter [44].
JMeter allows load testing and measuring performance of a web application.

5.1.1 Test Setup

Using JMeter we recorded 3 test plans. A test plan in this context is essentially a sequence
of HTTP requests to the MIRO software system. Two test plans focus on the RPKIBrowser
part, one on the Statistics part:

1. Test plan 1 is aimed at the DetailView performance. It involves inspection of 4 ran-
dom CertificateObjects and RoaObjects chosen from the RepositoryView. Inspection
means using all DetailView functionality, such as viewing the manifest and CRL, or
EE resource certificate associated with CertificateObjects or RoaObjects respectively.
This was done for every repository available. Test plan 1 consists of 744 HTTP re-
quests.

2. Test plan 2 is aimed at the RepositoryView performance. It involves switching be-
tween RepositoryView implementations (Tree and Table) to test responsiveness and
synchronization, and using the filter functionality to find specific objects. Test plan 2
consists of 649 HTTP requests.

3. Test plan 3 is aimed at the Statistics part. It involves looking at all generated charts for
all repositories. Since the Statistics implementation was quite simple and bareboned
at the time of testing, this test plan only has 115 HTTP requests.

Using JMeter we replayed these test plans one by one with 50 threads simultaneously sending
the recorded requests sequence. We modified the request timing with a random gaussian
timer, so that not all 50 threads would send the same request at the same exact time. In
addition to that, the threads were not started simultaneously, but over a ramp-up period of
2 seconds. The MIRO system was run using the Apache Tomcat [45] servlet container on a
Arch Linux machine with a Intel i7-3630QM CPU and 8GB of RAM.

52 5 Evaluation

5.1.2 Results

Test plan 1 and 2

Test plan 1 showed a median response time of 5 milliseconds. The average response time
however was 176 milliseconds. The minimum response time was 1 millisecond, while the
maximum was 114,444 seconds. For 90% of all requests, the response time was below 29
milliseconds.

Test plan 2 showed a median response time of 6 milliseconds and an average response time
of 119 milliseconds. Similar to plan 1, there were some massive response time spikes with
the maximum being 44,488 seconds. As with plan 1, the minimum response time was 1
milliseconds. 90% of all requests had a response time below 50 milliseconds.

We investigated the massive response time spikes and found them to be caused exclusively
by requests to the JFace TreeViewer widget. One response time spike was caused by the
TreeViewer when expanding a CertificateObject with multiple thousands of child objects,
causing an instantiation of an internal data structure for every child object within the Tree-
Viewer. We solved this by using the TreeViewers SWT.VIRTUAL flag, allowing for lazy
instantiation of objects displayed by the TreeViewer. This improved performance dramati-
cally and stopped most response time spikes.

A second cause for the spikes was found in the implementation of the TreeViewers setSelection
method. This was brought to the attention of the Eclipse RAP developers by issuing an
enhancement request.

Test plan 3

Test plan 3 showed a median response time of 7 milliseconds and an average response time
of 15 milliseconds. The minimum response time was 1 milliseconds and maximum 1175
milliseconds with 99% of requests having a response time of 62 milliseconds or lower. The
maximum spike can be explained by the initial instantiation of the Statistics widgets.

The JMeter tests also revealed a memory leak. We analyzed this further using the Eclipse
Memory Analyzer (MAT) [46] and were able to fix the leak.

5.2 Repository Structure Analysis

In section 3.2.1 we discussed the problem of repository structure and prefetching as a so-
lution. In this section we present our findings on the performance of a simple prefetching
solution in comparison to regular fetching. The prefetched URIs for all RIRs are shown in
Table 5.1.

5.2 Repository Structure Analysis 53

RIR Prefetched URIs

AFRINIC rsync://rpki.afrinic.net/repository

rsync://rpki.afrinic.net/member_repository

rsync://rpki.afrinic.net/rpki

APNIC rsync://rpki.apnic.net/repository

rsync://rpki.apnic.net/member_repository

ARIN rsync://rpki.arin.net/repository

LACNIC rsync://repository.lacnic.net/rpki

RIPE rsync://rpki.ripe.net/repository

Table 5.1: Prefetched URIs for RIR repositories

Table 5.2 shows the performance comparison between regular fetching and prefetching for
all 5 RIRs. Note that APNIC publishes 5 trust anchors, unlike the other RIRs. This was
done in order to align APNIC’s RPKI model with the overall administrative and associ-
ated registry structure of number resources in the Internet [47]. In our comparison we
prefetched the complete physical APNIC repository which contains all 5 logical repositories
referenced by the 5 APNIC trust anchors. In the cases of the ARIN, LACNIC, and RIPE
trust anchors the results for regular fetching and prefetching are identical. This is because
these three logical repositories are structured in a strictly hierarchical way: The ARIN, LAC-
NIC, and RIPE trust anchors define rpki.arin.net/repository, repository.lacnic.net/rpki, and
rpki.ripe.net/repository as their respective publishing points. These directories in turn con-
tain all publishing points of all resource certificates that are part of their respective logical
repositories.

W/o Prefetching W/Prefetching

Repository # rsync Calls Time # rsync Calls Time

AfriNIC 35 calls 96 s 3 calls 11 s

APNIC 534 calls 1745 s 2 calls 35 s

APNIC AfriNIC 5 calls 16 s

APNIC ARIN 25 calls 81 s

APNIC IANA 492 calls 1610 s

APNIC LACNIC 2 calls 6 s

APNIC RIPE 10 calls 32 s

ARIN 1 call 7 s 1 call 7 s

LACNIC 1 call 9 s 1 call 9 s

RIPE 1 call 23 s 1 call 23 s

Table 5.2: Performance comparison of collecting RPKI data with and without prefetching

In order to make a recommendation regarding repository structure, we define a logical
repository to be loosely hierarchical if the following condition holds for all non self-signed

54 5 Evaluation

Publishing Point of 1

Publishing Point of Trust Anchor

R. Certificate 1

R. Certificate 2

Publishing Point of 2

...

(a) A loosely hierarchical repository structure

Publishing Point of 1

Publishing Point of Trust Anchor

R. Certificate 1

R. Certificate 2

Publishing Point of 2

...

(b) A strictly hierarchical repository structure

Figure 5.1: Loosely and strictly hierarchical repository structures

CA resource certificates in the repository:

The trust anchors publishing points contain the publishing points of all other resource
certificates of the logical repository.

We define a logical repository to be strictly hierarchical if the following conditions holds
for all non self-signed CA resource certificates in the repository:

All publishing points defined by the resource certificate are included in the publishing
points of its parent resource certificate.

A hierarchical repository (strict or loose) can be downloaded by relying parties with one rsync
call for every publishing point of the trust anchor, thus minimizing overhead and making
prefetching unnecessary. A strictly hierarchical repository further allows the downloading of
subtrees with one rsync call. This property could prove useful with large repository where
a relying party might only want to refresh a subset of the repository. A flat repository
structure such as APNICs and AFRINICs forces relying parties to make multiple rsync calls
to download the complete repository, potentially causing massive overhead seen in Table
5.2. The average percentage of repository files downloaded per request can be used as a
metric to evaluate repository structure quality, as shown in Table 5.3.

5.2 Repository Structure Analysis 55

Repository Average % of Repository Files per rsync Call

AfriNIC 2.857 %

APNIC

APNIC AfriNIC 20%

APNIC ARIN 4%

APNIC IANA 0.203%

APNIC LACNIC 50%

APNIC RIPE 10%

ARIN 100%

LACNIC 100%

RIPE 100%

Table 5.3: Average percentage of repository files downloaded per rsync call

We recommend a strictly hierarchical repository structure for repository maintainers. How-
ever, in the cases of APNIC and AFRINIC changing a flat repository to a strictly hierarchical
one might require a change to the Subject Information Access field in a great number of re-
source certificates. Instead of switching to a strictly hierarchical structure, these RIRs could
add new publishing points to their trust anchors that include the complete logical repository
making loosely hierarchical. In the case of AFRINIC the trust anchor has only one publish-
ing point: rpki.afrinic.net/repository. But due to the flat repository structure of AFRINIC,
many resource certificates have publishing points in rpki.afrinic.net/member_repository and
rpki.afrinic.net/rpki. In order to avoid fetching these publishing points separately, one could
add rpki.afrinic.net/member_repository and rpki.afrinic.net/rpki as publishing points of the
trust anchor. This would allow relying parties to fetch the complete repository in 3 calls
without previous knowledge of the repository structure as prefetching would require.

CHAPTER 6

Outlook

6.1 Summary

The goal of the this bachelors thesis was the implementation of a system that allows monitor-
ing and inspection of validated RPKI objects (MIRO) with a graphical user interface. This
thesis presents the technical background necessary to understand the purpose of the MIRO
system. The requirements for the software are discussed and a Model-View-Controller ar-
chitecture of two loosely coupled components, the Validator and the Browser, is presented.
The Validator component is responsible for downloading and validating RPKI repositories,
while the Browser component implements a web application to inspect these repositories.
Both components are implemented in Java, using the Eclipse Platform. The Browser com-
ponent was implemented with the Eclipse Remote Application Framework (RAP) and was
load tested with Apache JMeter to evaluate performance. This thesis also analyzes the
significance of repository structure for relying parties and offers “Pre-Fetching” as a solution
for the efficient download of non-hierarchical repositories. It also gives recommendations
about repository structure to repository maintainers.

The source code for the MIRO system was published on GitHub [48] under the MIT license.
A website with basic information about MIRO and references to the git repository is hosted
at http://rpki-miro.realmv6.org/.

During the development of MIRO, two bugs were found in RIPE NCCs rpki-commons library
pertaining validation of RPKI objects. A fix [49, 50] was implemented and were merged [51]
into the master branch.

MIRO was presented at CeBIT 2015 as part of the Peeroskop project [52] funded by the
Federal Ministry of Education and Research.

Following a call for input, the system has been used by researchers to identify that the cross-
RIR resource space has increased and includes route origin authorization objects. It also
helped to better understand how the five RIRs have implemented majority-minority address
space, i.e., IP address space of which a super prefix is managed by a one RIR but some sub-
prefixes of this prefix are managed by another RIR. This fragmentation has implications on
creating resource certificates.

http://rpki-miro.realmv6.org/

58 6 Outlook

6.2 Future Work

Due to time constraints during the implementation of MIRO, some desired features were
postponed. We plan to implement these features. In addition to new functionality for the
users of MIRO, we also plan to make several non-functional changes that are aimed at
improving performance and cover more use cases.

The planned new functionalities for users include:

1. Upload of external repository data: Give users of the web application the option of up-
loading, monitoring, and inspecting their own RPKI data through the web application
GUI.

2. Monitoring alarms: Give users the option of configuring monitoring alarms that alert
the user on repository changes.

3. Extend filter functionality: Extend the existing filter functionality to accept more
complex filter criteria.

4. Statistic timeline: Reimplement the Statistics part in JavaScript and show historical
data in addition to current snapshots.

5. Improved CLI for the Validator component to make distributed monitoring easier to
set up.

6. Download of validated repositories: Allow users to download a complete, validated
repository.

The non-functional changes include:

1. Improve overall robustness of the system. This includes improved logging, error han-
dling, and additional memory analysis to find subtle memory leaks.

2. Implement Prefetching strategy that we presented in section 3.2.1.

3. Allow usage of X.509 Certificates with other or no extensions. This includes major
changes to both the Validator and Browser component. For example to the validation
step in the processing chain in order to allow third parties to easily implement extension
specific validation algorithms and integrate them into the Validator.

4. Enable the Validator to parallelize the processing chain for multiple repositories.

Bibliography

[1] Rob Austein. Rpki utility programs. http://rpki.net/wiki/doc/RPKI/Utils, 2015.
[Online; accessed 18-May-2015].

[2] Ethan Heilman, Danny Cooper, Leonid Reyzin, and Sharon Goldberg. From the consent
of the routed: Improving the transparency of the rpki. In Proc. of ACM SIGCOMM,
pages 51–62, New York, NY, USA, 2014. ACM.

[3] Matthias Wählisch, Olaf Maennel, and Thomas C. Schmidt. Towards Detecting BGP
Route Hijacking using the RPKI. In Proc. of ACM SIGCOMM, Poster Session, pages
103–104, New York, August 2012. ACM.

[4] Jon Postel. Internet Protocol. RFC 791, IETF, September 1981.

[5] John Hawkinson and Tony Bates. Guidelines for creation, selection, and registration of
an Autonomous System (AS). RFC 1930, IETF, March 1996.

[6] Internet Assigned Numbers Authority. Number resources. http://www.iana.org/
numbers, 2015. [Online; accessed 17-March-2015].

[7] Kirk Lougheed and Jacob Rekhter. Border Gateway Protocol (BGP). RFC 1105, IETF,
June 1989.

[8] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). RFC 4271,
IETF, January 2006.

[9] M. Lad, R. Oliveira, B. Zhang, and L. Zhang. Understanding resiliency of internet
topology against prefix hijack attacks. 37th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, 2007, pages 368–377, 2007.

[10] X. Zhang H. Ballani, P. Francis. A study of prefix hijacking and interception in the
internet. SIGCOMM ’07 Proceedings of the 2007 conference on Applications, technolo-
gies, architectures, and protocols for computer communication, pages 265–276, August
2007.

[11] Zheng Zhang, Ying Zhang, Y. Charlie Hu, and Z. Morley Mao. Practical defenses
against bgp prefix hijacking. In Proceedings of the 2007 ACM CoNEXT Conference,
CoNEXT ’07, pages 3:1–3:12, New York, NY, USA, 2007. ACM.

[12] Changxi Zheng, Lusheng Ji, Dan Pei, Jia Wang, and Paul Francis. A Light-Weight Dis-
tributed Scheme for Detecting IP Prefix Hijacks in Real-Time. In Proc. of SIGCOMM
’07, pages 277–288, New York, NY, USA, 2007. ACM.

[13] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet

http://rpki.net/wiki/doc/RPKI/Utils
http://www.iana.org/numbers
http://www.iana.org/numbers

60 Bibliography

X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280, IETF, May 2008.

[14] Carlisle Adams and Steve Lloyd. Understanding PKI. Addison Wesley, 2 edition,
November 2002.

[15] RSA Inc. Understanding public key infrastructure (pki), an rsa data security white
paper. Technical report, RSA Data Security, 1999.

[16] ITU-T. Itu-t x.509 10/12. http://www.itu.int/ITU-T/recommendations/rec.aspx?
rec=X.509, 2012. [Online; accessed 27-March-2015].

[17] PKIX WG. Pkix charter for working group. http://datatracker.ietf.org/wg/pkix/
charter/, 1995. [Online; accessed 27-March-2015].

[18] M. Lepinski and S. Kent. An Infrastructure to Support Secure Internet Routing. RFC
6480, IETF, February 2012.

[19] Rob Austein, Steven Bellovin, Randy Bush, Russ Housley, Matt Lepinski, Stephen
Kent, Warren Kumari, Doug Montgomery, Kotikalapudi Sriram, and Samuel Weiler.
Bgpsec protocol specification draft-ietf-sidr-bgpsec-protocol-11. Internet-Draft draft-
ietf-sidr-bgpsec-protocol-11, IETF Secretariat, January 2015. https://tools.ietf.
org/html/draft-ietf-sidr-bgpsec-protocol-11#page-34.

[20] Wayne Davison. rsync web pages. http://rsync.samba.org/, 2015. [Online; accessed
02-April-2015].

[21] S. Weiler, D. Ward, and R. Housley. The rsync URI Scheme. RFC 5781, IETF, February
2010.

[22] G. Huston, G. Michaelson, and R. Loomans. A Profile for X.509 PKIX Resource
Certificates. RFC 6487, IETF, February 2012.

[23] G. Huston, S. Weiler, G. Michaelson, and S. Kent. Resource Public Key Infrastructure
(RPKI) Trust Anchor Locator. RFC 6490, IETF, February 2012.

[24] M. Lepinski, A. Chi, and S. Kent. Signed Object Template for the Resource Public
Key Infrastructure (RPKI). RFC 6488, IETF, February 2012.

[25] M. Lepinski, S. Kent, and D. Kong. A Profile for Route Origin Authorizations (ROAs).
RFC 6482, IETF, February 2012.

[26] R. Bush and R. Austein. The Resource Public Key Infrastructure (RPKI) to Router
Protocol. RFC 6810, IETF, January 2013.

[27] R. Austein, G. Huston, S. Kent, and M. Lepinski. Manifests for the Resource Public
Key Infrastructure (RPKI). RFC 6486, IETF, February 2012.

[28] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform Resource Identifier
(URI): Generic Syntax. RFC 3986, IETF, January 2005.

[29] Mark Reynolds and Stephen Kent. A profile for bgpsec router certificates, cer-
tificate revocation lists, and certification requests. Internet-Draft draft-ietf-sidr-
bgpsec-pki-profiles-10, IETF Secretariat, January 2015. http://www.ietf.org/
internet-drafts/draft-ietf-sidr-bgpsec-pki-profiles-10.txt.

[30] Rob A. Ripe goes hierarchical. January 2013. http://www.hactrn.net/
presentations/2013-01-15.ripe-goes-hierarchical.pdf.

http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=X.509
http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=X.509
http://datatracker.ietf.org/wg/pkix/charter/
http://datatracker.ietf.org/wg/pkix/charter/
https://tools.ietf.org/html/draft-ietf-sidr-bgpsec-protocol-11#page-34
https://tools.ietf.org/html/draft-ietf-sidr-bgpsec-protocol-11#page-34
http://rsync.samba.org/
http://www.ietf.org/internet-drafts/draft-ietf-sidr-bgpsec-pki-profiles-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-sidr-bgpsec-pki-profiles-10.txt
http://www.hactrn.net/presentations/2013-01-15.ripe-goes-hierarchical.pdf
http://www.hactrn.net/presentations/2013-01-15.ripe-goes-hierarchical.pdf

Bibliography 61

[31] Rob Austein. rcynic-summary. http://www.hactrn.net/opaque/rcynic/, 2015. [On-
line; accessed 1-May-2015].

[32] National Institute of Standards and Technology (NIST). rpki-monitor. http://
rpki-monitor.antd.nist.gov/, 2015. [Online; accessed 1-May-2015].

[33] SURFnet / Jac Kloots. Rpki dashboard. http://rpki.surfnet.nl/, 2015. [Online;
accessed 1-May-2015].

[34] RIPE NCC. Resource certification (rpki). http://certification-stats.ripe.net/,
2015. [Online; accessed 1-May-2015].

[35] M. Puzanov, O. Muravskiy, T. Bruijnzeels, E. Rozendaal, Y. Gonianakis, A. Band,
A. Snare, and H. Westerbeek. rpki-commons. https://github.com/RIPE-NCC/
rpki-commons, 2014.

[36] M. Puzanov, O. Muravskiy, T. Bruijnzeels, E. Rozendaal, Y. Gonianakis, A. Band, and
A. Snare. rpki-validator. https://github.com/RIPE-NCC/rpki-validator, 2014.

[37] Joshua Bloch. Effective Java (2nd Edition) (The Java Series). Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2 edition, 2008.

[38] Rob Austein. rpki.net project. http://www.rpki.net, 2015. [Online; accessed 1-May-
2015].

[39] J. Wilson et al. google-gson. https://github.com/Google/gson, 2014.

[40] Eclipse remote application platform. http://eclipse.org/rap, 2015. [Online; accessed
28-April-2015].

[41] Jface. https://wiki.eclipse.org/JFace, 2015. [Online; accessed 28-April-2015].

[42] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison Wesley, 2 edition, 1994.

[43] Ralf Sternberg. rap-d3charts. https://github.com/ralfstx/rap-d3charts, 2014.

[44] Apache jmeter. http://jmeter.apache.org, 2015. [Online; accessed 5-April-2015].

[45] Apache tomcat. http://tomcat.apache.org/, 2015. [Online; accessed 2-April-2015].

[46] Eclipse memory analyzer (mat). https://eclipse.org/mat/, 2015. [Online; accessed
2-May-2015].

[47] APNIC. Resource public key infrastructure (rpki). https://www.apnic.net/
services/services-apnic-provides/helpdesk/faqs/rpki#changes, 2015. [Online;
accessed 7-May-2015].

[48] Andreas Reuter and Matthias Wählisch. Rpki miro. https://github.com/rpki-miro,
2015.

[49] Andreas Reuter. rpki-commons. https://github.com/RIPE-NCC/rpki-commons/
commits/9afa034e72e9f2cf513c03c85db40a37de75c404, 2014.

[50] Andreas Reuter. rpki-commons. https://github.com/RIPE-NCC/rpki-commons/
commits/400e884e3a6a45fcc5cb7ad66519fdc3ada0760e, 2014.

[51] Thiago da Cruz. rpki-commons. https://github.com/RIPE-NCC/rpki-commons/
commits/dea01843365dbbd1de66b39e503c2d027775c0a1, 2015.

http://www.hactrn.net/opaque/rcynic/
http://rpki-monitor.antd.nist.gov/
http://rpki-monitor.antd.nist.gov/
http://rpki.surfnet.nl/
http://certification-stats.ripe.net/
https://github.com/RIPE-NCC/rpki-commons
https://github.com/RIPE-NCC/rpki-commons
https://github.com/RIPE-NCC/rpki-validator
http://www.rpki.net
https://github.com/Google/gson
http://eclipse.org/rap
https://wiki.eclipse.org/JFace
https://github.com/ralfstx/rap-d3charts
http://jmeter.apache.org
http://tomcat.apache.org/
https://eclipse.org/mat/
https://www.apnic.net/services/services-apnic-provides/helpdesk/faqs/rpki#changes
https://www.apnic.net/services/services-apnic-provides/helpdesk/faqs/rpki#changes
https://github.com/rpki-miro
https://github.com/RIPE-NCC/rpki-commons/commits/9afa034e72e9f2cf513c03c85db40a37de75c404
https://github.com/RIPE-NCC/rpki-commons/commits/9afa034e72e9f2cf513c03c85db40a37de75c404
https://github.com/RIPE-NCC/rpki-commons/commits/400e884e3a6a45fcc5cb7ad66519fdc3ada0760e
https://github.com/RIPE-NCC/rpki-commons/commits/400e884e3a6a45fcc5cb7ad66519fdc3ada0760e
https://github.com/RIPE-NCC/rpki-commons/commits/dea01843365dbbd1de66b39e503c2d027775c0a1
https://github.com/RIPE-NCC/rpki-commons/commits/dea01843365dbbd1de66b39e503c2d027775c0a1

62 Bibliography

[52] Peeroskop - peering monitor and microscopic analysis of the internet, 2015. [Online;
accessed 7-May-2015].

	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation
	Problem
	Thesis Structure

	Technical Background
	Internet Routing
	IP Prefixes and Autonomous Systems
	Border Gateway Protocol

	Public Key Infrastructures
	Public Key Cryptography
	Roles in a Public Key Infrastructure
	X.509

	Resource Public Key Infrastructure
	Resource Certificates
	RPKI Signed Objects
	Route Origin Authorization
	Deployment

	System Design
	Requirements
	High-Level Functional Requirements
	Non-Functional Requirements
	Architecture

	Validator
	Downloading and Parsing
	Data Model
	Validation
	Statistics
	Export

	Browser
	RPKI Browser
	Statistics
	Model Updater

	Implementation
	Choice of Technology
	Programming Language
	Framework

	Validator
	Data Model
	Processing Chain Overview
	Downloading and Parsing
	Validation
	Statistics
	Export

	Browser
	Overview
	ModelUpdater
	User Sessions

	Evaluation
	Performance
	Test Setup
	Results

	Repository Structure Analysis

	Outlook
	Summary
	Future Work

	Bibliography

