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a b s t r a c t

In applications such as digital libraries, stock tickers, traffic control, or supply chain
management, composite events have been introduced to enable the capturing of rich
situations. Composite events seem to follow common semantics. However, on closer
inspection we observed that the evaluation semantics of events differs substantially from

detailed semantics of composite event operators. We introduce composite event operators that
support explicit parameters for event selection and event consumption. These parameters
define how to handle duplicates in both primitive and composite events.

The event algebra EVA forms the foundation for a unifying reference language that allows
for translation between arbitrary event composition languages using transformation rules.
This translation, in turn, enables a mediator service that can federate heterogeneous event-
based systems. Our approach supports the seamless integration of event-based applications
and changing event sources without the need to redefine user profiles. The event algebra is
exemplified in the domain of transportation logistics.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Event-based systems (EBS) serve as a support for applica-
tions as diverse as business process monitoring, digital
libraries, traffic control, or supply chain management [63].
Central to these systems is complex event processing (CEP),
which has gained increasing attention in the past few
years with recent focussed attention by industry (see for
instance [44]). In addition, a number of books have
recently been published on the issue of complex event
processing (e.g., [79,89,27,46]).

Event-based systems trigger actions based on observed
events. The most basic triggered action is the sending
of a notification to an interested party. Events could be,
for example, the change in the value of shares, a new
temperature sensor value, the occurrence of a traffic jam, a
),
new Radio Frequency IDentifier (RFID) read, or more
generally a state transition. Business processes often call
for the detection of complex events, e.g., for identifying
out-of-the-ordinary usage patterns in fraud detection or in
the support of business transactions.

Users (end users or application designers) define their
interest in events by means of profiles or subscriptions, using
an event language. Profiles define conditions on events;
matching events may then trigger further actions. Profiles
are similar to search queries but filter a stream of incoming
events instead of static data. Users may be interested in
primitive (atomic) events, their times and order of occur-
rence. Many applications often require complex event pro-
cessing that relies on the detection of composite events,
which are formed by logical and temporal combinations of
events coming from either a single source or many sources.
Examples off event conditions in a logistic application may be
P1:
 a traffic jam alert occurred and a company truck is
affected.
P2:
 a customer cancelled three orders within a month.
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event processing. Some of them support only primitive

Various languages were designed and implemented for

events while more advanced systems also provide con-
cepts for composite events. The description of composite
events requires the definition of operators for event
composition. A number of languages have been proposed
with different features, e.g., the early language Snoop for
active databases [29], CEDL which introduces parameters
and aggregates [108], the Amit approach which considers
complex events describing situations [5], and SpaTeC
which introduces spatio-temporal reasoning [101]. Over-
views of event languages have been presented in a tutorial
at DEBS 2009 [99] and in a number of publications
[68,116,38]. Despite the variety of available systems and
languages, we still identify four issues in the handling of
composite events1:
1.
Dag
Unspecified temporal semantics: Some composition
operators allow for temporal parameters, others hard-
code certain semantics.
2.
 Unclear semantics: The evaluation of language expres-
sions that seem to follow similar semantics (e.g.,
sequence of two events) does not always lead to
similar results. One example is the handling of dupli-
cate events (e.g., events that describe similar state
transitions but occur at different times): depending on
the application field and on the implementation,
duplicates may be either skipped or retained in the
event-filtering process.
3.
 Lack of collaboration: No common framework exists
that allows for comparison of event composition lan-
guages. The collaboration between event-based sys-
tems is a fortiori extremely limited.
4.
 Lack of adaptivity: Event conditions must be re-defined
for different systems and for variations in event sources
(e.g., different sensors). For example, truck location
events may be sent on changing location or may be
retrieved following a schedule. The profiles and ser-
vices cannot adapt to changing event sources or new
event sensors automatically.

This paper introduces a parameterized event algebra
EVA that supports adaptable event composition. Each of
the complex elements of the algebra is discussed in detail
using simple yet illustrative examples borrowed from
a logistics application. The paper addresses the identified
problems as described below.

To incorporate temporal restrictions, we use the notion
of relative time. Our formalism is an extension of the
semantics of Event-Condition-Action (ECA) rules of active
databases [28]. Since EBS are typically used in the context
of a distributed environment and cannot usually rely on a
transactional context (unlike active database systems), the
simultaneous occurrences of events have to be identified
according to a distributed time reference. Therefore, all
composite event operators need to be handled as temporal
operators and extended by a relative time frame (similar
1 We also introduced and discussed some of these issues at the
stuhl seminar on complex event processing held in 2007 [32].
to time handling in distributed systems). The issues of
timing and ordering in a distributed environment are not
addressed here. For the sake of simplicity, we assume that
all occurring events can be ordered in a global system of
reference.

The semantics of temporal operators as introduced, for
instance, by Allen [7] is not defined in a uniform manner
across the numerous application areas. Our approach as
described in this paper allows for semantic variations. This
is achieved through the introduction of an event algebra
which is controlled by a set of parameters. The parameter-
ized event algebra handles temporally composed events. It
allows for simple changes of the filter semantics to support
changing applications, to adapt to new event sources, and
to support the integration of applications that combine
events from different sources.

We created a framework for the comparison of compo-
site event languages based on our algebra. We briefly
summarize the results of a language survey that we
performed using the framework. Adaptability to changing
applications and event sources as well as the collaboration
between a number of EBS is a complex issue: It requires rules
for transformation of profiles according to the sources,
applications, and collaboration partners. As a proof of con-
cept we implemented an adaptive system A-mediAS that
uses the event algebra introduced in this paper to support
the required profile changes. We also introduce our mediator
service that allows collaboration between EBS based on
predefined transformation rules.

The following list summarises the key contributions of
this paper:
�
 Our event algebra EVA to define the semantics of
complex events in a way that allows easy adaptation
to different application needs; EVA has been used to
define adaptable event composition in our prototype
implementation.
�
 A set of language groups and transformation rules based
on our algebra, which have been used to compare and
translate between different composite event languages.
�
 A mediator service for event-based systems as proof of
concept that implements a collaboration between het-
erogeneous event systems using our transformation
rules for both event processing and notification post-
filtering.
The remainder of the paper is organized as follows.
Section 2 discusses related work. Section 3 gives necessary
background information. After introducing an application
scenario that will serve as a reference throughout the
paper, we briefly define basic event-related concepts. We
describe temporal event operators and semantic varia-
tions. In Section 4, we introduce our parameterized event
algebra and apply it to our application scenario to illustrate
the influence of various parameter settings. Section 5
describes our proofs of concept: an implementation of
the algebra in an EBS, a language survey using the algebra
and transformation rules to translate between different
EBS, and the design and implementation of a mediator
service for EBS. Section 6 compares the design of our
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algebra to related approaches. Finally, Section 7 holds
concluding remarks and directions for future work.
2 Small parameter changes for our algebra may require completely
new expressions in PTL.
2. Related work

Event specification semantics have been developed in
various research areas, such as active databases, temporal
or deductive databases, temporal data mining, time series
analysis, and distributed systems. We also acknowledge
a close relationship to stream processing and context-
awareness.

We distinguish event-based systems according to their
abstraction levels: application level, implementation/com-
munication level, and system level. Note that event-based
systems on a higher level do not necessarily rely on event-
based components at a lower level. For instance, active
database systems (implementation level) are not based on
event-based communication. Vice versa, event-based com-
munication is not only used in event-based applications.
Services on the communication level are called event-
based infrastructures. They do not support composite
events. Event-based communication on the web is sup-
ported by a number of protocols, none of which implement
composite events. Finally, the problem of determining the
event order based on incorrect time-stamps as well as time
systems for distributed environments has been studied
elsewhere and is out of scope here.

2.1. Active databases

In the area of active database systems, the problem of
event rule specification has been studied for several years
(also with special focus on composite events [51,53,114]
and temporal conditions [42]). As opposed to EBS, active
database systems can rely on the transactional context
for the composition of events. Trigger conditions can be
defined based on the old and new state of the database,
thus using the concept of states rather than describing the
event itself. For the ordering of database states, the
temporal interval operators as defined by Allen [7] can
be used (see the formal semantics in [88]). Ordering based
on events, as opposed to states, has been implemented in
the SAMOS system [50]. The work of Zhang and Unger
[118] on semantic variation of operators is foundational
and provided great insight into this matter. However, they
do not consider the semantics of flexible parameters or
time frames. Zimmer and Unland provide early work on
comparing the semantics of different event languages but
did not define a formal semantics [122]. Active database
systems do not support adaptive system behavior and
most of them are centralized systems that deal only with
database-internal events. Furthermore, active database
systems are event-based systems at the implementation
level, whereas our work focuses on the application level.

In the context of active databases, temporal logic [8] is an
alternative approach to describe composition operators
(e.g., in [88,98]). A promising approach is the Enhanced
Past Temporal Logic (PTL) introduced by Sistla and Wolfson
[98], because it supports relative temporal conditions and
composite actions. However, the desired flexibility would be
lost2 and not all operators and parameters can be expressed.
A similar observation holds for Bry and Eckert's approach
towards a formal foundation of event queries and rules [20].

The problem of temporal combination of events is also
addressed in temporal and deductive databases. In these
areas, various approaches have been introduced, such as
temporal extensions to SQL [104,107] and a temporal
relational model and query language [90]. In contrast to
EBS, however, temporal and deductive databases focus on
ad hoc querying.

2.2. Data mining

The areas of temporal data mining and time series
analysis rely on temporal association rules [6,35]. From a
set of data, rules verified by the data have to be discovered.
While similar event operations are evaluated, the app-
roaches differ greatly from event filter semantics discussed
in this paper. In event-based systems, event combinations
are given and the matching set of data is to be found, while
in temporal analysis the data are given and the rules have
to be derived.
2.3. Data stream processing and complex event processing

Stream processing analyses large amounts of data in
real-time to detect quality-of-service patterns [27,73].
Applications generating data streams include sensor net-
works, news feeds, online auctions, web click-stream,
network-traffic monitors, and supply chain systems with
RFID tracking. Continuous queries perform operations on
these streams using time-windows as filters on the con-
tinuously arriving data. Continuous queries are implemen-
tations of transforming languages [38]: operations that
process the input streams by filtering, joining and aggre-
gating to produce one or more output streams. Data
stream elements may be relational tuples [83] or XML
elements [57], and the stream operators are thus taken
from relational databases or XML query languages, respec-
tively. A large number of systems explore stream proces-
sing, such as Aurora [23], Fjord [81], NiagaraCQ [34],
OpenCQ [78], MavStream [66], STREAM [12], and Tele-
graphCQ [31]. Stream processing has now become an
established part of database management systems (e.g.,
Oracle 11g [36]) and dedicated commercial systems (e.g.,
TIBCO [106]).

Complex event processing (CEP) combines several
sources of events to identify high-level patterns of events
[46,79]. The systems use pattern-based languages to detect
elements that match given conditions in the input stream.
Conditions may be expressed by logical operators, content
and timing conditions [38]. CEP also typically specifies
actions to be taken once a pattern is detected, e.g., further
processing of data or execution of business rules.

In recent years, a number of attempts have been made
to combine event processing and stream processing
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[26,4,111,41,38], sometimes referred to as event stream
processing (ESP) [16,17].

2.4. Knowledge representation

The aim of knowledge representation (KR) is to facil-
itate reasoning and inference, with rules being one of the
approaches to describe a knowledge base [109]. In KR
business applications, interlinked distributed rules need to
be managed and adapted at runtime.

Formalized KR rules have increasingly been used in
semantic rule-based CEP [105,79,93]. These approaches
aim to improve the quality of event processing by using
event meta-data in combination with ontologies and rules.
A number of formal languages have been proposed to
express patterns and inference rules: Event Calculus [72],
Situation Calculus [84] and interval-based Event Calculus
[92] are formalizations of complex event patterns based on
logical knowledge representation. Many languages sup-
port both event processing and reasoning [10].

Galton and Augosto provide a comparison of approaches
to event definition from both the KR and active database
communities [49]. The languages combining KR and ECA
focus predominantly on richness of expression, including
semantic reasoning and business rules. Furthermore, sev-
eral works in event-based systems have used KR calculi to
specify formal semantics of event algebras (e.g., [71]). None
of these were developed to provide the desired flexibility,
and thus do not support all parameters. Furthermore,
similar to logic-based approaches to active databases (dis-
cussed in Section 2.1), they use logical event calculi in a
manner that may require completely new or substantially
changed expressions for small changes in the desired event
semantics.

2.5. Semantics of event composition languages

Most event-based systems implement their own event
composition languages [40,54,50,29,80,82,37,75,96,11] and,
additionally, event pattern languages have been described in
the literature [46,88,86,118].

Many of the early languages developed key language
concepts that have now become well established. The
HiPac project contributed the definition of coupling modes
to specify when an action is executed with regard to the
transaction in which the triggering event is detected
(immediate, deferred or separate) [40]. The Ode language
of the Compose system formally introduced the handling
of composite events [53,54]. The SAMOS system included
filtering of events external to the database [50–52]. The
Snoop language of the Sentinel introduced parameter con-
texts to control the semantics of each operator [43,29].
SnoopIB extends Snoop to events with durations [1,3].
Rapide's language covers complex situation such as caus-
ality and event equivalences [80].

In our work, we are not concerned with database-specific
constraints such as transactional context, or with the speci-
fication of triggered actions (as in HiPac). Moreover, aware-
ness of event causality (as in Rapide) is beyond the scope of
our work. Our focus is on semantics of composite event
operators. Previous analyses of languages have shown that
most languages provide merely syntax often with only hard-
coded or informally described semantics. Moreover, many
event algebras provide only event operators to describe the
semantics of complex events, which leads to irregularities
and confusion of concepts [120–122]. For example, both Ode/
Compose and HiPac use a fixed consumption policy in each
operator, which defines whether a matched event is to be
excluded from further processing. Composition operators in
SAMOS have fixed policies but can be partially influenced by
combinations of operators.

Carson [22] compared a number of methods that have
been used to formally specify event patterns: regular
expressions [54], finite state automata [14,119,95], modal
or temporal logic [98,71], and operator-based event
algebras [29,88,122,58,64,115,22,5]. Operator-based event
algebras build complex event patterns by (recursively)
combining primitive events and composition operators.
They have the advantage of most closely resembling the
implemented event specification languages and are com-
monly used in active databases and general high-level
event-based systems.

Most of these event algebras define similar composition
operators to describe temporal relationships such as con-
junction, sequence, and negation (e.g., [29,58,64,122,5,22]). It
has been shown that the detection mechanisms in Snoop/
Sentinel, SAMOS and Ode/Compose are based on different
strategies, which introduce some subtle differences in the
way patterns are defined although their respective event
algebras look quite similar [22]. The work of Zimmer/Unland
provided an initial framework for comparing these event
algebras but did not define a formal semantics [70]. Their
work was adapted by Baily and Mikulás into a formal
framework using temporal logic that allows identification
of decidability of event queries [15]. Etzion implements
and expands on the concepts of Zimmer/Unland, which he
applies in two rich language definitions [5,46], the semantics
of which is not formally defined.

Motakis and Zaniolo have developed an event pattern
language (EPL) with semantics based on datalog rules [88].
They provided translations of the patterns used in Ode/
Compose, Samos and Snoop/Sentinel into similar expres-
sions in EPL, thereby allowing for a comparison of these
pattern languages.

The existing language comparisons imply a uniformity
of languages that is deceptive [22,122,68]. A detailed
analysis makes apparent that there is no simple way of
comparing or automatically translating from one language
into the other. None of the existing algebras have the
flexibility that we propose here. This paper therefore does
not aim to suggest yet another language, but proposes
a parameterized algebra to describe, compare and easily
translate between complex event languages. A more
detailed comparison between the formal event algebra
approaches will be provided later in Section 6.3.

3. Background

This section is devoted to our context of study. It first
describes our running example in the field of transportation
logistics. Then the basic event-related concepts are
introduced.
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3.1. Application scenario

Let us consider a company in Hamilton, New Zealand,
that sells various goods to its customers. The goods are
stored in a warehouse and are delivered to the customers
by trucks T1, T2, and T3. During the night, the trucks
are kept in a garage. Each morning, a truck driver has
a delivery list for the day, which is based on several
scheduling and loading restrictions, such as load balancing
or convenient delivery time for customers. He or she picks
up the goods from the warehouse and follows the delivery
list. All trucks have to be back at the garage by the end
of the day. The following events are of interest in this
application:
�
 truck departure from a location

�
 truck arrival at a location

�
 goods pickup

�
 goods delivery

�
 delivery cancellations

�
 traffic jam alert

�
 accident involving truck
Fig. 1 depicts the following scenario. On a given day,
customers A–I expect deliveries. The customers' respective
locations designated by the same letters are also shown in
the figure. Let us assume that each delivery takes 30 min
on average. The delivery list for that day that must be
followed by trucks T1–T3 is
D
G

E
F

H

garage + warehouse

Fig. 1. Logistics scenario: warehouse and customers A

Fig. 2. Example profil
T1:
–I in

es for
load goods, deliver A,B, deliver I, return

T2:
 load goods, deliver D,E, deliver C, return

T3:
 load goods, deliver H, deliver F,G, return
All of the trucks need to cross the city center and the
bridges. Traffic jams could potentially cause delays that
users may want to be informed about. Fig. 2 shows
example profiles that may be defined in our scenario
application. Our scenario illustrates, in particular, that a
wide range of composite events may be of interest within
a single application.

3.2. Definitions

We consider a number of objects of interest in a system,
e.g., real world objects such as trucks in a warehouse, an
item with an RFID tag, a web-page on the Internet, or
abstract objects. The state of an object at a certain time is
defined by its properties (attributes), e.g., the location of a
truck or the content of a web page.

Definition 3.1 (Event). An event is a state transition of an
object of interest at a certain point in time, i.e., a significant
change of attribute value.

A “significant change” is obviously application depen-
dent. For instance, while in some applications a change of
location of three meters or a temperature rise of three
degrees Farenheit may be significant, in other ones it may
be negligible.
A B C

I

Hamilton (map courtesy of Wises.co.nz).

scenario.
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As it is often the case, we assume that events have no
duration and are “happenings of interest” at a certain time
[89]. Events may be state changes in databases, real-world
events such as the departures and arrivals of vehicles, a
new RFID read, or even the (value of the) current time.
Note that also sensor readings without a change of the
sensor value constitute events [63]. In this case the
changed value refers to the time of the sensor reading.
The fact that a value did not change over time may also be
of interest.

Events themselves can be represented using a collec-
tion of simple 〈attribute, value〉 pairs. Each event repre-
sentation has a time-stamp as a mandatory attribute that
refers to the time of the event's occurrence. The time
system of reference for time-stamps is discrete. In our
scenario, an example for a (primitive) event at a truck
location is

etruck: eventðtruck_number; T2;
location; ð�37:783333;175:283333Þ;
time_stamp;14:00:00 NZTÞ

We do not elaborate on attribute types here, e.g., string for
attribute name, as event representation is not the focus
of this work. We consider primitive events and composite
events, which are formed by combining primitive and
possibly composite events. The set of all events to be
observed within an EBS is called the event space:

Definition 3.2 (Event space). The set of all possible events
known to a certain system is called the event space E. The
event space is formed by the set of primitive events EP and
the set of composite events EC : E¼ EP [ EC . The set of time
events is denoted Et � EP .

The set of composite events EC detectable by a certain
system is specified by its event algebra that defines its
filter and profile semantics. Composite events are created
based on an event algebra. The algebra defines temporal
event composition operators and event composition defines
new events. Note that we do not define a composite event as
a set of primitive events, as done, e.g., by Gehani et al. [53].
This difference greatly influences the event composition.
The new (composite) events inherit the characteristics of all
contributing events; the event occurrence time is defined by
the composition operator.

One of the central concepts of an event-based system is
the (user) profile.

Definition 3.3 (Profile). A profile pc is a condition c that is
continually evaluated by the system against the trace of
incoming events.

In an EBS, profiles are evaluated against the stream of
all observed events, also called the trace.

Definition 3.4 (Trace). A trace trt1 ;t2 is a semi-ordered
sequence of events eAE with start- and end-points t1, t2,
respectively.

Note that the start and end points might be infinite. The
history of events that a service processes is then trt0 ;1 with
t0 being the point in time the service started observing
events.3 We need a mechanism to refer to each event in a
trace. Because a trace behaves essentially as a list, we can
use the operations commonly defined for lists: We apply
an arbitrary local order that assigns an index number iAN

to each event. The elements of a trace can then be accessed
by their index-number, and tr½i�, iAN refers to the ith
event of the trace tr.

The fact that a profile evaluates true for a certain event
is called event-profile matching. Based upon the notation
used, e.g., in [24], the matching operator is defined as
follows:

Definition 3.5 (Profile-event matching ⊏). Consider the
profile p and event e. If the condition defined by profile
p is true for event e, this is denoted by p⊏e. Then e is called
a matching event for p.

Profiles can also contain wildcards and other operators
such that not all attributes of the event have to be exactly
defined. Each profile evaluation starts after the profile has
been defined; for each positively evaluated event e1, it
therefore holds implicitly tðe1Þ4tðprofileÞ. The set of all
matching events for a profile is an event class.

Definition 3.6 (Event class). An event class EðcÞDE is
the collection of all events for which a condition c holds:
EðcÞ ¼ fejeAE4cðfegÞg.

Events in an event class share some properties. For
instance, the class may refer to events regarding tempera-
ture, however, the event representations may differ in
other attributes (e.g., location). An example is the class of
all events that describe the delivery of goods to Customer
A. An event in the event class is the actual delivery of a
package to Customer A at a certain time.

Events are denoted by lower Latin e with indices, i.e.,
e1; e2;…, while event classes are denoted by upper Latin E
with indices, i.e., E1; E2;… . The membership of an event ei
in an event class Ej is expressed as eiAEj. Classes may have
non-empty intersections, i.e., they do not have to be
mutually disjoint. Thus, membership is non-exclusive,
i.e., eiAEj and eiAEk is possible even with EjaEk. Event
classes may also have subclasses, so that eiAEj � Ek. The
time-stamp of an event eAE1 is denoted t(e).

The notion of event classes for profile queries mirrors
the concept of result set for database queries. However, an
important difference between the two concepts is note-
worthy: A result set for a query is determined for a given
database state and applying the query on a different
database state would lead to a different result set. Profiles
are evaluated against every incoming event over a period
of time. The event class contains all events that may ever
match a profile.

Definition 3.7 (Duplicate). Events that are members of
the same event class are called duplicates.

Duplicates could be, for instance, not only all truck
location events of truck T1 referring to identical coordi-
nates, but also all events referring to truck T1. Note that
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duplicates need not necessarily have neither identical
event representation nor identical time stamps.
3.3. Event composition

This section informally describes the base operators for
composite events. These operators are needed to describe
the range of a profile language as well as the event filtering
of a system. We extend the event operators from active
database systems introduced in [51,28] to consider the
temporal demands on event composition. In the following,
we look at the simplest combinations of events, namely
pairs of events. The combination of more than two events
can be created by nesting the operators.

We denote by the g operator the fact that a set of
events contributes to a composite event.

Definition 3.8 (Composition contribution g). Let e1;…;

enAE be events that contribute to the composite event
eAEC . This relation is expressed as fe1;…; engge. e1;…; en
can be primitive or composite events.

Event composition defines new events that inherit the
characteristics of all contributing events. The occurrence
time of the composite event is defined by the composition
operator as defined below. The events e1 and e2 used in the
definitions can be any primitive or composite event; E1
and E2 refer to event classes with E1aE2. t(e) refers to the
occurrence time of e based on a reference time system;
T denotes time spans in reference time units. Temporal
operators are defined on both events and event classes,
resulting in further events and event classes, respectively.

Temporal disjunction: The disjunction ðE1jE2Þ of events
occurs if either e1AE1 or e2AE2 occurs.4 The
occurrence time of the composite event e3A
ðE1jE2Þ is defined as the time of the occurrence
of either e1 or e2 respectively tðe3Þ≔tðe1Þ with
fe1gge3 or tðe3Þ≔tðe2Þ with fe2gge3.

Temporal conjunction: The conjunction ðE1; E2ÞT occurs if
both e1AE1 and e2AE2 occur (e1ae2), regardless
of the order. The conjunction constructor has a
temporal parameter that describes the maximal
length of the interval between e1 and e2.5 The
time of the composite event e3AðE1; E2ÞT with
fe1; e2gge3 is the time of the last event: tðe3Þ≔
maxftðe1Þ; tðe2Þg.

Temporal sequence: The sequence ðE1; E2ÞT occurs when
first e1AE1 and afterwards e2AE2 occurs. T
defines the maximal temporal distance of the
events. The time of the event e3AðE1; E2ÞT with
fe1; e2gge3 is equal to the time of e2: tðe3Þ≔tðe2Þ.

Temporal negation: The negation ET defines a “passive”
event; it means that no eAE occurs for an
interval ½tstart ; tend�; tend ¼ tstartþT of time. The
4 If both events occur, the result of the disjunction is two distinct
events.

5 ðE1 ; E2Þ1 refers to an event composition without temporal restric-
tions. It is equivalent to the original conjunction constructor as defined,
e.g., in [51].
occurrence time of eT AET is the point of time
at the end of the period, tðeT Þ≔tend. When clear
from the context, we write eT when referring to a
passive event.

Temporal selection: The selection E½i� defines the occur-
rence of the ith event eAE of a sequence of
events of sets E, iAN.

If several operators are to be applied, we have to distin-
guish whether identical events or distinct events that
belong to the same event class are addressed. For that
purpose, we additionally permit the Boolean operators of
logical conjunction (4) and logical disjunction (3) to be
used in event composition. These operators address iden-
tical events, i.e., references to the same event class
combined by logical operators refer to identical instances
within that set. Logical operators are defined on event
classes only. A logical combination of two sets describes
the usual logical combination of the defining conditions.

Logical conjunction: In a logical conjunction E14E2 of
event classes E1 and E2 both conditions are true
for the instances eAðE14E2Þ.

Logical disjunction: The logical disjunction E13E2 requires
that at least one of the conditions is true for the
instances eA ðE13E2Þ.

Note that logical combinations of event classes form a
name space for the events involved, i.e., equal classes
names such as E1 refer to identical events in that class.
Equal names combined by temporal event operators only
define identical event descriptions and therefore a class of
events. This characteristic is illustrated in the following
example:

Example 3.1 (Temporal vs. logical conjunction). Let E1; E2,
and E3 be event classes. Then, the events of the temporal
conjunction

ET ¼ ððE1; E2ÞT1; ðE1; E3ÞT2Þ
are defined as

ET ¼ fej(e11; e12AE1 (e2AE2 (e3AE3: fe11; e12; e2; e3gge4
tðe11Þrtðe2Þr ðtðe11ÞþT1Þ4tðe12Þrtðe3Þr ðtðe12ÞþT2Þg:

It is not required but allowed that e11 ¼ ¼ e12. The events
of the logical conjunction EL ¼ ððE1; E2ÞT14ðE1; E3ÞT2Þ are
defined as

EL ¼ fej(e1AE1 (e2AE2 (e3AE3: fe1; e2; e3gge4
tðe1Þrtðe2Þr ðtðe1ÞþT1Þ4 tðe1Þrtðe3Þr ðtðe1ÞþT2Þg:

We now show the application of the newly introduced
composition operators to our example profiles:

Example 3.2 (Scenario profiles).
P1:
 (Notify the controller if) a traffic jam alert occurred
and (if) one of the trucks is at that time (75 min) in
that area: Let E1 be the set of traffic-jam events in city
area A. Let E2 be the set of all events regarding the
location sensor of the trucks, and EA2 � E2 the sub-set
of truck location events in A. We then have to observe
all composite events e¼ ðe1; e2Þ5 min; e1AE1; e2AEA2.
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P2:
6

(Notify the analyst if) a customer cancelled an order
twice within a month: Let E3 be the set of cancelled
orders of a particular customer. A simplified definition
for the composite event could be expressed as e¼
ðe31; e32Þ4 weeks with e31; e32AE3.
P3:
 (Notify customer I if) T1 leaves A and B for I after
2 pm: Let E2pm be the set of time-events occurring at
2 pm. Let E4 be the set of leaving-events for truck T1,
EA4 � E4 and EB4 � E4 subsets with leaving-events
regarding customer A and B, respectively. The compo-
site event is then defined as e¼ ðet ; ðe41; e42Þ1Þ1 with
etAE2pm; e41AEA4 ; e42AEB4.
P4:
 (Notify the controller when) all trucks are back (after
an 8-hour shift): Let E5; E6 be two sets of events
describing the departure and return of trucks, respec-
tively. Then for each truck we could define e¼ ðe5; e6Þ8h
with e5AE5; e6AE6.
P5:
 (Notify the controller if) goods have not been picked
up 2 h after the start of the shift. Let E7 be the set of
events of loading goods, E10am the set time-events
defining the start of the shift. Then the composite
event is defined as e¼ ðet ; ðe7Þ2hÞ2h, etAE10am; e7AE7.
As we shall illustrate shortly, the event operators

presented informally in this section do not describe the
complete semantics of a profile definition language. For
the event operators described above, different (applica-
tion-dependent) semantics are conceivable. Applications
may wish or need to switch between those semantics. We
therefore introduce a parameterized event algebra (in the
next section). For an event algebra in the EBS context, we
need to consider the following modes6:
1.
 Event selection principle: How to identify primitive
events based on their properties.
2.
 Event pattern: Which event operators form composite
events.
3.
 Event selection: Which events qualify for the complex
events, how are duplicated events handled.
4.
 Event consumption: Which events are consumed by
complex events, or, in other words, which events are
removed from the trace.

Since the event selection principle is not our focus, we
consider only Boolean predicates on (attribute, value)
pairs. Event composition patterns have been introduced
in Section 3.3. In the following sections we introduce
modes for event selection and consumption. These two
concepts have been proposed in the context of active
database systems and are extended to the context of
event-based systems. In [122], Zimmer and Unland regarded
these modes as being independent for active databases. We
show that this is not the case for EBS: event selection and
consumption in EBS have to be handled together.

Event selection: Duplicate instances of an event class
have to be handled differently depending on the applica-
tion and even on the context within the application. For
the event selection, three approaches can be
We use a terminology developed in active databases [122].
distinguished: (1) Duplicates are ignored, (2) duplicates
are overwritten by new ones, and (3) all duplicate events
are taken into account. An example might be the reading
of a given sensor at different times, such as the location of
a truck. For the truck locations the latest sensor reading
is the valid one and earlier readings are replaced, i.e.,
duplicates are overwritten. The delivery events also belong
to the same class of events; they are duplicates. However,
if each of these events needs to be considered for further
planning, duplicates should not be ignored. If for some
reasons a customer cancels an order twice, the duplicate
event can be ignored.

Event consumption: We distinguish three variations in
the identification of composite events: (1) Matched events
are not consumed and can contribute several times, (2)
they are consumed by the composite event, or (3) after
they are consumed the filter is re-applied. If matched
events are consumed, only unique composite events are
supported. If the filter is applied more than once, a
primitive event can participate in several composite
events. Let us return to our delivery example: If a user is
interested in the fact that all trucks are back in the
evening, the profile can be defined as the sequence of
the events truck X departs and truck X arrives. In this case
they are only interested in unique pairs of depart/arrive
events, but not, for instance, in all combinations of all
depart and arrive events of the month. If events are
consumed by composite events, the filtering process could
be re-applied (repeated) after unique composite events
have been identified. This means that after events are
consumed, the remaining stream of events is reconsidered
under the same profile condition. This approach may also
be seen as a combination of the two parameters, event
selection and event consumption.

For brevity reasons, we cannot display all six temporal
operators with their possible parameter settings (for the
sequence operator, this would result in 48 variations).

Extending the terminology introduced in Section 4, we
refer to the event selection parameter within a composite
event using the following operators for duplicate selection
on an event class E: first duplicate Eð1Þ, last EðlastÞ, all EðallÞ,
and ith EðiÞ. We refer to the event consumption parameter
for each composite event pair ð:; :Þ by an additional index:
all pairs ð:; :ÞðallÞ, unique ð:; :ÞðuniqueÞ, and repeated ð:; :ÞðrepeatÞ.
In Section 5, we introduce an event language implement-
ing the parameterized algebra.

Example 3.3 (Scenario with parameterized operators). Pro-
files P1 and P2 from our example application are defined
as follows when using the parameterized operators:
P1:
 (Notify the controller if) a traffic jam occurred and (if)
one of the trucks is at that time (75 min) in that area
(see P1 in Example 3.2). The controller wants to be
notified about all trucks in traffic jam areas (all pairs).
For the truck location events, only the last events in
the duplicate groups are considered. All traffic jam
events are considered, since several traffic problems
can occur within the same area, and all of them have
to be taken into account. The following events have to
be observed eA ðEðallÞ1 ; EAðlastÞ2 ÞðallÞ5 min



A. Hinze, A. Voisard / Information Systems 48 (2015) 1–25 9
P2:
 (Notify the analyst if) a customer cancelled an order
two times within a month (see P2 in Example 3.2).
Only unique composite events have to be considered
(unique pairs) to prevent alerts being sent after every
other event. Every primitive event regarding a new
order is to be considered. The following events have to
be observed eAðEðallÞ3 ; EðallÞ3 ÞðuniqueÞ4 weeks
We argue here that the composite operators do need
the specification of the parameters described above to
define the operators' full semantics. If the parameters are
missing, operators that seem to follow similar semantics
(e.g., a sequence of events) may be treated differently by
different systems (cf. above examples).

3.4. Profile-event situations

This section illustrates the implications of the para-
meters introduced above.

Binary operators. Fig. 3 shows a matrix of selected
profile-event situations with identical parameter settings
for each event in a pair. Other situations can be easily
constructed. Note that the names for the rows and
columns are simplified descriptions of the different
approaches. The corresponding formal algebra definitions
follow.

The examples shown in the matrix refer to the compo-
site events of a sequence ðE1; E2Þ in a given example trace
of events. The events are referred to in the figure as ○AE1
and �AE2. Each composite event is marked with an arc.
The position of arcs above or below the trace is only to
improve legibility. The dashed arcs denote special cases
that we discuss in Section 4.4. Here, we use fixed time
frames as evaluation intervals that are denoted with
brackets [.] to make the different implications easier to
compare.

The vertical dimension of the matrix (columns in Fig. 3)
shows variants of event selection. The selection either
takes only the first or the last duplicate in a trace into
account, or all events are considered. It is important to
AIIAI

BIIBI

CIICI

Fig. 3. Profile and event trace example un
note that the word “duplicate” is used here with respect to
a profile and not for the event itself (cf. Definition 3.7).
Two events can be different, even though they match the
same profile. With regard to that particular profile they are
seen as duplicates. Using the matrix, we demonstrate
example applications for the different approaches. One
can easily see that using different sensors and varying
application situations may require a dynamic adaptation of
parameter settings.

I: Taking the first event of a sequence of duplicates is used
in applications where duplicates do not deliver
new information, e.g., whether the value of a
sensor reading goes beyond a certain threshold.
In such cases, only the first event delivering
the information about a change needs to be
evaluated.

II: Taking the last event of a sequence of duplicates is
useful in applications that handle, for instance,
status information about different sources. The
temperature control of a building works on the
basis of scheduled sensor readings. In this case
the last reading shows the most current value.

III: Taking all events is only useful in an application where
each duplicate must be considered, e.g., security
systems where any event has to be recorded and
analyzed. This is also interesting in applications
where information about changes is crucial (e.g.,
share value rises by 5%), or in a digital library
application that delivers new articles.

The examples above clearly illustrate that the appropriate
semantics and the various possible profiles are heavily
application dependent.

The horizontal dimension of the matrix (rows in Fig. 3)
show different versions of profile filter evaluation: apply
the filter to all events, apply it only to the unmatched
events, and repeat filtering after a profile match. The last
approach can lead to a successive matching of possibly all
events in a duplicate list (see first/last event of duplicate
list). Here, sequences of matching pairs can be found. Note
that events in the duplicate lists are pre-filtered, i.e., the
AIII

BIII

CIII

der different evaluation conditions.



UA

UB

UC

Fig. 4. Unary event profile and event trace example under different
evaluation conditions.

7 The notion of a view is inspired by database views that hide
unnecessary information from the user, giving access only to a certain
portion of the data.
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duplicate lists contain only events that are relevant to the
profile (see details on trace view in Section 4.1).

A: Keeping matched events means considering all possible
event combinations in a given series, which
results in sets of composite events that have
single events in common. This applies for
instance in scenarios where each event repre-
sents a set of events. Examples include trucks
delivering goods to customers, where a set of
goods is loaded in the morning but the unloading
is realized by several events. In this case, the
starting event is a combination of several simple
events load product on truck, which can be seen
as factorized.

B: Consuming matched events ensures that each event only
takes part in one composite event of a certain
type. This approach is sufficient for applications
where single event pairs have to be found
and where no implicit event combinations occur,
such as personal ID systems for security pur-
poses, with personalized cards that have to be
checked in and out when entering or leaving the
building.

C: Consume and repeat of the filtering process after dis-
carding matched events is used, e.g., for text
analysis. An example application is an event-
based XML-validator, as proposed in [9]. With
this method interleaving event pairs can be
identified.

In distributed event-based systems, the Siena system [25]
implements evaluation style as in situation C I, Rebeca
implements B I and B II, CQ [76] implements C I. In active
database systems, SAMOS [50] implements C I and C III
depending on the event operators, Snoop in Sentinel [29]
uses B III, Compose in Ode [53] distinguishes evaluation styles
similar to C I, C II, and A III depending on parameters.

A flexible implementation of the different styles would
allow for simple adaptation of the filter semantics to chan-
ging requirements. Moreover, it would allow for expressive
semantics that could be tailored to suit various applications.
Our parameterized approach that enables such a flexible
implementation is presented in the next section.

Unary operators: For these operators, only the event
consumption parameter applies. The semantic variations
are shown in Fig. 4. The examples refer to the composite
event of a selection E½4�1 in a given example trace of events.
The events are referenced as ○AE1, each composite event
is marked with an arrow, the arcs denote the event
contributing to the composition. As for binary operators,
changing the consumption parameter subtly changes the
interpretation of the unary operator.

UA: keeping matched events means that in this case E½4�1 is
interpreted as selecting every event ○AE1 that is
proceeded by three other E1 events.

UB: refers to consuming matched events leads to E½4�1
identifying the fourth event ○AE1. Note the differ-
ence to the binary operator example (E1; E2) in
Fig. 3, row B: event duplicate selection in binary
operators applies within each duplicate list, which
do not exist for unary operators.

UC: consuming matched events and re-applying the fil-
ter leads to every fourth event ○AE1 being
selected as the filter is repeatedly applied.
4. Parameterized composite event algebra

This section presents the formal definition of our
parameterized event algebra. We first concentrate on the
binary operators and their semantic variations. Then, we
briefly consider unary operators.

4.1. Auxiliary definitions

To support our formal definition of composite opera-
tors, we introduce the concept of trace views. A trace view
is a projection of a trace on events of certain event class.7

Definition 4.1 (Trace view). Let E1 be an event class. The
sub-trace trðE1Þ of a given trace tr is defined as the semi-
ordered list of events that contains all events eAE1. We
call this subsequence a trace view.

The trace view trðE1; E2Þ contains all e1Atr and e2Atr
where e1AE1; e2AE2. We also use the shorthand notation
trðe1; e2Þ. Note that the events in trðE1Þ keep all their
attributes including occurrence time, but obtain a new
index-number. We now define a re-numbering on the
list tr:

Definition 4.2 (Trace renumbering). Renumbering trace
tr is equivalent to subdividing tr into disjoint sublists
tr½1; ��;…; tr½n; �� such that each sublist contains all succes-
sive events from the same event class. Every element
of such a sublist is denoted with tr½x; y�, where xAN is
the number of the sublist and yA ½1; lengthðtr½x; ��ÞÞ is the
index-number of the element within the sublist.
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The length of the sublists is defined as the number of
list elements. Disjoint sublists containing only events of
one set are referred to as duplicate lists:

Definition 4.3 (Duplicate list). Let E1, E2 be two event
classes with E1aE2. We then define a duplicate list DE1\E2
as the ordered list of events of set E1 that occur in a trace tr
without any events of set E2 in between: DE1\E2 ðnÞ ¼ tr½n; ��
such that for e1AE1, e2AE2 holds

e1Atr;:(e2Atr: tðe2ÞAðtðtr½n;1�Þ; tðtr½n; lengthðtr½n; ��Þ�ÞÞ

The nAN defines an ordering on similar duplicate lists.

Note that duplicate lists are subject to changes as long
as the closing event, i.e., the first event e2AE2, did not
occur.

Example 4.1 (Trace renumbering). Let us consider the
following trace of events: tr¼ 〈e1; e2; e3; e4; e5; e6; e7; e8;
e9; e10; e11; e12〉 with e1; e3; e4; e8; e9AE1, e6; e7; e10; e11;
e12AE2, and e2; e5AE3 as shown top left in Fig. 5. The
ðE1; E2Þ-trace view is then defined as trðE1; E2Þ ¼ 〈e1; e3;
e4; e6; e7; e8; e9; e10; e11; e12〉.
The renumbered trace view is then trðE1; E2Þ ¼ 〈tr½1;1�;

tr½1;2�; tr½1;3�; tr½2;1�; tr½2;2�; tr½3;1�; tr½3;2�; tr½4;1�; tr½4;2�;
tr½4;3�〉 with tr½1; �� ¼ 〈e1; e3; e4〉, tr½2; �� ¼ 〈e6; e7〉, tr½3; �� ¼
〈e8; e9〉, and tr½4; �� ¼ 〈e10; e11; e12〉. Obviously, the list length
of the first sublist follows with lengthðtr½1; ��Þ ¼ 3. The
example is depicted in Fig. 5.

Note that we denote (unordered) sets of events by E (E
being the set of all events) while tr½:; �� denotes temporally
ordered lists of events (allowing for duplicates). As dis-
cussed previously, for each of the basic operators (e.g.,
sequence), several semantic variations exist. Defining each
of the variations separately would require a number of
definitions for each basic operator. Instead, we use a set of
parameters to control the variations.

In our formal definition, the values of the parameters
vmin, vmax, wmin, wmax, and PEIC influence the operator
semantics. The values of vmin, vmax, wmin, wmaxAN control
the event selection parameter; they refer to the lower and
the upper index-number of the selected events within
each duplicate list. The definition of the set PEIC controls
the event consumption parameter; elements of this set
determine the number of duplicate lists required to form
the composition pairs. We discuss the different parameter
values subsequent to the basic definitions.

To easily distinguish the profiles for composite events,
we denote the profiles with the operators that have been
introduced for the event classes. For instance, p¼ ðp1jp2Þ
denotes a profile containing a query regarding the dis-
junction of events, i.e., the defining query for ðE1jE2Þ.
RenTrace tr

View tr(E1,E2)

Fig. 5. Trace and renumbe
4.2. Binary operators

The disjunction implements an inclusive alternative
(or) not exclusion (xor), i.e., the matching set of the
disjunction includes all events that may match either
profile. We use the matching operator ⊏ (introduced in
Definition 3.5) to refer to the set of events that match a
certain composite profile.

Definition 4.4 (Disjunction of events). Let us consider two
profiles p1 and p2, then the following holds

ðp1jp2Þ⊏e3 (e1AEððp1⊏e13p2⊏e1Þ4e¼ e1Þ:
Let us consider the event classes E1, E2 with E1 ¼ fejeAE;

p1⊏eg and E2 ¼ fejeAE; p2⊏eg. The set of matching events
of a given trace tr is then defined as

ðp1jp2ÞðtrÞ ¼ fejeAE4 ðp1jp2Þ⊏e4
(vA ½vmin; vmax�DNþ

(xANþ (tr½x; v�AtrðE1; E2Þ
such that ftr½x; v�ggeg:

Different values for the open parameters vmin, and vmax are
discussed subsequently (see Figs. 6 and 7).

The conjunction profile ðp1; p2Þt is matched by the set of
events ðfe1; e2gÞ. We define the semantics of a conjunction
of events as follows:

Definition 4.5 (Conjunction of events). Let us consider two
profiles p1 and p2, eAE and a given time span T. Then the
following holds

ðp1;p2ÞT⊏e3 (e1; e2AEðp1⊏e14p2⊏e24
jtðe2Þ�tðe1ÞjrT4fe1; e2ggeÞ:

Let us consider the event classes E1, E2 with E1 ¼ fejeAE;

p1⊏eg and E2 ¼ fejeAE; p2⊏eg. The set of matching events
of a given trace tr is then defined as

ðp1;p2ÞT ðtrÞ ¼ fejeAE4ðp1; p2ÞT⊏e4
( ðx; yÞAPEIC (vA ½vmin; vmax�DNþ

(wA ½wmin;wmax�DNþ

(ftr½2x�1; v�; tr½2y;w�gAtrðE1; E2Þ
such that ftr½2x�1; v�; tr½2y;w�ggeg:

Again, different values for the open parameters PEIC, vmin,
vmax, wmin, and wmax are discussed subsequently.

Definition 4.6 (Sequence of events). Let us consider two
profiles p1 and p2, eAE, and a given time span T. Then the
following holds

ðp1;p2ÞT⊏e3 (e1; e2AEðp1⊏e14p2⊏e24
tðe2ÞA ðtðe1Þ; tðe1ÞþT �4fe1; e2ggeÞ:

Let us consider the event classes E1, E2 with E1 ¼
fejeAE; p1⊏eg and E2 ¼ fejeAE; p2⊏eg. The set of matching
umbering:

tr[1, ] tr[2, ] tr[3, ] tr[4, ]

tr[1,1] tr[1,2]

tr[1,3]

tr[2,1]

tr[2,2]

tr[3,1]

tr[3,2]

tr[4,1]

tr[4,2]

tr[4,3]

. ...

ring in Example 4.1.



Fig. 6. Event selection: parameters for first, ith, and last event within each duplicate list (columns I–III in Fig. 3) where mAN with 8 j4m:

tðtrpost ½:j�Þ4tðtrpost ½:; :�ÞþT , where the dots are placeholders for the respective values, T as defined for the operator.

Fig. 7. Event consumption: parameter for unique and all pairs (rows A and B in Fig. 3)
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events of a given trace tr is then defined as

ðp1; p2ÞT ðtrÞ ¼ fejeAE4 ðp1; p2ÞT⊏e4
( ðx; yÞAPEIC (vA ½vmin; vmax�
(wA ½wmin;wmax�
(ftr½x; v�; tr½yþ1;w�gAtrðE1; E2Þ
such that ftr½x; v�; tr½yþ1;w�ggeg:

As stated for Definitions 4.4 and 4.5, different values for
the open parameters PEIC, vmin, vmax, wmin, and wmax are
discussed in the next paragraph.

Semantic variations of binary operators. We now evalu-
ate different parameter values. We distinguish two dimen-
sions: the selection of events from duplicate lists (EIS) and
the composition of matching pairs (EIC). We use the
notation anterior and posterior to refer to the two operands
of the binary operators; trant and trpost denote the respec-
tive duplicate lists. For the event selection, we distinguish
several options for selecting events from duplicate lists (as
defined in Fig. 6). Each operand has to be evaluated
differently, depending on the position of the operand
relative to the binary operator.

The selection of the ith event is a (somewhat artificial)
generalization of the preceding modes.

For the composition modes for pair matching (event
consumption), we distinguish two variations as shown in
Fig. 7: the selection of unique pairs (each event in the
matching set participates in one pair only, as in Row B in
Fig. 3) and the selection of all pairs (as in Row A in Fig. 3).

The third approach, as depicted in Row C in Fig. 3, is a
combination of the two dimensions that have already been
introduced. Here, we discuss this approach briefly: Only
unique pairs are considered (x¼y), matching pairs are
removed and the filtering is repeated until all matches are
found. The first matches are, e.g., first/last events of duplicate
lists, the second matches are second/next-to-last events, and
so forth. Other combinations are plausible. The parameter
option of all duplicates for both contributing events has the
same result as without repeated filtering; the combination of
different parameter values opens new result variations.

4.3. Unary operators

The definition of unary operators (selection and negation)
is discussed only briefly. While the sequential variations
support the selection of the ith event within duplicate lists,
the selection operates on the full matching list.

Definition 4.7 (Selection). Consider eAE and iAN, then

p½i�⊏e3 (eiAE 8 jAN with 1r jr iðp⊏ej4
tðejÞrtðeÞ4feiggeÞ:

Let us consider the event class E½i� ¼ fejeAE; p½i�⊏eg. The set
of matching events of a given trace is then defined as

p½i�ðtrÞ ¼ fejeAE½i�4p½i�⊏e4
x¼ 1; (vA ½vmin; vmax�DNþ

(tr½x; v�AtrðE½i�Þ
such that ftr½x; v�ggeg:

Definition 4.8 (Negation). Consider a time event etAEt
and a given time span t1, then

ðpÞT1
⊏et3∄e1AE (e2AEtðp⊏e14

tðe1ÞA ½tðe2Þ�T1; tðe2Þ�4fe2ggetÞ:
Let us consider the event class ET1 with ET1 ¼ fe j eAE;

ðp1 ÞT1
⊏etg. Then the set of passive events for a given trace

is defined as

ðpÞT1
ðtrÞ ¼ fejeAET1 4ðpÞT1

⊏e4
x¼ 1; (vA ½vmin; vmax�DNþ

(tr½x; v�AtrðET1 Þ
such that ftr½x; v�ggeg:

Unique events are detected with vmin ¼ vmax ¼ 1, all
events are detected with vmin ¼ 1, vmax ¼ lengthðtr½x; ��Þ.
Both binary and unary operators holds that the repeated
filtering after event matching is more complex.

4.4. Evaluation time

The issue of order and time in a distributed environ-
ment is crucial and has to be considered for an imple-
mentation of these operators. In this paper we defined the
complete sets of matching events without considering the
evaluation time. Obviously, the result of a profile evalua-
tion over a trace heavily depends on the time of evalua-
tion: The very last event within a duplicate list might only
be known at the end of the observation interval.



2 weeks
cancelled order
other events

Fig. 9. Trace and evaluation example for Profile P2.

Fig. 8. Trace and evaluation example for Profile P1.
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It is assumed that event matches including last dupli-
cates are evaluated at the closing of the evaluation interval.
A continuous evaluation of all incoming events offers the
advantage of early notification. However, the information
delivered may not be as accurate as the information
available at the conclusion of the time frame because
new events may ‘overwrite’ the previous last event.

An example is shown in situation A II in Fig. 3 (dashed
lines). This approach is appropriate for several applications
such as catastrophe warning systems for environmental
surroundings or other systems for urgent information
delivery. A business example is a user who might want
to know that an initial flight and hotel booking is being
made for them even though this information might be
overwritten later by a better offer. Evaluation at the closing
of the evaluation interval would result in a single notifica-
tion with the best offer, continuous evaluation would
result in an earlier event being overwritten by the later,
better booking.8

4.5. Application examples

In this section we briefly discuss the implementation
parameters for profiles P1 and P2 defined in the context
of our logistics application. We use the event classes as
defined in Section 4:
E1
 – set of traffic-jam events in city area A,

E2
 – set of all events regarding the location sensor of

the trucks, with EA2 � E2 the subset of truck location
events in A,

The parameters for profiles P1 and P2 are defined as
follows:
P1:
8

(Notify the controller if) a traffic jam alert occurred
and (if) one of the trucks is at that time (75 min) in
that area.
� Composite event description: eAðEðallÞ1 ; EAðlastÞ2 ÞðallÞ5min
� Instance consumption: All pairs have to be con-
sidered: PEIC ¼ fðx; yÞjxANþ 4yANþ g.

� Instance selection: For the truck location events
we consider the last event in the duplicate groups
(vmin ¼ vmax ¼ lengthðtrantÞ or wmin ¼wmax ¼m as
defined in Section 4). The events are evaluated
continuously. Traffic jam events are all considered,
since several traffic problems can occur within the
same area, and all of them have to be taken into
account (vmin ¼ 1; vmax ¼ lengthðtrantÞ or wmin ¼ 1;
wmax ¼m).
Th
The parameters in this example are similar to type A II
in the matrix in Fig. 3. An example trace and the
associated profile evaluation is given in Fig. 8.
P2:
 Notify if a customer cancelled an order two times
within a month.
� Composite event description: eAðEðallÞ3 ; EðallÞ3 ÞðuniqueÞ4weeks
� Instance consumption: Only unique composite
is is an adaptation of an example in [46].
events have to be considered: PEIC ¼ fðx; yÞjxA
Nþ 4yANþ g otherwise notifications would be
sent at every event occurrence after the third one,
which is not appropriate in this case.

� Instance selection: Every primitive event is to be
considered, the event specification would have to be
refined (vmin ¼ 1; vmax ¼ lengthðtrpostÞ and wmin ¼ 1;
wmax ¼m).
The parameters in this example are similar to type B III
in the matrix in Fig. 3. An example trace and the
associated profile evaluation is given in Fig. 9. The first
event pair only qualifies for a partial event, no
notification is sent. The next three events (i.e., 2–4)
qualify, the fifth event does not qualify since only
unique composite events are allowed.
As shown in our examples, the logistics scenario describes
a mixed application that processes information coming
from differently structured sources. Therefore, in this
scenario we have to apply various parameter settings.
Other applications use more homogenously structured
sources, so that a single parameter setting could be used
within the application field.

4.6. Algebraic characteristics

It has already been noted that most event algebras have
not been defined formally. Paschke et al. observed that
procedural semantics without precise formalism are a
serious omission for many real-world applications that
depend on validation and traceability of the effects of
events [92]. For languages with formally defined seman-
tics, algebraic characteristics have rarely been made expli-
cit but can be inferred from the underlying formalism (e.g.,
regular expressions [54], finite state automata [14,119,95],
modal or temporal logic [98,71]). Carlson defines an
algebra for which a number of intuitive algebraic proper-
ties have been proven [22].

As a complete and detailed proof of semantic charac-
teristics is beyond the scope of this paper, we here
sketch the necessary steps to reach both correctness and
completeness.

We aim to adjust the algebra such that each composite
event definition becomes expressible as an automaton.
The definition of a trace as a semi-ordered list (cf.
Definition 3.4) is required by the application domain and
cannot be reduced into a strict order. However, we argue
that to achieve sound results (e.g., in the selection of the
first event of a list) an arbitrary but deterministic order can



Fig. 10. Event Language of the A-mediAS system based on the EVA algebra.
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be defined on events with the same time-stamp (e.g.,
based on event source). Under these conditions, each of
the components of the event composition can then be
shown to be expressed by automata (thus ensuring sound-
ness and completeness).9 The events created by our event
algebra form a closed set as both binary and unary
operators are functions on the event space that refer back
into the event space (see Definitions 4.4–4.8). The match-
ing events of any profile on a given trace form another
trace of (composite) events.

We further present a selection of properties of the
algebra and show to what extent the operators follow their
intuitive behavior. We use the notion of equivalence of
profile evaluation on traces:
Definition 4.9 (Trace equivalence). For two profiles p1 and
p2, we define equivalence p1 � p2 to hold iff p1ðtrÞ ¼ p2ðtrÞ
for any trace tr.

The following properties for profiles p1 and p2 with
time span T follow from the definitions in Sections 4.1–4.3
for all settings of EIS and EIC:
1.
wo
lead
ðp1jp1Þ � p1

2.
 ðp1jp2Þ � ðp2jp1Þ

3.
 ðp1; p2ÞT � ðp2; p1ÞT

4.
 ðp1; ðp2; p3ÞT ÞT � ððp1; p2ÞT ; p3ÞT

5.
 ðp1; ðp2; p3ÞÞT � ððp1; p2ÞT ; ðp1; p3ÞT Þ

6.
 ðp1; ðp2jp3ÞÞT � ððp1; p2ÞT jðp1; p3ÞT Þ

7.
 ðp1; ðp2; p3ÞT ÞT≢ððp1; p2ÞT ; p3ÞT

8.
 ðp1; p2Þ½i�T ≢ðp½i�1 ; p½i�2 ÞT
Property 7 is a well-known property and also discussed in
Section 6.1, property 8 has been discussed in the comment
on UB (consuming matched events) in Section 4.3.
9 We did not originally define the algebra using automata as these
uld need to exhaustively create all possible parameter combinations
ing to a loss of the flexibility desired for EVA.
5. Proof of concept

The proof of concept for our event algebra is threefold:
(1) a reference language was implemented in the
A-mediAS system, (2) a set of transformation rules
between language classes was developed, and (3) a med-
iator service was implemented.

5.1. Reference language implementation

We implemented a distributed event-based system
A-mediAS [59,60], for which the profile definition language
is based on the algebra proposed here. In fact, the grammar of
the language is a direct translation from our parameterized
algebra. In Fig. 10, the symbol priEvent refers to a primitive
event class. The structure of an Integer follows the common
rules for integers, TimeSpan refers to a timespan.

As introduced in this paper, the exact semantics of each
composite operator is controlled by parameters. We
included the additional parameter of event evaluation
time in our profile definition language, which has been
discussed in Section 4.4.

Example 5.1 (Profiles using A-mediAS language). Our pre-
vious example profiles expressed in the reference lan-
guage are encoded as
P1:
 (Notify the controller if) a traffic jam alert occurred
and (if) one of the trucks is at that time (75 min) in
that area
eAððall_dupðE1Þ; last_dupðEA2ÞÞ5minÞall_pairs
P2:
 Notify if a customer cancelled an order two times
within a month.
eAððall_dupðE3Þ; all_dupðE3ÞÞ4 weeksÞunique_pairs
An implementation of a new operator for each different

parameter setting would not be sufficient: The size
of the profile language would increase significantly while
providing the same semantic magnitude. Furthermore,
adapting the profiles to changing applications and sensors
would be a complex task due to the fixed semantics of
these operators.



Table 1
Language groups based on their support for operators and time frames. The asymmetrical assignment regarding negation
and sequence is due to the effect of time-frames.

Group Conjunction Disjunction Sequence Negation Selection Time frames

CG�① � � � –

CG�② � � � � –

CG�③ � � � �
CG�④ � � � � �
CG�⑤ � � � � � �
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Our approach follows the concept of polymorphism:
The semantics of each basic composition operator is
determined by the parameter setting, which may change
during the system's runtime. Profiles on primitive events
are described using attribute-operator-value triples.

The system has been tested for both performance and
scalability. Selected performance results for the filtering of
composite events in A-mediAS can be found in [61,62]. The
system uses a recursive optimization approach where later
parts of a composite profile are only instantiated once the
earlier parts have been matched [61]. A description of
the adaptation as well as the integration principles of
A-mediAS has been presented in [59,60].
5.2. Composite event language transformation

After briefly describing five language groups, the details
of language transformations are introduced separately for
operators and parameters. We show selected examples of
transformation rules for one language group.

Language groups: Based on our algebra, a classification
schema for profile definition languages was developed. Five
groups of composite event languages are identified based on
their support for time frames and composition operators (see
Table 1). There are two groups without time frame support
and three groups with time frames. Parameters for event
consumption and duplicate handling have been described
inconsistently in the literature and were thus considered
separately. When assigning languages to these groups, the
decisions were largely made based on support for sequence
and negation as these are important concepts that are difficult
to express using other operators.

Profile transformation: For each group and each parameter,
we defined transformation rules for translating a filter
expression of a mediator service (see Section 5.3) into the
target languages of other systems. The mediator service is
assumed to support all of the concepts introduced in EVA.
Equivalent transformation of rules between different groups
may not always be possible and we therefore have to identify
expressions that are semantically close. In these cases,
auxiliary profiles and post-filtering will be applied.

Transcriptions of profiles may be more or less expressive
than the original expression. We used four types of transfor-
mations (extending concepts of Boolean transformations [33]):
�
 equivalent transformation ⟷

�
 positive transformation ⟶

þ

�
 negative transformation ⟶
�

�
 transferring transformation ⟶
#

Equivalent transformations result in expressions that lead to
identical result sets. Positive transformations lead to larger
result sets (expressions are less selective), and may require
post-filtering for false positives. Negative transformations
would have smaller result sets (more selective) and may lead
to missed events – these need to be avoided. Transferring
transformations may use auxiliary profiles to construct
equivalent queries from alternative operators.

For supported operators, transformations are used to
insert time-frames where needed. Transformations for
operators that are not supported are more complex. In
the mediator service, profiles may be timed (indicated by
subscript T) or without time-frame (subscript 1). Profiles
from the mediator service are marked here by a super-
script med, profiles from one of the language groups with
the respective group number.

For simplicity we do not define here the transformation
rules for all groups in detail, but instead show significant
examples. Selected transformation rules for languages in
CG�① are as follows:
�
 timeless conjunction: ðE1; E2Þmed
1 ⟷ðE1; E2Þ①
�
 timed conjunction: ðE1; E2Þmed
T ⟶

þ ðE1; E2Þ①

�
 timeless sequence: ðE1; E2Þmed

1 ⟶
# ðE1; E2Þ①; additional

post-filtering is needed to achieve tðe1Þotðe2Þ for
e1AE1 and e2AE2.
�
 (timeless) selection: ðE1Þ½n�med⟶
þ ðE1;…; E1Þ①

We refer to [68,69] for the detailed transformation rules
defined at the mediator service for translating profiles into
languages of the five groups (and vice versa for event
notifications). An approach that uses evaluation strategies
similar to composite transformation rules is implemented
in ZStream [85]: the system uses non-deterministic finite
automata to achieve efficient detection of composite
events (e.g., rewriting the query plan for sequence detec-
tion into a faster detection using conjunction).

Parameter transformation: Using our parameterized alge-
bra EVA, transformation of parameters is now straightfor-
ward. Note how the transformation of EIC and EIS is not
independent but expresses the interconnectedness of the
two parameters. The influence of parameter transformations
on operator transformations (as introduced above) is
described in Table 2.



Table 2
Transformation impact for selected parameter settings of event instance selection (EIS) and event instance consumption (EIC).

EIS EIC First Last All ith

Parameter All Unique All Unique All Unique All Unique

First All ⟷
Unique ⟵

þ ⟷

Last All – – ⟷
Unique – – ⟵

þ
⟵
þ

All All ⟶
þ

⟶
þ

⟶
þ

⟶
þ ⟷

Unique – – – – ⟵
þ ⟷

ith All ⟶
þ

⟶
þ - - ⟵

þ - ⟷

Unique – ⟶
þ – – ⟵

þ
⟵
þ

⟵
þ ⟷
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Finally, Table 3 shows an overview of languages with
operators, time frames and their identified composition
group, and support for consumption (EIC) and duplicate
handling during event selection (EIS). Languages with
identified groups can be handled according to the trans-
formation rules. Rules from other languages may have to
be adapted manually.

5.3. Mediator service implementation

The event algebra introduced here has also been used
to implement a mediator service: In this service we take
advantage of the flexibility of the algebra which can be
easily adapted to different existing languages by changing
the parameter setting.

The mediator service is the solution to three problems
occurring when using several independent EBS (see Fig. 11(a)
for illustration): (1) Users (clients) of heterogeneous systems
are forced to subscribe the same profile to a number of
services using different filter languages, (2) composite events
combining events from different providers that are handled
by different services have to be identified by client-based
post-filtering, and (3) changes in applications or sensors
require fine-grained manual adaptations. Implementing yet
another service that hopes to combine all providers under one
umbrella is futile for reasons of trust, downwards compat-
ibility, company strategy, and required integration of legacy
systems.

We introduce the mediator service to enable collabora-
tion between services (see Fig. 11(b)). The advantages are
evident: Users can have a uniform access for profile
definition while addressing several event sources. Users
are not repeatedly notified about the same event, i.e.,
duplicate recognition can be implemented on the media-
tor service level. In addition, security and privacy issues
are easier to address. The system was developed in three
stages:

(1) Simple mediator: This service sets up communica-
tion between the mediator and a number of event services
with different languages. It syntactically translates
and distributes profile definitions to the services and
combines incoming results, without profile and result
transformations.

(2) Transformation mediator: The service extends the
simple mediator to incorporate semantic transformation
rules. When a profile for a composite event class is defined
at the mediator service, it is transformed according to the
rules described in Section 5.2. The resulting profiles are
then subscribed to all target services. The resulting profile
matches are post-filtered at the mediator, where neces-
sary, and final matches are signaled to the subscribed
users.

(3) Collaboration mediator: Composite profiles defined
at the mediator are not only syntactically and semantically
transformed into different languages as in Stage 2. Events
that are composed by contributing events from different
services are also detected and signaled at the mediator
service. This is achieved by decomposing the composite
event profile into a set of primitive profiles, which are
subscribed to the services.

Architecture and design: Fig. 12 shows the mediator
service architecture. The mediator service has two data
stores for capturing client information and profiles, respec-
tively. The client storeholds addresses and descriptions
of each of the client systems. The profile store holds both
users' original profiles and transformed profiles. When the
mediator service receives a new profile, they are entered
into the profile store and then forwarded to profile trans-

formation. During the transformation process, each profile
is transformed into different formats (one for each entry
in the client store) by applying the transformation rules
outlined in Section 5.2. The transformed profiles are then
entered into the profile store (for post-filtering and noti-
fication transformation) and forwarded to the correspond-
ing clients.

When the mediator service receives an event notifica-
tion from one of the client systems, it locates the corre-
sponding transformed profile in the profile store and
invokes the post-filtering according to the transformation
rules used on the original profile. If the event notification
is identified to be valid in the post-filtering, the system will
locate the original profile in the profile store and transform
the event notification to the format matching the original
profile language (notification transformation). Finally, the
user receives the transformed event notification from the
mediator service.

Evaluation: We tested the system in connection with five
base systems each supporting a different event language (one
from each language group defined in Section 5.2). In addition,
each base system was configured to receive events from only



Table 3
Event composition semantics of selected languages. Some languages implement a simultaneity operator (e.g., CQ, Ready, Eve), which we consider to be a special case of the conjunction (similar to EPL [88]). Other
languages have repetition or iteration operators (e.g., ECCO, SAMOS, and Eve) – some of these we identify as explicit EIS parameters, others are equivalent to our selection operator. More detailed language
comparisons can be found in [5,115,38] (based on adapted Zimmer/Unland policies) and [68,69] (based on both EVA and Zimmer/Unland).

System Operators Time frames Composition
Group

Consumption modes Duplicate handling

Conjunction Disjunction Sequence Negation Selection Keep Consume Con. and reapply First Last All ith n to m

A-mediAS [60] � � � � � � ⑤ � � � � � � � �
Amit [5] � � � � � � ⑤ � � � � � �
CEA [14] � � � � ② �
CQ [77] � �
DistCED
[96,97]

� � � � � ③ � �

Eve [55] � � � � � � ⑤ � � �
ECCO [115] � � � � � � a

⑤ � � � � �
Etalis [11] � � � � � ④ � � � � � �
GEM [82] � � � � � ④ � �
Padres [75] � � � � � ③ � �
PLAN [112] � � � � �
Ready [58] � � � � ② � � � � �
Rebeca [91] � � � � � ④ �
Samos [50] � � � � � � ⑤ � �
Siena [25] � � �
Snoop [53] � � � � � � ⑤ �
SpaTeC [87] � � � � a

③ � � � �
T-Rex [37] � � � � � � ⑤ � � � � � � �
Ode [53] � � � � ③ � � � �
Yeast [74] � � � � � ④ � �

a ECCO and SpaTeC detect composites based on both temporal and spatial relationships.
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Fig. 11. Communication of clients with (a) several independent systems vs (b) with a mediator service.

Fig. 12. Mediator service architecture.

Fig. 13. Filtering and post-filtering. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of
this paper.)
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one publisher so that no duplicate event notifications would
be reported to the mediator service. We evaluated the
influence of profile transformation (subscription performance)
and post-filtering and notification transformation (notification
performance). We summarize our findings as follows:
�
 #connected services: The subscription time increases
with the number of connected services as each requires
specialized profile transformations. The notification
time is not affected.
�
 #profiles: The subscription time increases with the
number of profiles. The notification performance at
the mediator is independent of the number of profiles
(as they are handled by a hash map).
�
 composition group: The simpler the supported profiles
(lower composition group number), the greater the sub-
scription time (due to the number of transformations
required) and the notification time (influence of complex-
ity in required post-filtering and transformations).
�
 collaboration support: A mediator with collaboration
between services (for detection of composite events
contributed by different services, stage 3) creates addi-
tional primitive profiles in comparison to a transform-
ing mediator (stage 2). The final filtering of these
profiles is done at the mediator (see Fig. 13) and its
performance follows the characteristics of the filter
algorithms used.
The overall filter and notification performance of the
system (base services and mediator) is a composite of the
independent filtering at the base services (indicated in
green in Fig. 13) and the post-filtering/transformations in
the mediator service (in blue). The collaboration support
to detect composite events from different base services
uses an additional filter in the mediator (in red), which
may also use post-filtering results as input.

At current, the filter process at the mediator is multi-
threaded while the subscriptions are handled by a single
thread. Distributing the subscription process would alle-
viate its dependence on the number of connected services
and profiles. Collaboration support adds a second filter
process. This naturally impacts on performance but also
allows detection of composite events that may otherwise
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go unnoticed. Detailed evaluation of the impact of colla-
boration on the mediator is part of future work.

Further details about the mediator service implemen-
tation are available in [65]. We are aware of only one
project that also aimed to provide uniform access to
multiple event-based systems: the DENS system was
developed as overlay service to give access to multiple
event systems/languages in MANETs [102]. However,
neither this system nor the mediated languages did sup-
port composite event detection.

6. Comparison of EVA to related approaches

Here we compare the approach taken in EVA with
those of other languages and event algebras. We discuss
semantic variations for event time, the use of window
operators, and compare the EVA semantics to other
approaches.

6.1. Interval vs point semantics

We defined events to occur at single points in time (see
Definition 3.1) to represent the notion of events as instan-
taneous state transitions. This point semantics is a common
approach in the literature (e.g., [19,110,46]) as well as in
many system implementations (e.g., SAMOS [51], SNOOP
[29], Reach [21], CEP over streams [113]).

An alternative approach uses interval semantics: events
may be said to occur over a time interval [49,100,2]. We
believe that here the distinction between events and states
is blurred. For example, the arrival of a truck at the
warehouse (see Scenario in Section 3.1) is a process which
may start with the truck entering through the gate and is
finished by the driver handling in the completed list of
tasks done during the day. Point semantics describes this
as the state of ‘arriving’, with a start and an end point.
Interval semantics explicitly models arrival as an event
with a duration.

Chakravarthy refers to point semantics as detection-
based semantics as the event time is typically defined by
the end of the detection interval, whereas interval seman-
tics is referred to as occurrence-based [27,3].

Interval, or detection-based, semantics has some intui-
tive advantages in the ordering of complex events: here
the oft-cited example of E1; ðE2; E3Þ is matched only by
the sequence tr¼ 〈e1; e2; e3〉. In point semantics, E1; ðE2; E3Þ
is also, somewhat counter-intuitively, matched by tr¼
〈e2; e1; e3〉 (see, e.g., [49]). However, this is remedied in
our algebra by an explicit use of bracketing (i.e., E1;
ðE2; E3ÞaE1; E2; E3), which is instantiated in our language
implementation by the use of seqðE1; seqðE2; E3ÞÞ for the
above example.

Yoneki [116] additionally refers to hybrid point-interval-
based time-stamps – these are point-based time-stamps
expressed in interval-based format. The interval represents
error margins introduced by detection delays and proces-
sing time. These types of time-stamps are used, e.g., in
ECCO [115] and Rebeca [91]

Our event algebra defines temporal composites that
rely on point semantics in a given time frame (i.e.,
interval). Its parameterized semantics could be translated
into interval context, while composites based on order
(e.g., sequence) would have to be adapted. Our main
contribution of parameterization would also be applicable
in this new context. However, interval-based semantics
follows a different philosophy to point-based semantics
and is beyond the scope of this paper.

6.2. Window operators

Stream processing targets detection of accumulated or
aggregated events over (sliding) timewindows. Time intervals
(windows) of fixed lengths are applied on streams to extract
data into relations. Then SQL-like queries are executed on
these relations of changing database states. Sliding windows
have also been used in active databases [1]. The notion of
window operators is essential to allow for non-blocking
evaluation of active streams. This is particularly significant
for set operators such as join, sort and aggregates [27].

Different window models have been introduced: land-
mark window, damped window, and sliding window
[103]. Landmark windows use all data between a fixed
point in time (the landmark) and the current time.
Damped windows give preference and weight to newer
data, and sliding windows use a fixed-length interval of
most recent data in the stream. The sliding window frame
is widely used in the mining of data streams [56,39,48,27].
A number of sliding window models have been specified,
such as tumbling windows in Aurora [23] and partitioned
windows in CQL [13].

Our event algebra EVA is concerned with temporal
relations between events and does not focus on aggrega-
tion. Both sliding and fixed windows (i.e., landmark
windows) can be created in EVA using time events and
durations. Additional windows can be freely defined based
on time or events. The main difference is that such
windows in EVA create filters on the event trace, resulting
in trace views on the original trace (see Definition 4.1), not
relations as in stream processing.

Adaikkalavan and Chakravarthy have shown that win-
dows created by event consumption modes and sliding
windows in stream processing do not fulfill the same
purpose and behave independently of each other [1].
However, fine-grained and elaborate window specifica-
tions are not targeted in EVA and might often result in
cumbersome specifications. They are outside the scope of
this paper.

6.3. Algebras and semantic comparisons

It has been repeatedly observed that event consump-
tion rules are mostly applied in implementations without
clear semantic definition [117,86,22,122]. A first approach
to compare the semantics of event detection in active
database system was presented in [47], however, event
composition was beyond the scope of that work. Motakis
and Zaniolo have developed an event pattern language
(EPL) with semantics based on datalog rules [88]. They
provided translations of the patterns used in Ode, Samos
and Snoop into similar expressions in EPL, thereby allow-
ing for a comparison of these pattern languages. However,
they encoded semantic variations into different operators



Table 4
Semantics comparison between policy contexts in Snoop and parameters
in EVA. Note that cumulative context in Snoop additionally aggregates all
event instances of E1, whereas EVA does not contain aggregation.

Snoop EVA

EIS E1 EIS E2 EIC

Unrestricted all last keep
Recent last all keep
Chronicle first first consume
Repeat continuous all first keep
Cumulative agg(all) first consume
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(e.g., immediate sequence and relaxed sequence), which is
the very approach that our current work aims to avoid. The
comparison of formal specifications provided in [94] only
recognized transactional coupling modes and did not
consider event composition policies.

The following algebras and frameworks are most closely
related to our work; we provide a brief comparison of their
approaches to our work and note the extent to which
language comparison and mediation have been implemented.

Policy contexts in Snoop: The Snoop language of Sentinel
uses the semantics of event expressions and four policy
contexts (recent, chronicle, continuous, and cumulative).10

Formalization of recent, chronicle and continuous context
is defined in [30], and [1,2] define an interval-based
semantics of the contexts. Event consumption semantics
in Snoop depended on both the context policy and the
operator semantics [26]. For example, the recent context
for a sequence ðE1; E2Þ is implemented as all pairs of last E1
and all E2 (short: all, last, keep) and the recent context for a
disjunction is implemented as (all, all, consume). It has
further been shown that Snoop policy contexts may lead to
occasionally ambiguous semantics [122]. Table 4 compares
the semantics of EVA and Snoop using the predominant
semantics of each policy context while ignoring the semantic
ambiguities.

SAMOS [50] used the chronicle context as default unless
specified otherwise by the operator (i.e., semantics are
mixed). Ode [53] and Reach [21] offer chronicle and recent;
Acood [45] used recent, chronicle, and cumulative. Benauer
et al. implemented composite event detection for XML
documents extending Snoop's policy contexts for hierarch-
ical as well as temporal order [18]. ECCO uses a combina-
tion of unrestricted, recent and chronicle for consumption
modes, and a subset policy is used for event instance
selection based on intervals [115]. Event duplicates in
ECCO are handled by specific selection and aggregation
operators. Yoneki [116] provides a simple language com-
parison in relation to the ECCO semantics but no semantic
details are given. No language transformations have been
suggested.

All four policy contexts have been used in the works of
Mellin [86] and Carlson [22]. Whereas in both Snoop and
the work of Carlson, policy contexts are applied only once
10 Snoop also provides the additional context of unrestricted as a
generic default.
to the expression as a whole [22], Mellin redefines these
contexts such that they become independent from the
operators [86]. In this respect, the work by Mellin is similar
to the algebra defined here.

Decorators in YALES: The work of Zhang and Unger [118]
on semantic variation of operators is foundational for
the research reported here. They use rules with semantic
decorators for selection and trimming of events. In their
YALES language, time frames are not assigned to operators
but are inserted by means of separate calendar events.
The result of a rule execution in YALES is the creation of
another event trace. The selection operator specifies which
of the matching events should be selected, and the trim-
ming operator specifies the formation of the new event
trace based on these selections. The trimming decorators
have influenced those in EVA but do not provide a direct
match as their function is different (see Table 5). The
YALES semantics has been used neither for language
comparisons nor language transformations.

Policies by Zimmer/Unland: The model from [122,120,121]
documents early work on comparing the semantics of
different event languages. Zimmer and Unland informally
introduce a meta-model as a foundation for a structured and
systematic evaluation, which uses policies of instance selec-
tion and instance consumption. In their model, the semantics
of the instance selection policy is unclear as it is inconsis-
tently used for examples (per event type) and language
comparisons (per composition). The lack of formalism and
the resulting problems have already been noted in [22,70].

Zimmer and Unland [122] described that the two
policies of event consumption and selection are “to an
extent” independent of each other and the composition
operator, but gives no further details. From our semantics
definition in Section 4, the points of correlation between
EIC and EIS can be clearly seen.

The Zimmer/Unland model is used in a comprehensive
analysis of the semantics of selected languages (restricted
to EIC and EIS for initiator events); no language transfor-
mations have been explored. Our work builds on and
extends the research done by Zimmer and Unland (for
comparison see Table 6).

Policies by Cugola et al. [38]: This comparison of flow
processing models refers to the notion of selection and
consumption policies as defined in [122] but significantly
differs in the semantic details (see Table 7). Their selection
policy describes whether rules are allowed to fire single or
multiple times. For consumption policy, they distinguish
between zero consumption (no invalidation) and selected
consumption (invalidation of events). Additionally they
allow for strategies to be programmable for each rule.
Programmable rules seem to refer to explicit parameter
settings whereas all other settings seem to be hard-coded
by each system. The comparison thus hides the possible
complexity and parameter support of the advanced policy
settings (indicated by question marks in Table 7).

Policies by Etzion/Niblett: Etzion and Niblett build on the
Zimmer/Unland model and significantly extend its policy
ranges [46]. The language semantics is very rich but
described only informally. Earlier versions of some con-
cepts stem from Amit [5]. The language described by
Etzion and Niblett targets complex event processing with



Table 5
Semantics comparison between decorators in YALES and parameters in EVA. Note that the trimming operator manipulates how
YALES creates new event traces; decorator k refers to removal of unselected events from that trace. The removal of selected events
(using decorator r) offers the potential for the remaining events to be included in a later match.

YALES EVA

Selecting decorators Trimming decorators EIS EIC

1: latest last
e: earliest first
a: all all

c: clear range consume (þdelete unmatched)
r: remove selected in range consume (potential for repeat filter)
k: keep selected & remove rest keep (þdelete unmatched)
u: no change to range keep

Table 6
Semantics comparison between policies in [122] and parameters in EVA.
We do not consider ext-cumul as it includes partial matches, i.e., event
instances that do not match the order specified in the composition
operator. The ext-exclusive policy is similar to the c: clear range decorator
in YALES.

Zimmer and Unland EVA

EIS EIC EIS EIC

first first
last last
cumulative all

ext-cumul n/a
shared keep
exclusive consume
ext-exclusive consume (þdelete unmatched)

Table 7
Semantics comparison between policies in Cugola et al. and parameters
in EVA. Note that no information is given about the expressiveness of
programmable contexts policies.

Cugola et al. EVA

EIS EIC EIS E1 EIS E2 EIC

single 1st, last all
multiple all all
programmable (?) (?)

zero keep
selected consume
programmable (?)
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aspects of both stream processing and event detection. It
supports the detection of complex situations, such as trend
patterns and spatial patterns, and has thus a different
focus than EVA.

The language supports a number of policies referring to
temporal, spatial, state-oriented and segmentation-oriented
contexts. The ones most closely related to our work are the
pattern policies of consumption, repeated type and cardin-
ality (see Table 8). Repeated type refers to the handling of
events of the same type. Override refers to a replacing of an
older matching event with a new one that arrived later.
The application of additional filter conditions (specifying
max or min values) is possible but neglected here. The
cardinality policy determined how many matching sets of
events can be created. These policies are not independent
as shown in Table 8. The semantics of repeated events and
event duplicates are blurred, and the overall semantics of
the language is very complex.

The predecessor language Amit has been compared
with Snoop in [5,4]. Adaikkalavan and Chakravarthy [4]
observe that in Amit the semantics of complex events
using multiple modes is not sufficiently clear. EVA also
uses modes for each complex event component but
integrates the parameters into the operator semantics
instead of handling them as separate policies. For the
language proposed by Etzion and Nibblet in [46], neither
comparison nor language transformations have been
explored.
Consumption policies by Bailey and Mikulás, and Kiringa:
Bailey and Mikulás provide a temporal-logic framework
for analyzing the expressiveness of event algebras [15].
In particular, they are interested in the identification
of decidability of event queries. Their work has been
extended by Kiringa (using a situation-calculus frame-
work) including the definition of further consumption
modes [71]. Neither of these two frameworks has been
used for language comparisons or language transforma-
tions. The relationship between their frameworks and EVA
is shown in Table 9.

Summary of comparisons: We follow Zimmer/Unland
[122] in the observation that algebras based on Snoop's
policy contexts are too restrictive as the event semantics is
defined by both operator and contexts. Mellin's approach
[86] of clearly separating the context semantics from the
operators is a necessary step. However, the contexts still
combine (and therefore hide) the aspects of event selec-
tion and consumption (as can be seen in Tables 4 and 9).

Of the algebras that provide more than one parameter
dimension, only YALES has been formally defined. How-
ever, YALES only formally defines the language operators;
the decorator applications are introduced by means of
formal syntactic rules but their effects are only described
informally.

The algebra introduced here is the only approach that is
parameterized throughout the complete semantics defini-
tion (as observed by Carlson [22]) instead of operator
semantics with additional parameters.

None of the approaches discussed here use the notion
of duplicates as introduced in EVA. Overall, a discussion of
why certain event repetitions may or may not be included



Table 8
Semantics comparison between policies in [46] and parameters in EVA. The results of single/every and bounded/every are not specified in [46].
Consumption only applies to unrestricted events. The semantics of override depends on the evaluation time (end of interval vs continuous evaluation, see
Section 4.4), here we show the results for the end-of-interval evaluation as this is most in keeping with the intended semantics.

Etzion and Nibblet EVA

Cardinality Repeat type Consumption EIS EIC

single every n/a not specified
single override n/a last consume
single first/last n/a first/last consume
bounded every n/a not specified
unrestricted every consume all consume & reapply
unrestricted every re-use all keep
unrestricted every bounded re-use all keep þ cond.
unrestricted override consume last consume
unrestricted override re-use last keep
unrestricted override bounded re-use last keep þ cond.
unrestricted first/last consume first/last consume & reapply
unrestricted first/last re-use last/last keep
unrestricted first/last bounded re-use first/last keep þ cond.

Table 9
Semantics comparison between consumption modes in [15] and [71], and
parameters in EVA. Non-consumed last is described in [70] as the most
recent e1AE1 being unconsumed as long as there is no other occurrence
of E1. This is a direct application of our duplicate list concept.

Bailey and
Mikulás

Kiringa EVA

EIS
E1

EIS
E2

EIC

most recent consumed last last first consume
cumulative cumulative all first consume
FIFO FIFO first first consume &

reapply
LIFO LIFO first last consume &

reapply
First first first consume
non-consumed
last

last all consume
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in the results is largely missing from the literature.
Kiringa's non-consumed last is closest in concept, but no
reasoning is given for its definition. Furthermore, Mellin
[86] noted that some policy combinations allowed by
Zimmer/Unland [122] are not meaningful (multiple pair-
ings of (first E1); (first E2)). However, with the use of
duplicate lists in EVA these combinations are meaningful
because each consecutive duplicate list contributes their
own first element. The reason for the difference is that in
our approach, event selection parameter EIS refers to each
duplicate list, whereas in [122] it referred to all observed
events.

7. Summary and future work

In this paper, we proposed a parameterized event
algebra, EVA, for event-based systems. The event algebra
was introduced to describe the event operators that form
composite events. In an additional step, we described
parameters for event selection and event consumption.
Event selection describes which qualifying events from the
trace are to be taken into account for composite events,
and how duplicate events are handled. Event consumption
defines whether a unique composite event or all possible
combinations of events are taken into account. The com-
bination of both parameters also offers the definition
of filter patterns similar to the ones applied in parsing.
The algebra and parameters are defined based on binary
operators, by nesting composite events.

We introduced our event algebra in both an informal and
a formal way. Note that the formalism used here is similar
to that of the relational algebra. However, as the relational
algebra lacks the concept of ordering, we introduced an
ordering relation on event traces. We applied the event
algebra to the application field of transportation logistics.

The approach presented here allows for event-based
applications that support changing or new event sources
as typical, e.g., for location-based services, without forcing
the users to redefine their profiles for each new source. It
is also suitable for integrating applications that combine
events from sources with different event semantics as in
logistics applications. We implemented a generic parame-
terized event system A-mediAS that is based on the
parameterized event algebra introduced here. The service
can be adapted to different application fields using various
parameter settings. It can also be used for mixed applica-
tions such as the logistics scenarios introduced here.

Our parameterized event algebra offers the possibility
of easily integrating various event sources that are struc-
tured differently. For this purpose, we identified five
language groups and defined transformation rules for both
operators and parameters. The rules take advantage of the
flexibility of the algebra which can be easily adapted to
different languages by changing the parameter setting.
These rules were used in a prototype implementation of a
mediator service. This service provides a unified profile
language for subscribing to multiple event-based systems
and can easily adapt to fine-grained changes in the
semantics of available event sources.

Future work on the event algebra itself is planned in
two directions: a full formal proof of the algebraic char-
acteristics sketched in Section 4.6, and the adaptation of
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our algebra to handle interval-based semantics (as dis-
cussed in Section 6.1). Furthermore, an in-depth explora-
tion of scalability of the mediator service implementation
would complement the existing performance evaluation.

Our event algebra can further serve as a foundation for
the specification of a higher level, user-friendly language.
Such a language could follow, for example, a graphical
paradigm as initiated in [67]. It is our belief that many
users of event-based systems require simple yet powerful
means of expressing subscriptions without having to deal
with the intricacies of the underlying system details.
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