“Almost flat” simplices in Riemannian manifolds

Stefan W. von Deylen, Konrad Polthier
Mathematical Geometry Processing Group

Question: What is a triangle in a curved 3-manifold? (clear for space forms: convex hull) Generally: What is an \(n \)-simplex in an \(m \)-manifold?

Requirements:
(1.) Facets must not depend on opposite vertex.
(2.) as “flat” (totally geodesic) as possible.

Definition: Let \(\Delta \) be the standard \(n \)-simplex. If \(p_0, \ldots, p_n \) lie in a common convex ball \(B \), let \(x: \Delta \to M, \lambda \mapsto \argmin_{y \in B} E(\lambda, a) \) be the barycentric mapping with respect to vertices \(p_i \) and \(x(\Delta) \) be the corresponding Karcher simplex.

Karcher ’77: \(x(\lambda) \) is “Riemannian centre of mass” with respect to point masses \(\lambda^i \) concentrated at \(p_i \), nowadays called “Karcher mean”.

Properties (Karcher ’77, Rustamov ’10, Sander ’12):
- well-defined and smooth
- edges are mapped to geodesics
- all \(p_i \) in totally geodesic submanifold \(N \) \(\Rightarrow x(\Delta) \subset N \)
- \(\lambda^i = 0 \Rightarrow x(\lambda) \) is independent of \(p_i \)

Applications:
- Galerkin methods for maps \(M \to \mathbb{R} \): replace \(M \) by piecewise flat manifold
- Galerkin methods for maps \(\Omega \subset \mathbb{R}^m \to M \): use barycentric mapping as interpolation (Sander ’12)
- approximate minimal submanifolds (discrete minimal surfaces in manifolds)
- formulae for discrete curvatures stay correct up to an additional error of order \(C_0 h \).

Idea: Define barycentric coordinates via the energy
\[
E(\lambda, a) := \lambda^i d^2(p_i, a)
\]
because in Euclidean space, \(p = \lambda^i p_i \) minimises \(E(\lambda, a) \) over \(a \in \mathbb{R}^n \).

This energy is defined in every complete Riemannian manifold if \(\lambda \) is replaced by geodesic distance.

Theorem (v. D., Glickenstein, Wardetzky ’13): Assume \((M^m, g)\) is complete with sectional curvatures bounded by \(C_0 \), all \(p_i \) lie in a convex ball \(B \), and \(x \) is its barycentric mapping. If edges \(E_{ij} = d(p_i, p_j) < h \) define a Euclidean simplex with volume \(> \alpha h^n \), then \(x \) is injective, and
\[
\|\nabla dx\| \leq c(m, n) \alpha^{-1} C_0 h.
\]
In particular, the mean curvature vector of the Karcher simplex has norm
\[
\|H\| \leq c(m, n) \alpha^{-1} C_0 h.
\]

References