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Abstract

A new method for the numerical integration of the equations for one-dimensional
linear acoustics with large time steps is presented. While it is capable of computing
the “slaved” dynamics of short-wave solution components induced by slow forcing,
it eliminates freely propagating compressible short-wave modes, which are under-
resolved in time. Scale-wise decomposition of the data based on geometric multigrid
ideas enables a scale-dependent blending of time integrators with different principal
features. To guide the selection of these integrators, the discrete-dispersion relations
of some standard second-order schemes are analyzed, and their response to high
wave number low frequency source terms are discussed. The performance of the new
method is illustrated on a test case with “multiscale” initial data and a problem
with a slowly varying high wave number source term.

Key words: linear acoustics, implicit time discretization, large time steps, bal-
anced modes, multiscale time integration.

1 Introduction
Current operational general circulation models (GCMs) for global atmospheric flow
simulations are based on the hydrostatic primitive equations (HPEs). These equations
result from the full three-dimensional compressible flow equations in the limit of large
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horizontal-to-vertical scale ratios. While this asymptotic limit suppresses vertically
propagating sound waves, it does support long-wave horizontally traveling acoustic
modes, the so-called “Lamb waves”, and these are sometimes considered non-negligible
for planetary-scale dynamics. Also, there are indications [Davies et al., 2003] that effects
of compressibility affect large-scale, deep internal wave modes of the atmosphere in a
non-trivial fashion. Therefore, approximate “sound-proof” model equations, from which
acoustic waves are eliminated entirely, may not provide an accurate representation of
planetary scale flows. In contrast, current computational simulations of small-scale
atmospheric processes, such as cloud formation, local storms, or pollutant transport on
city-scales, are mostly based on analogues of the classical incompressible flow equations,
i.e., on such “sound-proof” models [Lipps and Hemler, 1982; Durran, 1989; Grabowski,
1998].

Today, modern high-performance computing hardware is beginning to allow modelers
to use grids with horizontal spacing in the range of merely a few kilometers even for
planetary-scale simulations [see e.g., Ohfuchi et al., 2004]. At such high resolution,
the hydrostatic approximation breaks down, and one enters the scale range of sound-
proof model applications. Although these issues are still under debate [Smolarkiewicz
and Dörnbrack, 2008], keeping effects of compressibility in planetary-scale simulations
seems desirable, and the challenge arises from combining large-scale compressible flow
representations with essentially sound-proof modeling of the small scale dynamics.
In removing the hydrostatic constraint, and thus adopting the full compressible flow

equations in a large-scale model, one is faced with considerable numerical difficulties.
Explicit computational schemes, which would faithfully resolve sound perturbations
at all wavelengths resolved by the model, are quite expensive, as they require very
small time steps ∆t ∼ ∆x/c, where ∆x is the typical computational grid size, and c a
characteristic sound speed. Alternatively, by adopting implicit time discretizations, one
may overcome the time step limitations, but is then faced with a potentially undesirable
numerical dispersion behavior of the resulting numerical schemes: most – if not all –
existing implicit schemes of second or higher order of convergence achieve large time
step stability by slowing down the short-wave acoustic modes. At the same time, some
quite popular schemes essentially preserve their amplitude, which may seem desirable at
a first glance, but can result in a source of nonlinear instabilities in practice (see Section
3.4 below).

To see this, consider a full-fledged atmospheric flow model which incorporates para-
metrization of subgrid scale diabatic effects, such as latent heat release from localized
condensation. Local, small-scale heat release will set up non-zero flow divergences, and
these are projected partially onto slow fake numerical acoustic modes. These modes will
not disappear subsequently unless removed artificially, and they can influence the further
flow evolution by interacting themselves with various subgrid scale parametrizations. A
first-order implicit discretization, such as the implicit Euler scheme, will remove these
short-wave fake acoustic modes, but it will also dampen or modify the long-wave modes
in an undesired fashion.
Focusing on the representation of compressibility, the present work aims at a novel
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discretization of the linearized acoustic equations that effectively overcomes these
disadvantages of standard implicit discretizations. Ultimately, the scheme should

k eliminate freely propagating compressible short-wave modes that it cannot represent
accurately due to spatio-temporal under-resolution,

k represent with second-order accuracy the “slaved” dynamics of short-wave solution
components induced by slow forcing or arising in the form of high-order corrections
to long-wave modes, and

k minimize dispersion for resolved modes.

To achieve these goals, the scheme incorporates

• a scale-dependent mode selection mechanism based on geometric multigrid ideas,
• scale-selective application of a proper discretization for the robust representation
of balanced, slowly forced fast modes.

This paper reports first successful steps in this direction.
Multilevel schemes have been used elsewhere before, although they often have been

only used for two or three different levels, in practice. Especially, they have been
developed for the Navier-Stokes equation in the computation of turbulent flows [see
e.g., Dubois et al., 2004]. Another example is Dubois et al. [2005], where a spectral
multilevel method for the computation of the shallow water equations is proposed. This
scheme increases time step stability compared to an explicit method, while minimizing
the dispersive error introduced by implicit discretizations.
After introducing the governing equations and their relevant properties in the next

section, some standard time integration schemes used in meteorological applications are
investigated in Section 3. On this basis, the construction of the new multiscale–multilevel
method is discussed in Section 4. The performance compared to the standard schemes
is studied in Section 5, and the article is closed by a final discussion.

2 Governing equations
The equations for one-dimensional linear acoustics are

mt + px = 0 ,
pt + c2mx = q(t, xε ) .

(1)

Here, p = p(t, x) represents the pressure, m = m(t, x) the momentum and c is the speed
of sound. The source term q(t, xε ), ε � 1, is chosen, such that it is slowly varying in
time and has small scale variations in space. This source term could simulate the release
of latent heat from localized condensation, for example.
System (1) has the dispersion relation

ω2 − κ2c2 = 0 , (2)
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for traveling waves (m, p)(t, x) = (m0, p0) exp(i(ωt − κx)). Thus ω(κ) = ±cκ, so that
in the continuous system all waves travel with the same velocity, c = ±ω/κ, without
dispersion. Furthermore, for q ≡ 0, eq. (1) implies the conservation law

∂

∂t

(
p2 + c2m2

)
+ ∂

∂x

(
2c2pm

)
= 0 (3)

for the global pseudo-energy

E(t) =
∫

Ω
p2 + c2m2 dx . (4)

Solutions of (1) are superpositions of a homogeneous part, which is characterized by
freely traveling sound waves generated by initial and boundary conditions, and a part
generated by the source term (particular solution). This particular solution inherits the
scaling in ε given by the source term as we show in the subsequent asymptotic analysis.
Focusing on the small-scale behavior of solutions, we consider the asymptotic expansion

m(t, x; ε) = m(0)(t, ξ) + εm(1)(t, ξ) + ε2m(2)(t, ξ) + . . .

p(t, x; ε) = p(0)(t, ξ) + εp(1)(t, ξ) + ε2p(2)(t, ξ) + . . .
(5)

with ξ := x
ε , ε� 1. Inserting this into (1), one obtains

m
(0)
t + εm

(1)
t + · · ·+ 1

ε

(
p

(0)
ξ + εp

(1)
ξ + . . .

)
= 0 ,

p
(0)
t + εp

(1)
t + · · ·+ c2

ε

(
m

(0)
ξ + εm

(1)
ξ + . . .

)
= q(t, ξ) ,

(6)

and the leading order equations are p(0)
ξ ≡ 0 and m(0)

ξ ≡ 0. As a consequence,

p(0) = p0(t) and m(0) = m0(t) . (7)

The next order equation for the pressure evolution is then given by

dp0
dt + c2m

(1)
ξ = q(t, ξ) . (8)

Integration over the domain Ω = [ξ0, ξ1] leads to

|Ω|dp0
dt + c2

(
m(1)(t, ξ1)−m(1)(t, ξ0)

)
=
∫ ξ1

ξ0
q(t, ξ) dξ , (9)

and considering, for simplicity, a periodic domain, where m(1)(t, ξ1) = m(1)(t, ξ0), the
zeroth order pressure and momentum equations read

dp0
dt = 1

|Ω|

∫ ξ1

ξ0
q(t, ξ) dξ =: q̄(t) ,

c2m
(1)
ξ = q(t, ξ)− q̄(t) =: q̃(t, ξ) .

(10)
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With the same arguments, one obtains dm0
dt = 0, and p(1)

ξ ≡ 0, i.e., p(1) = p1(t), and
the evolution equation for p(1) gives p(1) ≡ const. Therefore, the first non-trivial spatial
variations of the pressure are described by p(2), and a closed system of equations is given
by

m
(1)
t + p

(2)
ξ = 0 ,

c2m
(1)
ξ = q̃(t, ξ) .

(11)

Differentiating the first equation with respect to ξ and the second with respect to t, one
can see that the pressure is given by the elliptic equation

−p(2)
ξξ = m

(1)
tξ = 1

c2
∂q̃

∂t
. (12)

Assuming m(0) ≡ 0, the asymptotic scaling in this regime is given by

m ∼ ε ,
p− p0(t) ∼ ε2 ,

(13)

as ε→ 0. This scaling should be reproduced by a numerical scheme, especially, when
∆t� ∆x

c = ε∆ξ
c which, in the present model problem, corresponds with large acoustic

Courant numbers for the time integration. Furthermore, solutions that are only triggered
by the source term should have the structure given by eq. (12) up to small perturbations.
If we insert this scaling into the governing equations (1) (i.e., x = εξ, m = εm̃ and
p = ε2p̃), the resulting system is

m̃t + p̃ξ = 0 ,
ε2p̃t + c2m̃ξ = q(t, ξ) ,

(14)

and one can see that the first term of the second equation is singular.

3 Implicit second-order staggered grid schemes
Here we describe the point of departure of the present developments, classical implicit
second-order time integration schemes employing central differences on a staggered grid.
The authors are aware of the fact that there are other popular discretizations such as
multistage schemes. However, these methods usually require at least two linear systems
to solve in order to achieve second order accuracy. Because of this additional cost per
time step, we confine ourselves to schemes which only require the solution of one linear
system per time step. We choose a staggered grid for simplicity only. Our key ideas
should transfer directly to collocated grid arrangements as well.
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3.1 Standard time integration schemes
The time integration schemes we investigate are the implicit trapezoidal rule and
the BDF(2) scheme (Backward Differentiation Formula of second order). These are
discretizations commonly used in meteorological applications [Durran, 2010]. Considering
a semi-discretization in time we leave the choice of a spatial discretization open for the
moment.

3.1.1 Implicit trapezoidal rule

In this discretization, the system in (1) is integrated in time from tn to tn+1, and the
time integral on the right-hand side is approximated by the trapezoidal quadrature rule,
so that

mn+1 −mn = −∆t
2

(
∂pn

∂x
+ ∂pn+1

∂x

)
,

pn+1 − pn = −c
2∆t
2

(
∂mn

∂x
+ ∂mn+1

∂x

)
+ ∆t qn+1/2 .

(15)

Note that we do not specify how to compute the source term at this stage. The notation
qn+1/2 just indicates at which time level the source term would have to be evaluated to
get a second order accurate approximation. To compute the pressure p at the new time
step, one has to solve the Helmholtz problem

pn+1 − c2∆t2

4
∂2pn+1

∂x2 = pn − c2∆t∂m
n

∂x
+ c2∆t2

4
∂2pn

∂x2 + ∆t qn+1/2 . (16)

The update for m is then given by

mn+1 = mn − ∆t
2

(
∂pn

∂x
+ ∂pn+1

∂x

)
. (17)

The trapezoidal rule is equivalent to the implicit midpoint rule, if the equations are
linear. Since it only incorporates known values from the previous time step in the
computation of the new time step, it is a one-step method. Furthermore, the method is
A-stable and (for linear problems) symplectic [Hairer et al., 2006]. Thus, for vanishing
source term, q ≡ 0, it preserves the pseudo-energy from (4) up to machine accuracy.

3.1.2 BDF(2) rule

The BDF(2) scheme is one of the simplest methods of the so-called Backward Dif-
ferentiation Formulas (BDF). It is a two-step method, in which the left-hand side is
approximated by the derivative of a parabola at tn+1, which interpolates the solution at
times tn−1, tn and tn+1. The discretization of eq. (1) is then given by

3
2m

n+1 − 2mn + 1
2m

n−1

∆t = −∂p
n+1

∂x
,

3
2p
n+1 − 2pn + 1

2p
n−1

∆t = −c2∂m
n+1

∂x
+ qn+1 .

(18)
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Rearranging terms, p at the new time step is obtained by the solution of the elliptic
problem

pn+1− 4c2∆t2

9
∂2pn+1

∂x2 = 4
3p

n− 1
3p

n−1− c2∆t
(

8
9
∂mn

∂x
− 2

9
∂mn−1

∂x

)
+ 2

3∆t qn+1 , (19)

and the update for m is given by

mn+1 = 4
3m

n − 1
3m

n−1 − 2
3∆t∂p

n+1

∂x
. (20)

3.2 Super-implicit scheme (extreme BDF)
As can be seen in the result of the asymptotic analysis of the governing equations
(14), the time derivative of the pressure becomes singular in the limit ε→ 0. Thus, in
the following scheme, the pressure equation is discretized by a so-called super-implicit
scheme. Super-implicit methods are of more implicitness than the so-called implicit
formulas in the sense that the approximation of the (highest) time derivative in the
equation does not involve values at the new time level, i.e., only the approximation of
the right-hand side involves new time level evaluations. They were first introduced by
Fukushima [1999] for the application in celestial mechanics.
With the super-implicit discretization of the pressure equation as it is done in the

following, we achieve one crucial property that led us to consider these schemes in the
first place: since the time derivative will be discretized backwards in time based on
the already known pressure data, the pressure equation effectively becomes a Poisson
equation with two source terms. The first results from the pressure time derivative
and represents the non-acoustic effects of compressibility with second order accuracy.
The second source term is due to the divergence of the momentum flux and appears
in the same form also in the pressure projection equation for incompressible flows [see
e.g., Schneider et al., 1999; Vater and Klein, 2009; Klein, 2009]. This discretization
therefore allows us to make an immediate connection to incompressible or, more generally,
sound-proof flow solvers.
In our discretization, the pressure evolution is interpolated by a parabola as in the

BDF(2) scheme, but this time the interpolation points are tn−2, tn−1 and tn, which
leads to

5
2p
n − 4pn−1 + 3

2p
n−2

∆t = −c2∂m
n+1

∂x
+ qn+1 . (21)

The momentum equation is discretized as in the BDF(2) scheme. Rearranging terms,
one obtains

−2c2∆t2

3
∂2pn+1

∂x2 = −
(5

2p
n − 4pn−1 + 3

2p
n−2

)
−c2∆t

(
4
3
∂mn

∂x
− 1

3
∂mn−1

∂x

)
+∆t qn+1 .

(22)
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Thus, this discretization results in the solution of an elliptic equation as ordinary implicit
schemes do, but this time it is a Poisson equation instead of a Helmholtz equation for
the pressure at the new time step. The update for the momentum is again (20).

Note, however, that this discretization has an “inverse stability constraint” in that it
becomes unstable for too small time steps with respect to a fixed mode (see Section 3.4
below).

3.3 Space discretization
As we have stated above, the space discretization is done using a staggered grid in this
study. On this grid, the pressure variables are node centered, i.e., pj+1/2, j = 0, 1, . . . ,M ,
where M is the number of nodes. The momentum variables, on the other hand, are cell
centered, i.e., mj , j = 1, 2, . . . ,M . Standard approximations for the first derivatives of
the pressure and momentum are given in this context by

∂p

∂x

∣∣∣∣
xj

≈
pj+1/2 − pj−1/2

∆x and ∂m

∂x

∣∣∣∣
xj+1/2

≈ mj+1 −mj

∆x . (23)

The matching approximation for the second derivative of the pressure is then given by

∂2p

∂x2

∣∣∣∣
xj+1/2

≈
pj+3/2 − 2pj+1/2 + pj−1/2

∆x2 . (24)

Using these discretizations, the elliptic problems as in eqs. (16), (19) and (22) result in
a linear system for the unknown (pj+1/2). The system is then solved using a conjugate
gradient algorithm in the applications described below.

3.4 Dispersion relations and balanced modes
To be able to quantify the behavior of the numerical discretizations described above,
the discrete-dispersion relations of these schemes will be investigated in the following.
Furthermore, the capability of the schemes to reproduce the balanced modes as described
by the asymptotic analysis of Section 2 will be discussed.
The discrete-dispersion relation of a method is obtained by substituting a traveling

wave solution of the form
φnj = φ̂ ei(kj∆x−ωn∆t) (25)

into the finite-difference formula and solving for ω [Durran, 2010]. By separating the
frequency into its real and imaginary parts, ω = ωr + iωi, one obtains

φnj = φ̂ eωin∆t ei(kj∆x−ωrn∆t) = φ̂ |A|nei(kj∆x−ωrn∆t) . (26)

For a scalar equation, the computation of the imaginary part of ω is equivalent to a
von Neumann stability analysis. The amplification factor |A| determines how much the
mode grows or dissipates per time step. The real part ωr, on the other hand, describes
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Figure 1: Discrete-dispersion relations for the trapezoidal (dashed) and the BDF(2) rules
(dot-dashed) applied to the linear acoustic equations using cfl = 1. Dispersion
relation for continuous system is displayed as black line. Discrete-dispersion
relation for the limiting case cfl→ 0 is given as dotted line.

the phase speed error. For a system of equations the same analysis can be carried
out, although, in order to obtain stability of the scheme, the requirement that the
amplification factor be less than or equal to unity is merely a necessary condition in
general.
The discrete-dispersion relation of the trapezoidal rule applied to the linear acoustic

equations on a staggered grid is given by

(ξ − 1)2 +
(

cfl · sin
(
k∆x

2

))2
(ξ + 1)2 = 0 , (27)

where ξ := e−iω∆t and cfl = c∆t
∆x is the Courant-Friedrichs-Lewy (CFL) number [Courant

et al., 1928]. Solving for ω one obtains for the real part

ωr = ± 2
∆t arctan

(
cfl · sin

(
k∆x

2

))
(28)

and for the amplification factor |A| ≡ 1. Thus, essentially, the frequency depends not
only on the wave number, as in the continuous case, but it is also a function of the
CFL number. The derivation of the discrete-dispersion relation for the BDF(2) scheme
follows the same route.
Figures 1 and 2 show the discrete-dispersion relations for the trapezoidal and the

BDF(2) rules applied to the linear acoustic equations for different CFL numbers. We
find that both schemes slow down modes at almost all wave numbers. This behavior
is amplified the higher the wave number and the higher the CFL number, with the
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Figure 2: Discrete-dispersion relations for the trapezoidal (dashed) and the BDF(2) rules
(dot-dashed) applied to the linear acoustic equations using cfl = 10. Dispersion
relation for continuous system is displayed as black line.

trapezoidal rule featuring the smaller phase speed error of the two throughout. Further-
more, in contrast to the BDF(2) scheme, the trapezoidal scheme is free of numerical
dissipation.
It has to be emphasized that the slowdown of high (acoustic) modes is an immanent

property of implicit methods. By looking at the limit cfl→ 0 one obtains for both, the
trapezoidal rule and the BDF(2) scheme, the dispersion relation

ωlim
r = ± 2c

∆x sin
(
k∆x

2

)
. (29)

As one can see in Figure 1, where the limiting case is plotted by a dotted line, only
modes with a wavelength of about 10 grid points and more are advected at a reasonable
speed.
For the super-implicit scheme, we have not found an analytical expression for the

discrete-dispersion relation. The amplification factor obtained by numerical simulations
is displayed in Figure 3 for cfl = 10. The graph illustrates the inverse stability behavior
of this scheme in that the amplification factor for small wave numbers is greater than one
at a given time step size. For smaller time steps (resp. CFL numbers) the amplification
factor further increases, making the scheme more unstable. The figure further shows,
however, that modes with sufficiently high wave numbers are damped.
Concerning the balanced mode we are interested here in how accurately the various

schemes maintain the asymptotic balance for the case of slow, short-wave forcing, and
whether they are capable of regaining the balance after some perturbation of the system.
As stated above, the source term is assumed to be slowly varying in time in our setting,
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Figure 3: Amplification factor for the super-implicit scheme applied to the linear acoustic
equations using cfl = 10.

so that the balance is described by

c2mx = q
(
t, xε

)
and p ≡ 0 (30)

up to small perturbations introduced by the variation in time of the source term. The
capability to regain the balanced state should be possible for finite time steps, where
it is successively approached over a number of time steps. Furthermore, the scheme
should reproduce the balanced state in one time step by letting the step going to infinity.
These conditions are related to the concepts of A- and L-stability in the mathematical
literature of numerical methods for stiff problems [see, e.g., Deuflhard and Bornemann,
2002]. However, here we have to deal with an oscillatory equation, which is not stiff in
the (classical) sense, in that some eigenvalues would have large negative real parts.

The first property, the ability of the method to relax to the balanced state successively,
manifests itself through the amplification factor from the discrete-dispersion relations
given above. If the amplification factor is less than unity, the scheme damps out a
sudden perturbation and relaxes back to the balanced state. This is true for the BDF(2)
scheme, whereas the trapezoidal rule has an amplification factor of unity for all wave
numbers so that any short-wave perturbation that the scheme interprets as an acoustic
mode will maintain its amplitude subsequently.
Considering the limit ∆t→∞, one obtains for the trapezoidal rule the relations

c2

2

(
∂mn

∂x
+ ∂mn+1

∂x

)
= qn+1/2 and ∂pn+1

∂x
= −∂p

n

∂x
. (31)

This reflects the behavior described above that any perturbation cannot dissipate. The
first derivatives of pressure and momentum essentially oscillate around the balanced
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state. In case of the BDF(2) and the super-implicit schemes the situation is quite
different. In the limit ∆t→∞ one obtains for both methods

c2∂m
n+1

∂x
= qn+1 and ∂pn+1

∂x
= 0 . (32)

Thus, the schemes achieve balance in a single, sufficiently large, time step. This
behavior is characteristic to backward differences formulas by construction [Deuflhard
and Bornemann, 2002].
As a consequence, the practitioner is faced with the following problem: On the one

hand, one would like to minimize dispersion and preserve the amplitude of well resolved
modes. For this purpose the trapezoidal rule seems to be the best suited one of the
schemes described above. On the other hand, the solution should rapidly relax to the
balanced mode in case of short wave number forcing. For this purpose the backward
differencing formulas are better suited. In the next section, we present a strategy for
combining the two aspects into one single, scale-dependent numerical time integrator.

4 Multilevel method for long-wave linear acoustics
By “long-wave” we denote here highly resolved acoustic modes that oscillate very slowly
in comparison with the shortest acoustic modes that could potentially be represented
on the grid. The goal is to provide a discretization that guarantees the following: given
a time step, the scheme will automatically filter all acoustic modes from the initial
data that have characteristic frequencies which are not resolved in time, whereas all
sufficiently long waves with lower frequencies get to be resolved and accurately computed.
Thus we intend to avoid the dichotomy between either damping all acoustic modes or
accepting spurious, slowly moving short-wave modes outlined in the introduction.

4.1 General idea
Assume that we have scale dependent splittings of the pressure and momentum fields,
i.e.,

p =
νM∑
ν=0

p(ν) and m =
νM∑
ν=0

m(ν) (33)

where these splittings have still to be determined. Ideally, this could be a quasi-spectral
or wavelet decomposition, splitting p and m into (local) high wave number and low wave
number components. Furthermore, we assume we have two time discretizations of the
equations for linear acoustics, which are linear in pn+1 and mn+1. In general, they can
be written as

Sp1(pn+1,mn+1, pn,mn, pn−1,mn−1, . . . ) = 0 ,
Sm1 (pn+1,mn+1, pn,mn, pn−1,mn−1, . . . ) = 0 ,

(34)

and
Sp2(pn+1,mn+1, pn,mn, pn−1,mn−1, . . . ) = 0 ,
Sm2 (pn+1,mn+1, pn,mn, pn−1,mn−1, . . . ) = 0 ,

(35)

12



Vater et al. (2011): A Scale-selective Multilevel Method

where Spi represents the discretization for the pressure equation, and Smi the one for the
momentum equation. A convex combination of the two schemes with scale dependent
weights results in the scheme

νM∑
ν=0

µνS
p
1(p(ν),n+1, . . . ) + (1− µν)Sp2(p(ν),n+1, . . . ) = 0 ,

νM∑
ν=0

µνS
m
1 (p(ν),n+1, . . . ) + (1− µν)Sm2 (p(ν),n+1, . . . ) = 0 .

(36)

In order to solve for pn+1 and mn+1, one has to combine the two equations in (36) to
obtain an elliptic equation for pn+1. This results, as in the schemes described above, in
a Helmholtz problem, but this time with a scale dependent operator.
As a first example consider the blending of the implicit trapezoidal rule with the

BDF(2) scheme. For the trapezoidal rule, we have

p(ν),n+1 − c2∆t2

4 p(ν),n+1
xx = p(ν),n − c2∆tm(ν),n

x + c2∆t2

4 p(ν),n
xx + ∆t q(ν),n+1/2 ,

m(ν),n+1 = m(ν),n − ∆t
2
(
p(ν),n
x + p(ν),n+1

x

)
,

(37)

and for the BDF(2) scheme

p(ν),n+1 − 4c2∆t2

9 p(ν),n+1
xx = 4

3p
(ν),n − 1

3p
(ν),n−1

− c2∆t
(8

9m
(ν),n
x − 2

9m
(ν),n−1
x

)
+ 2

3∆t q(ν),n+1 ,

m(ν),n+1 = 4
3m

(ν),n − 1
3m

(ν),n−1 − 2
3∆t p(ν),n+1

x .

(38)

Taking the µ-dependent convex combination of the two schemes and summing over the
scales results in

pn+1 − c2∆t2
νM∑
ν=0

(
µν
4 + 4(1− µν)

9

)
p(ν),n+1
xx =

νM∑
ν=0

(
µνRHSp,(ν)

TRA + (1− µν)RHSp,(ν)
BDF2

)
,

(39)
where

RHSp,(ν)
TRA = p(ν),n − c2∆tm(ν),n

x + c2∆t2

4 p(ν),n
xx + ∆t q(ν),n+1/2 ,

RHSp,(ν)
BDF2 = 4

3p
(ν),n − 1

3p
(ν),n−1 − c2∆t

(8
9m

(ν),n
x − 2

9m
(ν),n−1
x

)
+ 2

3∆t q(ν),n+1 .

(40)

The momentum update then reads

mn+1 =
νM∑
ν=0

µν

[
m(ν),n − ∆t

2
(
p(ν),n
x + p(ν),n+1

x

)]
+

(1− µν)
[4

3m
(ν),n − 1

3m
(ν),n−1 − 2

3∆t p(ν),n+1
x

]
.

(41)
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Note that we do not specify the discretization of the source term q, and we assume at
this stage that we could integrate this term exactly.

In a second example, we combine the trapezoidal rule with the super-implicit (extreme
BDF) scheme described above. The resulting update is given by

νM∑
ν=0

µνp
(ν),n+1 − c2∆t2

4 pn+1
xx =

νM∑
ν=0

(
µνRHSp,(ν)

TRA + (1− µν)RHSp,(ν)
EBDF

)
, (42)

where

RHSp,(ν)
TRA = p(ν),n − c2∆tm(ν),n

x + c2∆t2

4 p(ν),n
xx + ∆t q(ν),n+1/2 ,

RHSp,(ν)
EBDF = 3

8

(
−5

2p
n + 4pn−1 − 3

2p
n−2 − c2∆t

(4
3m

n
x −

1
3m

n−1
x

)
+ ∆t qn+1

)
.

(43)

The update for the momentum is again given by (41).
Note that if the scale dependent splitting (33) is not a direct splitting (i.e., the grid

functions for different scales are coupled with each other; an example is the splitting
described in the next section), the elliptic problems for each scale are coupled to each
other and cannot be solved separately. Instead, the Helmholtz problem (39) (resp. (42))
must be solved as a whole. The main difference between the two examples is that the
difference operator acting on the pressure variables in the first example incorporates the
multiscale information in its discrete Laplacian part (second term of LHS in eq. (39)),
whereas in the second example it appears in the Helmholtz part (first term of LHS in
eq. (42)).

4.2 Scale splitting
To define the operators in the scale-dependent discretizations, the quasi-spectral decompo-
sitions of the pressure and momentum fields have to be carefully specified. Furthermore,
we will see that the two splittings cannot be defined independently, but have to satisfy
certain relationships.
First, we discuss the decomposition of the pressure field. In a second step we derive

the appropriate momentum decomposition. In order to define the grid hierarchy, we
assume that the total number of grid cells in the domain is a power of 2. Then, a
coarser grid is obtained by eliminating every second grid node and thus, by merging
two adjacent cells. In our current approach the restriction and prolongation operators
used in standard multigrid algorithms are utilized to define the space decomposition.
One of the most commonly used operator pairs for finite difference approximations (and
in a slightly modified way also for finite element approximations) is the full weighting
(restriction) and the linear interpolation (prolongation) [Trottenberg et al., 2001]. They
can be defined by their stencil. The full weighting is given by

R(ν) = 1
4
[
1 2 1

]
, (44)
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Figure 4: One-dimensional versions of full weighting (left) and linear interpolation (right)
operators known from standard finite difference geometric multigrid. Arrows
indicate mappings between grid functions associated with grid nodes.
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Figure 5: One-dimensional versions of restriction (left) and prolongation (right) operators
known from standard finite volume geometric multigrid. Arrows indicate mappings
between grid functions associated with grid cells (instead of with grid nodes as in
Figure 4).

which means that a variable on the coarse grid node (at grid level (ν)) is derived by
averaging over the values at the same node and the two adjacent nodes on the fine grid
(at grid level (ν + 1)) with the weights given in the stencil above (see also Figure 4, left).
The linear interpolation from grid level (ν) to grid level (ν + 1) is given by

P (ν) = 1
2
[
1 2 1

]
. (45)

This means that the pressure at grid nodes living on the fine grid level, which have a
common coarse grid node, obtain the same value as on the coarse grid. The values at
grid nodes in between are computed by the average of the values of the adjacent grid
nodes (Figure 4, right).

Other alternatives are also possible. A common restriction/prolongation pair used in
finite volume approximations for cell centered variables is given by

R̃(ν) = 1
2
[
1 1

]
and P̃ (ν) =

[
1 1

]
. (46)

Here, the value for the coarse grid cell is computed by simply averaging over the two
corresponding small cells on the fine grid, and the values for the fine grid cells are
obtained by just copying the value from the corresponding coarse grid cell (cf. Figure 5).

The scale splitting is now defined as follows. Let ϕ be a grid function, which is
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decomposed into parts ϕ(ν) living on the associated grid levels:

ϕ =
νM∑
ν=0

ϕ(ν) . (47)

Then, the grid function on the coarsest level is obtained by the operation

ϕ(0) =
(
R(0) ◦R(1) ◦ · · · ◦R(νM −1)

)
ϕ (48)

and the grid functions on finer levels are computed by

ϕ(ν) =
(
I − P (ν−1) ◦R(ν−1)

)
◦
(
R(ν) ◦R(ν+1) ◦ · · · ◦R(νM −1)

)
ϕ . (49)

On a staggered grid the splitting in the momentum field cannot be the same as the one
for the pressure. Since the momentum variable is cell centered, only transfer operators
as in (46) are applicable. The splitting has to be chosen such that only the portion of
the pressure associated with the grid level (ν) enters the update for the momentum
on the same grid level. Revisiting equation (41), we see that only first derivatives of
the pressure at different time levels enter the update. Therefore, the splitting in the
momentum must match the splitting in ∂p/∂x induced by the p-splitting. This results
in (see Appendix)

R(ν) = 1
8
[
1 3 3 1

]
, (50)

and
P (ν) =

[
1 1

]
. (51)

To complete the description of the new scheme, we need to define the weighting
function µν . Generally, this choice is not restricted besides the requirement that the
resulting scheme should be stable. In the current implementation we have chosen

µν = min
(

1, νM − ν
blog2 cflc

)
, (52)

where b·c means rounding towards minus infinity. Thus, µν is chosen such that the
scheme in eq. (36) associates the standard implicit trapezoidal scheme with all pressure
modes corresponding to coarse grids with grid-CFL number cfl ≤ 1 (µν = 1), while we
nudge the discretization towards BDF(2) or super-implicit for pressure modes living on
grids with cfl > 1 (µν < 1).

4.3 Interaction between time and space discretizations
To analyze the properties of the Helmholtz operator associated with the new scheme we
have computed the corresponding matrix. By applying the operator to the unit vector
ei = (δij)j=1,...,n, one obtains the i-th column of the matrix. In Figure 6, the sparsity
pattern for the resulting matrices of the blended trapezoidal/BDF(2) scheme (left) and
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Figure 6: Sparsity pattern for the resulting matrices of blended schemes, domain with 256
grid cells and five grid levels. Left: trapezoidal/BDF(2); right: trapezoidal/super-
implicit.

the blended trapezoidal/super-implicit scheme (right) are displayed for a domain with
256 grid cells. Obviously, the matrices do not have the same typical tridiagonal pattern
as the blended base schemes. In contrast, the different time integration schemes for each
scale influence the effective space discretization. However, the deviations in the matrix
entries from those resulting from the single-scale fine grid time integrator have a relative
order of magnitude of at most one percent.
Note that the pattern also depends on the weighting function µν and the number

of grid levels. The displayed results are obtained for five grid levels and µν changing
linearly from the coarsest level (µ0 = 1) to the finest level (µνM = 0). Thus, we see the
maximum with respect to non-zero matrix entries for this number of levels. For µν as
defined above and a Courant-Friedrichs-Lewy number cfl = 10, the band width of the
matrix is slightly reduced. The differences in the pattern between the two versions of the
new scheme is essentially due to the fact that in case of the blended trapezoidal/BDF(2)
scheme the multiscale information is hidden in the Laplacian part of the operator, and
in case of the blended trapezoidal/super-implicit scheme it is hidden in the Helmholtz
part.
Also, the sparsity pattern suggests that the elliptic problem with such an operator

cannot be solved with standard numerical methods. The authors are currently working
on solution methods that borrow ideas from multigrid methods for elliptic problems.

5 Numerical Results
The new scheme is applied to two test cases, and the results are compared to those of
the standard reference methods. The first test case explores the desired property to
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treat short-wave data differently compared to long-wave data. For this purpose, the
scheme is initialized with “multiscale” initial data and no source term is present. In a
second test case, the ability of the scheme to relax to a balanced state is analyzed. In
order to do this, a source term with the appropriate scaling is introduced. In both test
cases, a sound speed of c = 1 is chosen. For the new scheme, we always use five grid
levels.

5.1 Multiscale initial data
In this test case, we compare the previously described numerical schemes by applying
them to either pure long-wave initial data, or “multiscale” initial data in a periodic
domain x ∈ [0, 1]. The relationship between pressure and momentum is chosen in such
a way that one obtains a right running acoustic simple wave. The pure long-wave data
is given by

p(x, 0) = p0(x− x0) and m(x, 0) = p(x, 0)/c , (53)

where
p0(x) = exp

(
−
(
x

σ0

)2)
(54)

with x0 = 0.75 and σ0 = 0.1, and the “multiscale” initial data is

p(x, 0) = p0(x− x0) + p1(x− x1) and m(x, 0) = p(x, 0)/c , (55)

where p0 is defined as above and

p1(x) = p0(x) cos(kx/σ0) (56)

with x1 = 0.25 and k = 7 · 2π (see Figure 7).
The schemes are applied to this initial data on a grid with 512 cells (i.e., ∆x = 1/512)

and a Courant-Friedrichs-Lewy number cfl = 10. They are compared at a final time
tend = 3.0, which is equivalent to 154 time steps. At this time the exact solution is
identical to the initial data, and the wave has traveled three times across the domain.

The implicit trapezoidal rule described in Section 3.1 produces the results in Figure 8.
Here, and in the following, only pressure is displayed, whenever the momentum field
is essentially the same. The results show what has already been revealed theoretically
by the discrete-dispersion relation for large time steps. The scheme achieves large-CFL
stability by slowing down the short-wave components of the solution. In the single-scale
example, the consequence of this numerical dispersion error is a slight dispersion of the
Gaussian pulse which generates new artificial extrema, and slightly slows down the wave.
When run over longer times, this trend continues and the Gaussian pulse decomposes
into an essentially uncorrelated superposition of Fourier modes of various length scales.

For the multiscale initial data, the insuing error is much more dramatic. The numerical
scheme slows down the short-wave component of the solution to nearly zero phase speed.
While the long-wave pulse in Figure 8 (right), has passed the domain three times, as it
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Figure 7: Initial conditions with single-scale pure long-wave data (left) and “multiscale”
data (right). Top row: pressure, bottom row: momentum.
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Figure 8: Numerical solution (pressure) using the trapezoidal rule on a grid with 512 cells
and cfl = 10 at time tend = 3. Left: results obtained with single scale data; right:
results obtained with “multiscale” data.
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Figure 9: Numerical solution (pressure) using the BDF(2) scheme on a grid with 512 cells
and cfl = 10 at time tend = 3. Left: results obtained with single scale data; right:
results obtained with “multiscale” data.

should, the short-wave oscillations have essentially stayed in place. Furthermore, their
amplitude has not diminished.
Clearly, such a behavior, when extrapolated to global atmospheric flow simulations,

would be unacceptable. Not only would the planetary scale Lamb waves be slightly
distorted, but any small-scale divergence induced by one of the ubiquitous diabatic
source terms in an atmosphere model would potentially set up stationary, short-wave,
fake numerical standing waves (see also second test case). In interaction with the
parametrizations of various physical subgrid-scale processes, nota bene the physics of
moisture, these short-wave modes will likely produce non-trivial erroneous consequences
for the further flow evolution.
The BDF(2) scheme displays a different behavior, as seen in Figure 9. According

to the discrete-dispersion relation, the scheme has considerably more dispersion than
the trapezoidal rule. Furthermore, the damping of the scheme results in a smaller final
amplitude, even for the long-wave data. On the short scales, the damping is so high
that at the final time tend = 3 the simulation started with “multiscale” data (Figure
9, right) is indistinguishable from the one started with pure long-wave data (Figure 9,
left). Thus, the scheme is able to balance the short-wave modes that are not resolved in
time, but it pays the price of simultaneously damping and dispersing the long scales.
As stated above, in case of the blended scheme one tries to combine the capability

of the trapezoidal rule to relatively well resolve the long-wave acoustics with a scheme
which filters the highly oscillatory short-wave data in an appropriate fashion. The
results of the simulations using the blended schemes with multiscale initial data are
displayed in Figure 10. We applied the trapezoidal rule in combination with the BDF(2)
scheme (left) and the trapezoidal rule together with the super-implicit method (right).
For comparison, the result of using the trapezoidal rule applied only to the long-wave
initial data is also shown in the plots (dashed line). As one can see, the latter is nearly
identical to the results using the blended schemes. This is the desired behavior. The
short-wave data is damped out in such a way that only the long-wave data is left after
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Figure 10: Numerical solution (pressure) using the blended schemes on a grid with 512
cells and cfl = 10 at time tend = 3 (black line). Left: results obtained with the
blended trapezoidal/BDF(2) scheme; right: results obtained with the blended
trapezoidal/super-implicit scheme. For comparison, the result of trapezoidal
rule obtained with only long-wave initial data is plotted as dashed line.

some time. On the other hand, the long-wave data is integrated as good as one could
hope when using a second-order method.

5.2 Balanced modes in presence of a source term
To evaluate the ability of the new scheme to relax to balanced states after some
perturbation, a source term of the form

q
(
t, xε

)
= q(t, ξ) = sin (ω t) q̃(ξ − ξ0) , (57)

where

q̃(ξ) =
(

2 + λ2σ2

λ2σ2 sin(λ ξ) + 4
λσ2 cos(λ ξ)ξ − 4

λ2σ4 sin(λ ξ)ξ2
)

exp
(
−
(
ξ

σ

)2)
(58)

with ω = 2π, ξ0 = 0.5, σ = 0.1 and λ = 16 · 2π is introduced. By choosing ε � 1, a
source term of the desired form is obtained. To obtain a well resolved source term in
space, we do our computations on the domain ξ ∈ [0, 1] and a grid with 256 cells (i.e.,
∆ξ = 1/256). Thus, the computational domain and the spatial extent of the source
term is scaled with ε. Furthermore, periodic boundary conditions are applied and as
initial conditions we set p(0, x) ≡ m(0, x) ≡ 0. In the computations, the source term is
integrated analytically over one time step.

As a result of the asymptotic analysis in Section 2, pressure should scale with ε2 and
momentum with ε in this case, and as a result of eq. (12) they should, up to higher
order perturbations, have the form

pasy(t, ξ) = ε2ω cos (ω t) p̃(ξ − ξ0) (59)
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with
p̃(ξ) = 1

λ2 sin(λ ξ) exp
(
−
(
ξ

σ

)2)
, (60)

and
masy(t, ξ) = ε sin (ω t) m̃(ξ − ξ0) , (61)

where
m̃(ξ) =

(
− 1
λ

cos(λ ξ) + 2
σ2λ2 sin(λ ξ)ξ

)
exp

(
−
(
ξ

σ

)2)
. (62)

For the computations presented here, we chose ε = 0.1 and a Courant-Friedrichs-Lewy
number cfl∆x = 8, which results in an effective CFL number of cfl = 80 with respect to
∆ξ in the case ε = 0.1.

In Figure 11 the results of the simulation using the trapezoidal rule after one and five
time steps are displayed. For comparison, the asymptotic solution is plotted as a dashed
line. Clearly, the numerical solution does not relax to the asymptotic solution in the
pressure variable. This is also true for later time steps (not shown). The results suggest
that the balanced momentum field is well approximated. However, at time t = 0 the
initial momentum field is equal to the asymptotic solution. As we have elaborated in
Section 3.4, the solution of the trapezoidal rule tends to oscillate around the balanced
solution. Since the deviation from the balanced solution is very small for the momentum,
the non-vanishing deviations are barely visible. We will elaborate on this issue below.
The results of the simulations using the BDF(2) scheme are given in Figure 12. In

this case we find that the balanced state is essentially attained already after one time
step. After five time steps, the numerical solution is nearly indistinguishable from the
asymptotic solution. This is the desired behavior.
Figures 13 and 14 display the results obtained with the blended schemes. For both

versions, we observe the correct behavior after several time steps. In comparison with
the reference schemes, the solutions after one time step are somewhere between the
solutions of the trapezoidal rule and the BDF(2) scheme. However, after five time steps
the solutions have relaxed to the asymptotic solution.
To show that not only the pressure variable is problematic, the simulations are

repeated, but this time they start at t = π
4ω . At this time the balanced state is different

from the initial data in both variables. The results are shown after one and 18 time
steps. As shown in Figure 15 for the trapezoidal rule there is a much bigger difference
in the pressure variable, which additionally grows during the first time steps (note
the different scaling in p compared to the other figures!). This time there is also a
non-vanishing deviation in the momentum variable visible. Also the results obtained
with the BDF(2) scheme (Figure 16) show a considerably larger deviation from the
balanced state after one time step. However, after four time steps (not shown) the
solution has again relaxed to the balanced state. This behavior is also obtained with
the blended trapezoidal/BDF(2) scheme, as displayed in Figure 17. Here the relaxation
process takes about 10 steps (not shown). On the other hand, the results from the
blended trapezoidal/super-implicit scheme in Figure 18 show that this method does not
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Figure 11: Numerical solution using the trapezoidal rule (black line) on a grid with 256
cells and cfl = 8 after one (left) and five (right) time steps. Asymptotic solution
is plotted as dashed lines.
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Figure 12: Numerical solution using the BDF(2) scheme (black line) on a grid with 256
cells and cfl = 8 after one (left) and five (right) time steps. Source term as in
Figure 11. Asymptotic solution is plotted as dashed lines.
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Figure 13: Numerical solution using the blended trapezoidal/BDF(2) scheme (black line)
on a grid with 256 cells and cfl = 8 after one (left) and five (right) time steps.
Source term as in Figure 11. Asymptotic solution is plotted as dashed lines.
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Figure 14: Numerical solution using the blended trapezoidal/super-implicit scheme (black
line) on a grid with 256 cells and cfl = 8 after one (left) and five (right) time
steps. Source term as in Figure 11. Asymptotic solution is plotted as dashed
lines.

have the desired property to relax to the balanced state in this case. This is due to the
fact that the selected source term is localized by a Gaussian pulse, which incorporates
nearly all Fourier modes. As we have stated above, the super-implicit scheme is unstable
for long-wave data, and thus, one obtains the observed behavior. If the source term is
of the form

q (t, ξ) = sin (ω t) sin (λ(ξ − ξ0)) , (63)

the scheme shows relaxation to the balanced state (not shown).

6 Discussion and Conclusions
In this study, a new method for the numerical integration of the one-dimensional linear
acoustic equations is introduced. It is motivated by some shortcomings of classical semi-
implicit large time step numerical integration schemes applied in current atmospheric
codes. The new scheme effectively eliminates freely propagating compressible short-wave
components, which cannot be accurately represented at long time steps. At the same
time, the dispersion and the amplitude errors for long-wave modes are minimized. In
the presence of a source term that varies slowly in time but has rapid spatial variations,
solutions relax to an asymptotic balanced state. In order to achieve these properties, a
quasi-spectral decomposition of the data is performed using multigrid techniques, and a
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Figure 15: Numerical solution using the trapezoidal rule (black line) on a grid with 256 cells
and cfl = 8 after one (left) and 18 (right) time steps. Completely unbalanced
data. Notice the different scaling in p compared to the other figures. Asymptotic
solution is plotted as dashed lines.
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Figure 16: Numerical solution using the BDF(2) scheme (black line) on a grid with 256 cells
and cfl = 8 after one (left) and 18 (right) time steps. Completely unbalanced
data. Source term as in Figure 15. Asymptotic solution is plotted as dashed
lines.

scale-dependent blending of two base schemes is applied.
Two classical implicit one step methods and a new super-implicit discretization were

analyzed. The discrete-dispersion relations gave insight into the dispersion and amplitude
errors produced depending on the wave number and the CFL number, and the behavior
of the schemes in presence of a source term was discussed. This analysis enabled us to
effectively control the characteristics of the new method concerning accurate transport
of long-wave and dissipation of under-resolved short-wave acoustic modes.

In contrast to most other stabilization techniques used in codes for numerical weather
prediction, the new scheme is still consistent of second order accuracy. Other techniques,
like off-centering, divergence damping [Skamarock and Klemp, 1992] or subgrid scale
(SGS) filters either reduce the order of the scheme to first order, or are not consistent
with the underlying equations. Here, we deliberately employ the truncation properties
of certain “simple” schemes to achieve positive effects in terms of subgrid-scale modeling.
This is in spirit of implicit Large Eddy Simulations [Grinstein et al., 2007] for turbulence
modeling.
As it was already mentioned in the introduction, it is still not clear how much any

acoustic mode really matters in atmospheric modeling. Thus, the importance of the
proposed scheme might be debatable with respect to acoustics. However, as it was
shown in Klein et al. [2010], there is also a clear scale separation between gravity wave
modes and advection, and similar problems arise in this context. We think that the
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Figure 17: Numerical solution using the blended trapezoidal/BDF(2) scheme (black line)
on a grid with 256 cells and cfl = 8 after one (left) and 18 (right) time steps.
Completely unbalanced data. Source term as in Figure 15. Asymptotic solution
is plotted as dashed lines.

scheme is also applicable for this issue.
The overall idea of the scheme is quite general and can likely be applied also in other

contexts in which only partially resolved processes require a scale-selective numerical
representation.
Some open questions remain, however. For the selection of the base schemes, mostly

classical discretizations were applied so far. There might be special discretizations,
which are more suitable for the particular purpose than the presented schemes. A
first try in this direction was the super-implicit scheme. However, the results from
the test case with slow, short-wave source term suggest that this choice is not optimal
yet. Furthermore, the weighting function µν for the blending of the base schemes was
chosen rather ad-hoc thus far, and more judicious choices aiming at optimization of the
dispersion and damping effects are conceivable.
Another important issue is the efficient implementation of the described method.

Especially, when applied to 2D or 3D problems, fast algorithms such as multigrid
methods must be at hand. The authors are currently working on the development of
such methods with the aim of using the scale decomposition simultaneously for the
blending of time integrators and for the efficient solution or preconditioning of the linear
equations resulting from the semi-implicit discretization.
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Figure 18: Numerical solution using the blended trapezoidal/super-implicit scheme (black
line) on a grid with 256 cells and cfl = 8 after one (left) and 18 (right) time
steps. Completely unbalanced data. Source term as in Figure 15. Asymptotic
solution is plotted as dashed lines.
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Appendix
Splitting relationship between pressure and momentum
For the derivation of the splitting relationship between the pressure and momentum fields,
let us consider just two grid levels. The fine grid has nodes xj+1/2, j = . . . ,−1, 0, 1, . . . ,
and the coarse grid should have nodes x2j+1/2, j = . . . ,−1, 0, 1, . . . The pressure should
decompose into fine and coarse grid portions:

pj+1/2 = p
(f)
j+1/2 + p

(c)
j+1/2 . (A1)
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Using the full weighting (restriction) operator, the coarse grid portion at common grid
points is given by

p
(c)
2j+1/2 = 1

4p2j−1/2 + 1
2p2j+1/2 + 1

4p2j+3/2 . (A2)

At the other nodes, we define the coarse grid portion by linear interpolation:

p
(c)
2j+3/2 = 1

2
(
p

(c)
2j+1/2 + p

(c)
2j+5/2

)
= 1

8p2j−1/2 + 1
4p2j+1/2 + 1

4p2j+3/2 + 1
4p2j+5/2 + 1

8p2j+7/2 .
(A3)

The fine grid portion can then be computed by relation (A1). We obtain

p
(f)
2j+1/2 = p2j+1/2 − p

(c)
2j+1/2

= −1
4p2j−1/2 + 1

2p2j+1/2 −
1
4p2j+3/2

(A4)

and

p
(f)
2j+3/2 = p2j+3/2 − p

(c)
2j+3/2

= −1
8p2j−1/2 −

1
4p2j+1/2 + 3

4p2j+3/2 −
1
4p2j+5/2 −

1
8p2j+7/2 .

(A5)

As stated above, we would like to compute the resulting splitting for ∂p/∂x to obtain
the proper splitting for the momentum variable. For our staggered grid approach, the
momentum is associated to the cells Cj = [xj−1/2, xj+1/2], and the first derivative of the
pressure is approximated by

∂p

∂x

∣∣∣∣
xj+1

≈
pj+3/2 − pj+1/2

∆x . (A6)

This is simply split into fine and coarse grid portions

pj+3/2 − pj+1/2
∆x =

p
(f)
j+3/2 − p

(f)
j+1/2

∆x +
p

(c)
j+3/2 − p

(c)
j+1/2

∆x , (A7)

and we obtain, by the relations (A2) to (A5),

p
(f)
j+3/2 − p

(f)
j+1/2

∆x =
(
pj+3/2 − pj+1/2

∆x

)
−(1

8
pj+1/2 − pj−1/2

∆x + 3
8
pj+3/2 − pj+1/2

∆x +

3
8
pj+5/2 − pj+3/2

∆x + 1
8
pj+7/2 − pj+5/2

∆x

) (A8)
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and
p

(c)
j+3/2 − p

(c)
j+1/2

∆x = 1
8
pj+1/2 − pj−1/2

∆x + 3
8
pj+3/2 − pj+1/2

∆x +
3
8
pj+5/2 − pj+3/2

∆x + 1
8
pj+7/2 − pj+5/2

∆x

(A9)

Associating (pj+3/2 − pj+1/2)/∆x with mj+1, we obtain the splitting

mj+1 = m
(f)
j+1 +m

(c)
j+1 (A10)

with
m

(c)
j+1 = 1

8mj + 3
8mj+1 + 3

8mj+2 + 1
8mj+3 (A11)

and
m

(f)
j+1 = mj+1 −m(c)

j+1 (A12)

for the momentum field. This results in the restriction and prolongation operators

R(ν) = 1
8
[
1 3 3 1

]
and P (ν) =

[
1 1

]
. (A13)
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