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Accumulation of Unbalanced Truncation Errors

Spurious winds over steep orography:

atmosphere at rest
3000 m mountain
3D compressible
inviscid flow eqns.
standard finite volume
scheme
128× 32 grid cells
velocities after 60 min.

Various finite difference / finite volume schemes produce
comparable results.
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Archimedes’ Principle

In Botta et al. [2004] a general applicable solution
for this problem has been proposed
Implementation in the context of FV methods:
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Stable Layer Intersecting Steep Orography
Inversion
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[Botta et al., 2004]
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Computation of Nearly Incompressible Flow

Stationary vortex is advected by constant background flow
[Gresho and Chan, 1990]:

rectangular domain with 80× 20 grid cells
periodic BC on left and right side, walls at top / bottom
explicit Godunov-type method for compressible flows:
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Construction of Conservative Numerical Methods

The following procedure for the construction of numerical
fluxes was proposed [Schneider et al., 1999]:

compute predictions for convective flux components with
a standard method for hyperbolic conservation laws
correct predictions by two projection steps to guarantee
divergence control at new time level
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problem: second projection step admits a local
decoupling of the solution (checkerboading)
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The Shallow Water Equations

Non-dimensional form:

ht + ∇ · (hv) = 0

(hv)t + ∇ ·
(

hv ◦ v +
1

2 Fr2 h2 I
)

=
1

Fr2 h∇hb

ht(x, t)

hb(x)

h(x, t) = ht
− hb

x

z

hyperbolic system of
conservation laws
similar to Euler
equations, no energy
equation
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The “Incompressible” Limit
(as Fr→ 0)

zero Froude number shallow water equations:

ht + ∇ · (hv) = 0
(hv)t + ∇ · (hv ◦ v) + h∇h(2) = 0

h = h0(t) given through boundary conditions.
mass conservation becomes a divergence
constraint for the velocity field:∫

∂V
(hv) · n dσ = −|V |dh0

dt
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Conservation Form

Consider a FV method in conservation form:

Un+1
V = Un

V − δt
|V |

∑
I∈I∂V

|I | FI

FI (UI ,nI ) :=

(
h(v · n)

hv(v · n) + h0 h(2) n

)
I

Construction of numerical fluxes:
advective fluxes from standard explicit FV scheme
(applied to an auxiliary system)
(MAC)-projection corrects advection velocity divergence
second (exact) projection adjusts new time level
divergence of cell-centered velocities
second order accuracy
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Auxiliary System

The auxiliary system

h∗t + ∇ · (hv)∗ = 0
(hv)∗t + ∇ ·

(
(hv ◦ v)∗ + 1

2(h∗)2I
)

= 0

enjoys the following properties:
It has the same convective fluxes as the
zero Froude number shallow water equations.
The system is hyperbolic.
Having constant height h∗ and a zero velocity
divergence at time t0, solutions satisfy at t0 + δt:

∇ · v∗ = O(δt) , (h∗∇h∗) = O
(
δt2)
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Correction of the Fluxes
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�� �� �� 1. Projection:
divergence constraint
imposed on each grid cell
correct convective fluxes on
boundary of volume

2. Projection:
divergence constraint imposed
on dual discretization
correct momentum to obtain
correct divergence for new
velocity field
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Original Scheme
[Schneider et al., 1999]
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both Poisson-type
problems are solved
for cell averages (i.e.
piecewise constant data)

stencils: standard
FD discretizations
2nd Poisson-type
problem has local
decoupling
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The New (Second) Projection
Discretization of the Poisson-Type Problem

Let us consider a Petrov-Galerkin finite element discretization
[Süli, 1991]:

bilinear trial functions for
the unknown h(2)

piecewise constant test
functions on the dual
discretization

Integration over Ω and using the divergence theorem
leads to (h0 = const.):

δt h0

∫
∂V̄

∇h(2) · n dσ =

∫
∂V̄

((hv)∗∗ + (hv)n) · n dσ



Conservative
Projection-Type

Methods

S. Vater

FV Methods for
Geophysical
Problems
Well Balanced Finite
Volume Methods

Conservative
Projection-Type Methods

A New Projection
Method
Governing Equations

Formulation of the
Scheme

Stability of the Second
Projection

Numerical Results

Summary

The New (Second) Projection
Discrete Velocity Space

velocity components at
boundary of the dual cells
are piecewise linear!
discrete divergence can
be exactly calculated

i

j
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j + 1/2−31/2

1/2

1/2

1/2

1/4 1/4

1/4 1/4 discrete divergence, Laplacian
and gradient satisfy L = D(G)

discrete Laplacian has
compact stencil
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Approximate and Exact Projection

new discrete divergence also affected by partial
derivatives uy and vx

using just the mean values to correct momentum:

(hv)n+1
V = (hv)∗∗V − δt h0 G(h(2))

we obtain D(vn+1) = O
(
δt δx2): approximate

projection method
additional correction of derivatives and their
employment in the reconstruction of the
predictor step: exact projection method
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Generalized Saddle-Point Problems

Find (u, p) ∈ (X2 ×M1), such that{
a(u, v) + b1(v, p) = 〈f , v〉 ∀ v ∈ X1

b2(u, q) = 〈g, q〉 ∀ q ∈M2
(1)

abstract theory by Nicolaïdes [1982] and Bernardi
el al. [1988]: If bi(·, ·) (and similarly a(·, ·)) satisfies:

inf
q∈Mi

sup
v∈Xi

bi(v, q)

‖v‖Xi
‖q‖Mi

≥ βi > 0

Then, (1) has a unique solution for all f and g.
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Reformulation of the Poisson-Type Problem

derive a saddle point formulation using momentum
update and divergence constraint:

(hv)n+1 = (hv)∗∗ − δt (h0∇h(2))
1
2 ∇ ·

[
(hv)n+1 + (hv)n

]
= −dh0

dt

variational formulation: multiply with test functions ϕ
and ψ and integrate over Ω

discrete problem obtained by using piecewise linear
vector and piecewise constant scalar test functions;
equivalent to Poisson-type equation
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Existence & Uniqueness
Continuous Problem

find solution with (hv)n+1 ∈ H0(div; Ω) and
h(2) ∈ H 1(Ω)/R
test functions in the spaces (L2(Ω))2 and L2(Ω)

bilinear forms given by:

a(u, v) :=

∫
Ω

u · v dx , b1(v, q) := δt h0

∫
Ω

v · ∇q dx

b2(v, q) :=

∫
Ω

q (∇ · v) dx

Theorem: [Vater, 2005] The continuous generalized
saddle point problem has a unique solution ((hv)n+1, h(2)).
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Stability of the Discrete Problem?

b1(·, ·) satisfies a discrete inf-sup condition

open question for a(·, ·) and b2(·, ·)

problem: piecewise linear vector functions not in
H (div; Ω) in general (nonconforming finite elements)

common (e.g. Raviart-Thomas) elements do not match
with the piecewise linear, discontinuous ansatz functions
from the Godunov-Type method

discretization by Schneider et al. [1999] can also be
formulated as saddle point problem; but unstable!



Conservative
Projection-Type

Methods

S. Vater

FV Methods for
Geophysical
Problems
Well Balanced Finite
Volume Methods

Conservative
Projection-Type Methods

A New Projection
Method
Governing Equations

Formulation of the
Scheme

Stability of the Second
Projection

Numerical Results

Summary

Convergence Studies
Taylor Vortex

Originally proposed by Minion [1996] and Almgren et
al. [1998] for the incompressible flow equations

smooth velocity field
nontrivial solution for h(2)

solved on unit square
with periodic BC
32× 32, 64× 64 and
128× 128 grid cells
error to exact solution at
t = 3
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Convergence Studies
Errors and Convergence Rates

Method Norm 32x32 Rate 64x64 Rate 128x128

original
projection

L2 0.2929 2.16 0.0656 2.16 0.0146
L∞ 0.4207 2.15 0.0945 2.18 0.0209

new exact
projection

L2 0.0816 2.64 0.0131 2.17 0.0029
L∞ 0.1277 2.45 0.0234 2.32 0.0047

second order accuracy is obtained in the L2 and
the L∞ norms
absolute error obtained with the new exact projection
about four times smaller on fixed grids
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Advection of a Vortex
Results for the New Projection Method

Exact projection, central differences (no limiter):
PSfrag replacements
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new

Less deviation from the center line of the channel, loss in
vorticity is slightly reduced.
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Advection of a Vortex
Results for the New Projection Method

original method
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Summary

A new projection method has been presented. It has the
following properties:

the projection is based on a FE formulation
numerical results of the new method show considerable
accuracy improvements on fixed grids compared to the
old formulation
results supported by theoretical analysis; no local
decoupling of the gradient in the 2nd projection

Outlook
stability of the discrete method has to be solved
discrete divergence is determined by mean values
and uy and vx ; other partial derivatives give
additional degrees of freedom
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Extension of Finite Volume Compressible Flow Solvers to
Multi-dimensional, Variable Density Zero Mach Number Flows.
Journal of Computational Physics, 155 : 248–286, 1999.

S. Vater.
A New Projection Method for the Zero Froude Number
Shallow Water Equations.
PIK Report No. 97, Potsdam Institute for Climate
Impact Research, 2005.

N. Botta, R. Klein, S. Langenberg and S. Lützenkirchen.
Well Balanced Finite Volume Methods for Nearly
Hydrostatic Flows.
Journal of Computational Physics, 196 : 539–565, 2004.
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Convective Fluxes

Consider the semi-discrete equations:

hn+1 = hn − δt
[
∇ · (hv)n+1/2

]
+O

(
δt3)

(hv)n+1 = (hv)n − δt
[
∇ · (hv ◦ v)n+1/2 +

(h0∇h(2))n+1/2)
]
+O

(
δt3)

The momentum is given by

(hv)n+1/2 = (hv)∗,n+1/2 − δt
2 (h0∇h(2))n+1/4 +O

(
δt3)

Impose divergence constraint at tn+1/2:

δt
2 ∇ · (h0∇h(2))n+1/4 = ∇ · (hv)∗,n+1/2 +

dh0
dt +O

(
δt3)
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Interface Heights

Using h(2) from first Poisson-type problem: instabilities,
divergence constraint not satisfied at new time step.

Intermediate momentum update:

(hv)∗∗ := (hv)n − δt ∇ · (hv ◦ v)n+1/2

Momentum at time tn+1 can be expressed as:

(hv)n+1 = (hv)∗∗ − δt (h0∇h(2))n+1/2 +O
(
δt3)

A second application of the divergence constraint yields:

δt ∇ · (h0∇h(2))n+1/2 = ∇ · (hv)∗∗ +∇ · (hv)n +

2 dh0
dt +O

(
δt2)



Conservative
Projection-Type

Methods

S. Vater

Appendix
For Further Reading

Projection-Type Methods

Well Balanced Methods

Existence & Uniqueness
Continuous Problem

Find ((hv)n+1, h(2)) ∈ (H0(div; Ω)×H 1(Ω)/R), s.th.{
a
(
(hv)n+1,ϕ

)
+ b1

(
ϕ, h(2)

)
= 〈(hv)∗∗,ϕ〉

b2
(
(hv)n+1, ψ

)
= 〈−∇ · (hv)n , ψ〉

∀ϕ ∈ (L2(Ω))2 and ∀ψ ∈ L2(Ω)

Bilinear forms given by:

a(u, v) :=

∫
Ω

u · v dx , b1(v, q) := δt h0

∫
Ω

v · ∇q dx ,

b2(v, q) :=

∫
Ω

q (∇ · v) dx

Theorem: The generalized saddle point problem has a
unique solution ((hv)n+1, h(2)).
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Convergence Studies
Taylor Vortex

Originally proposed by Minion [1996] and Almgren
et al. [1998] for the incompressible flow equations.
Initial conditions: Constant height h0 and

u0(x, y) = 1− 2 cos(2πx) sin(2πy)

v0(x, y) = 1 + 2 sin(2πx) cos(2πy)

for (x, y) ∈ [0, 1]2, periodic boundary conditions.
Exact solution of the zero Froude number SWE:

u(x, y, t) = 1− 2 cos(2π(x − t)) sin(2π(y − t))
v(x, y, t) = 1 + 2 sin(2π(x − t)) cos(2π(y − t))

h(2)(x, y, t) = − cos(4π(x − t))− cos(4π(y − t))
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Archimedes’ Principle

In Botta et al. [2004] a general applicable solution
for this problem has been proposed.
Implementation in the context of FV methods:
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Archimedes’ Principle

In Botta et al. [2004] a general applicable solution
for this problem has been proposed.
Implementation in the context of FV methods:
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Well Balanced Finite Volume Methods
Inversion
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No accumulation of unbalanced truncation errors!

[Botta et al., 2004]



Conservative
Projection-Type

Methods

S. Vater

Appendix
For Further Reading

Projection-Type Methods

Well Balanced Methods

Well Balanced Finite Volume Methods
Schaer’s Test

piecewise constant entropy piecewise linear entropy


	Finite Volume Methods for Geophysical Problems
	Well Balanced Finite Volume Methods
	Conservative Projection-Type Methods

	A New Projection Method
	Governing Equations
	Formulation of the Scheme
	Stability of the Second Projection
	Numerical Results

	Summary
	Appendix
	For Further Reading
	Projection-Type Methods
	Well Balanced Methods


