

Finite Volume, Conservative Projection-Type Methods for Low Speed Compressible Flows

Stefan Vater¹ Rupert Klein^{1,2} Nicola Botta² Ann S. Almgren³

¹Dept of Mathematics and Computer Science, Free University Berlin

²Potsdam Institute for Climate Impact Research

³Lawrence Berkeley National Laboratory

SIAM GS05, June 7th 2005

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

2

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

1 Finite Volume Methods for Geophysical Problems

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの⊙

- Well Balanced Finite Volume Methods
- Conservative Projection-Type Methods

A New Projection Method

- Governing Equations
- Formulation of the Scheme
- Stability of the Second Projection
- Numerical Results

Accumulation of Unbalanced Truncation Errors

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

Spurious winds over steep orography:

- atmosphere at rest
- 3000 m mountain
- 3D compressible inviscid flow eqns.
- standard finite volume scheme
- 128×32 grid cells
- velocities after 60 min.

Various finite difference / finite volume schemes produce comparable results.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨヨ のの⊙

Archimedes' Principle

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

- In BOTTA ET AL. [2004] a general applicable solution for this problem has been proposed
- Implementation in the context of FV methods:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨヨ のの⊙

Stable Layer Intersecting Steep Orography $_{\mbox{\sc Inversion}}$

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

maximum norm of vertical velocity

[Botta et al., 2004]

Computation of Nearly Incompressible Flow

Conservative Projection-Type Methods

EV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

Stationary vortex is advected by constant background flow [GRESHO and CHAN, 1990]:

- rectangular domain with 80×20 grid cells
- periodic BC on left and right side, walls at top / bottom
- explicit Godunov-type method for compressible flows:

M = 0.01

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

The following procedure for the construction of numerical fluxes was proposed [SCHNEIDER ET AL., 1999]:

- compute predictions for convective flux components with a standard method for hyperbolic conservation laws
- correct predictions by two projection steps to guarantee divergence control at new time level

 $\mathsf{M} = 0$

 problem: second projection step admits a local decoupling of the solution (checkerboading)

Outline

2

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

Finite Volume Methods for Geophysical Problems
 Well Balanced Finite Volume Methods

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの⊙

• Conservative Projection-Type Methods

A New Projection Method

- Governing Equations
- Formulation of the Scheme
- Stability of the Second Projection
- Numerical Results

The Shallow Water Equations

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

$$\begin{array}{rcl} h_t &+& \nabla \cdot (h \boldsymbol{v}) &=& 0 \\ (h \boldsymbol{v})_t &+& \nabla \cdot \left(h \boldsymbol{v} \circ \boldsymbol{v} + \frac{1}{2 \operatorname{Fr}^2} h^2 \boldsymbol{I} \right) &=& \frac{1}{\operatorname{Fr}^2} h \nabla h^{\operatorname{b}} \end{array}$$

 \mathbf{r}

Non-dimensional form:

- hyperbolic system of conservation laws
- similar to Euler equations, no energy equation

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの⊙

The "Incompressible" Limit $({\sf as}\ {\sf Fr} \to 0)$

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

• zero Froude number shallow water equations:

$$egin{array}{rcl} h_t &+&
abla \cdot (hm{v}) &=& 0 \ (hm{v})_t &+&
abla \cdot (hm{v} \circ m{v}) &+& h
abla h^{(2)} &=& m{0} \end{array}$$

 $h = h_0(t)$ given through boundary conditions.

 mass conservation becomes a divergence constraint for the velocity field:

$$\int_{\partial V} (holdsymbol{v}) \cdot oldsymbol{n} \, d\sigma = -|V| rac{dh_0}{dt}$$

A D > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0</p>

Conservation Form

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

Consider a FV method in conservation form:

$$\mathbf{U}_{V}^{n+1} = \mathbf{U}_{V}^{n} - \frac{\delta t}{|V|} \sum_{I \in \mathcal{I}_{\partial V}} |I| \mathbf{F}_{I}$$

$$\mathbf{F}_I(\mathbf{U}_I, oldsymbol{n}_I) := \left(egin{array}{cc} h(oldsymbol{v} \cdot oldsymbol{n}) \ holdsymbol{v}(oldsymbol{v} \cdot oldsymbol{n}) \ + \ h_0 \ h^{(2)} \ oldsymbol{n} \end{array}
ight)_I$$

Construction of numerical fluxes:

- advective fluxes from standard explicit FV scheme (applied to an auxiliary system)
- (MAC)-projection corrects advection velocity divergence
- second (exact) projection adjusts new time level divergence of cell-centered velocities
- second order accuracy

Auxiliary System

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

The auxiliary system

$$h_t^* + \nabla \cdot (hv)^* = 0$$

$$(h\boldsymbol{v})^*_t + \nabla \cdot \left((h\boldsymbol{v}\circ\boldsymbol{v})^* + rac{1}{2}(h^*)^2\boldsymbol{I}
ight) = \boldsymbol{0}$$

enjoys the following properties:

- It has the same convective fluxes as the zero Froude number shallow water equations.
- The system is hyperbolic.
- Having constant height h^{*} and a zero velocity divergence at time t₀, solutions satisfy at t₀ + δt:

$$abla \cdot oldsymbol{v}^* = \mathcal{O}(\delta t) \hspace{0.1 cm}, \hspace{0.1 cm} (h^*
abla h^*) = \mathcal{O}ig(\delta t^2ig)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨヨ のの⊙

Correction of the Fluxes

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of th Scheme

Stability of the Second Projection

Numerical Results

Summary

1. Projection:

- divergence constraint imposed on each grid cell
- correct convective fluxes on boundary of volume

2. Projection:

- divergence constraint imposed on dual discretization
- correct momentum to obtain correct divergence for new velocity field

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨヨ のの⊙

Original Scheme [SCHNEIDER ET AL., 1999]

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

- Well Balanced Finite Volume Methods
- Conservative Projection-Type Methods

A New Projection Method

- Governing Equations
- Formulation of the Scheme
- Stability of the Second Projection
- Numerical Results

Summary

 both Poisson-type problems are solved for cell averages (i.e. piecewise constant data)

- stencils: standard
 FD discretizations
- 2nd Poisson-type problem has local decoupling

A D > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0</p>

The New (Second) Projection Discretization of the Poisson-Type Problem

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

Let us consider a Petrov-Galerkin finite element discretization [SÜLI, 1991]:

- bilinear trial functions for the unknown $h^{(2)}$
- piecewise constant test functions on the dual discretization

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの⊙

Integration over Ω and using the divergence theorem leads to ($h_0 = const.$):

$$\delta t h_0 \int\limits_{\partial ar{V}} \nabla h^{(2)} \cdot \boldsymbol{n} \ d\sigma = \int\limits_{\partial ar{V}} ((h \boldsymbol{v})^{**} + (h \boldsymbol{v})^n) \cdot \boldsymbol{n} \ d\sigma$$

The New (Second) Projection Discrete Velocity Space

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

- velocity components at boundary of the dual cells are piecewise linear!
- discrete divergence can be exactly calculated

• discrete divergence, Laplacian and gradient satisfy L = D(G)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨヨ のの⊙

 discrete Laplacian has compact stencil

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

 new discrete divergence also affected by partial derivatives u_y and v_x

• using just the mean values to correct momentum:

$$(h\boldsymbol{v})_V^{n+1} = (h\boldsymbol{v})_V^{**} - \delta t h_0 \,\overline{\mathsf{G}(h^{(2)})}$$

we obtain $D(v^{n+1}) = O(\delta t \, \delta x^2)$: approximate projection method

 additional correction of derivatives and their employment in the reconstruction of the predictor step: exact projection method

Generalized Saddle-Point Problems

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

- Well Balanced Finite Volume Methods
- Conservative Projection-Type Methods

A New Projection Method

- Governing Equations
- Formulation of the Scheme
- Stability of the Second Projection
- Numerical Results

Summary

Find
$$(u, p) \in (\mathcal{X}_2 \times \mathcal{M}_1)$$
, such that

$$\begin{cases}
a(u, v) + b_1(v, p) = \langle f, v \rangle & \forall v \in \mathcal{X}_1 \\
b_2(u, q) = \langle g, q \rangle & \forall q \in \mathcal{M}_2
\end{cases}$$
(1)

abstract theory by NICOLAÏDES [1982] and BERNARDI
 EL AL. [1988]: If b_i(·, ·) (and similarly a(·, ·)) satisfies:

$$\inf_{q \in \mathcal{M}_i} \sup_{v \in \mathcal{X}_i} \frac{b_i(v, q)}{\|v\|_{\mathcal{X}_i} \|q\|_{\mathcal{M}_i}} \ge \beta_i > 0$$

Then, (1) has a unique solution for all f and g.

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Secone Projection

Numerical Results

Summary

• derive a saddle point formulation using momentum update and divergence constraint:

$$(holdsymbol{v})^{n+1} = (holdsymbol{v})^{**} - \delta t (h_0
abla h^{(2)})$$

 $rac{1}{2}
abla \cdot \left[(holdsymbol{v})^{n+1} + (holdsymbol{v})^n
ight] = -rac{dh_0}{dt}$

- \bullet variational formulation: multiply with test functions φ and ψ and integrate over Ω
- discrete problem obtained by using piecewise linear vector and piecewise constant scalar test functions; equivalent to Poisson-type equation

Existence & Uniqueness Continuous Problem

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

• find solution with $(h v)^{n+1} \in H_0(\operatorname{div}; \Omega)$ and $h^{(2)} \in H^1(\Omega)/\mathbb{R}$

• test functions in the spaces $(L^2(\Omega))^2$ and $L^2(\Omega)$

• bilinear forms given by:

$$egin{aligned} a(oldsymbol{u},oldsymbol{v}) &:= \int_{\Omega}oldsymbol{u}\cdotoldsymbol{v}\,doldsymbol{x} \ b_2(oldsymbol{v},q) &:= \int_{\Omega}q\,(
abla\cdotoldsymbol{v}\cdotoldsymbol{v})\,doldsymbol{x} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨヨ のの⊙

Theorem: [VATER, 2005] The continuous generalized saddle point problem has a unique solution $((hv)^{n+1}, h^{(2)})$.

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

- $b_1(\cdot, \cdot)$ satisfies a discrete inf-sup condition
- open question for $a(\cdot, \cdot)$ and $b_2(\cdot, \cdot)$
- problem: piecewise linear vector functions not in H(div; Ω) in general (nonconforming finite elements)
- common (e.g. Raviart-Thomas) elements do not match with the piecewise linear, discontinuous ansatz functions from the Godunov-Type method
- discretization by SCHNEIDER ET AL. [1999] can also be formulated as saddle point problem; but unstable!

Convergence Studies Taylor Vortex

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

- Well Balanced Finite Volume Methods
- Conservative Projection-Type Methods

A New Projection Method

- Governing Equations
- Formulation of the Scheme
- Stability of the Second Projection
- Numerical Results

Summary

Originally proposed by MINION [1996] and ALMGREN ET AL. [1998] for the incompressible flow equations

- smooth velocity field
- nontrivial solution for $h^{(2)}$
- solved on unit square with periodic BC
- 32×32 , 64×64 and 128×128 grid cells
- error to exact solution at t = 3

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨヨ のの⊙

Convergence Studies Errors and Convergence Rates

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

Method	Norm	32x32	Rate	64x64	Rate	128x128
original projection	L^2	0.2929	2.16	0.0656	2.16	0.0146
	L^{∞}	0.4207	2.15	0.0945	2.18	0.0209
new exact projection	L^2	0.0816	2.64	0.0131	2.17	0.0029
	L^{∞}	0.1277	2.45	0.0234	2.32	0.0047

- \bullet second order accuracy is obtained in the L^2 and the L^∞ norms
- absolute error obtained with the new exact projection about four times smaller on fixed grids

A D > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0</p>

Advection of a Vortex Results for the New Projection Method

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

Exact projection, central differences (no limiter):

Less deviation from the center line of the channel, loss in vorticity is slightly reduced.

Advection of a Vortex Results for the New Projection Method

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

Well Balanced Finite Volume Methods

Conservative Projection-Type Methods

A New Projection Method

Governing Equations

Formulation of the Scheme

Stability of the Second Projection

Numerical Results

Summary

original method

new exact method

・ロト・4回ト・4回ト・4回ト・4回ト

Summary

Conservative Projection-Type Methods

S. Vater

FV Methods for Geophysical Problems

- Well Balanced Finite Volume Methods
- Conservative Projection-Type Methods

A New Projection Method

- Governing Equations
- Formulation of the Scheme
- Stability of the Second Projection
- Numerical Results

Summary

A new projection method has been presented. It has the following properties:

- the projection is based on a FE formulation
- numerical results of the new method show considerable accuracy improvements on fixed grids compared to the old formulation
- results supported by theoretical analysis; no local decoupling of the gradient in the 2nd projection
- Outlook
 - stability of the discrete method has to be solved
 - discrete divergence is determined by mean values and u_y and v_x ; other partial derivatives give additional degrees of freedom

For Further Reading

Conservative Projection-Type Methods

S. Vater

Appendix

For Further Reading Projection-Type Methods Well Balanced Methods

Th. Schneider, N. Botta, K.J. Geratz and R. Klein.

Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows.

Journal of Computational Physics, 155: 248–286, 1999.

S. Vater.

A New Projection Method for the Zero Froude Number Shallow Water Equations.

PIK Report No. 97, Potsdam Institute for Climate Impact Research, 2005.

N. Botta, R. Klein, S. Langenberg and S. Lützenkirchen. Well Balanced Finite Volume Methods for Nearly

Hydrostatic Flows.

Journal of Computational Physics, 196 : 539–565, 2004.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの⊙

Convective Fluxes

Conservative Projection-Type Methods

S. Vater

Appendix For Further Reading Projection-Type Method Well Balanced Methods Consider the semi-discrete equations:

$$\begin{split} h^{n+1} &= h^n - \delta t \left[\nabla \cdot (h \boldsymbol{v})^{n+1/2} \right] + \mathcal{O} \big(\delta t^3 \big) \\ (h \boldsymbol{v})^{n+1} &= (h \boldsymbol{v})^n - \delta t \left[\nabla \cdot (h \boldsymbol{v} \circ \boldsymbol{v})^{n+1/2} + (h_0 \nabla h^{(2)})^{n+1/2} \right] + \mathcal{O} \big(\delta t^3 \big) \end{split}$$

The momentum is given by

$$(h\boldsymbol{v})^{n+1/2} = (h\boldsymbol{v})^{*,n+1/2} - \frac{\delta t}{2} (h_0 \nabla h^{(2)})^{n+1/4} + \mathcal{O}(\delta t^3)$$

Impose divergence constraint at $t^{n+1/2}$:

$$\frac{\delta t}{2} \nabla \cdot (h_0 \nabla h^{(2)})^{n+1/4} = \nabla \cdot (h\boldsymbol{v})^{*,n+1/2} + \frac{dh_0}{dt} + \mathcal{O}(\delta t^3)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ヨヨ のへ⊙

Interface Heights

Conservative Projection-Type Methods

S. Vater

Appendix For Further Reading Projection-Type Methods Well Balanced Methods Using $h^{(2)}$ from first Poisson-type problem: instabilities, divergence constraint not satisfied at new time step.

Intermediate momentum update:

$$(holdsymbol{v})^{**} := (holdsymbol{v})^n - \delta t \,\,
abla \cdot (holdsymbol{v} \circ oldsymbol{v})^{n+1/2}$$

Momentum at time t^{n+1} can be expressed as:

$$(hv)^{n+1} = (hv)^{**} - \delta t (h_0 \nabla h^{(2)})^{n+1/2} + \mathcal{O}(\delta t^3)$$

A second application of the divergence constraint yields:

$$\delta t \, \nabla \cdot (h_0 \nabla h^{(2)})^{n+1/2} = \nabla \cdot (h \boldsymbol{v})^{**} + \nabla \cdot (h \boldsymbol{v})^n + 2 \frac{dh_0}{dt} + \mathcal{O}(\delta t^2)$$

Existence & Uniqueness Continuous Problem

Conservative Projection-Type Methods

S. Vater

Appendix For Further Reading Projection-Type Methods Well Balanced Methods Find $((hv)^{n+1}, h^{(2)}) \in (H_0(\operatorname{div}; \Omega) \times H^1(\Omega)/\mathbb{R})$, s.th.

$$egin{aligned} &aig((hm{v})^{n+1},m{arphi}ig)+b_1ig(m{arphi},h^{(2)}ig)&=&\langle(hm{v})^{**},m{arphi}
angle\ &b_2ig((hm{v})^{n+1},\psiig)&=&\langle-
abla\cdot(hm{v})^n,\psi
angle \end{aligned}$$

$$orall oldsymbol{arphi} \in (L^2(\Omega))^2$$
 and $orall \psi \in L^2(\Omega)$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 <

Bilinear forms given by:

$$egin{aligned} a(oldsymbol{u},oldsymbol{v}) &:= \int_\Omega oldsymbol{u} \cdot oldsymbol{v} \; doldsymbol{x} \;, \; b_1(oldsymbol{v},q) &:= \delta t \, h_0 \int_\Omega oldsymbol{v} \cdot
abla q \; doldsymbol{x} \;, \ b_2(oldsymbol{v},q) &:= \int_\Omega q \left(
abla \cdot oldsymbol{v}
ight) \; doldsymbol{x} \end{aligned}$$

Theorem: The generalized saddle point problem has a unique solution $((hv)^{n+1}, h^{(2)})$.

Convergence Studies Taylor Vortex

Conservative Projection-Type Methods

S. Vater

Appendix For Further Reading Projection-Type Methods Well Balanced Methods

- Originally proposed by MINION [1996] and ALMGREN ET AL. [1998] for the incompressible flow equations.
- Initial conditions: Constant height h_0 and

$$u_0(x, y) = 1 - 2\cos(2\pi x)\sin(2\pi y)$$

$$v_0(x, y) = 1 + 2\sin(2\pi x)\cos(2\pi y)$$

for (x, y) ∈ [0, 1]², periodic boundary conditions.
Exact solution of the zero Froude number SWE:

$$u(x, y, t) = 1 - 2\cos(2\pi(x-t))\sin(2\pi(y-t))$$

$$v(x, y, t) = 1 + 2\sin(2\pi(x-t))\cos(2\pi(y-t))$$

$$h^{(2)}(x, y, t) = -\cos(4\pi(x-t)) - \cos(4\pi(y-t))$$

Archimedes' Principle

Conservative Projection-Type Methods

S. Vater

Appendix

For Further Reading Projection-Type Methods Well Balanced Methods • In BOTTA ET AL. [2004] a general applicable solution for this problem has been proposed.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Implementation in the context of FV methods:

Archimedes' Principle

Conservative Projection-Type Methods

S. Vater

Appendix

For Further Reading Projection-Type Methods Well Balanced Methods

- In BOTTA ET AL. [2004] a general applicable solution for this problem has been proposed.
- Implementation in the context of FV methods:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨヨ のの⊙

Well Balanced Finite Volume Methods

S. Vater

Appendix

For Further Reading Projection-Type Methods Well Balanced Methods

Piecewise Linear Potential Temperature

No accumulation of unbalanced truncation errors!

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの⊙

[Botta et al., 2004]

Well Balanced Finite Volume Methods Schaer's Test

Conservative Projection-Type Methods

S. Vater

Appendix For Further Reading Projection-Type Methods

piecewise constant entropy

piecewise linear entropy

・ロト < 団ト < 三ト < 三ト < 三日 < のへの