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The Shallow Water Equations

Non-dimensional form:

ht + ∇ · (hv) = 0

(hv)t + ∇ ·
(

hv ◦ v +
1

2 Fr2 h2 I
)

=
1

Fr2 h∇hB

hT(x, t)

hB(x)

h(x, t) = hT − hB

x

z

Fr =
v ′ref√
g ′ h ′ref

hyperbolic system of conservation
laws
similar to Euler equations, no
energy equation
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The “Incompressible” Limit
(as Fr→ 0)

Zero Froude number shallow water equations:

ht + ∇ · (hv) = 0

(hv)t + ∇ · (hv ◦ v) + h∇h(2) = 0

h = h0(t) is given through boundary conditions.
mass conservation becomes a divergence constraint for
the velocity field:∫

∂V

h(v · n) dσ = −|V | dh0

dt
for V ⊂ Ω
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Formulation of the Numerical Scheme

Consider a FV method in conservation form:

Un+1
V = Un

V − δt
|V |

∑
I∈I∂V

|I | FI

FI (UI ,n I )�

(
h(v · n)

hv(v · n) + h0 h(2) n

)
I

Construction of numerical fluxes:
advective fluxes from standard explicit FV scheme (applied to an
auxiliary system)
(MAC)-projection corrects advection velocity divergence
second (exact) projection adjusts new time level divergence of
cell-centered velocities
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Correction of the Fluxes

b

b

b

b

rs rs rs

rs rs rs

rs rs rs

1. Projection:

(hv)I = (hv)∗I −
δt
2

h0(∇h(2))I

corrects convective fluxes on boundary
of control volume

2. Projection:

(hv)n+1 = (hv)∗∗ − δt(h0∇h(2))n+1/2

adjusts momentum to obtain correct
divergence for new velocity field

b

b

b

b

rs rs rs

rs rs rs

rs rs rs
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The (Second) Projection
Discretization of the Poisson-Type Problem

Consider a Petrov-Galerkin FE discretization [Süli, 1991]:

bilinear trial functions for the
unknown h(2)

piecewise constant test functions
on the dual discretization

Integration over Ω and divergence theorem leads to:

δt h0

∫
∂V̄

∇h(2) · n dσ =

∫
∂V̄

[(hv)∗∗ + (hv)n ] · n dσ
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The (Second) Projection
Discrete Velocity Space

velocity components at
boundary of the dual cells are
piecewise linear!
discrete divergence can be
exactly calculated

i

j

i + 1/2

j + 1/2−31/2

1/2

1/2

1/2

1/4 1/4

1/4 1/4 discrete divergence, Laplacian and
gradient satisfy L = D(G)

discrete Laplacian has
compact stencil

S. Vater & R. Klein (FU Berlin) Projection Method for SWE GAMM 2006 8 / 20



Approximate vs. Exact Projection

discrete divergence also affected by partial derivatives
uy and vx

using just the mean values to correct momentum:

(hv)n+1 = (hv)∗∗ − δt h0 G(h(2))

we obtain D(vn+1) = O
(
δt δx 2); approximate

projection method
additional correction of derivatives and their employment in the
reconstruction of the predictor step: exact projection method
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Generalized Saddle-Point Problems
Nicolaïdes [1982] and Bernardi el al. [1988]

Find (u, p) ∈ (X2 ×M1), such that{
a(u, v) + b1(v , p) = 〈f , v〉 ∀ v ∈ X1

b2(u, q) = 〈g , q〉 ∀ q ∈M2

(1)

Theorem
If bi(·, ·) (i = 1, 2) and similarly a(·, ·) satisfy:

inf
q∈Mi

sup
v∈Xi

bi(v , q)

‖v‖Xi
‖q‖Mi

≥ βi > 0

Then, (1) has a unique solution for all f and g .
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Reformulation of the Poisson-Type Problem

Derive saddle point problem by employing momentum update and
divergence constraint:

(hv)n+1 = (hv)∗∗ − δt (h0∇h(2))
1
2
∇ ·

[
(hv)n+1 + (hv)n]

= −dh0

dt

variational formulation: multiply with test functions ϕ and ψ
and integrate over Ω

discrete problem with piecewise linear vector and piecewise
constant scalar test functions
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Existence & Uniqueness
Continuous Problem

find solution with (hv)n+1 ∈ H0(div; Ω) and h(2) ∈ H 1(Ω)/R

test functions in the spaces [L2(Ω)]2 and L2(Ω)

bilinear forms given by:

a(u , v) � (u , v)0

b1(v , q) � δt h0 (v ,∇q)0

b2(v , q) � (q ,∇ · v)0

Theorem (V. 2005)
The continuous generalized saddle point problem has a unique solution
((hv)n+1, h(2)).
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Stability of the Discrete Problem?

a(·, ·) and b1(·, ·) satisfy discrete inf-sup conditions,
open question for b2(·, ·)

problem: piecewise linear vector functions not in H (div; Ω)
in general (nonconforming finite elements)

conforming (e.g. Raviart-Thomas) elements do not match with
the piecewise linear, discontinuous ansatz functions from the
Godunov-Type method

former version [Schneider et al. 1999] can also be
formulated as saddle point problem; but unstable!
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Discrete Inf-Sup Condition for a(·, ·)

To show (“coercivity”):

inf
u∈Kh

2

sup
v∈Kh

1

a(u , v)

‖u‖ ‖v‖
≥ α and sup

u∈Kh
2

a(u , v) > 0 ∀ v ∈ Kh
1 \ {0}

v ∈ Kh
1 ⇔ 0 =

1
δx

f (uĳ , vĳ) +
1
6

g(uy,ĳ , vx ,ĳ)

v ∈ Kh
2 ⇔ 0 =

1
δx

f (uĳ , vĳ) +
1
4

g(uy,ĳ , vx ,ĳ)

 one-to-one mapping from Kh
1 to Kh

2 by multiplying
partial derivatives of each element with 4/6
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Discrete Inf-Sup Condition for a(·, ·) (cont.)

the following estimates can be given for corresponding elements
v ∈ Kh

1 and u ∈ Kh
2 (with ū = v̄ and ∇ũ = 2/3∇ṽ):

4
9

a(v , v) ≤ a(u ,u) ≤ a(u , v)

This gives for each u ∈ Kh
2 , ‖u‖div,V = ‖u‖0 6= 0

sup
v∈Kh

1

a(u , v)

‖v‖0
≥ a(u ,u)

3
2 ‖u‖0

=
2
3
‖u‖div,V

and for v ∈ Kh
1 \ {0} we obtain

sup
u∈Kh

2

a(u , v) ≥ 4
9

a(v , v) > 0
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Discrete Inf-Sup Condition for b1(·, ·)

for piecewise bilinear p ∈ Hh ⊂ H 1(Ω)/R it follows
that ∇p ∈ Uh ; i.e. piecewise linear
thus, for arbitrary p ∈ Hh , we have

sup
v∈Uh

b1(v , p)

‖v‖0
≥ b1(∇p, p)

‖∇p‖0

=
δt h0 (∇p,∇p)0

‖∇p‖0

= δt h0 |p|1
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Convergence Studies
Taylor Vortex

Originally proposed by Minion [1996] and Almgren et al. [1998] for
the incompressible flow equations

smooth velocity field
nontrivial solution for h(2)

solved on unit square with
periodic BC
32× 32, 64× 64 and 128× 128
grid cells
error to exact solution at t = 3 0

�
�

��

0.5 1
0

0.5

1
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Convergence Studies
Errors and Convergence Rates

Method Norm 32x32 Rate 64x64 Rate 128x128

Schneider
et al.

L2 0.2929 2.16 0.0656 2.16 0.0146

L∞ 0.4207 2.15 0.0945 2.18 0.0209

new exact
projection

L2 0.0816 2.64 0.0131 2.17 0.0029

L∞ 0.1277 2.45 0.0234 2.32 0.0047

second order accuracy is obtained in the L2 and
the L∞ norms
absolute error obtained with the new exact projection method
about four times smaller on fixed grids
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Advection of a Vortex
Results for the New Projection Method

Exact projection, central differences (no limiter):

t = 0 t = 1 t = 2 t = 3
0

0.5

1

Schneider et al.

t = 0 t = 1 t = 2 t = 3
0

0.5

1

new exact projection

Less deviation from the center line of the channel, loss in
vorticity is slightly reduced.
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Summary

A new projection method has been presented.
it is an exact projection method with a projection based on a
FE formulation
numerical results of the new method show considerable accuracy
improvements on fixed grids compared to the old formulation
results supported by theoretical analysis; no local decoupling of the
gradient in the 2nd projection

Outlook
I stability of the discrete method; inf-sup for b2(·, ·)
I additional degrees of freedom through partial derivatives

uy , vx and ux , vy
I include additional terms (Coriolis etc.)

related talk: M. Oevermann, Wed. 15:10 h (Sect 18, Session 5)
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Auxiliary System

The auxiliary system

h∗t + ∇ · (hv)∗ = 0

(hv)∗t + ∇ ·
(
(hv ◦ v)∗ + 1

2(h∗)2I
)

= 0

enjoys the following properties:
It has the same convective fluxes as the
zero Froude number shallow water equations.
The system is hyperbolic.
Having constant height h∗ and a zero velocity divergence at time t0,
solutions satisfy at t0 + δt :

∇ · v∗ = O(δt) , (h∗∇h∗) = O
(
δt2)
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Inf-Sup Condition for a(·, ·)

an orthogonal decomposition of (L2(Ω))2 is given by

{v ∈ H0(div; Ω) | ∇ · v = 0} ⊕ {∇q | q ∈ H 1(Ω)}

⇒ K1 = {v ∈ H0(div; Ω) | ∇ · v = 0} = K2

for each u ∈ K2, ‖u‖0,Ω 6= 0, a(·, ·) satisfies

sup
v∈K1

a(u , v)

‖v‖0,Ω

≥ a(u ,u)

‖u‖0,Ω

=
‖u‖2

0,Ω

‖u‖0,Ω

= ‖u‖div,Ω
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