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The Shallow Water Equations

Non-dimensional form:

(hv)y + V (h 4 h2I) Lhvh
v | hvov+ —5 = —

! 2Fr? Fr? "
z ,U,

o Fr= =L
\u/)\/’/\/ NCE»
WAPNE M @ hyperbolic system of conservation
laws
N hy() @ similar to Euler equations, no
x energy equation
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The “Incompressible” Limit
(as Fr — 0)

Zero Froude number shallow water equations:

(hv); + V-(hwow) + hVHE®

@ h = hy(t) is given through boundary conditions.

@ mass conservation becomes a divergence constraint for
the velocity field:

d
/h(v-n)da:—]wd—hf for V.C Q
oV
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Formulation of the Numerical Scheme

Consider a FV method in conservation form:

ot
I€Tyy

F;(Ur,ng) = ( hhv(:v..?) + hh®n >1

Construction of numerical fluxes:

@ advective fluxes from standard explicit FV scheme (applied to an
auxiliary system)
e (MAC)-projection corrects advection velocity divergence

@ second (exact) projection adjusts new time level divergence of
cell-centered velocities

Freie Universitéi

S. Vater & R. Klein (FU Berlin) Projection Method for SWE GAMM 2006

5/ 20



Correction of the Fluxes

1. Projection:

]

‘ —
—— S s . Ot
nE y (hv)r = (hv)} = 5 ho(VAE));
—— A S corrects convective fluxes on boundary
= | ‘—/ of control volume
2. Projection: . L,
(h'U)n+1 — (hv)** . 5t(h()Vh(2))n+1/2 \‘W’——’ L S s
T — ~ =
adjusts momentum to obtain correct —_ VAW,
divergence for new velocity field - “7/
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The (Second) Projection

Discretization of the Poisson-Type Problem
Consider a Petrov-Galerkin FE discretization [SULI, 1991]:

@ bilinear trial functions for the
unknown h(2)

@ piecewise constant test functions
on the dual discretization

Integration over  and divergence theorem leads to:

5tho/Vh(2> n do = / [(hv)™ + (hv)"]-n do
ov oV
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The (Second) Projection

Discrete Velocity Space

@ velocity components at
boundary of the dual cells are
piecewise linear!

o discrete divergence can be
exactly calculated

o discrete divergence, Laplacian and
gradient satisfy L = D(G)

@ discrete Laplacian has
compact stencil
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Approximate vs. Exact Projection

@ discrete divergence also affected by partial derivatives
ty and v,

@ using just the mean values to correct momentum:

(hv)™ ! = (hv)™ — 5t hg G(h(D)
we obtain D(v"!) = O(6t 62?%); approximate
projection method

@ additional correction of derivatives and their employment in the
reconstruction of the predictor step: exact projection method
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Generalized Saddle-Point Problems
NICOLAIDES [1982] and BERNARDI EL AL. [1988]

Find (u, p) € (X2 x My), such that

{a(u,v)+b1(v,p) = (f,v) YveX

(1)
ba(u, q) = (9,9) VgeM,
If b;(-,-) (i =1,2) and similarly a(-,-) satisfy:
inf sup bi(v. 9) >06; >0

seMi e, [[0llx, llgllag,

Then, (1) has a unique solution for all f and g.
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Reformulation of the Poisson-Type Problem

Derive saddle point problem by employing momentum update and
divergence constraint:

(hv)"t = (hw)™ — 6t (hgVh(?)
SV (o) ()] = -0

@ variational formulation: multiply with test functions ¢ and
and integrate over Q

o discrete problem with piecewise linear vector and piecewise
constant scalar test functions
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Existence & Uniqueness

Continuous Problem

e find solution with (hv)"*! € Hy(div; Q) and h(?) € HY(Q)/R
e test functions in the spaces [L?(2)]? and L?(Q)

@ bilinear forms given by:

a(u,v) = (u,v),
bi(v,q) = 6&thy (v,Vq),
bg(’U,(]) = ((],V‘ 1))0

Theorem (V. 2005)

The continuous generalized saddle point problem has a unique solution
((ho)™*1, h).
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Stability of the Discrete Problem?

@ a(-,-) and b;(-,-) satisfy discrete inf-sup conditions,
open question for by(-, )

@ problem: piecewise linear vector functions not in H(div; Q)
in general (nonconforming finite elements)

e conforming (e.g. Raviart-Thomas) elements do not match with
the piecewise linear, discontinuous ansatz functions from the
Godunov-Type method

o former version [SCHNEIDER ET AL. 1999] can also be
formulated as saddle point problem; but unstable!
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Discrete Inf-Sup Condition for a(-, )

To show ( “coercivity” ):

inf sup M >a and sup a(u,v)>0 Vove IC{”\{O}
ek} yecn ull v ek

1 1
S IC? < 0= %f(“ij? vy) + ég(“y,ij? Uz ij)
. 1 1
veEKy & 0= %f(uijg vij) + 7 9y, Vo.i5)

~~ one-to-one mapping from K% to K% by multiplying
partial derivatives of each element with 4/6
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Discrete Inf-Sup Condition for a(-,-) (cont.)

@ the following estimates can be given for corresponding elements
v € K and u € K} (with @ =  and Vit = 2/3Vd):

ga(v,’v) < a(w,u) < a(u, v)

o This gives for each u € K&, [wllgivy = llullp #0

a(u,v) _ a(u,u)

sup

2 Jlull
= = — ||Uu .

and for v € K\ {0} we obtain

4
sup a(u,v) > —a(v,v) >0
uekh 9

Freie Universitét Berlin

S. Vater & R. Klein (FU Berlin) Projection Method for SWE GAMM 2006 15 /20



Discrete Inf-Sup Condition for by(-,-)

o for piecewise bilinear p € H" ¢ H'(Q)/R it follows
that Vp € U"; i.e. piecewise linear

e thus, for arbitrary p € H", we have

bi(v.p) o b0(Vp,p)

sup >
veur vl Vol
_ Otho(Vp,Vp),
IVl
= Othy ]p|1
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Convergence Studies
Taylor Vortex

Originally proposed by MINION [1996] and ALMGREN ET AL. [1998] for
the incompressible flow equations

@ smooth velocity field
@ nontrivial solution for h(2)

@ solved on unit square with
periodic BC

@ 32 x 32, 64 x 64 and 128 x 128 R

grid cells N m f
0.5

@ error to exact solution at ¢t = 3 0
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Convergence Studies

Errors and Convergence Rates

Method Norm | 32x32 | Rate | 64x64 | Rate | 128x128
Scunemer | L2 | 02929 | 2.16 | 0.0656 | 2.16 | 0.0146
ET AL. L>® | 0.4207 | 2.15 | 0.0945 | 2.18 | 0.0209
new exact I? 0.0816 | 2.64 | 0.0131 | 2.17 | 0.0029
projection L>® | 0.1277 | 2.45 | 0.0234 | 2.32 | 0.0047

@ second order accuracy is obtained in the L? and
the L norms

@ absolute error obtained with the new exact projection method
about four times smaller on fixed grids
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Advection of a Vortex
Results for the New Projection Method

Exact projection, central differences (no limiter):

| SCHNEIDER ET AL.
t—‘2 t—‘?

1 new exact projection
=2 =3

0.5

Less deviation from the center line of the channel, loss in
vorticity is slightly reduced.
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Summary

A new projection method has been presented.

@ it is an exact projection method with a projection based on a
FE formulation

@ numerical results of the new method show considerable accuracy
improvements on fixed grids compared to the old formulation

@ results supported by theoretical analysis; no local decoupling of the
gradient in the 2" projection

@ Outlook
> stability of the discrete method; inf-sup for ba(,-)
> additional degrees of freedom through partial derivatives
Uy, Uy and ug, vy
» include additional terms (Coriolis etc.)

o related talk: M. Oevermann, Wed. 15:10 h (Sect 18, Session 5)
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For Further Information/Reading

@ Th. Schneider, N. Botta, K.J. Geratz and R. Klein.

Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional,
Variable Density Zero Mach Number Flows.

Journal of Computational Physics, 155 : 248-286, 1999.

@ S. Vater.
A New Projection Method for the Zero Froude Number
Shallow Water Equations.
PIK Report No. 97, Potsdam Institute for Climate
Impact Research, 2005.
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Auxiliary System

The auxiliary system

hy + V- (hv)* _
(hv); + V-((hvov)*—}—%(h*)QI) —

enjoys the following properties:

@ It has the same convective fluxes as the
zero Froude number shallow water equations.

@ The system is hyperbolic.
@ Having constant height A* and a zero velocity divergence at time %y,
solutions satisfy at tg + dt:

Vvt =00t) , (BVh*) = 0(5t)
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Inf-Sup Condition for af(-, -)

@ an orthogonal decomposition of (L?(2))? is given by
{v e Hy(div;Q) | V-v =0} @ {Vq| qec H(Q)}

o = Ky ={ve H(div;Q) | V-v=0} =Ks
o for each u € Ky, [lullqq # 0, a(:, ) satisfies

2
a(u,v) _ a(u,u) ||UH0,Q — l
- div,Q

sup > =
veky [Vlloa — lulloa  llullog
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