A Semi-Implicit Projection Method for the Zero Froude Number Shallow Water Equations

Stefan Vater \& Rupert Klein
Department of Mathematics and Computer Science Freie Universität Berlin
$77^{\text {th }}$ GAMM Annual Meeting Berlin, March $28^{\text {th }} 2006$

Outline

(1) Governing Equations

- Shallow Water Equations
- The "Incompressible" Limit
(2) Formulation of the Scheme
- Conservation Form
- Discretization of Projection Step
- Exact Projection Method
(3) Stability of the Projection Step
- Generalized Saddle-Point Problems
- Discrete Inf-Sup Conditions

4 Numerical Results

The Shallow Water Equations

Non-dimensional form:

$$
\begin{array}{rlrl}
h_{t} & +\nabla \cdot(h \boldsymbol{v}) & =0 \\
(h \boldsymbol{v})_{t}+\nabla \cdot\left(h \boldsymbol{v} \circ \boldsymbol{v}+\frac{1}{2 \mathrm{Fr}^{2}} h^{2} \boldsymbol{I}\right) & =\frac{1}{\mathrm{Fr}^{2}} h \nabla h_{\mathrm{B}}
\end{array}
$$

- $\mathrm{Fr}=\frac{v_{\mathrm{ref}}^{\prime}}{\sqrt{g^{\prime} h_{\text {ref }}^{\prime}}}$
- hyperbolic system of conservation laws
- similar to Euler equations, no energy equation

The "Incompressible" Limit (as $\mathrm{Fr} \rightarrow 0$)

Zero Froude number shallow water equations:

$$
\begin{array}{rlrl}
h_{t} & +\nabla \cdot(h \boldsymbol{v}) & & 0 \\
(h \boldsymbol{v})_{t} & +\nabla \cdot(h \boldsymbol{v} \circ \boldsymbol{v})+h \nabla h^{(2)} & =\mathbf{0}
\end{array}
$$

- $h=h_{0}(t)$ is given through boundary conditions.
- mass conservation becomes a divergence constraint for the velocity field:

$$
\int_{\partial V} h(\boldsymbol{v} \cdot \boldsymbol{n}) d \sigma=-|V| \frac{d h_{0}}{d t} \quad \text { for } V \subset \Omega
$$

Formulation of the Numerical Scheme

Consider a FV method in conservation form:

$$
\begin{gathered}
\mathbf{U}_{V}^{n+1}=\mathbf{U}_{V}^{n}-\frac{\delta t}{|V|} \sum_{I \in \mathcal{I}_{\partial V}}|I| \mathbf{F}_{I} \\
\mathbf{F}_{I}\left(\mathbf{U}_{I}, \boldsymbol{n}_{I}\right):=\binom{h(\boldsymbol{v} \cdot \boldsymbol{n})}{h \boldsymbol{v}(\boldsymbol{v} \cdot \boldsymbol{n})+h_{0} h^{(2)} \boldsymbol{n}}_{I}
\end{gathered}
$$

Construction of numerical fluxes:

- advective fluxes from standard explicit FV scheme (applied to an auxiliary system)
- (MAC)-projection corrects advection velocity divergence
- second (exact) projection adjusts new time level divergence of cell-centered velocities

Correction of the Fluxes

1. Projection:

$$
(h \boldsymbol{v})_{I}=(h \boldsymbol{v})_{I}^{*}-\frac{\delta t}{2} h_{0}\left(\nabla h^{(2)}\right)_{I}
$$

corrects convective fluxes on boundary of control volume

2. Projection:

$$
(h \boldsymbol{v})^{n+1}=(h \boldsymbol{v})^{* *}-\delta t\left(h_{0} \nabla h^{(2)}\right)^{n+1 / 2}
$$

adjusts momentum to obtain correct divergence for new velocity field

The (Second) Projection

Discretization of the Poisson-Type Problem

Consider a Petrov-Galerkin FE discretization [SüLI, 1991]:

- bilinear trial functions for the unknown $h^{(2)}$
- piecewise constant test functions on the dual discretization

Integration over $\boldsymbol{\Omega}$ and divergence theorem leads to:

$$
\delta t h_{0} \int_{\partial \bar{V}} \nabla h^{(2)} \cdot \boldsymbol{n} d \sigma=\int_{\partial \bar{V}}\left[(h \boldsymbol{v})^{* *}+(h \boldsymbol{v})^{n}\right] \cdot \boldsymbol{n} d \sigma
$$

The (Second) Projection

Discrete Velocity Space

- velocity components at boundary of the dual cells are piecewise linear!
- discrete divergence can be exactly calculated

- discrete divergence, Laplacian and gradient satisfy $\mathrm{L}=\mathrm{D}(\mathrm{G})$
- discrete Laplacian has compact stencil

Approximate vs. Exact Projection

- discrete divergence also affected by partial derivatives u_{y} and v_{x}
- using just the mean values to correct momentum:

$$
(h \boldsymbol{v})^{n+1}=(h \boldsymbol{v})^{* *}-\delta t h_{0} \overline{\mathrm{G}\left(h^{(2)}\right)}
$$

we obtain $\mathrm{D}\left(\boldsymbol{v}^{n+1}\right)=\mathcal{O}\left(\delta t \delta x^{2}\right)$; approximate projection method

- additional correction of derivatives and their employment in the reconstruction of the predictor step: exact projection method

Generalized Saddle-Point Problems

Nicolaïdes [1982] and Bernardi el al. [1988]

Find $(u, p) \in\left(\mathcal{X}_{2} \times \mathcal{M}_{1}\right)$, such that

$$
\begin{cases}a(u, v)+b_{1}(v, p) & =\langle f, v\rangle \quad \forall v \in \mathcal{X}_{1} \tag{1}\\ b_{2}(u, q) & =\langle g, q\rangle \quad \forall q \in \mathcal{M}_{2}\end{cases}
$$

Theorem

If $b_{i}(\cdot, \cdot)(i=1,2)$ and similarly $a(\cdot, \cdot)$ satisfy:

$$
\inf _{q \in \mathcal{M}_{i}} \sup _{v \in \mathcal{X}_{i}} \frac{b_{i}(v, q)}{\|v\|_{\mathcal{X}_{i}}\|q\|_{\mathcal{M}_{i}}} \geq \beta_{i}>0
$$

Then, (1) has a unique solution for all f and g.

Reformulation of the Poisson-Type Problem

Derive saddle point problem by employing momentum update and divergence constraint:

$$
\begin{aligned}
(h \boldsymbol{v})^{n+1} & =(h \boldsymbol{v})^{* *}-\delta t\left(h_{0} \nabla h^{(2)}\right) \\
\frac{1}{2} \nabla \cdot\left[(h \boldsymbol{v})^{n+1}+(h \boldsymbol{v})^{n}\right] & =-\frac{d h_{0}}{d t}
\end{aligned}
$$

- variational formulation: multiply with test functions φ and ψ and integrate over Ω
- discrete problem with piecewise linear vector and piecewise constant scalar test functions

Existence \& Uniqueness

Continuous Problem

- find solution with $(h \boldsymbol{v})^{n+1} \in H_{0}(\operatorname{div} ; \Omega)$ and $h^{(2)} \in H^{1}(\Omega) / \mathbb{R}$
- test functions in the spaces $\left[L^{2}(\Omega)\right]^{2}$ and $L^{2}(\Omega)$
- bilinear forms given by:

$$
\begin{aligned}
a(\boldsymbol{u}, \boldsymbol{v}) & :=(\boldsymbol{u}, \boldsymbol{v})_{0} \\
b_{1}(\boldsymbol{v}, q) & :=\delta t h_{0}(\boldsymbol{v}, \nabla q)_{0} \\
b_{2}(\boldsymbol{v}, q) & :=(q, \nabla \cdot \boldsymbol{v})_{0}
\end{aligned}
$$

Theorem (V. 2005)

The continuous generalized saddle point problem has a unique solution $\left((h \boldsymbol{v})^{n+1}, h^{(2)}\right)$.

Stability of the Discrete Problem?

- $a(\cdot, \cdot)$ and $b_{1}(\cdot, \cdot)$ satisfy discrete inf-sup conditions, open question for $b_{2}(\cdot, \cdot)$
- problem: piecewise linear vector functions not in $H(\operatorname{div} ; \Omega)$ in general (nonconforming finite elements)
- conforming (e.g. Raviart-Thomas) elements do not match with the piecewise linear, discontinuous ansatz functions from the Godunov-Type method
- former version [SCHNEIDER ET AL. 1999] can also be formulated as saddle point problem; but unstable!

Discrete Inf-Sup Condition for $a(\cdot, \cdot)$

To show ("coercivity"):

$$
\inf _{\boldsymbol{u} \in \mathcal{K}_{2}^{h}} \sup _{\boldsymbol{v} \in \mathcal{K}_{1}^{h}} \frac{a(\boldsymbol{u}, \boldsymbol{v})}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|} \geq \alpha \quad \text { and } \quad \sup _{\boldsymbol{u} \in \mathcal{K}_{2}^{h}} a(\boldsymbol{u}, \boldsymbol{v})>0 \quad \forall \boldsymbol{v} \in \mathcal{K}_{1}^{h} \backslash\{0\}
$$

$$
\begin{aligned}
& \boldsymbol{v} \in \mathcal{K}_{1}^{h} \Leftrightarrow 0=\frac{1}{\delta x} f\left(u_{i j}, v_{i j}\right)+\frac{1}{6} g\left(u_{y, i j}, v_{x, i j}\right) \\
& \boldsymbol{v} \in \mathcal{K}_{2}^{h} \Leftrightarrow 0=\frac{1}{\delta x} f\left(u_{i j}, v_{i j}\right)+\frac{1}{4} g\left(u_{y, i j}, v_{x, i j}\right)
\end{aligned}
$$

\rightsquigarrow one-to-one mapping from \mathcal{K}_{1}^{h} to \mathcal{K}_{2}^{h} by multiplying partial derivatives of each element with $4 / 6$

Discrete Inf-Sup Condition for $a(\cdot, \cdot)$ (cont.)

- the following estimates can be given for corresponding elements $\boldsymbol{v} \in \mathcal{K}_{1}^{h}$ and $\boldsymbol{u} \in \mathcal{K}_{2}^{h}$ (with $\overline{\boldsymbol{u}}=\overline{\boldsymbol{v}}$ and $\nabla \tilde{\boldsymbol{u}}=2 / 3 \nabla \tilde{\boldsymbol{v}}$):

$$
\frac{4}{9} a(\boldsymbol{v}, \boldsymbol{v}) \leq a(\boldsymbol{u}, \boldsymbol{u}) \leq a(\boldsymbol{u}, \boldsymbol{v})
$$

- This gives for each $\boldsymbol{u} \in \mathcal{K}_{2}^{h},\|\boldsymbol{u}\|_{\text {div, } \mathcal{V}}=\|\boldsymbol{u}\|_{0} \neq 0$

$$
\sup _{\boldsymbol{v} \in \mathcal{K}_{1}^{h}} \frac{a(\boldsymbol{u}, \boldsymbol{v})}{\|\boldsymbol{v}\|_{0}} \geq \frac{a(\boldsymbol{u}, \boldsymbol{u})}{\frac{3}{2}\|\boldsymbol{u}\|_{0}}=\frac{2}{3}\|\boldsymbol{u}\|_{\operatorname{div}, \mathcal{V}}
$$

and for $\boldsymbol{v} \in \mathcal{K}_{1}^{h} \backslash\{0\}$ we obtain

$$
\sup _{\boldsymbol{u} \in \mathcal{K}_{2}^{h}} a(\boldsymbol{u}, \boldsymbol{v}) \geq \frac{4}{9} a(\boldsymbol{v}, \boldsymbol{v})>0
$$

Discrete Inf-Sup Condition for $b_{1}(\cdot, \cdot)$

- for piecewise bilinear $p \in \mathcal{H}^{h} \subset H^{1}(\Omega) / \mathbb{R}$ it follows that $\nabla p \in \mathcal{U}^{h}$; i.e. piecewise linear
- thus, for arbitrary $p \in \mathcal{H}^{h}$, we have

$$
\begin{aligned}
\sup _{\boldsymbol{v} \in \mathcal{U}^{h}} \frac{b_{1}(\boldsymbol{v}, p)}{\|\boldsymbol{v}\|_{0}} & \geq \frac{b_{1}(\nabla p, p)}{\|\nabla p\|_{0}} \\
& =\frac{\delta t h_{0}(\nabla p, \nabla p)_{0}}{\|\nabla p\|_{0}} \\
& =\delta t h_{0}|p|_{1}
\end{aligned}
$$

Convergence Studies
 Taylor Vortex

Originally proposed by Minion [1996] and Almgren et al. [1998] for the incompressible flow equations

- smooth velocity field
- nontrivial solution for $h^{(2)}$
- solved on unit square with periodic BC
- $32 \times 32,64 \times 64$ and 128×128 grid cells
- error to exact solution at $t=3$

Convergence Studies

Errors and Convergence Rates

Method	Norm	$\mathbf{3 2 \times 3 2}$	Rate	$\mathbf{6 4 \times 6 4}$	Rate	$\mathbf{1 2 8 \times 1 2 8}$
SCHNEIDER ET AL.	L^{2}	0.2929	2.16	0.0656	2.16	0.0146
	L^{∞}	0.4207	2.15	0.0945	2.18	0.0209
new exact projection	L^{2}	0.0816	2.64	0.0131	2.17	0.0029
	L^{∞}	0.1277	2.45	0.0234	2.32	0.0047

- second order accuracy is obtained in the L^{2} and the L^{∞} norms
- absolute error obtained with the new exact projection method about four times smaller on fixed grids

Advection of a Vortex

Results for the New Projection Method

Exact projection, central differences (no limiter):

Less deviation from the center line of the channel, loss in vorticity is slightly reduced.

Summary

A new projection method has been presented.

- it is an exact projection method with a projection based on a FE formulation
- numerical results of the new method show considerable accuracy improvements on fixed grids compared to the old formulation
- results supported by theoretical analysis; no local decoupling of the gradient in the $2^{\text {nd }}$ projection
- Outlook
- stability of the discrete method; inf-sup for $b_{2}(\cdot, \cdot)$
- additional degrees of freedom through partial derivatives

$$
u_{y}, v_{x} \text { and } u_{x}, v_{y}
$$

- include additional terms (Coriolis etc.)
- related talk: M. Oevermann, Wed. 15:10 h (Sect 18, Session 5)

For Further Information/Reading

Th. Schneider, N. Botta, K.J. Geratz and R. Klein.
Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows.
Journal of Computational Physics, 155: 248-286, 1999.
围
S. Vater.

A New Projection Method for the Zero Froude Number Shallow Water Equations.
PIK Report No. 97, Potsdam Institute for Climate Impact Research, 2005.

Auxiliary System

The auxiliary system

$$
\begin{array}{rlr}
h_{t}^{*}+\nabla \cdot(h \boldsymbol{v})^{*} & =0 \\
(h \boldsymbol{v})_{t}^{*}+\nabla \cdot\left((h \boldsymbol{v} \circ \boldsymbol{v})^{*}+\frac{1}{2}\left(h^{*}\right)^{2} \boldsymbol{I}\right) & =\mathbf{0}
\end{array}
$$

enjoys the following properties:

- It has the same convective fluxes as the zero Froude number shallow water equations.
- The system is hyperbolic.
- Having constant height h^{*} and a zero velocity divergence at time t_{0}, solutions satisfy at $t_{0}+\delta t$:

$$
\nabla \cdot \boldsymbol{v}^{*}=\mathcal{O}(\delta t), \quad\left(h^{*} \nabla h^{*}\right)=\mathcal{O}\left(\delta t^{2}\right)
$$

Inf-Sup Condition for $a(\cdot, \cdot)$

- an orthogonal decomposition of $\left(L^{2}(\Omega)\right)^{2}$ is given by

$$
\left\{\boldsymbol{v} \in H_{0}(\operatorname{div} ; \Omega) \mid \nabla \cdot \boldsymbol{v}=0\right\} \oplus\left\{\nabla q \mid q \in H^{1}(\Omega)\right\}
$$

- $\Rightarrow \mathcal{K}_{1}=\left\{\boldsymbol{v} \in H_{0}(\operatorname{div} ; \Omega) \mid \nabla \cdot \boldsymbol{v}=0\right\}=\mathcal{K}_{2}$
- for each $\boldsymbol{u} \in \mathcal{K}_{2},\|\boldsymbol{u}\|_{0, \Omega} \neq 0, a(\cdot, \cdot)$ satisfies

$$
\sup _{\boldsymbol{v} \in \mathcal{K}_{1}} \frac{a(\boldsymbol{u}, \boldsymbol{v})}{\|\boldsymbol{v}\|_{0, \Omega}} \geq \frac{a(\boldsymbol{u}, \boldsymbol{u})}{\|\boldsymbol{u}\|_{0, \Omega}}=\frac{\|\boldsymbol{u}\|_{0, \Omega}^{2}}{\|\boldsymbol{u}\|_{0, \Omega}}=\|\boldsymbol{u}\|_{\mathrm{div}, \Omega}
$$

