Assignment 4

Tibor Szabó Positional Games, Winter 2009-10 Quiz on Nov 17th (Tuesday) at 16:15PM

The Ramsey number R(k, l) is defined as

$$R(k,l) := \min\{N : \forall c : E(K_N) \to \{\text{red}, \text{blue}\}, \\ \exists K \subseteq V(K_N), |K| = k, \text{ with } c(xy) = \text{red } \forall x, y \in K \\ \text{or } \exists L \subseteq V(K_N), |L| = l, \text{ with } c(xy) = \text{blue } \forall x, y \in L\}.$$

Problem 1 Prove R(3, 4) = 9

Problem 2 Prove $R(4,4) \leq 18$

Problem 3 Prove $R(4, 4) \ge 18$. (Hint: Consider the Paley graph P_{17} , defined on the vertex set $V(P_{17}) = F_{17}$, where F_{17} is the 17 element field of residues modulo 17. Vertices a and b are defined to be adjacent in P_{17} if a - b is a quadratic residue, that is, there exists a $z \in F_{17} \setminus \{0\}$ such that $a - b = z^2$.)

Problem 4 The *r*-color Ramsey number $R(k_1, \ldots, k_r)$ is defined to be the smallest integer N, such that for every *r*-coloring of the edges of the clique K_N , there exists an index $i, 1 \le i \le r$, and a clique $K \subseteq K_N$ of order k_i whose edges are all colored with color i. (For example, R(3,3) = 6 and one can prove (you don't have to) that R(3,3,3) = 17.)

Prove that for the r-color Ramsey number for triangles we have

$$R_r(3) := R(3, \dots, 3) < er! + 1.$$

(Hint: Prove the recurrence $R_r(3) - 1 \le 1 + r(R_{r-1}(3) - 1)$ and proceed by induction.)

Note that you just proved $R(3,3,3) \leq 17$.