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Abstract. Vizing [13] conjectured that γ(G�H) ≥ γ(G)γ(H) for every pair
G, H of graphs, where “�” is the Cartesian product, and γ(G) is the domina-
tion number of the graph G. Denote by γi(G) the maximum, over all inde-
pendent sets I in G, of the minimal number of vertices needed to dominate I.
We prove that γ(G�H) ≥ γi(G)γ(H). Since for chordal graphs γi = γ, this
proves Vizing’s conjecture when G is chordal.

1. Introduction

Given two graphs, G and H , their Cartesian product G�H is defined as the
graph on V (G) × V (H), in which every row is a copy of H , and every column is
a copy of G. Namely, the pair (x, y) is connected to the pair (u, v) if either x = u
and (y, v) ∈ E(H) or y = v and (x, u) ∈ E(G).

The closed neighborhood NG[v] of a vertex in a graph G is the set consisting of v
itself and its neighbors in the graph. A set A of vertices is said to dominate a set B
if B ⊆

⋃
{NG[a] | a ∈ A}. The minimal size of a set dominating a set A is denoted

by γG(A). A set D of vertices in a graph is called dominating if it dominates V (G).
We write γ(G) for γG(V (G)). The independence-domination number γi(G) is the
maximum of γG(I) over all independent sets I in G. This parameter has arisen in
the context of matching theory, see e.g. [1, 10]. Obviously, γ i(G) ≤ γ(G), and in
general the gap between the two may be large. For example, in the line graph of
the hypergraph consisting of all subsets of size n of a set of size n2 one has γi = 1,
while γ = n (this example is due to Roy Meshulam, [11]). However, we have:

Theorem 1.1. [2] In chordal graphs γ = γi.

In 1968 Vizing made the following conjecture.

Conjecture 1.2. [13] γ(G�H) ≥ γ(G)γ(H) for every pair G, H of graphs.

The conjecture was verified for several specific classes of graphs; see the survey
paper of Hartnell and Rall [7], or [4, 12] for more recent results. Equality holds,
for example, when G and H are graphs with no edges, or when G = H is a graph
consisting of a clique K with a vertex v(x) added for each x ∈ V (K), connected
only to x. In these constructions both G and H have independent sets containing
at least half of their respective vertex sets; for other extremal examples see [6, 7].

For a graph G let κ(G) denote the minimal number of cliques in G covering
V (G), that is, κ(G) = χ(Ḡ). Obviously, γ(G) ≤ κ(G). We say that G satisfies the
Barcalkin-German property (or that it satisfies the B-G property, or that it is B-G),
if it is possible to add to G edges so as to obtain a graph G′ with κ(G′) = γ(G′) =
γ(G). It is known, for example, that cycles and trees have the B-G property [3]
(c.f. [7]). An example of a graph not satisfying the B-G property is the line graph
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of the complete 2-homogeneous hypergraph on 6 vertices. Its domination number
is 3, its clique covering number is 4 (e.g. by Lovász’ solution of Kneser’s conjecture,
[9]), and the addition of any edge reduces the domination number. The following
was proved by Barcalkin and German.

Theorem 1.3. [3] (c.f.[8]) If G satisfies the B-G property then Vizing’s conjecture

is true for G, when paired with any graph H.

Clark and Suen [5] used an elaboration of the same idea to prove a result for
general graphs.

Theorem 1.4. [5] γ(G�H) ≥ γ(G)γ(H)
2 for every pair G, H of graphs.

We shall adapt their argument to prove the following.

Theorem 1.5. For any graphs G and H there holds: γ(G�H) ≥ γ i(G)γ(H).

This proves Vizing’s conjecture for graphs for which γi = γ, in particular for
chordal graphs, when paired with any other graph. Another class of graphs for
which γi = γ is that of cycles of length divisible by 3. But as noted above, all cycles
satisfy the B-G property and thus the fact that they satisfy the Vizing conjecture
is known. We do not know, and do not even have an intelligent guess, whether
chordal graphs are necessarily B-G.

Problem 1.6. Does every chordal graph satisfy the B-G property?

The proof technique of Theorem 1.5 can also be used to prove the validity of
Vizing’s conjecture for the graph parameter γi.

Theorem 1.7. For any graphs G and H it holds that γ i(G�H) ≥ γi(G)γi(H).

2. Proof of the theorem

Proof of Theorem 1.5. If v is an isolated vertex in G, then the validity of the
theorem for G − v easily implies its validity for G. Thus we may assume that G
contains no isolated vertices.

Write p for γi(G), and q for γ(H). Let I be an independent subset of V (G)
requiring at least p vertices to dominate it in G. We shall prove something a bit
stronger than claimed in the theorem, namely that γG�H(I × V (H)) ≥ pq.

Let D ⊆ V (G) × V (H) be a set dominating I × V (H) in G�H . Our aim is to
show that |D| ≥ pq.

Let X = {x1, x2, . . . , xq} be a dominating set in H of size q. Partition V (H)
into sets Wi, i = 1, 2, . . . , q such that xi dominates Wi. By the minimality of q, we
have:

Lemma 2.1. For every subset J of {1, . . . , q} there holds: γH(
⋃

j∈J Wj) ≥ |J |.

Let S be the family of all sets of the form {v} × Wj (v ∈ I, j ≤ q), all of
whose elements are dominated by D within the copy of H they are in. That is,
{v} × Wj ∈ S if for every u ∈ Wj there is a vertex w = w(u) ∈ V (H) such that
(v, w) ∈ D and uw ∈ E(H).

For every vertex v ∈ I let Sv be the family of those members of S which are of
the form {v} × Wj , and for every j ≤ q denote by Sj the family of those members
of S which are of the form {v} × Wj .

By Lemma 2.1, for every v ∈ I we have:
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(1) |D ∩ ({v} × V (H))| ≥ |Sv |

Summing over all v ∈ I we obtain:

(2) |D ∩ (I × V (H))| ≥ |S|

Fix an index j ≤ q. Each set {v}×Wj not belonging to S contains a vertex (v, w)
dominated in G�H by a vertex (u, w) ∈ D, where u = u(v) ∈ V (G) and uv ∈ E(G).
Note that u(v) /∈ I since I is independent. Thus the set {u(v)|{v} × Wj 6∈ S}
dominates |I | − |Sj | vertices in I . This means that it can be completed to a set
dominating I by adding to it |Sj | vertices, and thus its size is at least p − |Sj |.
Summing over all j, and keeping in mind that the vertices u(v) do not belong to I ,
we obtain:

(3) |D ∩ ((V (G) \ I) × V (H))| ≥ pq − |S|

Adding up Equations 2 and 3 yields the desired inequality on |D|.
�
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