VIZING'S CONJECTURE FOR CHORDAL GRAPHS

RON AHARONI AND TIBOR SZABÓ

ABSTRACT. Vizing [13] conjectured that $\gamma(G\Box H) \geq \gamma(G)\gamma(H)$ for every pair G, H of graphs, where " \Box " is the Cartesian product, and $\gamma(G)$ is the domination number of the graph G. Denote by $\gamma^i(G)$ the maximum, over all independent sets I in G, of the minimal number of vertices needed to dominate I. We prove that $\gamma(G\Box H) \geq \gamma^i(G)\gamma(H)$. Since for chordal graphs $\gamma^i = \gamma$, this proves Vizing's conjecture when G is chordal.

1. INTRODUCTION

Given two graphs, G and H, their Cartesian product $G \Box H$ is defined as the graph on $V(G) \times V(H)$, in which every row is a copy of H, and every column is a copy of G. Namely, the pair (x, y) is connected to the pair (u, v) if either x = u and $(y, v) \in E(H)$ or y = v and $(x, u) \in E(G)$.

The closed neighborhood $N_G[v]$ of a vertex in a graph G is the set consisting of vitself and its neighbors in the graph. A set A of vertices is said to *dominate* a set Bif $B \subseteq \bigcup \{N_G[a] \mid a \in A\}$. The minimal size of a set dominating a set A is denoted by $\gamma_G(A)$. A set D of vertices in a graph is called *dominating* if it dominates V(G). We write $\gamma(G)$ for $\gamma_G(V(G))$. The *independence-domination number* $\gamma^i(G)$ is the maximum of $\gamma_G(I)$ over all independent sets I in G. This parameter has arisen in the context of matching theory, see e.g. [1, 10]. Obviously, $\gamma^i(G) \leq \gamma(G)$, and in general the gap between the two may be large. For example, in the line graph of the hypergraph consisting of all subsets of size n of a set of size n^2 one has $\gamma^i = 1$, while $\gamma = n$ (this example is due to Roy Meshulam, [11]). However, we have:

Theorem 1.1. [2] In chordal graphs $\gamma = \gamma^i$.

In 1968 Vizing made the following conjecture.

Conjecture 1.2. [13] $\gamma(G \Box H) \geq \gamma(G)\gamma(H)$ for every pair G, H of graphs.

The conjecture was verified for several specific classes of graphs; see the survey paper of Hartnell and Rall [7], or [4, 12] for more recent results. Equality holds, for example, when G and H are graphs with no edges, or when G = H is a graph consisting of a clique K with a vertex v(x) added for each $x \in V(K)$, connected only to x. In these constructions both G and H have independent sets containing at least half of their respective vertex sets; for other extremal examples see [6, 7].

For a graph G let $\kappa(G)$ denote the minimal number of cliques in G covering V(G), that is, $\kappa(G) = \chi(\overline{G})$. Obviously, $\gamma(G) \leq \kappa(G)$. We say that G satisfies the Barcalkin-German property (or that it satisfies the B-G property, or that it is B-G), if it is possible to add to G edges so as to obtain a graph G' with $\kappa(G') = \gamma(G') = \gamma(G)$. It is known, for example, that cycles and trees have the B-G property [3] (c.f. [7]). An example of a graph not satisfying the B-G property is the line graph

of the complete 2-homogeneous hypergraph on 6 vertices. Its domination number is 3, its clique covering number is 4 (e.g. by Lovász' solution of Kneser's conjecture, [9]), and the addition of any edge reduces the domination number. The following was proved by Barcalkin and German.

Theorem 1.3. [3] (c.f.[8]) If G satisfies the B-G property then Vizing's conjecture is true for G, when paired with any graph H.

Clark and Suen [5] used an elaboration of the same idea to prove a result for general graphs.

Theorem 1.4. [5] $\gamma(G \Box H) \geq \frac{\gamma(G)\gamma(H)}{2}$ for every pair G, H of graphs.

We shall adapt their argument to prove the following.

Theorem 1.5. For any graphs G and H there holds: $\gamma(G \Box H) \geq \gamma^i(G)\gamma(H)$.

This proves Vizing's conjecture for graphs for which $\gamma^i = \gamma$, in particular for chordal graphs, when paired with any other graph. Another class of graphs for which $\gamma^i = \gamma$ is that of cycles of length divisible by 3. But as noted above, all cycles satisfy the B-G property and thus the fact that they satisfy the Vizing conjecture is known. We do not know, and do not even have an intelligent guess, whether chordal graphs are necessarily B-G.

Problem 1.6. Does every chordal graph satisfy the B-G property?

The proof technique of Theorem 1.5 can also be used to prove the validity of Vizing's conjecture for the graph parameter γ^i .

Theorem 1.7. For any graphs G and H it holds that $\gamma^i(G \Box H) \geq \gamma^i(G)\gamma^i(H)$.

2. Proof of the theorem

Proof of Theorem 1.5. If v is an isolated vertex in G, then the validity of the theorem for G - v easily implies its validity for G. Thus we may assume that G contains no isolated vertices.

Write p for $\gamma^i(G)$, and q for $\gamma(H)$. Let I be an independent subset of V(G) requiring at least p vertices to dominate it in G. We shall prove something a bit stronger than claimed in the theorem, namely that $\gamma_{G \Box H}(I \times V(H)) \ge pq$.

Let $D \subseteq V(G) \times V(H)$ be a set dominating $I \times V(H)$ in $G \Box H$. Our aim is to show that $|D| \ge pq$.

Let $X = \{x_1, x_2, \ldots, x_q\}$ be a dominating set in H of size q. Partition V(H) into sets W_i , $i = 1, 2, \ldots, q$ such that x_i dominates W_i . By the minimality of q, we have:

Lemma 2.1. For every subset J of $\{1, \ldots, q\}$ there holds: $\gamma_H(\bigcup_{i \in J} W_i) \ge |J|$.

Let S be the family of all sets of the form $\{v\} \times W_j$ ($v \in I$, $j \leq q$), all of whose elements are dominated by D within the copy of H they are in. That is, $\{v\} \times W_j \in S$ if for every $u \in W_j$ there is a vertex $w = w(u) \in V(H)$ such that $(v, w) \in D$ and $uw \in E(H)$.

For every vertex $v \in I$ let S_v be the family of those members of S which are of the form $\{v\} \times W_j$, and for every $j \leq q$ denote by S^j the family of those members of S which are of the form $\{v\} \times W_j$.

By Lemma 2.1, for every $v \in I$ we have:

 $\mathbf{2}$

(1)
$$|D \cap (\{v\} \times V(H))| \ge |\mathcal{S}_v|$$

Summing over all $v \in I$ we obtain:

$$(2) |D \cap (I \times V(H))| \ge |\mathcal{S}|$$

Fix an index $j \leq q$. Each set $\{v\} \times W_j$ not belonging to S contains a vertex (v, w) dominated in $G \Box H$ by a vertex $(u, w) \in D$, where $u = u(v) \in V(G)$ and $uv \in E(G)$. Note that $u(v) \notin I$ since I is independent. Thus the set $\{u(v)|\{v\} \times W_j \notin S\}$ dominates $|I| - |S^j|$ vertices in I. This means that it can be completed to a set dominating I by adding to it $|S^j|$ vertices, and thus its size is at least $p - |S^j|$. Summing over all j, and keeping in mind that the vertices u(v) do not belong to I, we obtain:

$$(3) \qquad |D \cap ((V(G) \setminus I) \times V(H))| \ge pq - |\mathcal{S}|$$

Adding up Equations 2 and 3 yields the desired inequality on |D|.

References

- R. Aharoni, P. Haxell. Hall's theorem for hypergraphs. Journal of Graph Theory, 35 (2000), 83–88.
- [2] R. Aharoni, E. Berger, and R. Ziv, A tree version of König's theorem, Combinatorica, 22(2002), 335–343.
- [3] A. M. Barcalkin, L. F. German, The external stability number of the Cartesian product of graphs (In Russian), Bul. Akad. Shtiintse RSS Moldoven 94(1979), no.1, 5–8.
- [4] W. E. Clark, M. E. H. Ismail, S. Suen, Application of upper and lower bounds for the domination number to Vizing's conjecture. Ars Combin. 69 (2003), 97–108.
- [5] W. E. Clark, S. Suen, An inequality related to Vizing's conjecture, Electronic Journal of Combinatorics 7(2000), N4, pp.3.
- [6] B. L. Hartnell, D. F. Rall, On Vizing's conjecture, Congr. Numer., 82(1991), 87-96.
- [7] B. Hartnell, D.F. Rall, Domination in Cartesian products: Vizing's conjecture, in: Domination in Graphs—Advanced Topics, T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Marcel Dekker, New York, 1998, pp. 163–189.
- [8] W. Imrich, S. Klavžar, Product graphs. Structure and recognition. Wiley-Interscience, New York, 2000.
- [9] L. Lovász, Kneser's conjecture, chromatic number and homotopy, J. Combin. Theory, Ser. A 25(1978), 319–324.
- [10] R. Meshulam, The clique complex and hypergraph matching, Combinatorica 21(2001) 89-94.
- [11] R. Meshulam, Private communication.
- [12] L. Sun, A result on Vizing's conjecture. Discrete Math. 275 (2004), 363–366.
- [13] V. G. Vizing, Some unsolved problems in graph theory (In Russian), Uspehi Mat. Naukno. 23(1968) 117–134.

(Ron Aharoni) DEPARTMENT OF MATHEMATICS, TECHNION, HAIFA, ISRAEL 32000 *E-mail address*, Ron Aharoni: ra@tx.technion.ac.il

(Tibor Szabó) DEPARTMENT OF COMPUTER SCIENCE, ETH, ZURICH, SWITZERLAND *E-mail address*, Tibor Szabó: szabo@inf.ethz.ch