On the spectrum of projective norm-graphs
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Abstract

We show that the projective norm-graphs of [4] are pseudorandom in the sense that their
second eigenvalue is as small as the square root of the degree. Our approach is simple, it only
uses the evaluation of Gaussian sums and determines the complete spectrum exactly.
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1 Introduction

Ever since randomness was introduced in Theoretical Computer Science, great efforts have also
been made for its elimination. Whenever a random graph is utilized to perform an algorithmic
task efficiently, but random bits are expensive or a deterministic answer would simply be more
desirable, the need for a replacement arises. This demand is one of the main motivations behind
the interest in explicit constructions of families of pseudorandom graphs. Pseudorandom graphs
possess certain random-like properties and can, in some cases, serve as substitutes of truly random
graphs.

There are several different ways to understand and define the pseudorandomness of a graph.
Here we consider the one through the second eigenvalue, which is linked strongly to the graph’s
edge distribution and expansion properties; both crucial concepts for applications in Computer
Science (see [6, Chapter 9] for more details). Given a graph G, let Ay > X2 > ...\, be the
eigenvalues of its adjacency matrix. The second eigenvalue of G is defined to be A = A(G) =
max{Ag, |Ap|}. It is easy to see that for d-regular graphs A\; = d. Graphs whose second eigenvalue
is smaller order than the largest one possess some properties of random graphs with appropriate
edge probability. The larger this “spectral gap” is the more randomness the graph has [6]. As
the second eigenvalue of any graph (of maximum degree at most n/2) is at least the square root
of the degree up to a constant factor, graphs with A(G) = ©(v/A1) are of particular interest.

The projective norm-graphs [4] and their predecessors, the norm-graphs [9] were introduced

to provide tight bounds (up to a constant factor) for the Zarankiewicz problem, i.e. for the
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maximum number of edges in a K; s-free graph. Recently they appeared in several other explicit
constructions for a wide variety of Turdn- and Ramsey-type problems [3, 5, 7, 10]. They also
found application in Theoretical Computer Science providing superpolynomial lower bounds for
monotone span programs [8].

In this short note we determine the spectrum of projective norm-graphs. We notice that
all eigenvalues are (possibly signed) Gaussian sums, hence can be calculated precisely. We find
that the second eigenvalue is asymptotically the square root of the degree, thus the projective
norm-graphs are as pseudorandom as it gets. In Corollary 1 we obtain the multiplicities of all
eigenvalues. Estimation of the eigenvalues of algebraically defined graphs is often hard or applies
deep theorems of Algebra or Algebraic Geometry. Besides, these techniques rarely give the precise
answer. Our treatment is elementary, uses only basic facts about groups and fields while providing
the exact values.

Our result has already got an application in Ramsey-theory. Alon and Ro6dl [5] obtained
Theorem 1 independently and used the second eigenvalue to bound the number of independent
sets in projective norm-graphs. Through this they provide surprisingly precise answers about

asymmetric multicolor Ramsey numbers of complete bipartite graphs.

2 The eigenvalues

Let ¢ be the power of an odd prime, ¢ > 1 be an arbitrary integer and denote by GF(q) the
finite field with ¢ elements. The projective norm-graph G = Gy is defined as follows. The vertex
set V(G) is the direct product GF(¢'~!) x GF(q)*, where GF(q)* = GF(q) \ {0} refers to the
multiplicative group of GF(q). A vertex (A4, a) is adjacent to (B, b) if and only if N(A+ B) = ab,
where N : GF(¢""!) — GF(q) is the usual norm function, i.e. N(X) = X(¢" "~1/(a=1),

Gyt has n == ¢'~!(g — 1) vertices. For any fixed (4,a) € V(G,:) and any B € GF(¢'™!),
B # —A, there is a unique b € GF(q)* such that (4, a) is adjacent to (B,b) in G4;. Hence Gy

t—1 1-1/t_

isg"t'—1=n regular. Based on some tools from algebraic geometry [9] it was shown in [4]

that qut 1s Kt’(t_]_)H_l-fI'QQ.

Theorem 1 The largest eigenvalue of Gyt is ¢t 1 — 1. All other eigenvalues are +¢t-1/2 41 or
0.

Proof. Let M be the adjacency matrix of G,;. Let x be an arbitrary additive character of
GF(¢" ') and ¢ be an arbitrary multiplicative character of GF(q)*. Let (x, ¢) denote the column

vector whose coordinates are labeled by the elements of V(G), and whose entry at the coordinate

(4, a) is x(A)d(a).



Then the entry of the vector M(x, ¢) at the coordinate (A, a) is

> xmen- ¥ ame(FEEE) - v e (D)
B € GF(¢t™1) Be GF(¢t™Y) C € GF(¢t™1)
b€ GF(q)* B#-A C#0
N(A+ B) =ab
= > x(C)¢(N(C))x(A)¢(a)
C € GF(¢t™1)
C#0
So
M(x,9)= >, x(C)(N(C)(X,9) (1)
CeGg;(éq(;—l)

Applying M once more we obtain that (x, ¢) is an eigenvector of M2. Moreover all eigenvectors
are of this form as they are orthogonal and the number of characters of a group is equal to its

order. So all eigenvalues of M? are of the form

| Y x(C)W(O)
ceGé;(éqé*l)

The eigenvalues of M? are the squares of the eigenvalues of M. These are reals, as M is symmetric.

So all eigenvalues of M are of the form

Y x(O)pW(O).
cecéw;%—l)

When x = xo and ¢ = ¢g are the principal characters of their respective groups, then the
corresponding eigenvalue is ¢'~! — 1. (No surprise, as this is the degree of G.)

When x = xq, but ¢ # ¢g, then the corresponding eigenvalues are

-1
HY ewon == ¥ @0

CEeGF(qt—1) c€GF(q)*
C#£0

When x # xo, but ¢ = ¢o, then the corresponding eigenvalues are
+ ) x(O)| =1

CEGF(gt1)
C+#£0

When neither x nor ¢ is a principal character, then we can apply the well-known estimates

on Gaussian sums (see for example [11, Theorem 3A, page 47]). For this, we just need to observe
that ¢N is a multiplicative character of GF(q" ).

Y x(O)¢(N(C))] =g D2,
CeGCl:‘;q(;—l)
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In an earlier version of this note the multiplicities of the eigenvalues were determined for even
t and non-square ¢ using the trace of M and the irrationality of ¢*~1/2. Dhruv Mubayi pointed
out that the multiplicities can be determined for all values of the parameters if, instead of the
irrationality argument, one observes that the eigenvectors of M corresponding to eigenvalues +1

and —1 are of the form (x, ¢o) — (X, o) and (x, o) + (X, ¢o), respectively.

Corollary 1 Assume that g is the power of an odd prime. Then the eigenvalues of Gy have the
following multiplicities: ¢"~' —1 is of multiplicity 1, 0 is of multiplicity ¢—2, 1 and —1 are both of
multiplicity (¢'=1 — 1) /2, while ¢#=D72 and —q*=1/2 are both of multiplicity (¢*~* — 1)(q — 2)/2.

Proof. It follows easily from (1) that (x, ¢o) — (%, ¢o) is an eigenvector of M with eigenvalue
+1 and (x, ¢o) + (%, o) is an eigenvector with eigenvalue —1 for any character xy # xo. This
immediately implies that the multiplicities of both eigenvalues +1 and —1 are (¢~ — 1)/2. The
multiplicity m of eigenvalue ¢(*~1)/2 can then be obtained by calculating the trace of M.

By definition, the projective norm-graph has a loop at vertex (4,a) iff N(24) = a2. Since
exactly (¢—1)/2 elements of GF(q)* are squares and the equation N(X) = y has (¢! —1)/(¢g—1)
solutions in X for each y € GF(q)*, there are (¢"* — 1)/2 elements A € GF(q'™!) with N(24)
being a square. Once N(2A4) is a square, there are two distinct elements a,a’ € GF(q)* with
N(24) = a? = a/?. Thus G, contains ¢'~! — 1 loops, so the trace of M is ¢'~! — 1. Hence

gt~ (g—1) B1_q gl

¢r-1=TrM= Y N=¢"t-1+42 5 td"PEm— (¢ - 1) -2)),
=1

which implies that the multiplicity m is (¢ * — 1)(¢q — 2) /2.
O

Remark. Alon [1] proved that the Cy-free Erd6s-Rényi graphs on n vertices have independence
number at most 2n%/* (which can actually be improved to n3/4(140(1)); [2]). This represents the
best known constructive lower bound for the Ramsey number r7(Cy, K,,). A referee pointed out
that via Theorem 1 the projective norm-graphs provide an alternative construction with similar
parameters.
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