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Abstract

We study relaxations of proper two-colorings, such that the order of the induced monochro-

matic components in one (or both) of the color classes is bounded by a constant. A coloring

of a graph G is called (C1, C2)-relaxed if every monochromatic component induced by vertices

of the first (second) color is of order at most C1 (C2, resp.). We prove that the decision prob-

lem: “Is there a (1, C)-relaxed coloring of a given graph G of maximum degree 3?” exhibits

a hardness-jump in the component order C. In other words, there exists an integer f(3) such

that the decision problem is NP-hard for every 2 ≤ C < f(3), while every graph of maximum

degree 3 is (1, f(3))-relaxed colorable. We also show f(3) ≤ 22 by way of a quasilinear time

algorithm which finds a (1, 22)-relaxed coloring of any graph of maximum degree 3. Both

the bound on f(3) and the running time improve greatly earlier results. We also study the

symmetric version, that is when C1 = C2, of the relaxed coloring problem and make the first

steps towards establishing a similar hardness jump.

1 Introduction

A function from the vertex set of a graph to a k-element set is called a k-coloring. The values of

the function are referred to as colors. A coloring is called proper if the value of the function differs

on any pair of adjacent vertices. Proper coloring and the chromatic number of graphs (the smallest

number of colors which allow a proper coloring) are among the most important concepts of graph

theory. Numerous problems of pure mathematics and theoretical computer science require the

study of proper colorings and even more real-life problems require the calculation or at least

an estimation of the chromatic number. Nevertheless, there is the discouraging fact that the

calculation of the chromatic number of a graph or the task of finding an optimal proper coloring

are both intractable problems, even fast approximation is probably not possible. This is one of

our motivations to study relaxations of proper coloring, because in some theoretical or practical

situations a small deviation from proper is still acceptable, while the problem could become

tractable. Another reason for the introduction of relaxed colorings is that in certain problems the

use of the full strength of proper coloring is an “overkill”. Often a weaker concept suffices and

provides better overall results.
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In this paper we study various relaxations of proper coloring, which allow the presence of some

small level of conflicts in the color assignment. Namely, we will allow vertices of one or more color

classes to participate in one conflict or, more generally, let each conflicting connected component

have at most C vertices, where C is a fixed integer, not depending on the order of the graph.

Most of our results deal with the case of relaxed two-colorings.

To formalize our problem precisely we say that a two-coloring of a graph is (C1, C2)-relaxed if

every monochromatic component induced by the vertices of the first color is of order at most C1,

while every monochromatic component induced by the vertices of the second color is of order at

most C2. Note that (1, 1)-relaxed coloring corresponds to proper two-coloring.

In the present paper we deal with the two most natural cases of relaxed two-colorings. We

say symmetric relaxed coloring when C1 = C2 and asymmetric relaxed coloring when C1 = 1.

Symmetric relaxed colorings were first studied by Alon, Ding, Oporowski and Vertigan [3] and

implicitly, even earlier, by Thomassen [22] who resolved the problem for the line graph of 3-regular

graphs initiated by Akiyama and Chvátal [1]. Asymmetric relaxed colorings were introduced in

[5].

Related relaxations of proper colorings. There are several other types of coloring concepts

related to our relaxation of proper coloring.

Independently Andrews and Jacobson [4], Harary and Jones [10, 11], and Cowen [7] introduced

and investigated the concept of improper colorings over various families of graphs. A coloring

is called (k, l)-improper if none of the at most k colors induces a monochromatic component

containing vertices of degree larger than l. Hence in an improper coloring the amount of error is

measured in terms of the maximum degree of monochromatic components rather than in terms of

their order. Several papers on the topic have since appeared; in particular, two papers, by Eaton

and Hull [8] and Škrekovski[21], have extended the work of Cowen et al to a list colouring variant

of improper colorings.

Linial and Saks [19] studied low diameter graph decompositions, where the quality of the

coloring is measured by the diameter of the monochromatic components. Their goal was to color

graphs with as few colors as possible such that each monochromatic connected component has a

small diameter.

Haxell, Pikhurko and Thomason [13] study the fragmentability of graphs introduced by Ed-

wards and Farr [9], in particular for bounded degree graphs. A graph is called (α, f)-fragmentable

if one can remove α fraction of the vertices and end up with components of order at most f . For

comparison, in a (1, C)-relaxed coloring one must remove an independent set and end up with

small components.

It seems that the term relaxed chromatic number (sometimes also called generalized chromatic

number) was coined by Weaver and West [24]. They used “relaxation” in a much more general

sense than us, requiring that each color class is the member of a given family P of graphs.

Naturally, our version also fits into this model.
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The problems. We study relaxed colorings from two points of view, extremal graph theory and

complexity theory, and find that these points eventually meet for asymmetric relaxed colorings.

We also make the first steps for a similar connection in the symmetric case. To demonstrate our

problems, in the next few paragraphs we restrict our attention to asymmetric relaxed colorings;

the corresponding questions are asked and partially answered for symmetric relaxed colorings,

but there our knowledge is much less satisfactory.

On the one hand, there is the purely graph theoretic question:

For a given maximum degree ∆ what is the smallest component order f(∆) ∈ N∪{∞}
such that every graph of maximum degree ∆ is (1, f(∆))-relaxed colorable?

On the other hand, for fixed ∆ and C one can study the computational complexity question:

What is the complexity of the decision problem: Given a graph of maximum degree

∆, is there a (1, C)-relaxed coloring?

Obviously, for the critical component order f(∆) which answers the extremal graph theory ques-

tion, the answer is trivial for the complexity question: every instance is a YES-instance. Note

also, that for C = 1 the complexity question is polynomial-time solvable, as it is equivalent to

testing whether a graph is bipartite.

In this paper we investigate the complexity question in the range between 2 and the critical

component order f(∆). We establish the monotonicity of the hardness of the problem in the

interval C ≥ 2 and prove a very sharp “hardness jump”. By this we mean that the problem is

NP-hard for every component order 2 ≤ C < f(∆), while, of course, the problem becomes trivial

(i.e. all instances are “YES”-instances) for component order f(∆). It is maybe worthwhile to note

that at the moment we do not see any a priori reason why the hardness of the decision problem

should even be monotone in the component order C, i.e. why the hardness of the problem for

component order C +1 should imply the hardness for component order C. In fact the problem is

obviously polynomial time decidable for C = 1, while for C = 2 we show NP-completeness.

The other main contribution of the paper concerns the extremal graph theory question and

obtains significant improvements over previously known bounds and algorithms. This result

becomes particularly important in light of our NP-hardness results, as the exact determination of

the place of the jump from NP-hard to trivial gets within reach.

To formalize our theorems we need further definitions. Let us denote by (∆, C)-AsymRelCol

the decision problem whether a given graph G of maximum degree at most ∆ allows a (1, C)-

relaxed coloring. Analogously, let us denote by (∆, C)-SymRelCol the decision problem whether

a given graph G of maximum degree at most ∆ allows a (C,C)-relaxed coloring. Note here that

both (∆, 1)-AsymRelCol and (∆, 1)-SymRelCol is simply testing whether a graph of maximum

degree ∆ is bipartite.

The asymmetric problem. For ∆ = 2, already (2, 2)-AsymRelCol is trivial. For ∆ = 3,

it was shown in [5] that every cubic graph admits a (1, 189)-relaxed coloring, making (3, 189)-

AsymRelCol trivial. In the proof the vertex set of the graph was partitioned into a triangle-free
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and a triangle-full part (every vertex is contained in a triangle), then the parts were colored

separately, finally the two colorings were assembled amid some technical difficulties. Here we

present a completely different approach which avoids the separation. While we still deal with our

share of technical difficulties, we greatly improve on the previous bound on the component order

and the running time of the algorithm involved.

A variant of the new method is first presented for “triangle-full” graphs of maximum degree

3. One facet of our technique is much simpler to present in this scenario and gives an improved

and optimal result.

Theorem 1. Let G be a graph of maximum degree at most 3, in which every vertex is contained

in a triangle. Then G has a (1, 6)-relaxed coloring.

We prove the theorem in Section 2. An example in [5] shows that the component order 6

is best possible. We note that the existence of a 6-relaxed coloring for triangle-free graphs was

already proved in [5].

The method is then enhanced to work for all graphs of maximum degree 3 in Section 3. It

also implies a quasilinear time algorithm (as opposed to the Θ(n7) algorithm implicitly contained

in [5]).

Theorem 2. Any graph G with maximum degree at most 3 is (1, 22)-relaxed colorable, i.e.

f(3) ≤ 22.

Moreover there is an O(n log4 n) algorithm which finds such a 22-relaxed coloring.

A lower bound of 6 on f(3) was established in [5].

In our next theorem we show that (3, C)-AsymRelCol exhibits the promised hardness jump.

Theorem 3. For the integer f(3) we have that

(i) (3, C)-AsymRelCol is NP-complete for every 2 ≤ C < f(3);

(ii) any graph G of maximum degree at most 3 is (1, f(3))-relaxed colorable.

In [5] it was shown that for any ∆ ≥ 4 and positive C, (∆, C)-AsymRelCol never becomes

“trivial”, i.e. for every finite C there is a “NO” instance, so f(4) =∞. We show here, however,

that the monotonicity of the hardness of (4, C)-AsymRelCol still exists for C ≥ 2.

Theorem 4. (4, C)-AsymRelCol is NP-complete for every 2 ≤ C < f(4) =∞.

Obviously, this implies that (∆, C)-AsymRelCol is NP-complete for every ∆ > 4 and 2 ≤ C <

f(∆) =∞. The proofs of Theorem 3 and Theorem 4 can be found in Subsection 4.2.

Remark. Let f(∆, n) be the smallest integer f such that every n-vertex graph of maximum

degree ∆ is (1, f)-relaxed colorable. Then f(∆) = sup f(∆, n). While f(3) is finite, our graph

Gk on Figure 9 provides a simple example for f(4) being non-finite in a strong sense: in any

asymmetric relaxed coloring of Gk there is a monochromatic component whose order is linear in the

number of vertices. This is in sharp contrast with the examples of [3, 5] where the monochromatic

component order is only logarithmic in the number of vertices. It would be interesting to determine

the exact asymptotics of the function f(4, n); we only know of the trivial upper bound f(4, n) ≤ 3
4n

and the lower bound f(4, n) ≥ 2
3n because of Gk.
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The symmetric problem. Investigations about relaxed vertex colorings were originally ini-

tiated for the symmetric case by Alon, Ding, Oporowski and Vertigan [3]. They showed that

any graph of maximum degree 4 has a two-coloring such that each monochromatic component is

of order at most 57. This was by improved Haxell, Szabó and Tardos [12], who showed that a

two-coloring is possible even with monochromatic component order 6, and such a (6, 6)-relaxed

coloring can be constructed in polynomial time (the algorithm of [3] is not obviously polynomial).

In [12] it is also proved that the family of graphs of maximum degree 5 is (17617, 17617)-relaxed

colorable.

Alon et al. [3] showed that a similar statement cannot be true for the family of graphs of

maximum degree 6, as for every constant C there exists a 6-regular graph GC such that in any

two-coloring of V (GC) there is a monochromatic component of order larger than C.

For the problem (∆, C)-SymRelCol we make progress in the direction of establishing a sudden

jump in hardness. By taking a max-cut one can easily see that (3, C)-SymRelCol is trivial already

for C = 2, so the first interesting maximum degree is ∆ = 4. From the result of [12] mentioned

earlier it follows that (4, 6)-SymRelCol is trivial. Here we show that (4, C)-SymRelCol is NP-

complete for C = 2 and C = 3, and that (6, C)-SymRelCol is NP-complete for C > 2. We do

not know about the hardness of the problem (4, C)-SymRelCol for C = 4 and C = 5. Again, we

do not know any direct reason for the monotonicity of the problem. I.e., at the moment it is in

principle possible that (4, 4)-SymRelCol is in P while (4, 5)-SymRelCol is again NP-complete.

Theorem 5. The problems (4, 2)-SymRelCol, (4, 3)-SymRelCol and (6, C)-SymRelCol, for C ≥ 2

are NP-complete.

The proof of the theorem appears in Section 4.3.

Related work. Similar hardness jumps of the k-SAT problem with limited occurrences of each

variable was shown by Tovey [23] for k = 3 and Kratochv́ıl, Savický and Tuza [17] for arbitrary

k. Let k, s be positive integers. A Boolean formula in conjunctive normal form is called a (k, s)-

formula if every clause contains exactly k distinct variables and every variable occurs in at most

s clauses. Tovey showed that every (3, 3)-formula is satisfiable while the satisfiability problem

restricted to (3, 4)-formulas is NP-complete. Kratochv́ıl, Savický and Tuza [17] generalized this

by establishing the existence of a function f(k), such that every (k, f(k))-formula is satisfiable

while the satisfiability problem restricted to (k, f(k) + 1)-CNF formulas is NP-complete. By a

standard application of the Local Lemma they obtained f(k) ≥
⌊

2k

ek

⌋

. After some development

[17, 20] the most recent upper estimate on f(k) is only a log-factor away from the lower bound

and is due to Hoory and Szeider [15]. Recently new bounds were also obtained on small values of

the function f(k) [16]. Observe that the monotonicity of the hardness of the satisfiability problem

for (k, s)-formulas is given by definition.

Notation, Terminology The order of a graph G is defined to be the number of vertices of

G. Similarly, the order of a connected component C of G is the number of vertices contained in

C. A graph G is r-regular if all its vertices have degree r. A graph G is called k-edge-connected
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(k-vertex-conntected) if there is no edge-cut (vertex-cut, resp.) (a subset of the edges (vertices,

resp.) of G that disconnects G) of size at most k − 1.

The subgraph of a graph G induced by a vertex set U ⊆ V (G) is denoted throughout by G[U ].

Vertices and edges in G[U ] are refered to as U -vertices and U -edges, respectively. Neighbors of

a vertex v ∈ V (G) in the induced subgraph G[U ] are called U -neighbors of v and connected

components in an induced subgraph G[U ] are called U -components.

To simplify our notation often we say C-relaxed coloring instead of (1, C)-relaxed coloring.

In our investigation of C-relaxed colorings we will encounter two color classes I and B, where I

denotes an independent set and B denotes the color-class which induces components of order at

most C. We say that the color-class B and I are opposites of each other. In one of the main

auxiliary lemmas, we encounter a third color-class X. We will also use the term opposite in

relation to X and say that B and X are opposite.

For a color-class R (which is a subset of the vertices of G), we often say that we color a vertex

v with color R, when in fact we place v into R.

2 6-relaxed coloring of triangle-full graphs

Proof of Theorem 1. Let G be a graph of maximum degree 3 such that every vertex of G is

contained in a triangle. We will subsequently call such graphs “triangle-full”.

First we show that without loss of generality we can assume that G is diamond-free (a diamond

is a graph on four vertices containing two triangles sharing an edge). We proceed by induction on

the number of vertices in G. If G contains a diamond D, then by induction we give a 6-relaxed

coloring to G−D. (Note that after the deletion of a diamond the graph is still triangle-full, since

∆(G) ≤ 3.) Then we extend this coloring to 6-relaxed coloring of G. First for any vertex v whose

degree is 2 in D (there are two of these), we color v with the color opposite to what its unique

neighbor in G − D (if it exists) has received. Then we extend this coloring to the whole D by

coloring all uncolored vertices with a B. This way the B-component containing a vertex of D is

contained in D, and thus has at most four vertices.

Hence from now on we can assume that every vertex is contained in exactly one triangle. Let

M be the set of edges of G not contained in triangles of G. Obviously, M forms a matching.

Further G −M consists of disjoint triangles covering all vertices of G. The Algorithm PA TF(G)

(a pseudocode for PA TF can be found in Algorithm 1) constructs a 6-relaxed coloring (I,B) of G

by coloring the vertices triangle after triangle. It colors the currently processed vertex v with I if

it can, i.e., if v has no neighbor which is colored with I already. The main point of the algorithm

is how to select the next vertex to color when all vertices in the current triangle are colored. In

particular we make sure that the first vertex we color from each triangle gets a color opposite to

its partner.

Let’s first introduce some notation used in Algorithm 1. For a vertex v and an oriented triangle

C in G −M containing v we denote by v− the predecessor of v in C, by v+ it’s successor in C

and by v∗ its unique neighbor in M (if it exists). We call v∗ the partner of v.
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Algorithm 1: PA TF(G)

Input: Graph G; simple, ∆(G) ≤ 3, triangle-full and diamond-free.

Output: Vertex-partition (I,B); I independent set, no component in G[B] larger than 6.

I ← ∅, B ← ∅
give an arbitrary cyclic orientation to each triangle in G

choose arbitrary vertex v in G

while not all vertices of G are colored do

while not all vertices of the triangle containing v are colored do

if v− ∈ I or v∗ ∈ I or v+ ∈ I then Add(v,B)1

else Add(v, I)2

v ← v+

if not all vertices of G are colored then

v ← v− // now v is the last vertex we colored

if v∗ is uncolored then v ← v∗3

else if v−∗ is uncolored then v ← v−∗
4

else v ← w, where w is arbitrary uncolored vertex with w∗ colored5

return (I,B)

We immediately see that I forms an independent set. Indeed, only in Line 2 color we a vertex

with I, where no neighbor of it is colored I already.

Suppose that there is a B-component C larger than 6.

First observe that if a triangle T of G is completely contained in C then according to Line 1

in PA TF(G) partner of each vertex in T must be contained in I. Thus C consists of only the

vertices from T , a contradiction.

Hence we assume that C does not contain any triangle from G completely. Such a component

C intersects with at least four triangles T1, T2, T3, T4 in G. Suppose, without loss of generality,

that Ti is incident to Ti+1, for i ∈ {1, 2, 3} and that T2 gets colored before T3 during the execution

of PA TF(G). We denote by vi,j the vertex contained in Ti ∩ C incident to triangle Tj .

Which vertex of T2 is colored first? It can be neither v2,1 nor v2,3, since the first vertex of any

triangle gets color opposite to its partner’s. (In Lines 3, 4, 5 we select the first vertex of the next

triangle, such that its partner is colored. This is true for the first colored vertex of every triangle

except the very first one. Then Lines 1, 2 make sure that the first vertex receives a color different

from its partner. This is even true for the very first vertex, since it is colored I in Line 2 and its

partner will receive color B in Line 1.)

So either v2,1 or v2,3 is the last vertex we color in T2 After all vertices of T2 have been colored,

PA TF(G) chooses either v1,2 or v3,2 to be colored next, according to Line 3 and Line 4 (note that

v3,2 is not yet colored according to our assumption). This is a contradiction since, again, the first

vertex in any triangle has color opposite to its partner.

Remark. Our proof is constructive and yields a C-relaxed coloring of triangle-full graphs. It
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is not hard to see that the running time of PA TF(G) is linear in the number of vertices of G.

3 Trivial (3, C)-AsymRelCol – bounding f(3)

All graphs we consider in this section have maximum degree at most three.

Proof of Theorem 2. We prove the statement of Theorem 2 by induction on the number of vertices

in G. A generalized diamond D is a subgraph of G induced by four vertices of G such that

dV (G)−V (D)(v) ≤ 1 for all v ∈ V (D) and the vertices of D with degree 1 into V (G) − V (D) form

an independent set in G.

The core of the proof is the case when G is generalized diamond-free. Otherwise let D be a

generalized diamond in G. By the induction hypothesis, G−V (D) has an I/B-coloring such that

the I-vertices form an independent set and the B-vertices induce monochromatic components of

order at most 22. We extend this coloring to an I/B-coloring of G. We color the vertices of D

with B unless the vertex has a neighbor in G− V (D), in which case we use the color opposite to

the color of this neighbor. This is always possible since such vertices of D form an independent

set in G. Hence all the B-components of G− V (D) remain the same, while the vertices in D will

be part of a B-component of order at most four.

It is now left to prove Theorem 2 when G is generalized diamond-free. One of the main

ingredients of the proof is the following lemma:

Lemma 1. Let G be a generalized diamond-free graph of maximum degree 3 on n vertices. Further

let vfix ∈ V (G) and c ∈ {I,B}. There exists a vertex partition (I,X,B) of G such that

(i) I ∪X induces a graph where each I-vertex has degree 0 and each X-vertex has degree 1,

(ii) no triangle contains two vertices from X,

(iii) every B-component is of order at most 6, and

(iv) if d(vfix) = 2 then either vfix is contained in c, or c = I and vfix is contained in X.

Moreover, this vertex-partition can be found in time O(n log4 n).

First let us see how Lemma 1 implies Theorem 2. We note that property (iv) is only needed

for the inductive proof of Lemma 1.

Let I,X and B be such as promised by Lemma 1. We do a postprocessing in two phases,

during which we distribute the vertices of X between I and B: for each adjacent pair vw of vertices

in X we put one of them to B and the other into I. When this happens we say that we distributed

the X-edge vw. We specify how we distribute an X-edge vw by the operation Distribute(v, c),

where c ∈ {I,B}. Distribute(v, c) puts v into c while w is put into the opposite color-class. Note

that if property (i) is valid at some point then it is still valid after the distribution of any X-edge.

During the first phase some vertices contained in B will be moved to I, but once a vertex is in I,

it stays there during the rest of the postprocessing.

For the first phase let us say that a vertex v is ready for a change if v ∈ B and all the neighbors

of v are in B∪X. Once we find a vertex v ready for a change we move v to I, and distribute each

X-edge which contains a neighbor u of v by Distribute(u,B). We iteratively make this change
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until we find no more vertex ready for a change, at which point the first phase ends. Property

(ii) ensures that the rules of our change are well-defined: It is not possible that an X-neighbor

of v is instructed to be placed in B, while it could also be the X-neighbor of another X-neighbor

of v which would instruct it to be in I.

Property (i) remains valid during the first phase, since besides X-edges being distributed

(which preserves property (i)) only such B-vertices are moved to I whose neighbors will all be in

B.

Let us now look at how property (iii) changes during the first phase. Crucially, at the end of

the first phase every B-component is a path, since any B-vertex with three B-neighbors is ready

for a change. As a result of one change no two B-components are joined, possibly a vertex u from

X which just changed its color to B is now stuck to an old B-component. In case this happens

both of the other neighbors of u are in I (and stay there). Let C be a B-component after the

first phase. We claim that all vertices adjacent to C are in I except possibly two: one-one at each

endpoint of C. Indeed, if an interior vertex of C had an X-neighbor, it would have been ready

for a change. By (iii) there is a path C ′ in C containing at most 6 vertices which used to be part

of a B-component before the first phase. So we can distinguish three cases in terms of how many

X-neighbors C has besides its I-neighbors.

Observation 1. After the first phase every B-component is one of the following:

(a) C is a path containing at most 6 vertices with one X-neighbor at each of its endpoints or

(b) C is a path containing at most 7 vertices with one X-neighbor at one of its endpoints or

(c) C is a path containing at most 8 vertices with no X-neighbors.

In the second phase we distribute between I and B those vertices which are still in X. The

vertices of color I or B preserve their color during this phase. Property (i) ensures that the set

I we obtain at the end of the second phase is an independent set. We have to be very careful

though that the connected components in G[B] don’t grow too much during the second phase.

We guarantee this via finding a matching transversal in an auxiliary graph H. The graph H is

defined on the vertices of X, V (H) = X. There is an edge between two vertices u and v of H if

u and v are incident to the same component of G[B].

Claim 1. ∆(H) ≤ 2.

Proof. Let us pick a vertex y from V (H) = X. We aim to show that each edge e incident to y

which is not an X-edge (there are at most two of these) is ”responsible” for at most one neighbor

of y in H. That is, the component of G[B] adjacent to y via such edge e is incident to at most

one other vertex from X. Indeed, by Observation 1 above, each B-component is a path, possibly

adjacent to X-vertices through its endpoints, but not more than to one at each.

The following Lemma guarantees a transversal inducing a matching.

Lemma 2 ([12], Corollary 4.3). Let H be a graph with ∆(H) ≤ 2 together with a vertex

partition P = {P1, . . . , Pm} into 2-element subsets. Then there is a transversal T ((T ∩ Pi) 6= ∅,
for all i ∈ {1, . . . ,m}) with ∆(H[T ]) ≤ 1.
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We note that the proof of Lemma 2 in [12] involves a linear time algorithm which constructs

the transversal.

We apply Lemma 2 for H with the partition defined by the edges of G[X] (i.e., P = E(G[X]))

and find a matching transversal T .

The second phase of our postprocessing consists of moving all vertices of T into B and moving

X \ T into I.

Since ∆(H[T ]) ≤ 1 we connect at most three connected components Q1, Q2 and Q3 of G[B]

by moving an edge {u, v} of H into B, with u incident to Q1 and Q2 and v incident to Q2 and Q3.

Obviously, Q1 and Q3 are incident to at least one vertex of H (u and v respectively) and Q2 is

incident to at least two vertices from H (u and v) before moving the vertices of T . According to

Observation 1, the largest B-component created this way is of order at most 7+1+6+1+7 = 22.

Lemma 1(i) guarantees that I is independent so the defined coloring is 22-relaxed.

We note that both phases of this proof could be turned into an algorithm whose running time

is linear in the number of vertices of G

Proof of Lemma 1. We use induction on the number of vertices of G. By induction we can of

course assume that G is connected. If G is not 2-connected then there is a cut-vertex u in G.

Let G0 ⊆ G be a component of G− u, such that dV (G0)(u) = 1 and let u′ be the unique neighbor

of u in G0. Define G1 = G − G0. Then dV (G1)(u) ≤ 2. Suppose that vfix ∈ V (Gi) for i = 0 or

1. By induction, we can find a (Ii, Xi, Bi)-partition of Gi such that vfix receives its prescribed

color. Depending on whether u ∈ V (Gi), either u or u′ has a color assigned to it by the partition

(Ii, Xi, Bi); say, u is part of the partition. Then we find a partition (I1−i, X1−i, B1−i) of G1−i by

induction, such that the vertex u′ receives the color opposite to the color of u. This implies that

the parition of G defined by the partition (I0 ∪ I1, X0 ∪X1, B0 ∪B1) is as required by Lemma 1.

All these steps can be done quickly. Standard techniques involving a depth first search tree of

G enable to find a cut-vertex of G in linear time in the number of edges plus number of vertices of

G (since we only consider graphs of maximum degree 3 this is certainly also linear in the number

of vertices of G).

The essence of the proof of Lemma 1 is the case when G is 2-connected. We start proving this

case by finding an appropriate matching in G.

Proposition 1. Every n-vertex, 2-edge-connected graph G of maximum degree at most 3 contains

a matching M such that

(i) ∆(G−M) ≤ 2,

(ii) G−M is triangle-free

Moreover, M can be found in time O(n log4 n).

Proof. Let us first assume that G contains an even number of vertices of degree exactly two. We

pair each vertex of degree 2 with another vertex of degree 2 and add one edge between the vertices

of each such pair. We denote the new graph by H. Obviously H is a 3-regular, 2-edge connected

multigraph.
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Secondly, suppose that G contains an odd number of vertices of degree 2. We pick one vertex

v with d(v) = 2 from G, remove v from G and connect its two neighbors via an edge ev. The new

graph contains an even number of vertices of degree 2. Then we proceed as above to obtain the

graph H.

Assume first that H is triangle-free. By Petersen’s theorem, H contains a perfect matching

MH . Moreover, if the number of vertices of degree 2 was odd, i.e., if ev is defined, then MH

can be chosen such that ev 6∈ MH . In [6] it is shown that such a matching MH can be found

in time O(n log4 n). Let M consist of those edges of MH which are also edges of G. Then the

requirements of Proposition 1 are satisfied (if ev is defined, then the neighbors of v have degree

at most 2 in G−M , since ev /∈MH .)

Let us now consider the general case, when H might contain triangles. In order to obtain a

perfect matching M such that H −M is triangle-free we iteratively contract all triangles of H

into a vertex, yielding a new triangle-free graph H ′. Then we apply the above procedure to H ′

instead of H and get a perfect matching M ′ of H ′. We observe that this perfect matching M ′

can easily be extended to a perfect matching MH of H where each triangle of H contains exactly

one edge of MH . Thus H −MH is triangle-free. Also, even if ev is contained in a triangle T , we

can force ev 6∈ MH by simply forcing that the unique edge incident to T , but not to ev, is not

contained in M ′.

The algorithm that partitions the vertices of G will be denoted by PA(G, vfix, c) (see Algorithm 2

for the pseudocode) with vfix being the vertex of G that will be colored c according to Lemma 1

(iv).

Let us first discuss informally the main ideas of our algorithm. PA(G, vfix, c) chooses a matching

M of G as in Proposition 1. This is in fact the bottleneck of our algorithm, all other parts are done

in linear time. The graph G−M consists of path- and cycle-components. Algorithm PA(G, vfix, c)

colors the vertices of G, one component of G −M after another, by traversing each component

in a predefined orientation.

PA(G, vfix, c) starts the coloring with the vertex vfix and color c. We will sometimes also refer

to this vertex as the very first vertex.

For each component the algorithm chooses one of its two orientations. For the component of vfix

this is done according to a special rule. The orientation of other components is arbitrary. Recall

that v+ (v−) denotes the vertex following (preceding) v according to the fixed orientation of its

component. To simplify the description of our algorithm we introduce the following conventions.

For the source v of a path component, we denote by v− the sink of the path. Similarly for the

sink u of a path component we denote by u+ the source of the path. If a vertex v is saturated by

M , then the vertex v∗ adjacent to v in M is called the partner of v.

As a default PA(G, vfix, c) tries to color the vertices of a component of G−M with the colors I

and B alternatingly. Its original goal is to create a proper two-coloring this way. Of course there

are several reasons which will prevent PA(G, vfix, c) from doing so. One main obstacle is when

the partner (if it exists) of the currently processed vertex u is already colored, and it is done so
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with the same color we would just want to give to u. If the conflict would be in color I then

the algorithm resolves this by changing both u and its partner to X. The algorithm generally

decides not to care if the conflict is in B. Of course there is a complication with this rule when

the partner is within the same triangle as u, since Lemma 1 does not allow two X-vertices in the

same triangle. This and other anomalies (like the coloring of the last vertex of a cycle when the

first and next-to-last vertex have distinct colors) are handled by a well-designed set of exceptions

in place. In fact the design of such a consistent set of exceptions poses a major challenge.

Subsequently a vertex which is colored first in a component of G−M is referred to as a first

vertex. Similarly, a last vertex is just a vertex colored last in a component of G−M .

After having colored the last vertex v of component C the algorithm FirstVertex(G, v, I,X,B)

chooses the partner v∗ of v unless v∗ is already colored or v∗ does not exist. In that case

FirstVertex(G, v, I,X,B) looks for a vertex with color B whose partner is uncolored by stepping

backwards along the order in which the vertices of C have been colored and eventually starts to

color such a partner. If all of the B-colored vertices of C have an already colored partner or no

partner, then FirstVertex(G, v, I,X,B) selects an arbitrary uncolored vertex with an already

colored partner. The selection of first vertices according to FirstVertex coupled with PA makes

sure that every first vertex has a color opposite to its partner.

For some subset U of the vertices, the operation Add(U, c), as used in PA, first uncolores those

vertices of U which were colored before and colors all vertices in U with c. Add(v, c) will be

written for Add({v}, c). In case a vertex that has been referenced (for instance v∗) does not exist,

then Add(v∗, c) does not change anything. To simplify the description of the algorithm, by saying,

for example “v∗ ∈ I” we mean “v∗ exists and v∗ ∈ I”.

Analysis of PA(G, vfix, c) In the following we make a couple of observations about first vertices.

The proof of (ii) of Observation 2 does depend on Corollary 1 whose proof only depends on part

(i) of Observation 2.

Observation 2. Let v be a first vertex (but not the very first vertex).

(i) The partner of v exists and v∗ is colored before v. In particular, v and v∗ are contained in

distinct components of G−M .

(ii) v and v∗ receive opposite colors.

Proof. (i) A new first vertex is chosen by FirstVertex when each component of G−M has either

all or none of its vertices colored. If there are still uncolored vertices in G, then there must be

one which has a colored partner (since G is connected) and FirstVertex will select such a first

vertex. The last claim then follows since a first vertex by definition is colored first within its

component, so its partner cannot be in it.

(ii) When FirstVertex selects the next first vertex v, then we know that v∗ exists and is

colored. Then Line 4 or 5 of PA will color v to the opposite color, either I or B. If this color

changes later during the execution of PA then, according to part (i) and (ii) of Corollary 1, this

change must be from I to X, which does not effect the validity of (ii). By part (iii) of Corollary 1,

an X-vertex can change its color to B only if it is the very first vertex vfix.
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Algorithm 2: PA(G, vfix, c)

Input: 2-edge-connected, generalized diamond-free graph G with ∆(G) ≤ 3;

vertex vfix ∈ V (G); color-class c ∈ {I,B};
Output: Vertex partition (I,X,B); according to Lemma 1(i)-(iv).

I ← ∅, X ← ∅, B ← ∅
choose matching M according to Proposition 1

while not all vertices of G are colored do

if I ∪X ∪B = ∅ then
v ← vfix

Orient the component of v such that {v−−, v−, v} does not form a triangle and1

{v, v+} ∈ E(G)

if d(v) = 3 then Add(v, I)2

else Add(v, c) // rule ‘‘very first’’3

else
v ← FirstVertex(G, v, I,X,B)

Orient the component of v arbitrarily

if v∗ ∈ I ∪X then Add(v,B) // rule ‘‘first’’4

else Add(v, I)5

while not all vertices of the component containing v are colored do
v ← v+

if v− ∈ I ∪X and {v−, v} ∈ E(G) then

Add(v,B) // rule ‘‘standard’’6

else // that is, v− ∈ B or {v−, v} /∈ E(G)

if v+ is not colored or v+ ∈ B or {v, v+} /∈ E(G) then

if v∗ ∈ B or v∗ is not colored or v∗ does not exist then

Add(v, I)7

else // that is, v∗ ∈ I ∪X

if {v, v∗} in a triangle then Add(v,B) // rule ‘‘triangle’’8

else if v∗ ∈ X then Distribute(v∗, B), Add(v, I) // rule ‘‘special’’9

else Add({v, v∗}, X) // move partners into X10

else // color the last vertex of a cycle if the first is in I ∪X

if v∗ ∈ I ∪X or v∗ does not exist or {v, v∗} in a triangle then11

Add(v,B) // rule ‘‘last’’12

else // that is, v∗ ∈ B or uncolored, {v, v∗} not in a triangle

if v+ ∈ X then Distribute(v+, B), Add(v, I) // rule ’’special’’13

else Add({v, v+}, X) // move non-partners into X14

return (I,X,B)
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Algorithm 3: FirstVertex(G, v, I,X,B)

Input: G, I,X, and B as defined in Algorithm PA(G, vfix, c), vertex v ∈ V (G) colored last.

Output: First vertex of an uncolored component C to be colored.

if v∗ is uncolored then return v∗

else

u← v−

while u 6= v and (u /∈ B or u∗ is colored) do

u← u−
1

if u 6= v then return u∗
2

else return w, where w is arbitrary uncolored vertex with w∗ colored.3

Observation 3. If Algorithm PA recolors a previously colored vertex then one of the following

three cases hold.

(i) A color I is changed to X either in Line 10 or 14. In Line 10 we move partners to X, in

Line 14 we move the last and first vertex of a component into X.

(ii) In Line 9 the previously uncolored vertex v∗
fix receives color I. Vertex vfix changes its color

from X to B and v−fix changes its color from X to I.

(iii) In Line 13 the previously uncolored vertex v−
fix receives color I. Vertex vfix changes its

color from X to B and v∗fix changes its color from X to I.

Proof. It is easy to check that PA always assigns colors to the currently processed vertex v, except

in those lines stated in the Observation.

Note that there are only two lines, Line 10 and 14, when vertices are placed into X. Part (i)

is then immediate.

Let v be the currently processed vertex which is eventually colored I in Line 9. Its partner,

v∗ was colored to X at a point when v was not yet colored. Hence v∗ was not colored with X in

Line 10, where partners together are colored with X, but it had to be colored in Line 14 where the

first and last vertex of a component is colored with X. Thus v∗ is either a first or a last vertex.

If v∗ was a last vertex, then, since its partner, v, is uncolored at the time, FirstVertex would

select v as the next first vertex and PA would color v in Line 4 and not in Line 9. So v∗ must be a

first vertex. Unless v∗ is the very first vertex, according to Observation 2(i), its partner, v, should

have been colored already, which it is not, a contradiction. Hence v∗ is the very first vertex and

part (ii) follows.

For part (iii), suppose that v is the currently processed vertex which is eventually colored I

in Line 13. We know that v+ is a first vertex, which has color X right before v is processed. v+

had to receive its color X in Line 10 together with its partner. This is a contradiction unless

v+ is the very first vertex, since, according to FirstVertex and Lines 4 or 5, a first vertex gets

colored right after its partner with the opposite color. Hence v+ is the very first vertex and part

(iii) follows.
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Let us collect some direct implications of Observation 3.

Corollary 1. (i) A B-vertex is never recolored.

(ii) An I-vertex can only change its color to X. In this case it had an uncolored neighbor.

(iii) An X-vertex can be recolored to B only if it is the very first vertex vfix and d(vfix) = 3.

(iv) An X-vertex can be recolored to I only if its X-neighbor is vfix and d(vfix) = 3.

After these preparations we are ready to start the actual proof of Lemma 1.

Property (i) The first property of Lemma 1 is certainly true at the initialization of PA, we

must check that the algorithm maintains it. A vertex v can be added to I in Lines 3, 5, 7, 9, or

13. In each of these cases it is easy to check that all the neighbors of v are in B or uncolored. For

Lines 9 and 13 note that first we distribute an X-edge between B and I such that the neighbor

of v in this X-edge gets color B. (That is we call Distribute(v∗, B) for the X-edge {v∗, v∗−} in

Line 9 and Distribute(v+, B) for the X-edge {v+, v+∗} in Line 13). Distributing an X-edge does

not create any conflict with property (i), provided the property was true up to that point. Then

we put v into I knowing that all its neighbors are in B or uncolored.

Vertices are put into X in Lines 10 and 14; always an uncolored vertex v, together with one

of its neighbors z. It is easy to check that in both of these lines all neighbors of v except z are in

B or uncolored. To maintain property (i) it is enough to verify that before processing v, z was

in I. In Line 10 we know that z is the partner of v and is colored I or X, in fact Line 9 excludes

that z ∈ X. In Line 14 we know that z is equal to v+ and is colored I or X, and Line 13 excludes

that z ∈ X.

In conclusion, property (i) is valid throughout the algorithm.

Property (ii) Why is property (ii) valid? The “triangle rule” on Line 8 ensures that the vertices

we move to X in Line 10 are not part of the same triangle. In Line 14 we move the last and first

vertices v and v+, respectively, of a component of G −M into X. We must check that neither

{v, v+, v++} nor {v−, v, v+} induces a triangle in G. If {v, v+, v++} was a triangle then, since no

component of G −M is a triangle, v++ has to be the partner of v. Then Line 11 ensures that

v∗ = v++ and v are not in the same triangle. Suppose now that {v−, v, v+} induces a triangle.

Again, since no component of G−M is a triangle, v+ has to be the partner of v−. Unless v+ is the

very first vertex, v− cannot be the partner of v+, since, according to Observation 2(i), v+ and its

partner has to be in a different component of G−M . Finally, if v+ is the very first vertex, then

according to the orientation of v+’s component (see Line 1) {v−, v, v+} does not form a triangle.

Hence property (ii) is valid.

Property (iii) To derive the bound on the order of the B-components we list the six reasons

a vertex u is colored B. In the following we emphasize some property of each, which follow

immediately from PA and Corollary 1. We will implicitly refer to these properties throughout the

remainder of this section.

• “very first”-B: it is given in Line 3; u is the very first vertex vfix, u+ ∈ I ∪X.
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• “first”-B: it is given in Line 4; u is the first vertex colored in its cycle, u+, u∗ ∈ I ∪X

• “triangle”-B: it is given in Line 8; u and u∗ are in the same triangle and u∗ is already

colored with an I (by the end u∗ might change its color to X).

• “last”-B: it is given in Line 12; u is the last vertex colored in its cycle, whose coloring

started with I or X, u+ ∈ I ∪X.

• “special”-B: it is given in Lines 9 and 13; u is the very first vertex vfix. u−, u∗ ∈ I, u+ ∈ B,

u++ ∈ I ∪X.

• “standard”-B: it is given in Line 6; u− ∈ I ∪X unless u− is a “special”-B and u+ ∈ I ∪X.

Every B-colored vertex has a exactly one of these six reasons why it is colored a B. Note that

a B-colored last vertex is not necessarily a “last”-B, it could be a “standard”- or “triangle”-B.

Also, a B-colored very first vertex is not necessarily a “very first”-B, but can also be a “special”-B.

We call a B-component of a component C of G −M a segment. Let C̃ be the component

C together with the edges of G of the form {v, v++} for v ∈ V (G) (such edges we call extended

edges). Note that every triangle contains an extended edge. We call a B-component of C̃ an

extended segment.

Proposition 2. Any extended segment contains at most 4 vertices.

Proof. First let us show the following facts.

Claim 2. (i) Suppose u−, u, and u+ are all colored B for some u ∈ V (G). Then u is a

“triangle”-B. In particular its partner is in I ∪X.

(ii) Let v1, v2, v3, v4, v5 be five distinct, consecutive vertices along some component C in G−M

which are colored B,B, I/X,B,B, in this order. Then v2 cannot be adjacent to v4.

Proof. (i) For a vertex v which is a “standard”-B, “first”-B, “very first”-B, “last”-B, or ”special”-

B, either v− or v+ is in I ∪X.

(ii) Let us suppose that v2 is adjacent to v4 and the orientation of the cycle is passing through

these vertices from left to right (with possibly starting/ending among them).

The vertex v2 is not a “triangle”-B since v∗
2 = v4 is not in I ∪X. If v2 is a “standard”-B, then

v1 has to be a “special”-B, since v1 /∈ I ∪X. In any case, the first vertex colored in C is either

v1, v2 or v3. This implies that v5 is neither a “first”-B nor a “very first”-B nor a “special”-B.

If v5 was a “last”-B, then v+
5 ∈ I ∪ X. Also, v+

5 is the first vertex of C so v+
5 = v1 which has

color B, a contradiction. If v5 was a “standard”-B, then v4 should be in I ∪ X or should be

a “special”-B, neither of which is the case. Hence v5 is a “triangle”-B. Its partner cannot be

v3, since then {v2, v3, v4, v5} would induce a generalized diamond. So its partner is v7 (the other

vertex distance two away from v5 along C) which then must have been colored already when we

arrive to v5. Hence the first vertex colored in C had to be either v6 or v7. Since v7, as the partner

of a “triangle”-B, is in I ∪X, v7 6= v1, v2, v4. Also, v7 6= v3 since our assumption about the vi’s

being distinct. This contradicts that the first vertex of C is among v1, v2, and v3.

16



Part (i) immediately implies that a segment of length 5 does not exist.

Let S be an extended segment and classify the cases according to a longest segment S ′ it

contains.

If S′ is of order 1 then obviously S is of order at most 2.

If S′ is of order two, then by part (ii) of Claim 2 S cannot contain more segments of order

two, only possibly two more segment of order one. Hence its order is at most 1 + 2 + 1 = 4.

If S′ is of order 3, then again by part (ii) it cannot be joined to a segment of order at least

two. Moreover it cannot be joined to segments of order one both ways, because, by part (i), at

least one way it is closed by a triangle (no generalized diamonds!).

If S′ is of order 4 then by part (i) both endpoints participate in a triangle and they cannot

extend the segment further, because G contains no generalized diamonds.

A vertex v of an extended segment S is called a potential connector if its partner v∗ exists,

{v, v∗} is not an extended edge, and v∗ either has color B or is uncolored at the time when

the coloring of the component of G −M containing S is concluded. Observe that two extended

segments can be connected only via their respective potential connectors.

Proposition 3. (i) If v is a potential connector of extended segment S which does not contain a

“special”-B then v− /∈ S.

Every extended segment contains at most one potential connector. In particular, every extended

segment is adjacent to at most one other extended segment in G.

(ii) No extended segment of order at least three is adjacent to another extended segment of order

at least three.

Proof. Let v be a potential connector of extended segment S, |S| ≥ 2. We claim that v is a

“standard”-B.

If v was a “first”-B, “triangle”-B, or “special”-B, then v∗ is in I ∪X right after we colored v

with B, so v is not a potential connector.

If v was a “last”-B, then it is colored in Line 12. Since v∗ exists and {v, v∗} is not part of a

triangle, we have that v∗ ∈ I∪X at the time of the coloring. Hence v is not a potential connector.

If v = vfix was a “very-first”-B, then v+ ∈ I ∪X. Since {v, v+} ∈ E(G) (see the orientation

rule in Line 1), v∗fix exists, and d(vfix) = 2 (see Line 2), we have that {v−, v} is not an edge of G.

Since {v, v∗} is not an extended edge, S consists only of a single vertex.

Let us now show Part (i) of Proposition 3. Let S be an extended segment not containing a

“special”-B with a potential connector v. Since v is a “standard”-B and v− is not a “special”-B,

v− ∈ I ∪X and in particular is not in S.

Suppose now that an arbitrary extended segment S contains two potential connectors u and w.

In particular u∗, w∗ /∈ S. Then either u− or w− has to be in S (otherwise u and w could not be

in the same extended segment). Assume that, say, u− ∈ B. In accordance with the above u is

a “standard”-B. Hence u− must be a “special”-B and u+ ∈ I ∪X. Moreover u−∗ and u−− are

both contained in I ∪X. Thus S = {u, u−} and u− is not a potential connector, a contradiction.

Let us now proceed with the proof of part (ii). Suppose there are two distinct extended segments
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S and S′, each of order at least 3, contained in the same B-component C of G. If S contained a

“special”-B vertex v (which is the very first vertex) then v+ is the only neighbor of v which is in

B. Also, since v++ ∈ I ∪X and |S| ≥ 3, the partner of v+ has to be v+++ and have color B. It

is easy to see that v++++ ∈ I ∪X, so C is equal to S = {v, v+, v+++}.
Hence we can assume that neither S nor S ′ contains a “special”-B vertex. Suppose further

that PA colors S prior to S ′. According to (i), C does not contain any other vertex besides the

vertices of S and S ′. Let us denote the potential connectors of S and S ′ by w and w′, respectively.

Hence w∗ = w′, w′∗ = w and {w,w′} ∈ E(G).

We will derive a contradiction by showing that w′ ∈ I ∪X.

Claim 3. Let S be an extended segment of order at least three, which does not contain a “special”-

B vertex. Then S contains a last vertex vl.

We postpone the proof of this Claim 3 a little and continue with the proof of (ii).

After having colored the last vertex vl ∈ S of a component of G−M containing the extended

segment S, FirstVertex(G, vl, I,X,B) searches for a vertex u with an uncolored partner to

continue the coloring with u∗. The potential connector w has an uncolored partner, w ′, and we

claim that FirstVertex(G, vl, I,X,B) will arrive to w and will output w∗ = w′ as the new first

vertex. If v∗l is uncolored then vl is the unique potential connector of S, vl = w. Otherwise

FirstVertex(G, vl, I,X,B) starts stepping backwards on C looking for a vertex of color B with

an uncolored partner (c.f. Line 1 of FirstVertex). We claim that the first such vertex is w. By

Proposition 3(i) we have that w− 6∈ S, and {w,w−−} /∈ E(G), since w is a potential connector,

so w−− /∈ S. Hence there is a vlw-path vl = p1 · · · pm = w in S such that pi+1 = p−i or p−−
i for

every i = 1, . . . ,m− 1. FirstVertex(G, vl, I,X,B) will consider all vertices of C in a backward

direction from vl to w. Vertices pi with i < m are not eligible since they have a colored partner.

Other vertices between vl and w are outside of S and thus are contained in I ∪ X. Eventually

FirstVertex(G, vl, I,X,B) reaches vertex w. According to our assumption w ′ ∈ S′ has not yet

been colored, thus FirstVertex(G, vl, I,X,B) chooses w′ to be colored next. Then w′ is colored

I according to Line 5 of PA, a contradiction.

We thus concluded the proof of Proposition 3.

Proof of Claim 3. Suppose S with |S| ≥ 3 does neither contain a “special”-B nor vl.

Then S certainly does not contain a “last”-B vertex.

If S contained a “very-first”-B vertex v, then v− = vl /∈ S and v+ ∈ I ∪ X. Since |S| ≥ 3,

v∗ ∈ S and at least one of v∗+ and v∗− is in S. First assume that v∗ = v++. It is easy to

check, that then v∗+ ∈ I ∪ X, which is a contradiction since v∗− = v+ ∈ I ∪ X. Now assume

that v∗ = v−−. Obviously, v−− is not a “very-first”-B, not a “first”-B, not a “special”-B and

not a “last”-B. Also, v−− is not a “triangle”-B since its partner, v, is not in I ∪X. Therefore

v−− has to be a “standard”-B. Then v−−− is in I ∪ X since it is certainly not a “special”-B

(it is not the very first vertex). This is then a contradiction to |S| ≥ 3 since by our assumption

v−−+ = v− ∈ I ∪X. We can thus conclude that S does not contain a “very-first”-B.
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S does not contain a “first”-B vertex v either, otherwise S = {v}. Indeed, v− = vl and

v+ ∈ I∪X and, according to Observation 2(i), v∗ is contained in a different component of G−M .

From now on we assume that every vertex of S is either a “triangle”-B or a “standard”-B.

Suppose S contains a “triangle”-B vertex u, such that u∗ = u++. Then u++ ∈ I ∪X and u+ has

to be in B because property (i) and (ii) of Lemma 1 hold. It follows that u+ ∈ S, but u+ neither

can be a “standard”-B since its predecessor is not in I ∪ X nor can be a “triangle”-B because

{u, u+, u++, u+∗} would form a generalized diamond. We conclude that S does not contain a

“triangle”-B vertex u, such that u∗ = u++. Suppose now that S contains a “triangle”-B vertex v,

such that v∗ = v−−. Then v∗ ∈ I ∪X. Vertex v−∗ is not in S otherwise {v, v−, v−−, v−∗} would

be a generalized diamond. Since |S| ≥ 3, vertex v+ has to be in B. It cannot be a “standard”-B

because its predecessor is not in I ∪X. Vertex v+ also cannot be a “triangle”-B since we already

saw that its partner cannot be v+++ and if its partner was v− then {v−−, v−, v, v+} would form

a generalized diamond.

Thus the vertices in S are all “standard”-B vertices, each forming a (not extended) segment

of order 1. Each such segment can connect to at most one other such segment via an extended

edge. Thus |S| ≤ 2, a contradiction.

Proposition 2 and Proposition 3 immediately imply part (iii) of Lemma 1.

Property (iv) We can assume that d(vfix) = 2. The vertex vfix is contained in c after Line 3.

If c = B, then according to Corollary 1(i), vfix is not recolored at all. If c = I, then according to

Corollary 1(ii) and (iii), vfix can be recolored to X, but not to B.

4 Hardness results

4.1 0/1-colorings

In this subsection we take the first step, which is common in all our hardness proofs. Our plan

is to reduce our problems to 3-SAT. Given a 3-SAT formula F , we construct (in polynomial

time) a graph GF together with a constraint function c = cF , such that (GF , c) has a so-called

0/1-coloring if and only if the formula F is satisfiable.

Let G be a graph and c : V (G) → N ∪ {∞} be a constraint function. Then a mapping χ

from V (G) to {0, 1} is called a 0/1-coloring of (G, c) if the vertices with χ-value 1 induce an

independent set and the order of each connected component C induced by vertices of χ-value 0

is not larger than the constraint of any of its vertices, that is c(v) ≥ |C| for all v ∈ C.

We will assemble GF from various building blocks, pictured in Figure 1 and Figure 2. In the

following, if the constraint of a vertex is not specified than it is taken to be ∞.

The not-gadget NG is just a path vv̄ of length one, where v has constraint 1.

The copy-gadget CG(1) consists of just one vertex v1, which is called both the root and the

leaf of the gadget. Let P be a path of length two, where the interior vertex is given constraint

1. For i ≥ 2, a copy-gadget CG(i) is constructed from CG(i− 1) by identifying an arbitrary leaf
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vi−1 of CG(i− 1) with one endpoint of each of two copies of P . Note that vi−1 is no longer a leaf

and we gained two new leaves - the other endpoints of the two copies of P . Thus CG(i) contains

exactly i leaves. The root of CG(i) is the vertex v1 for every i.

For more insight see Figure 1. Let’s collect some simple facts about these gadgets.

1

v1 v2

v

not gadget NG

v̄

1

1

copy gadget CG(2)

1a′

1

copy gadget CG(3)

1

v1

1

Figure 1: Basic building blocks of the graph GF .

Proposition 4. (i) The not-gadget NG is 0/1-colorable. Moreover in any 0/1-coloring of the

not-gadget the vertex v̄ is colored with a different color than vertex v.

(ii) The copy gadget CG(i) is 0/1-colorable. Moreover in any 0/1-coloring of CG(i), all i

leaves have identical colors with the root of the gadget.

Proof. For each gadget a 0/1-coloring is indicated on Figure 1. All the statements are easily

verified.

For every clause D = (li1 ∨ li2 ∨ li3) in F we also construct a gadget. The clause-gadget G∗
D as

shown in Figure 2 contains vertices aD, bD, cD, dD and a vertex li,D corresponding to each literal

li appearing in the clause D. The constraint of li1,D and li2,D are 2 and the constraints of li3,D

and bD are 1.

`i3,D

aD

bD cD dD

`i1,D `i2,D

122

1

Figure 2: The clause-gadget G∗
D for clause D = (li1 ∨ li2 ∨ li3).

Proposition 5. An 0/1-coloring χ of the vertices li1,D, li2,D, li3,D of the clause-gadget G∗
D is

extendable to a 0/1-coloring of G∗
D if and only if at least one of li1,D, li2,D, li3,D received the color

1.

Proof. Let us first suppose that χ(lij ,D) = 0, for all j ∈ {1, 2, 3} and try to extend χ to a 0/1-

coloring of G∗
D. Then aD must be colored 1, since li1,D and li2,D have constraint 2. Since 1-vertices

form an independent set, χ(bD) = 0. The constraint of bD implies that χ(cD) = 1, which then
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implies that χ(dD) = 0. Hence li3,D is contained in a 0-component of order at least 2, which

contradicts that its constraint is 1. We conclude that an extension to a 0/1-coloring of G∗
D is not

possible.

Secondly, we show that an extension exists if some lij ,D is colored 1 in χ.

First suppose that χ(li1,D) = χ(li2,D) = 0 and χ(li3,D) = 1. Then χ(aD) = χ(cD) = 1,

χ(bD) = χ(dD) = 0 is a 0/1-coloring of G∗
D.

Now let (χ(li1 ,D), χ(li2 ,D)) 6= (0, 0). Then χ(aD) = 0, χ(bD) = 1, χ(cD) = 0 and either

χ(dD) = 1 if χ(li3,D) = 0 or χ(dD) = 0 if χ(li3,D) = 1 again results in a 0/1-coloring of G∗
D.

Now we are ready to define the graph GF together with its constraint function cF . First for

each clause D we construct the extended clause-gadget GD by taking the clause-gadget G∗
D and

identify each vertex li,D corresponding to a negated variable x̄i in the clause D with the leaf xi,D

of a not-gadget. We call this the extended clause-gadget of the clause D. See Figure 3 for an

example.

���
�

xi3,D

bD cD dD

aD

xi1,D

xi2,D

1

1

122

Figure 3: The extended clause-gadget GD for the clause D = (xi1 ∨ x̄i2 ∨ xi3).

Proposition 6. An assignment α satisfies the clause D if and only if there is a 0/1-coloring of

the extended clause-gadget GD such that the vertices corresponding to the variables receive the

colors the assignment α gives them.

Proof. It is easy to verify based on the properties of the not gadget and the properties of the

clause-gadget discussed in the previous two proposition.

The graph GF is put together from these extended clause-gadgets of the clauses of F with the help

of one copy-gadget for each variable of F . Formally GF is constructed as follows. We take the

disjoint union of one extended clause-gadget for each clause in F . Then we add one copy-gadget

Cx for each variable x. If the variable x occurs in ix clauses than the leaves of the copy-gadget

Cx
∼= CG(ix) are identified with the vertices corresponding to the same variable x in the extended

clause-gadgets.

Obviously, the graph GF can be constructed in polynomial time in the number of clauses and

variables of F .

The main theorem of the section is now a simple consequence of the above.

21



Theorem 6. (i) GF is 0/1-colorable if and only if F is satisfiable.

(ii) ∆(GF ) ≤ 3 and every vertex v of GF with c(v) <∞ has degree at most 2.

Proof. Let α be a satisfying assignment of F . Then we start defining a 0/1-coloring of GF by

assigning color α(x) to the root of the copy-gadget Cx corresponding to the variable x. This can

be extended to an 0/1-coloring of the copy-gadgets by part (ii) of Proposition 4 where the leaves

receive the same color as their respective roots. All these leaves are identified with a vertex of

an extended clause-gadget. Since α satisfies all the clauses of F , these partial colorings of the

extended clause-gadgets can be extended to a 0/1-coloring of the whole gadget (cf. Proposition 6)

and thus the whole graph GF is 0/1-colored.

Let now χ be a 0/1-coloring of GF . We claim that the colors given to the roots of the copy-

gadgets corresponding to the variable is a satisfying assignment of F . By part (ii) of Proposition 4

all the leaves are the same color as their roots in the copy-gadget. By Proposition 6 every extended

copy gadget has a satisfying assignment, so we are done.

Part (ii) is straightforward.

4.2 Hard (3, C)-AsymRelCol

We will use the core graph GF defined above to construct in polynomial time a graph RelColGraph(F )

which is C-relaxed colorable if and only if the formula F is satisfiable.

For a C-relaxed coloring we denote the color class forming an independent set by I and the

color class spanning components of order at most C by B.

Definition 1. Let C ≥ 2 and ∆ ≥ 1 be integers. A graph G is called (∆, C)-forcing with forced

vertex f ∈ V (G) if

(i) ∆(G) ≤ ∆ and f has degree at most ∆− 1,

(ii) G is C-relaxed colorable, and

(iii) f is contained in I for every C-relaxed two-coloring of G.

Lemma 3. For any integer ∆ ≥ 1 and integer C ≥ 2 the decision problem (∆, C)-AsymRelCol

is NP-complete provided a (∆, C)-forcing graph exists.

Proof. We assume the existence of a (∆, C)-forcing graph H, hence ∆ ≥ 3. We will show

that there is a polynomial time algorithm which, given a 3-CNF formula F , produces a graph

RelColGraph(F ) of maximum degree at most ∆ such that F is satisfiable if and only RelColGraph(F )

has a C-relaxed coloring.

The base-gadget BGl contains l disjoint copies H1, . . . ,Hl of the (∆, C)-forcing graph H, the

forced vertex fi of copy Hi is joined to a new vertex ti for i ∈ [l], and the vertices t1, t2, . . . , tl

form a path. The vertex t1 (of degree two) is called the sink of the base-gadget.

Proposition 7. The base gadget BGl is C-relaxed colorable for every l ≤ C. Moreover in any

C-relaxed coloring of BGl, l ≤ C, the sink is contained in a B-component of order l.
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f`

H`

t1 t2 t3 t`−1 t`

f1 f2 f3 f`−1

base gadget BG`

H2H1 H3 H`−1

Figure 4: The base gadget BGl

Proof. A C-relaxed coloring of the base-gadget is indicated on Figure 4. In any C-relaxed coloring

χ of the base-gadget BGl, χ(ti) = B, since fi is forced to be contained in I. Thus the vertices ti

for i ∈ {1, . . . , l} form a B-component of order exactly l.

Now RelColGraph(F ) is obtained from GF by connecting each vertex with constraint 1 to

the sink of a base-gadget BGC−1, and connect each vertex with constraint 2 to the sink of a base-

gadget BGC−2. Note that the obtained graph has maximum degree ∆, according to part (ii) of

Theorem 6. Note also that GF is 0/1-colorable if and only if RelColGraph(F ) has a C-relaxed

coloring. A C-relaxed coloring of RelColGraph(F ) restricted to V (GF ) is a 0/1-coloring if we

exchange the color I to 1 and the color B to 0. Conversely a 0/1-coloring of GF can be extended

to a C-relaxed coloring of RelColGraph(F ) by identifying 1 with I, and 0 with B, and extending

this coloring to the base-gadgets appropriately (such coloring exists by Proposition 7).

4.2.1 (3, C)-forcing graphs

Let GC denote the family of graphs of maximum degree at most three that are not C-relaxed

two-colorable.

Lemma 4. For all C ≥ 2, if GC 6= ∅ then there is a (3, C)-forcing graph.

Proof. Let us assume first that C ≥ 6. By a lemma of [5] we can assume that any member of GC

contains a triangle.

Lemma 5 ([5]). Any triangle-free graph of maximum degree at most 3 has a 6-relaxed coloring.

Let us fix a graph G ∈ GC which is minimal with respect to deletion of edges. Let T be a

triangle in G (guaranteed by Lemma 5) with V (T ) = {t1, t2, u} and e = {u, v} be the unique

edge incident to u not contained in T . We split e into e1, e2 with e1 = {u, f} and e2 = {f, v} and

denote this new graph by H (cf. Figure 5). We claim that H is (3, C)-forcing graph with forced

vertex f . H is C-relaxed colorable since the minimality of G ensures that G− e has a C-relaxed

coloring while the non-C-relaxed-colorability of G ensures that the colors of u and v are the same

on any C-relaxed coloring of G − e. So any C-relaxed coloring χ of G − e can be extended to a

C-relaxed coloring of H by coloring f to the opposite of the color of u and v. Moreover, any such

extension is unique. If χ(u) = χ(v) = I, then obviously χ(f) = B. If χ(u) = χ(v) = B = χ(f)

and χ is a C-relaxed coloring of H, then χ restricted to V (G) is a C-relaxed coloring of G, a

contradiction.
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Thus in any C-relaxed two-coloring χH of H, (χH(u), χH(f), χH(v)) is either (I,B, I) or

(B, I,B).

We denote by v1, v2 the neighbors of t1 and t2, respectively, not contained in T (might be

v1 = v2). Suppose the vertices (u, f, v) of H can be colored with (I,B, I). But then χH(t1) =

χH(t2) = B.

t1
G H

u f vvu

t1

t2 t2

Figure 5: Splitting e = {u, v} into e1 = {u, f} and e2 = {f, v}

Case (i): If χH(v1) = χH(v2) = I then we define a C-relaxed two-coloring χG for G as follows:

χG(x) = χH(x) for all x ∈ V (G) \ {u} and χG(u) = B.

Case (ii): Without loss of generality χH(v1) = B. We define a C-relaxed two-coloring χG for G

as follows:

χG(x) = χH(x) for all x ∈ V (G) \ {t1, u}, χG(t1) = I, and χG(u) = B. Indeed, the B-component

containing t2 did not increase, since χG(t1) = χG(v) = I and in H χH(t1) = B.

In both cases G would be C-relaxed two-colorable, a contradiction. Thus in any C-relaxed

two-coloring of H the vertices (u, f, v) are colored (B, I,B). The vertex f is contained in I and

is of degree 2, hence H is a (3, C)-forcing graph with forced vertex f .

For 2 ≤ C ≤ 5 we explicitly construct (3, C)-forcing graphs. The graph G in Figure 6 is

(3, C)-forcing for C ∈ {2, 3}. First we observe that G is indeed 2-relaxed two-colorable: just

take I = {f, t′2, t
′′
3} and B = V (G) \ I. It is also not hard to check that there is no 3-relaxed

two-coloring where vertex f is contained in B. Suppose there is a 3-relaxed two-coloring of G in

which f is contained in B. If t′1, t
′′
1 are contained in I then no other vertex is contained in I and

we have a B-component of order four. On the other hand if t′1, t
′′
1 are both contained in B then

we have a B-component of order at least five. So without loss of generality t′1 is contained in I

and t′′1 is contained in B. The B-components on both triangles are connected, thus we have a

B-component of order five again.

f

t′2 t′′2

t′′1

t′3 t′′3

t′1

Figure 6: (3, C)-forcing graph for C ∈ {2, 3}

Next we construct a graph H which is (3, C)-forcing for C ∈ {4, 5}. First let us show that

for the graph H∗ in Figure 7, (i) there is a 4-relaxed two-coloring and (ii) there is no 5-relaxed
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coloring where u is contained in I.

(i) The vertex-partition defined by I = {t1,2, t2,4, t3,1, t4,5, t5,3} and B = V (H∗)\I is a 4-relaxed

two-coloring of H∗,

Note that in this coloring u = t1,1 is contained in a B-component of order two.

(ii) The key observation is that in any 5-relaxed coloring of H ∗, for a triangle Ti with V (Ti) =

{ti,j, ti,k, ti,l}, if ti,j is contained in I then at least one of tk,i, tl,i is contained in I. Suppose not,

then the at least six B-vertices of the three triangles Ti, Tk, and Tl are contained in the same

B-component.

Thus if t1,1 is contained in I in a 5-relaxed coloring of H∗, then without loss of generality

t3,1 is contained in I as well. This then implies that one of t4,3 and t5,3, say t5,3 is in I. Hence

t1,2, t5,2 ∈ B and t3,4, t5,4 ∈ B. These, together with the key observation imply that t2,4 ∈ B and

t4,2 ∈ B, respectively. Finally, all neighbors of triangle T4 are in B, which together with the key

observation imply that all vertices of T4 are in B, so the B-component of T4 has order at least

six.

u = t1,1

t3,4

t1,2 t1,3

t2,1

t2,4

t3,1

t3,5

t5,2

t5,3t5,4t4,2 t4,5

t2,5

t4,3

Figure 7: Graph H∗

The graph H is pictured on Figure 8. The subgraphs Hi, i ∈ {1, . . . , 4}, are copies of the

graph H∗, with ui corresponding to vertex u of H∗.

The coloring of part (i) can easily be extended to a 4-relaxed coloring of H.

As we have seen, in any 5-relaxed coloring of H all ui ∈ B. Thus, similarly to the key

observation above, v and w are contained in B. Hence if f was in B, then its B-component would

be of order at least seven, a contradiction. Thus in any 5-relaxed coloring of H the vertex f is

contained in I, so H is (3, C)-forcing for C ∈ {4, 5}.

Note that (3, C)-AsymRelCol is obviously trivial for all C with GC = ∅, so Theorem 3 follows

immediately from Lemma 4 and Lemma 3.

v wf

H3

u1

u2

u3

u4

H1

H2 H4

Figure 8: (3, C)-forcing graph for C ∈ {4, 5}
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4.2.2 (4, C)-forcing graphs

Lemma 6. For all ∆ ≥ 4 and all C ≥ 2 there is a (∆, C)-forcing graph.

Proof. Suppose first that C = 2k− 2. Let us look at the graph Gk in Figure 9. This graph is not

(2k − 1)-relaxed two-colorable, since in any triangle vi,1, vi,2, vi,3 at most one vertex is contained

in the independent set I. The two other vertices are contained in B and since there are three

edges connecting this triangle to a neighboring triangle the components in Gk[B] of all triangles

of Gk are connected and form one big component in Gk[B]. Removing the edge e = {v1,1, v1,2}
makes Gk (2k − 2)-relaxed two-colorable and in any such coloring χ, χ(v1,1) = χ(v1,2) = I. Thus

Gk − e is (4, 2k − 2)-forcing, with forced vertex v1,1 (or v1,2).

v3,2

v2,3

v1,1

v1,3

v2,1 v3,1 vk−1,1 vk,1

v1,2 v2,2 vk−1,2 vk,2

v3,3
vk−1,3 vk,3

Figure 9: Gk with one B-component of order 2k

Similarly, Gk with an additional vertex v adjacent to vk,1, vk,2, vk,3, denote this graph by H,

is not (2k)-relaxed two-colorable, hence H − e is (v, 2k − 1)-forcing again with forcing vertex v1,1

or v1,2.

Combining Lemma 6 and Lemma 3 concludes the proof of Theorem 4.

4.3 Hard (∆, C)-SymRelCol

In this subsection we prove Theorem 5 by constructing the appropriate base gadgets and defining

the graph SymRelColGraph(F ) which can be (C,C)-relaxed colored if and only if the formula

F is satisfiable. We denote the two color classes of a (C,C)-relaxed two-coloring by B1 and B2.

Definition 2. Let C ≥ 2 and ∆ ≥ 4 be integers. A graph G is called (∆, C)-sym-forcing with a

set F ⊆ V (G) of at most two forced vertices if

(i) ∆(G) ≤ ∆ and
∑

f∈F (∆− d(f)) ≥ 2,

(ii) G is (C,C)-relaxed two-colorable, and

(iii) for every (C,C)-relaxed two-coloring of G there is a color-class c such that every f ∈ F

is contained in a c-component of order at least C.

Lemma 7. For any two integers ∆ ≥ 4 and C ≥ 2 the decision problem (∆, C)-SymRelCol is

NP-complete provided a (∆, C)-sym-forcing graph exists.

Proof. Suppose a (∆, C)-sym-forcing graph H exists. We will reduce our problem to 3-SAT. As

in the asymmetric problem, the graph we construct will be an extension of the core graph GF .
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But the base-gadgets will be different from the ones in the previous subsection and some of them

will be connected to each other unlike in the asymmetric problem.

We construct our base-gadget BGl by taking l copies H1, . . . ,Hl of the (∆, C)-sym-forcing

graph H and l vertices s1, . . . , sl and connecting them in a path-like fashion as depicted in Fig-

ure 10.

f`
f`−1 f`

H1 H2 H3 H`−1 H`H`H`−1H3H2H1

sl−1s3 s1 s2 s3 sl−2 sl−1 sl

f ′

1 f1 f ′

2 f2 f ′

3 f3 f ′

`

s1 s2 sl−2 sl

f1 f2 f3

Figure 10: Base gadget BGl using sym-forcing graphs with either one or two forced vertices.

By property (i) of Definition 2, ∆(Bl) ≤ ∆. By property (iii), in any (C,C)-relaxed coloring

of the base gadget BGl all the forced vertices fi have the same color, which is different from the

color of the vertices si. Thus the vertices si form a monochromatic component of order l. We call

f1 and sl the source and sink of the base gadget, respectively.

We can conclude the following.

Proposition 8. The base gadget BGl is (C,C)-relaxed colorable for every l ≤ C. Moreover, in

any (C,C)-relaxed coloring of BGl the sink is contained in a monochromatic component of order

exactly l whose color is different from the color of the source.

Suppose now that we are given a 3-SAT formula F . We construct the graph SymRelColGraph(F )

by connecting various base gadgets to vertices of GF via an edge. First, we connect the sink of

a base gadget B
(1)
w
∼= BGC−2 to each vertex w of GF which has constraint 2 and the sink of a

base gadget B
(1)
w
∼= BGC−1 to each vertex w with a constraint 1. These we call the base-gadgets

of the first-type. Further, we connect the sink of a base-gadget B
(2)
w
∼= BGC−1 to every vertex w

of GF . These we call the base gadgets of the second-type. Note that by part (ii) of Theorem 6,

after adding these new edges the degree of each vertex of GF is at most four. Also, the sink of

each base-gadget now has degree three, and the source has degree at most ∆− 1.

Then, by adding an edge between some sink and source vertices, we connect all base gadgets

of the first-type in a path-like fashion, pictured on Figure 11. We act similarly for base gadgets

of the second-type. Finally, we add an edge between the source of the first base gadget of the

first-type and the source of the first base gadget of the second-type. Let us denote this new graph

by SymRelColGraph(F ). By the above, the maximum degree of SymRelColGraph(F ) is clearly

at most ∆. For an insight about the connections between the base-gadgets, see Figure 11.

The following is an immediate corollary of Proposition 8

Proposition 9. In any (C,C)-relaxed coloring of SymRelColGraph(F ) the sinks of base-gadgets

of the first-type are all colored with the same color, say B1. On the other hand the sinks of base-

gadgets of the second-type are all colored with the other color, B2.
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Figure 11: Connecting base gadgets of the first- and second-type

We claim that there is a (C,C)-relaxed two-coloring of SymRelColGraph(F ) if and only if

the core GF has a 0/1-coloring. Via Theorem 6, this will conclude the proof of Lemma 7.

Suppose χ is a (C,C)-relaxed coloring of SymRelColGraph(F ). Suppose the sinks of the base-

gadgets of the first-type all received color B1. (We know they are all the same from Proposition 9)

Then all sinks of the base-gadgets of the second-type must receive color B2. Changing color B1

to 0 and color B2 to 1 gives us the the 0/1-coloring of GF which observes all the constraints.

Conversely, suppose we are given a 0/1-coloring of GF . We can extend this to a (C,C)-

coloring of SymRelColGraph(F ) by arbitrarily selecting either 0 or 1 to color the forced vertices

of the base-gadgets of the first-type and then extending this coloring to all vertices of all base-

gadgets.

4.3.1 (∆, C)-sym-forcing graphs

We are able to show the existence of (4, C)-sym-forcing graphs with C ∈ {2, 3} and (6, C)-sym-

forcing graphs, for C ≥ 2. This will conclude the proof of Theorem 5.

Proposition 10. The graph G in Figure 12 is (4, 2)-sym-forcing with a forced set {f ′, f ′′}.

Proof. Adding the edge {f ′, v} to G yields a graph that is not (2, 2)-relaxed colorable. In order

to not contradict this fact, f ′ and v must have the same color in any (2, 2)-relaxed coloring G,

whereas the two common neighbors of f ′ and v are contained in the other color-class. Hence also

f ′′ is contained in the same color-class as f ′ and v.

v

f ′

f ′′

Figure 12: (4, 2)-sym-forcing graph

To construct a (4, 3)-sym-forcing graph we introduce a weakened concept of Definition 2 which

makes it easier to construct (∆, C)-sym-forcing graphs, and thus is interesting in its own right.
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Definition 3. Let C ≥ D ≥ 2 and ∆ ≥ 4 be integers. A graph G is called (∆, C,D)-sym-forcing

with a set F ⊆ V (G) of at most two forced vertices if

(i) ∆(G) ≤ ∆ and
∑

f∈F (∆− d(f)) ≥ 2,

(ii) G is (C,C)-relaxed two-colorable, and

(iii) for every (C,C)-relaxed two-coloring of G there is a color class c such that every f ∈ F

is contained in a c-monochromatic component of order at least D.

Observe that (∆, C, C)-sym-forcing is the same as (∆, C)-sym-forcing.

Proposition 11. The existence of a (∆, C,
⌈

C+1
2

⌉

)-sym-forcing graph implies the existence of a

(∆, C,D)-sym-forcing graph for every D,
⌈

C+1
2

⌉

≤ D ≤ C.

Proof. Let G1 and G2 be two copies of an (∆, C, i)-sym-forcing graph, dC+1
2 e ≤ i ≤ C − 1. First

assume that we have one forcing vertex in Gi. We connect the forcing vertex f1 of G1 to the

forcing vertex f2 of G2. Also we add a new vertex v to the new graph, denote it by H, and

connect it to f1 and f2, see Figure 13. Suppose f1 and f2 are contained in the same color-class

in a (C,C)-relaxed coloring of H, then the two adjacent vertices f1 and f2 are contained in one

monochromatic component of order at least 2i ≥ C + 1, a contradiction. Thus without loss of

generality f1 ∈ B1 and f2 ∈ B2. We conclude that v is contained in a monochromatic component

of order i + 1. The construction for the case when the Gi’s have two forcing f ′
i and f ′′

i vertices is

depicted in Figure 13 as well. The proof is very similar to the former case.

v

f1 H1

H2

f ′′

2

f ′

2

f ′

1

f ′′

2

v

G1

G2 f2

Figure 13: Weakly forcing graphs

Proposition 12. The graph in Figure 14 is (4, 3, 2)-sym-forcing with forced vertex f .

Proof. The graph is (3, 3)-relaxed colorable. It is then sufficient to observe that in a (3, 3)-relaxed

coloring the neighbors v1, v2 of f cannot have the same color, so f participates in a monochromatic

component of order at least two. Let us assume to the contrary that v1 and v2 are both contained

in color-class B2. Obviously at least three out of the four neighbors of v1 and v2 (not considering

f) have to be contained in B1 in order to not span a B2-component of order 4. On the other hand

not all of the four vertices can be contained in B1. Hence the unique common neighbor v of those

four vertices is incident to a B1 component and a B2-component, each of order 3. We conclude

that v cannot be colored. Hence one of v1 and v2 has a color identical to that of f , that is, f is a

forced vertex.

The previous two propositions imply the existence of a (4, 3)-sym-forcing graph.

Definition 4. For a positive integer C, let TC be the graph whose vertices are the triples (x, y, z)

of nonnegative integers summing to C, with an edge connecting two triples if they agree in one
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v2

f

v1

v

Figure 14: (4, 3, 2)-forcing

coordinate and differ by one in the remaining two coordinates. We denote by v, w and f the

following three vertices, respectively: v = (0, C, 0), w = (0, C − 1, 1) and f = (1, C − 1, 0).

The graph T4 is shown in Figure 15. Let HC−1 denote the graph TC with the edge {v, f}
removed.

w

v

f

Figure 15: The graph T4

Proposition 13. HC−1 is (6, C)-sym-forcing for 2 ≤ C with forced vertex f .

Proof. It is not hard to check that HC−1 is (C,C)-relaxed colorable. We will use the following

lemma.

Lemma 8 ([14]). TC is not (C,C)-relaxed colorable.

The following three properties of (C,C)-relaxed colorings of HC−1 are immediate consequences

of the lemma.

(i) v and f are contained in the same color-class.

(ii) w is contained in the other color-class than v and f .

(iii) The order of the union of the monochromatic component containing v and containing f

is at least C + 1.

According to (ii) and the fact that v has a unique neighbor w, v is contained in a monochro-

matic component of order exactly 1. We conclude due to (iii) that f is contained in a monochro-

matic component of order C always.
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5 Summarizing Overview and Open Problems.

It would be interesting to determine exactly the critical monochromatic component order f(3)

from where the problem (3, C)-AsymRelCol becomes trivial. In Figure 16 we overview the results

about the hardness of deciding (∆, C)-AsymRelCol. We divide the results into three classes,

depending on whether (∆, C)-AsymRelCol is trivial (T), polynomial-time decidable (P) or NP-

complete (N).
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Figure 16: Hardness of (∆, C)-AsymRelCol
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Figure 17: Hardness of (∆, C)-SymRelCol

We conjecture that there is a sudden jump in the hardness of the problem (4, C)-SymRelCol.

Such a result would particularly be interesting, since here the determination of the critical com-

ponent order is even more within reach (between 4 and 6.) As a first step one could try to prove

the monotonicity of the problem.

Conjecture 1. Prove that there exists an integer g(4) such that

• for every C, 2 ≤ C < g(4), it is NP-hard to decide whether a given graph G of maximum

degree 4 has a (C,C)-relaxed coloring and

• every graph of maximum degree 4 is (g(4), g(4))-relaxed colorable.

The similar problem is wide open for graphs with maximum degree 5: Does (5, C)-SymRelCol

exhibit a monotone behavior for C ≥ 2? Is there a “jump in hardness”? Again we overview the

hardness results about deciding (∆, C)-SymRelCol in a table, see Figure 17.

For colorings with more than two colors we know much less. Even the graph theoretic questions

about interesting maximum degrees are open. The following seems a challenging problem.

Open Problem 1. Determine asymptotically the largest ∆k for which there exists a constant

Ck such that every graph of maximum degree ∆k can be k-colored such that every monochromatic

component is of order at most Ck.

31



The current bounds are 3 < ∆k/k ≤ 4 (see [12]).

The next two problems discuss the simplest special cases for three colors.

Open Problem 2. Is there a constant C such that every graph with maximum degree 9 can be

three-colored such that every monochromatic component is of order at most C?

The answer is “yes” for graphs with maximum degree 8 and “no” for graphs of maximum

degree 10 (see [12]).

Open Problem 3. Is there a constant C such that every graph of maximum degree 5 can be

red/blue/green-colored such that the set of red vertices and the set of blue vertices are both inde-

pendent while every green monochromatic component is of order at most C?

The answer is “yes” for graphs with maximum degree 4 and “no” for graphs of maximum

degree 6 (see [5]).

The following problem came up in conversations with Nati Linial and Jirka Matoušek. Let

g(∆, n) be the smallest integer g such that every n-vertex graph of maximum degree ∆ is (g, g)-

relaxed colorable. Motivated by the fact that g(n, 5) = O(1) [12] and their result [18] showing

that g(n, 7) = Ω(n), we would be very curious to know the order of g(n, 6). By a theorem of

Hochberg, McDiarmid and Saks [14], for any two-coloring of the graph Tn (which has maximum

degree 6) does contain a monochromatic component of order Ω(
√

n).
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