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Abstract

We prove that RANDOM EDGE, the simplex algorithm that always chooses a random
improving edge to proceed on, can take a mildly exponential number of steps in the model
of abstract objective functions (introduced by Williamson Hoke [28] and by Kalai [16]
under different names). We define an abstract objective function on the n-dimensional
cube for which the algorithm, started at a random vertex, needs at least exp(const ·n1/3)
steps with high probability. The best previous lower bound was quadratic. So in order
for RANDOM EDGE to succeed in polynomial time, geometry must help.

1 Introduction

The simplex method from 1947 is the oldest linear programming algorithm. It can safely be
declared one of the most important algorithms of the twentieth century, and probably it still
remains the linear programming algorithm most widely used in practice. Since its discovery,
numerous variants of it (pivot rules) have been proposed, and many of them work quite well
in practice. However, no variant is known to be polynomial or close to polynomial in the
worst case, and many variants have exponential lower bounds in the worst case.

While linear programming can be solved in time polynomially bounded in the bit size
of the input, a major open problem is its complexity in the unit-cost model. That is, what
is the smallest f(n,m) such that any linear program in n variables and with m constraints
can be solved in time at most f(n,m) if all arithmetic operations are assumed to incur unit
cost? It is natural to look for good algorithms in this model among simplex-type algorithms,
since a pivot step in the simplex method can usually be implemented with polynomially many
arithmetic operations.

Pivot rules and worst-case bounds. Geometrically, the simplex method can be viewed
as follows: We have a convex polyhedron P ⊂ Rd (given as an intersection of n halfspaces)
and a linear objective function c, and we seek a vertex of P minimizing c. There is no
substantial loss of generality in assuming that P is bounded and simple and that no two
vertices of P have the same value of c. A simplex algorithm starts at some initial vertex of

∗An extended abstract has appeared in the Proceedings of the 45th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS) (2004).
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P and at each step it moves from the current vertex v along an edge of P to another vertex
w with c(w) < c(v) (this is called a pivot step). Typically there are several possible choices
of w at each step, and the way of selecting one of them is called a pivot rule. The simplex
algorithm terminates for every pivot rule, of course, but the difference in the number of steps
for different pivot rules may be enormous.

Earlier results on the worst-case complexity of various pivot rules are rather discouraging.
For Dantzig’s original pivot rule, Klee and Minty [19] constructed a class of examples where
this rule leads to an exponential number of steps. It is a polytope isomorphic to the cube
[0, 1]n, but the cube is slightly deformed in such a way that there is a Hamiltonian monotone
path, that is, a directed path visiting all vertices such that a suitable linear objective function
decreases along it. (We will discuss these Klee–Minty cubes in more detail since they are a
key building block in our construction.) Subsequently such worst-case examples were found
by various researchers for almost all known deterministic pivot rules; see Goldfarb [13] for an
overview and Amenta and Ziegler [4] for a new unified view of these examples.

A substantial progress in worst-case upper bounds was made using randomized pivot rules.
Kalai [17] and independently Matoušek, Sharir, and Welzl [21] established a subexponential1

upper bound, eO(
√

m log n ), for the expected number of pivot steps of a randomized pivot rule
commonly called RANDOM FACET. This bound is still very far from being polynomial but
a substantial improvement over straightforward exponential bounds.

Abstract objective functions and similar frameworks. The subexponential analysis
of RANDOM FACET and similar pivot rules relies on rather simple and general properties
of the objective function on the polytope. It can be phrased in an axiomatic framework that
encompasses linear programming but also a number of other geometric optimization problems,
such as the smallest enclosing ball for a given set of points in Rn. Several such frameworks
have actually been proposed in the literature: We mention abstract objective functions (the
name is used, e.g., in Kalai [18]; the concept appeared, as far as we know, in Williamson Hoke
[28] and in Kalai [16]), LP-type problems of Sharir and Welzl [25], and abstract optimization
problems of Gärtner [7].2 For more information on these frameworks and their relations see,
e.g., Gärtner and Welzl [12]. Here we will discuss acyclic unique-sink orientations, which are
also equivalent, up to some algorithmic subtleties that do not concern us here, to abstract
objective functions. (Actually Kalai in [16] speaks of orientations, not objective functions.
Interestingly, in that paper he used them not in a context of linear programming, but rather
for proving that a simple polytope is determined by its graph.)

Given a simple convex polytope P with vertex set V , the graph of P is the graph G(P )
with vertex set V and with edges corresponding to the edges (1-dimensional faces) of P . An
acyclic3 unique-sink orientation (AUSO) of P is an acyclic orientation of G(P ) such that the

1An attentive reader might have noticed that while here we call the function e

√
n subexponential, the

title implicitly calls e
n1/3

exponential. We believe that this is excusable: what one calls a mountain depends
very much on whether one lives in Holland or in Switzerland, for example. In any case, we always state the
complexity explicitly in this paper, and so no confusion should arise.

2Also the abstract polytopes studied by Adler and his coworkers, see e.g. [1], can be considered related. On
the other hand, the beautiful work of Aldous [2], which also deals with certain abstract objective functions on
cubes, uses a rather different model, where his provably optimal randomized algorithm has expected running
time of order 2n/2+o(n), and in particular, no subexponential algorithm exists.

3For some purposes, it is also very interesting to consider unique-sink orientations of polytopes that are not
necessarily acyclic (see, e.g., [22, 26, 23]), but acyclicity is natural in the context of linear programming and
we will consider exclusively the acyclic case.
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restriction of G(P ) to the vertex set of every nonempty face of P has exactly one sink (vertex
of outdegree zero). It is worth remarking that for a simple polytope P this implies that every
nonempty face also has unique source (vertex of indegree zero). A generic linear function
on P induces an AUSO: Orient every edge from the vertex with the larger value to the one
with the smaller value. The optimum vertex with the smallest value of the objective function
becomes the (unique) sink of G(P ). Typically, most of the AUSOs of a given polytope are
not given by any linear function.

Many pivot rules for the simplex algorithm make sense also for polytopes with AUSOs,
and as was mentioned above, the only known subexponential worst-case bound for linear
programming also works in this more general setting. Moreover, it was shown in [20] that
the analysis of RANDOM FACET in [17, 21] is nearly tight: There are AUSOs of the n-
dimensional cube for which the expected number of steps of RANDOM FACET is eΩ(

√
n ).

So, in order to improve the upper bound for RANDOM FACET for linear programming,
one would have to use some property of realizable AUSOs (those induced by actual linear
functions) not shared by general AUSOs. A nice initial step in this direction was made
by Gärtner [8], who showed that RANDOM FACET runs in expected quadratic number of
steps for all realizable AUSOs from the (very restricted) class used as a lower bound in [20].
However, extending such kind of analysis to arbitrary linear programs, or even only to all
linear programs whose polytopes are isomorphic to cubes, appears very challenging.

Random edge. One can also hope that some of the known pivoting rules, or a newly
designed one, could be shown to be polynomial, or at least substantially better than e

√
n,

even for arbitrary AUSOs.
Arguably the simplest randomized pivot rule is RANDOM EDGE: among all neighbors

of the current vertex with smaller value of the objective function, select one uniformly at
random as the next vertex. For example, this is the first among six pivot rules whose deeper
study was suggested by Kalai in his survey paper [18].

Despite the simplicity of RANDOM EDGE, very little has been known about its running
time, either for AUSOs or for actual linear programs. There are interesting special results,
such as an example showing that RANDOM EDGE can be exponential in the height (the
length of the shortest directed path to the sink) by Broder et al. [6] and an analysis of
RANDOM EDGE for d-dimensional polytopes with d+2 facets by Gärtner et al. [11], but the
best known lower bound in terms of the dimension and number of facets was Ω(n2) for the n-
dimensional Klee–Minty cube (Balogh and Pemantle [5], slightly improving on Gärtner, Henk,
Ziegler[10]). On the other hand, on the examples from [20], which are hard for RANDOM
FACET, RANDOM EDGE is easily seen to be at most quadratic. It was quite tempting to
believe that it could be polynomial for arbitrary AUSOs or, more modestly, polynomial on
all AUSOs of cubes. Williamson Hoke [28] (see also the survey paper of Tovey [27]) actually
conjectured that RANDOM EDGE is quadratic on AUSOs.

Here we partially destroy these hopes by constructing AUSOs on which RANDOM EDGE
almost surely needs mildly exponentially many steps to reach the sink. Here is a more precise
statement of the result.

Theorem 1 There is a positive constant c such that for all sufficiently large n there exists
an acyclic unique-sink orientation (AUSO) of the n-dimensional cube [0, 1]n such that the
algorithm RANDOM EDGE, started at a randomly chosen vertex, with probability at least
1 − e−cn1/3

makes at least ecn1/3
steps before reaching the sink.
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The organization of our paper is as follows. In Section 2 we collect useful facts about
AUSOs, in particular two important tools to create new AUSOs from old ones. We also discuss
the Klee-Minty cube, which is the main building block of our construction. In Section 3 we
describe a construction simpler than the one used in the proof of Theorem 1. We believe
that the main idea is best explained on this simpler construction. We conjecture that the
simpler construction also gives mildly exponentially long running time for RANDOM EDGE,
but a proof appears more difficult and technical than our proof of Theorem 1. Currently we
cannot claim any interesting lower bound at all for the simpler construction. In Section 4 we
analyze an auxiliary random process called random walk with reshuffles on the Klee-Minty
cube, whose relevance will be obvious from Section 3. In Section 5 we prove Theorem 1. We
conclude with a few remarks and open problems in Section 6.

2 Preliminaries

Preliminaries on AUSOs. Let ei ∈ {0, 1}n be the vector having 1 at position i and zeros
elsewhere. For zero-one vectors v and w, v + w is understood as the modulo 2 sum of v and
w. The notation (v, w) stands for the concatenation of the vectors v and w. The zero vector
of any dimension is denoted by 0 and the reader is trusted to figure out the correct length of
the vector.

From now on, by an AUSO we will mean an acyclic unique-sink orientation of the cube
[0, 1]n (we will not consider any other polytopes). The graph of the n-dimensional cube is
the usual n-dimensional (graph-theoretic) cube with vertex set {0, 1}n. The neighbors of a
vertex v are v + ei, i = 1, 2, . . . , n.

Formally we identify an n-dimensional AUSO A with its outmap sA: {0, 1}n → {0, 1}n,
where sA(v)i = 1 if the edge {v, v + ei} is oriented from v towards v + ei, and sA(v)i = 0
otherwise, i.e. if that edge is oriented from v + ei towards v. Hence we have sA(v)i =
1 − sA(v + ei)i. It is known that the outmap sA is a bijection for any AUSO A. For this and
other facts about unique sink orientations of cubes see, for example, [26].

We say that two AUSOs A and B are isomorphic if there is a bijection between the vertices
of A and the vertices of B that preserves the oriented edges.

Here are two lemmas, special cases of results of [23], which allow us to construct new
AUSOs from old ones. The first lemma uses the product structure of the cube.

Lemma 2 (Blowup construction) [23, Lemma 3] Let A be an m-dimensional AUSO and
for each u ∈ {0, 1}m let Bu be a d-dimensional AUSO. Then the map sC : {0, 1}m+d →
{0, 1}m+d defined by

sC(u, v) = (sA(u), sBu(v))

is the outmap of an (m + d)-dimensional AUSO C.

One can imagine that we blow up each vertex of A to a d-dimensional cube, which is ori-
ented according to some AUSO, generally different for different vertices. For us, however, a
complementary view will be more useful: We can obtain C by taking 2d copies of A and, for
each vertex u of A, interconnecting all the 2d copies of u by a d-dimensional cubic “frame”
oriented according to Bu. This is illustrated in Fig. 1.

The second lemma, the heart of our recursion, allows to change the orientation on a smaller
subcube under appropriate conditions. Let A be an n-dimensional AUSO and let S be a face
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Figure 1: The blowup construction

of the n-dimensional cube (isomorphic to an m-dimensional cube for some m ≤ n). We call
S a hypersink of A if all edges connecting vertices of S to vertices outside S are oriented
towards S.

Lemma 3 (Hypersink reorientation) [23, Lemma 5] Let A be an n-dimensional AUSO
and let S be an m-dimensional hypersink of A. If the edges within S are reoriented according
to an arbitrary m-dimensional AUSO B, and the orientations of all other edges are left as in
A, then the resulting orientation of the n-dimensional cube is an AUSO.

The Klee–Minty cube. A basic building block in the simple construction, as well as in the
proof of our main result, is the m-dimensional Klee-Minty cube KMm. First we describe it as
an AUSO. The usual definition is recursive. The zero-dimensional cube KM0 is just a vertex.
To construct KMm, one takes two copies K and K ′ of KMm−1 and flips the orientations of
all edges in one of them, say in K ′. Then one adds a perfect matching between the vertices
of K and K ′ having identical coordinates and orients these edges from K ′ towards K. See
Fig. 2 for a 3-dimensional illustration.

2

3

1

Figure 2: The 3-dimensional Klee-Minty cube. The dimensions are added in the indicated
order.
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Here is a more explicit, nonrecursive description of the outmap sKMm . Let v ∈ {0, 1}m

be a vertex, and let us suppose that in the above recursive construction of KMm, the new
coordinate (i.e. the direction of the edges connecting K to K ′) is always added to the end,
so that vm = 0 means that v lies in K and vm = 1 means that v lies in K ′. Then it is easy
to see that

sKMm(v) = vΣ,

where the ith coordinate of vΣ is (vm + vm−1 + · · · + vi) mod 2, i = 1, 2, . . . ,m.

3 A simpler construction

For clarity, we start our proof of Theorem 1 with describing a simpler construction, even
though we cannot show any interesting lower bounds for the performance of RANDOM EDGE
on it. We believe, however, that this simpler construction also gives mildly exponentially long
running time for RANDOM EDGE.

In this section our explanation will be somewhat informal. Let us suppose that we have
already constructed an n0-dimensional AUSO A0, with sink at 0, such that RANDOM EDGE
started at a random vertex of A0 almost surely needs a rather long time T0 to reach the sink.
We choose some suitable m = m(n0), say m =

√
n0, and for each vertex u of A0, we choose

an m-dimensional AUSO Bu by randomly permuting the coordinates of KMm, each of the m!
coordinate permutations having the same probability and the choices independent for different
u. We let C be the blowup of A0 by these Bu. So, according to our preferred view of the
blowup construction, we take 2m copies of A0 and interconnect them by the m-dimensional
frames Bu, the Klee–Minty cubes with permuted coordinates. All Bu have sink at 0, thus
in the same copy S of A0, and this copy of A0 is a hypersink in C. We now reorient this
hypersink: We form a new n0-dimensional AUSO A′

0, isomorphic to A0, by choosing a vector
x ∈ {0, 1}n0 uniformly at random and mapping each vertex v of A0 to the vertex (v+x) mod 2
of A′

0. (note that the sink of A′
0 is not at 0 but rather at the random vertex x!). We then

orient the hypersink S of C according to A′
0 and we denote the resulting (n0 +m)-dimensional

AUSO by A1.
We introduce some terminology for the following discussion. An edge of A1 is called a

• frame edge if it belongs to one of the 2n0 m-dimensional Klee–Minty frames,

• A0-edge if it belongs to one of the 2m − 1 identical copies of A0, and

• A′
0-edge if it belongs to the random isomorphic copy A′

0 of A0 placed to the hypersink.

Let us consider the behavior of RANDOM EDGE on A1. First we consider the phase
before the walk enters the hypersink (a random starting vertex almost surely doesn’t lie in
the hypersink). A step along a frame edge can be interpreted as a step of RANDOM EDGE
within the appropriate frame Bu, which is isomorphic to KMm. Each step along an A0-edge
(an A0-step) corresponds to a step of RANDOM EDGE within A0, but, crucially, an A0-step
also has an interpretation within KMm: If an A0-step goes from a vertex (u1, v) to a vertex
(u2, v) of A1, where u1 and u2 are adjacent in A0, we move from the frame Bu1 to the frame
Bu2 . Since A0 is acyclic, we never re-enter an already visited frame, and so we can think of
Bu2 as obtained from Bu1 by a random permutation of coordinates. So if v1 is the vertex
of KMm corresponding to v in the canonical isomorphism of KMm with Bu1 , and v2 is the
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vertex of KMm corresponding to v in the canonical isomorphism with Bu2 , then v2 is obtained
from v1 by a random permutation of coordinates. Thus RANDOM EDGE on A1 induces a
random process on KMm: each frame step corresponds to one step of RANDOM EDGE on
KMm, and each A0-step corresponds to passing from the current vertex to a vertex obtained
by a random permutation of coordinates (we call this a reshuffle step).

Conceptually, the hypersink S of A1 can be reached by two mechanisms:

• We reach the sink of some copy of A0. Then there will be no more reshuffles and we
have the usual RANDOM EDGE on the current frame that, as is well known, reaches
the sink of that frame in O(m2) steps.

• Alternatively, the hypersink is reached without entering the sink of any of the copies of
A0. This means that the random walk with reshuffles reaches the sink of KMm.

By the assumption of A0, the first mechanism needs at least T0 steps almost surely. Intuitively,
the second mechanism will also need quite long time, since the random walk with reshuffles is
typically going to last long, longer than T0, provided that reshuffles happen sufficiently often.
(The intuition is that even if, from the point of view of RANDOM EDGE on KMm, we got
quite “near the sink” at some moment, a reshuffle is likely going to ruin most of our progress
and move us to a vertex quite far away, again in terms of the progress of RANDOM EDGE,
not in terms of Hamming distance, say.)

So altogether we almost surely need at least T0 time before reaching the hypersink S.
Since S is a randomly reoriented A0, no matter where we enter it, the rest of the walk is
equivalent to RANDOM EDGE started at a random vertex of A0, and this is going to last
T0 steps almost surely. So the time at least doubles by passing from A0 to A1. If we iterate
this construction

√
n0 times, say, we obtain an AUSO of dimension n0 + m

√
n0 = 2n0 where

RANDOM EDGE will need 2
√

n0T0 steps.
The reason why we do not use the simple construction for the proof of our main result is

that, in this setting, the probability of a reshuffle could become too low. In the next section
we will show that a random walk with reshuffles on the Klee–Minty cube almost surely takes
exponential time provided that the probability of reshuffle is considerably larger than the
probability of a RANDOM EDGE step, but we cannot guarantee this condition in the simple
construction. Thus, after the analysis of a random walk with reshuffles, we present a more
complicated construction that gets around this obstacle.

4 Walk with reshuffles on the Klee-Minty cube

Let us introduce more formally the random walk with reshuffles discussed in the previous
section. The walk starts in a vertex v(0) of KMm chosen uniformly at random. Being at a
vertex v(i−1), the vertex v(i) is chosen as follows:

• With some probability p
(i)
step we make one step of RANDOM EDGE; that is, we choose

one of the edges going out from v(i−1) uniformly at random and go to the corresponding
adjacent vertex, which becomes v(i).

• With some probability p
(i)
resh we reshuffle: v(i) is obtained from v(i−1) by a random

permutation of the coordinates (all the possible m! permutations having the same prob-
ability).
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• With probability 1 − p
(i)
step − p

(i)
resh we do not move: v(i) = v(i−1).

We assume that p
(i)
resh ≥ presh and p

(i)
step ≤ pstep for all i, where pstep and presh are some given

parameters. The random choice of the outgoing edge and of the reshuffling permutation

are independent of all other random choices in the walk. The particular probabilities p
(i)
step

and p
(i)
resh depend on the current state of the random process. In the setting of the previous

section, these probabilities are determined by the current position of another random walk,
in a certain n-dimensional AUSO with n much larger than m.

The random walk with reshuffles ends when it reaches the sink (v(i) = 0). We want to
prove that under suitable restriction on pstep and presh, it almost surely needs exponentially
many steps:

Proposition 4 Suppose that presh ≥ 11pstep (the constant 11 is rather arbitrary; any suffi-
ciently large constant would do). Then with probability at least 1 − e−αm the random walk
with reshuffles makes at least eβm steps, where α and β are positive constants.

For a vertex v ∈ {0, 1}m we define the level `(v) as the number of ones in v. We note
that if V is a vertex of level `, then the vertex obtained by a random permutation of the
coordinates of v is a random vertex of level ` (with all

(m
`

)

choices for the positions of the `
ones having the same probability). First we need to bound from above the probability that
for a random vertex of level `, with ` in a certain range, one step of RANDOM EDGE in the
Klee–Minty cube decreases the level (we note that such a step can either increase the level
by 1 or decrease it by 1).

Lemma 5 Let ` be given with `0 ≤ ` ≤ m/8, where `0 is a sufficiently large constant. Let v
be a random vertex of KMm of level `, and let v′ be a random successor of v as in RANDOM
EDGE. Then the probability of `(v′) = `(v) − 1 is at most 0.4.

The constant 0.4 is certainly not optimal (and the actual bound depends on the rather
arbitrary choice of the upper bound m/8). For us it is sufficient to have the probability
bounded away from 1

2 .

Proof. The number of successors of v is the number of ones in the outmap sKMm(v) = vΣ.
If we choose the 1 at the ith position of vΣ, then v′i = 1 − vi and v′j = vj for j 6= i. So the
number of successors v′ of v with `(v′) = `(v) − 1 is the number of indices i with both vi = 1
and vΣ

i = 1. These i are the positions of ones in v that are followed by an even number of
ones in v, and their number is d`/2e, for every v of level `.

Now one could easily derive an explicit expression, involving products of binomial coeffi-
cients, for the number of v of level ` that have a given number of ones in vΣ, and prove the
lemma (or a more precise result) by suitable estimates. We present another proof with almost
no calculation, using a concentration result for the hypergeometric distribution.

It suffices to prove that with probability at least 0.9 the string vΣ has at least 2` ones.
For such strings, the probability of `(v ′) = `(v) − 1 is at most d`/2e/2` < 1

3 , so the overall
probability of decreasing the level is at most 0.1 + 0.9 · 1

3 = 0.4.
Let k1 > k2 > · · · > k` be the positions of the ` ones in v, for convenience numbered in de-

creasing order; as was remarked above, L = {k1, . . . , k`} is a random `-subset of {1, 2, . . . ,m}.
Let gi = ki−1 − ki denote the ith gap in L, with the convention k0 = m and k`+1 = 0. Then
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the number of ones in vΣ is g2 +g4 + · · ·+g2d`/2e, the total size of the “even gaps”. Let us con-
struct another `-element subset L′ = {k′

1, . . . , k
′
`} of {1, . . . ,m} by taking first the even gaps

and then the odd gaps. Namely, we set k ′
1 = g2, k′

2 = k′
1 + g4,. . . , k′

d`/2e = k′
d`/2e−1 + g2d`/2e,

k′
d`/2e+1 = k′

d`/2e + g1, k′
d`/2e+2 = k′

d`/2e+1 + g3, and so on. The correspondence of L and L′ is

bijective, and so L′ is also a random `-subset of {1, . . . ,m}.
The probability that vΣ has less than q = 2` ones equals the probability that the even gaps

in L sum to less than q, and this is also the probability that the first d`/2e gaps in L ′ sum to less
than q, which in turn is at most the probability that |L′ ∩ {1, 2, . . . , q}| > d`/2e. Here we can
apply a tail estimate for the hypergeometric distribution. The expected number of elements of
a random `-subset of {1, 2, . . . ,m} lying in {1, 2, . . . , q} is λ = `q/m, and the probability of at
least λ+t elements falling into {1, 2, . . . , q} is at most e−t2/2(λ+t/3); see, for example, the book
of Janson et al. [15], Theorem 2.10. In our situation we have q = 2`, t = `/2 − λ, and with
` ≤ m

8 we get λ ≤ `
4 and t ≥ `

4 . Then e−t2/2(λ+t/3) = e−t/(2λ/t+2/3) ≤ e−t/3 ≤ e−`/12 ≤ e−`0/12.
This can be made as small as desired by choosing `0 sufficiently large. Lemma 5 is proved. 2

Proof of Proposition 4. We consider the sequence W = (`(0), `(1), . . .), `(i) = `(v(i)), of
levels of the vertices in the random walk with reshuffles; this is a kind of random walk on
{0, 1, . . . ,m}. We assume that m is sufficiently large and, for simplicity of notation, that it
is divisible by 24. We define a “critical level” `crit = m/12.

First we claim that with probability at least 1− e−Ω(m), the walk starts above the critical
level. Indeed, the expected level of a random vertex in {0, 1}m is m

2 , and by the standard
Chernoff inequality, the probability of the random vertex having level smaller than m

2 − t is

at most e−t2/2m.
Let us call the ith step of W level-changing if i = 0 or `(i) 6= `(i−1) (that is, if v(i) was

obtained from v(i−1) by a RANDOM EDGE step in the Klee–Minty cube). If the random
walk with reshuffling on KMm does move at the ith step, i.e. if v(i) 6= v(i−1), then this move
is at least 11 times more likely to be a reshuffling than a RANDOM EDGE step by the
assumptions of the proposition. In particular, when the walk does move the first time after
the (j − 1)st level-changing step, it reshuffles with probability at least 11

12 . So with at least
this probability there is at least one reshuffling between the (j − 1)st level-changing step and
the jth level-changing step.

Let kj = `(ij) be the level at the jth level-changing step. Let us now assume kj−1 is in
the range [`0,

m
8 ], and let us estimate the probability of kj = kj−1 − 1. If there is a reshuffling

between the (j−1)st level-changing step and the jth level-changing step, which happens with
probability at least 11

12 , then by Lemma 5 this probability is at most 0.4. Hence the overall
probability of kj = kj−1 − 1 is at most

1

12
+

11

12
· 0.4 = 0.45,

and the conditional expectation of kj given kj−1 is at least kj−1+0.45(−1)+0.55·1 = kj−1+0.1.
So there is an expected drift of at least +0.1 per level-changing step.

If the walk starts above the critical level, which happens with high probability, it needs to
pass the critical level in order to reach 0 and finish. Let j0 be the smallest j with kj = `crit.
Let us call the level-changing steps j0, j0 + 1, . . . , j0 + m/24 the first attempt, and we call the
first attempt successful if it ends up below the critical level, i.e. if kj0+m/24 < `crit. If the first
attempt was not successful, we can define the second attempt similarly, starting at the first
level-changing step j1 ≥ j0 + m/24 with kj1 = `crit, and so on. We prove that each attempt
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succeeds with probability at most e−Ω(m); this will imply that exponentially many attempts
are needed with probability exponentially close to 1, and thus also the desired proposition.

Let the considered attempt start at the jth level-changing step, and for i = 0, 1, 2, . . . ,m/24,
we define Xi = kj+i − 0.1i; this is the level after i level-changing steps of the attempt minus
the expected drift. During the whole attempt the level stays in the range [`crit −m/24, `crit +
m/24] ⊆ [`0,m/8], and so the conditional expectation of Xi given Xi−1 is at least Xi−1. In
other words, the Xi form a submartingale (if the conditional expectation of Xi were equal
to Xi−1, we would get the perhaps more familiar notion of a martingale). As is well known
and easy to check, standard proofs of Azuma’s inequality (see, e.g., Alon and Spencer [3] or
Janson et al. [15]) also yield the lower tail estimate for a submartingale instead of a martin-
gale. In our case, we always have |Xi − Xi−1| ≤ 1.1, and Azuma’s inequality gives that the
probability of Xm/24 ≤ X0 − t = `crit − t is at most e−24t2/3m. A successful attempt requires
Xm/24 ≤ `crit − 0.1m/24, so we can set t = m/240 and we indeed obtain that the probability

of a successful attempt is e−Ω(m) as needed. Proposition 4 is proved. 2

5 The construction

Here we prove Theorem 1. The construction is quite similar to the one from Section 3 but in
one iteration we make k blowups by m-dimensional Klee–Minty cubes rather than one.

Let a sufficiently large n be given. We define integer parameters n0 = n/2, m = n1/3,
k = Cn1/3 for a sufficiently large constant C, and t = n/2km (for simplicity, let us assume
that the defining expressions indeed come out integral). We define a sequence of AUSO
A0, A1, A2, . . . , At, where dim(Ai) = n0+ikm. The final product At has dimension n0+tkm =
n.

We can take more or less any n0-dimensional AUSO for A0; as a tribute to Klee and Minty
let it be KMn0 .

Having defined Ai−1, we construct Ai by describing the orientation of each edge. The
vertex set of Ai is {0, 1}ikm+n0 . We partition the coordinates into blocks B0, B1, . . . , Bk: the
initial block B0 has length (i − 1)km + n0, and it is followed by the blocks B1, B2, . . . , Bk of
length m each. For an edge e, the coordinate where the two endpoints of e differ is called
the label of e. The orientation of an edge will partly depend on its label. As in the simple
construction, we fix an AUSO A′

i−1 isomorphic to Ai−1 and with a randomly placed sink. An
edge of Ai with a label in B0 is oriented as the corresponding edge in Ai−1 if none of the
Bj, j = 1, . . . , k is all zeros, and otherwise, it is oriented as in A′

i−1. To orient the edges
with labels in other blocks, we choose a Klee-Minty cube Ku,j by randomly permuting the
coordinates of KMm for each u ∈ {0, 1}|B0 | and each j = 1, 2, . . . , k. Note that each Ku,j has
its sink at 0. We orient the edges with label in block Bj according to these Klee-Minty cubes
(so the orientation of an edge in Bj depends only on the coordinates in B0 and Bj).

For v ∈ {0, 1}ikm+n0 , let v[j] denote the restriction of v to the block Bj , j = 0, 1, . . . , k.
Formally, an edge of label l from a vertex v = (v[0], v[1], . . . , v[k]) is oriented towards v if and
only if

• l ∈ B0, v[j] 6= 0 for every j = 1, . . . , k and the edge of label l is oriented towards v[0] in
Ai−1, or

• l ∈ B0, v[j] = 0 for some j = 1, . . . , k and the edge of label l is oriented towards v[0] in
A′

i−1, or
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• l ∈ Bj for some j ∈ {1, 2, . . . , k} and the edge of label l is oriented towards v[j] in Kv[0],j.

Lemma 6 Ai is an AUSO.

Proof. We construct Ai from Ai−1 using k iterations of the blowup construction (Lemma 2)
and hypersink reorientation (Lemma 3). To this end, we decompose the construction of Ai

from Ai−1 into k phases, adding m dimensions in each phase. Let A0
i = Ai−1 and let Aj

i be

the AUSO defined after the jth phase, of dimension((i− 1)k + j)m + n0. To obtain Aj+1
i , we

first blow up the vertices of Aj
i by some copies of KMm. More precisely, with the notation of

Lemma 2 we take A = Aj
i and Bu = Ku[0],j+1. Then we reorient the (((i − 1)k + j)m + n0)-

dimensional hypersink spanned by the sinks of these Klee–Minty cubes using the following
AUSO Cj

i . Letting C0
i = A′

i−1, Cj
i is a blowup of Cj−1

i for j = 1, . . . , k. More precisely, with

the notation of Lemma 2, let A = C j−1
i and Bu = Ku[0],j. 2

Let us define some terminology. Let S be the set of the vertices v with v[j] = 0 for some
j = 1, . . . , k. Note that no (directed) walk can leave S. If the label of an edge is in the block
B0, then depending on whether its endpoints are in S or not, we call it an A′

i−1-edge or an
Ai−1-edge, respectively. An edge with label in Bj , j = 1, 2, . . . , k, is called a j-frame edge.

Proof of Theorem 1. We prove that with probability 1 − e−Ω(n1/3), RANDOM EDGE
started at a random vertex of the AUSO At constructed above needs at least eΩ(n1/3) steps.
The probability in this statement is with respect to the random choices of the algorithm, the
random choice of the initial vertex, and the random choices involved in the construction of
At. This implies, by a consideration in the spirit of Fubini’s theorem, that there is a specific
instance of At with the behavior of RANDOM EDGE as advertised in Theorem 1.

We prove the following statement for all i = 0, 1, . . . , t by induction on i: Assuming
that the constant C in the definition of k and t is sufficiently large, the following holds with
probability at least 1− pi, where pi = 2−3t+2i: when RANDOM EDGE is started at a random
vertex of Ai, the first 2i steps visit only vertices with outdegree at least k.

In particular, for i = t we get that with probability at least 1 − 2−t = 1 − e−Ω(n1/3)

RANDOM EDGE on At makes at least 2t = eΩ(n1/3) steps, which implies Theorem 1.
For i = 0 the statement holds, since a random vertex of any n0-dimensional AUSO has

outdegree less than k with probability 1
2n0

∑k−1
i=0

(n0
i

)

= e−Ω(n) (here we use that the outmap of
any AUSO is a bijection, so the number of vertices with outdegree k is

(n
k

)

, plus the standard
Chernoff inequality.)

For the inductive step from i − 1 to i, let us consider the random walk W of RANDOM
EDGE on Ai. The walk W starts outside S with probability at least 1 − k2−m, since the
cardinality of S is 2ikm+n0 −2(i−1)km+n0(2m−1)k. The steps along the Ai−1-edges (Ai−1-steps
for short) made before reaching a vertex of S define a trajectory W0 of RANDOM EDGE on
Ai−1, and for each j = 1, 2, . . . , k, the steps using the j-frame edges and the Ai−1-steps define
a random walk with reshuffles on KMm, which we call Rj . By the inductive assumption, the
following statement (∗) holds with probability at least 1 − pi−1:

(∗) The first 2i−1 steps of W0 visit only vertices of outdegree at least k in Ai−1 and, in
particular, they do not reach the sink.

For a vertex v of Ai not lying in S, let dj denote the number of outgoing j-frame edges and
let d0 be the number of outgoing Ai−1-edges. If RANDOM EDGE on Ai is at v, then the
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probability of a reshuffle in the corresponding step of Rj is equal d0/d, where d = d0 + d1 +
· · · + dk, while the probability of a RANDOM EDGE step in Rj is dj/d. We have dj ≤ m,
and by (∗), we may assume d0 ≥ k during the first 2i−1 steps. Since k = Cm ≥ 11m, as
long as d0 ≥ k holds, the assumptions of Proposition 4 are met by Rj. So assuming (∗), with
probability at least 1 − e−αm Rj does not reach the sink before step min(2i−1, eβm) = 2i−1

for large enough C (since i ≤ t = n1/3/2C).
After the first 2i−1 steps we cannot guarantee anymore that reshuffles will be frequent

enough in Rj . But all vertices of Ai outside S have at least one outgoing j-frame edge for
every j = 1, 2, . . . , k, and hence the outdegree is still at least k until one of the Rj reaches its
sink. At that very moment, i.e. when W first reaches a vertex v ∈ S, v[0] is a random vertex of
Ai−1 and further moves induce a trajectory W ′

0 of RANDOM EDGE on A′
i−1, the isomorphic

copy of Ai−1 with randomly placed sink. By inductive assumption, with probability at least
1−pi−1, at least 2i−1 steps of W ′

0 are made through vertices of outdegree at least k in A′
i−1. If

this happens then, of course, W also makes at least 2i−1 steps through vertices with outdegree
at least k. Altogether we showed that W makes at least 2i steps through vertices of outdegree
at least k with probability at least 1− k2−m − 2pi−1 − ke−αm. With a sufficiently large C we
have k2−m + ke−αm < 2−3t, and so k2−m + 2pi−1 + ke−αm < 2−3t+2i−1 + 2−3t < 2−3t+2i = pi.
This finishes the induction step and concludes the proof of Theorem 1. 2

6 Remarks and further work

The main message of our result is that acyclicity and the unique sink property on every face
are not enough for RANDOM EDGE to succeed fast. A pessimist would now start to look
for possible extensions and try to make the construction into an actual linear program. An
optimist would search for further combinatorial properties which could enhance the analysis
of the running time.

1. For the pessimist. We do not expect our methods to yield realizable AUSOs that
would be hard for RANDOM EDGE. However, perhaps one could modify the construc-
tion so that it satisfies some further necessary conditions for realizability. For example,
one can consider the Holt–Klee condition [14], which requires that there are k vertex-
disjoint oriented paths from the source to the sink in every k-dimensional face. This
is known to hold for all realizable AUSOs of arbitrary polytopes but not necessarily
for general AUSOs, even in the case of the 3-cube. In fact a significant percentages
of the 3-cubes in our construction do not satisfy the Holt-Klee condition thus are not
realizable. A first task for a pessimist would be to create a slow AUSO in which every
3-cube is realizable.

2. For the optimist. It seems that only technical obstacles prevent improving the lower
bound to eΩ(

√
n ). On the other hand, getting substantially above this looks more chal-

lenging, and perhaps one might now try to work more on a nontrivial upper bound.
This is particularly desirable, since currently there are no tools to analyze the running
time of RANDOM EDGE on actual linear programs, in particular there are no non-
trivial, i.e. o(2n), upper bounds known for cubes. A method providing a 2o(n) analysis
of RANDOM EDGE on AUSOs could be extremely useful when coupled with other
combinatorial properties satisfied by linear programs (like the Holt-Klee condition).
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3. Several deterministic algorithms, like BottomAntipodal and BottomTop suggested by
Volker Kaibel were given exponential lower bounds recently [24] by a deterministic
construction in a spirit similar to our construction. We believe that our construction,
perhaps in combination with other known constructions, could also provide strong lower
bounds for other deterministic/randomized pivoting rules. This is a topic for further
research.
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