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Abstract

We prove that RANDOM EDGE, the simplex algo-
rithm that always chooses a random improving edge to
proceed on, can take a mildly exponential number of steps
in the model of abstract objective functions (introduced
by Wiliamson Hoke [27] and by Kalai [16] under differ-
ent names). We define an abstract objective function on
the n-dimensional cube for which the algorithm, started
at a random vertex, needs at least exp(const · n1/3) steps
with high probability. The best previous lower bound was
quadratic. So in order for RANDOM EDGE to succeed
in polynomial time, geometry must help.

1. Introduction

The simplex method from 1947 is the oldest linear
programming algorithm. It can safely be declared one
of the most important algorithms of the twentieth cen-
tury, and probably it still remains the linear program-
ming algorithm most widely used in practice. Since its
discovery, numerous variants of it (pivot rules) have
been proposed, and many of them work quite well in
practice. However, no variant is known to be polyno-
mial or close to polynomial in the worst case, and many
variants have exponential lower bounds in the worst
case.

While linear programming can be solved in time
polynomially bounded in the bit size of the input, a
major open problem is its complexity in the unit-cost
model. That is, what is the smallest f(n, m) such that
any linear program in n variables and with m con-
straints can be solved in time at most f(n, m) if all
arithmetic operations are assumed to incur unit cost?
It is natural to look for good algorithms in this model
among simplex-type algorithms, since a pivot step in

the simplex method can usually be implemented with
polynomially many arithmetic operations.

Pivot rules and worst-case bounds. Geometri-
cally, the simplex method can be viewed as follows: We
have a convex polyhedron P ⊂ Rd (given as an in-
tersection of n halfspaces) and a linear objective func-
tion c, and we seek a vertex of P minimizing c. There
is no substantial loss of generality in assuming that P
is bounded and simple and that no two vertices of P
have the same value of c. A simplex algorithm starts
at some initial vertex of P and at each step it moves
from the current vertex v along an edge of P to an-
other vertex w with c(w) < c(v) (this is called a pivot
step). Typically there are several possible choices of w
at each step, and the way of selecting one of them is
called a pivot rule. The simplex algorithm terminates
for every pivot rule, of course, but the difference in the
number of steps for different pivot rules may be enor-
mous.

Earlier results on the worst-case complexity of var-
ious pivot rules are rather discouraging. For Dantzig’s
original pivot rule, Klee and Minty [19] constructed a
class of examples where this rule leads to an exponen-
tial number of steps. It is a polytope isomorphic to the
cube [0, 1]n, but the cube is slightly deformed in such a
way that there is a Hamiltonian monotone path, that
is, a directed path visiting all vertices such that a suit-
able linear objective function decreases along it. (We
will discuss these Klee–Minty cubes in more detail since
they are a key building block in our construction.) Sub-
sequently such worst-case examples were found by vari-
ous researchers for almost all known determinictic pivot
rules; see Goldfarb [13] for an overview and Amenta
and Ziegler [4] for a new unified view of these exam-
ples.

A substantial progress in worst-case upper bounds
was made using randomized pivot rules. Kalai [17] and



independently Matoušek, Sharir, and Welzl [21] estab-

lished a subexponential1 upper bound, eO(
√

m log n ),
for the expected number of pivot steps of a random-
ized pivot rule commonly called RANDOM FACET.
This bound is still very far from being polynomial but
a substantial improvement over straightforward expo-
nential bounds.

Abstract objective functions and similar frame-
works. The subexponential analysis of RANDOM
FACET and similar pivot rules relies on rather sim-
ple and general properties of the objective function on
the polytope. It can be phrased in an axiomatic frame-
work that encompasses linear programming but also
a number of other geometric optimization problems,
such as the smallest enclosing ball for a given set of
points in Rn. Several such frameworks have actually
been proposed in the literature: We mention abstract
objective functions (the name is used, e.g., in Kalai [18];
the concept appeared, as far as we know, in Wiliamson
Hoke [27] and in Kalai [16]), LP-type problems of Sharir
and Welzl [25], and abstract optimization problems of
Gärtner [7].2 For more information on these frame-
works and their relations see, e.g., Gärtner and Welzl
[12]. Here we will discuss acyclic unique-sink orienta-
tions, which are also equivalent, up to some algorithmic
subtleties that do not concern us here, to abstract ob-
jective functions. (Actually Kalai in [16] speaks of ori-
entations, not objective functions. Interestingly, in that
paper he used them not in a context of linear program-
ming, but rather for proving that a simple polytope is
determined by its graph.)

Given a simple convex polytope P with vertex set
V , the graph of P is the graph G(P ) with vertex
set V and with edges corresponding to the edges (1-
dimensional faces) of P . An acyclic3 unique-sink orien-
tation (AUSO) of P is an acyclic orientation of G(P )
such that the restriction of G(P ) to the vertex set of
every face of P has exactly one sink (vertex of out-
degree zero). A generic linear function on P induces

1 An attentive reader might have noticed that while here we call

the function e

√

n subexponential, the title implicitly calls e
n
1/3

exponential. We believe that this is excusable: what one calls
a mountain depends very much on whether one lives in Hol-
land or in Switzerland, for example.

2 Also the abstract polytopes studied by Adler and his cowork-
ers, see e.g. [1], can be considered related. On the other hand,
the beautiful work of Aldous [2], which also deals with cer-
tain abstract objective functions on cubes, uses a rather dif-
ferent model, where provably no subexponential algorithm ex-
ists.

3 Forsomepurposes, it isalsovery interestingtoconsiderunique-
sink orientations of polytopes that are not necessarily acyclic
(see, e.g., [22, 26, 23]), but acyclicity is natural in the context
of the simplex algorithm and we will consider exclusively the
acyclic case.

an AUSO: Orient every edge from the vertex with the
larger value to the one with the smaller value. The op-
timum vertex with the smallest value of the objective
function becomes the (unique) sink of G(P ). Typically,
most of the AUSOs of a given polytope are not given
by any linear function.

Many pivot rules for the simplex algorithm
make sense also for polytopes with AUSOs, and
as was mentioned above, the only known subexpo-
nential worst-case bound for linear programming
also works in this more general setting. Moreover,
it was shown in [20] that the analysis of RAN-
DOM FACET in [17, 21] is nearly tight: There are
AUSOs of the n-dimensional cube for which RAN-
DOM FACET really requires eΩ(

√
n ) steps. So,

in order to improve the upper bound for RAN-
DOM FACET for linear programming, one would have
to use some property of realizable AUSOs (those in-
duced by actual linear functions) not shared by gen-
eral AUSOs. A nice initial step in this direction
was made by Gärtner [8], who showed that RAN-
DOM FACET runs in expected quadratic number
of steps for all realizable AUSOs from the (very re-
stricted) class used as a lower bound in [20]. However,
extending such kind of analysis to arbitrary lin-
ear programs, or even to all linear programs whose
polytopes are isomorphic to cubes, appears very chal-
lenging.

Random edge. One can also hope that some of the
known pivoting rules, or a newly designed one, could be
shown to be polynomial, or at least substantially bet-
ter than e

√
n, even for arbitrary AUSOs.

Arguably the simplest randomized pivot rule is
RANDOM EDGE: among all neighbors of the cur-
rent vertex with smaller value of the objective func-
tion, select one uniformly at random as the next ver-
tex. For example, this is the first among six pivot rules
whose deeper study was suggested by Kalai in his sur-
vey paper [18].

Despite the simplicity of RANDOM EDGE, very lit-
tle has been known about its running time, either for
AUSOs or for actual linear programs. There are inter-
esting special results, such as an example showing that
RANDOM EDGE can be exponential in the height (the
length of the shortest directed path to the sink) by
Broder et al. [6] and an analysis of RANDOM EDGE
for d-dimensional polytopes with d+2 facets by Gärtner
et al. [11], but the best known lower bound in terms of
the dimension and number of facets was Ω(n2) for the
n-dimensional Klee–Minty cube (Balogh and Pemantle
[5], slightly improving on Gärtner, Henk, Ziegler[10]).
On the other hand, on the examples from [20], which
are hard for RANDOM FACET, RANDOM EDGE is



easily seen to be at most quadratic. It was quite tempt-
ing to believe that it could be polynomial for arbitrary
AUSOs or, more modestly, polynomial on all AUSOs
of cubes.

Here we partially destroy these hopes by construct-
ing AUSOs on which RANDOM EDGE almost surely
needs mildly exponentially many steps to reach the
sink. Here is a more precise statement of the result.

Theorem 1 There is a positive constant c such that for
all sufficiently large n there exists an acyclic unique-sink
orientation (AUSO) of the n-dimensional cube [0, 1]n

such that the algorithm RANDOM EDGE, started at
a randomly chosen vertex, with probability at least 1 −
e−cn1/3

makes at least ecn1/3

steps before reaching the
sink.

Remarks and further work.

1. It seems that only technical obstacles prevent im-
proving the lower bound to eΩ(

√
n ). On the other

hand, getting substantially above this looks more
challenging, and perhaps one might now try to
work more on a nontrivial upper bound.

2. Several deterministic algorithms, like BottomAn-
tipodal and BottomTop suggested by Volker
Kaibel were given exponential lower bounds re-
cently by a deterministic construction in a
spirit similar to our construction [24]. We be-
lieve that our construction, perhaps in combina-
tion with other known constructions, could also
provide strong lower bounds for other determinis-
tic/randomized pivoting rules. This is a topic for
further research.

3. We do not expect our methods to yield realiz-
able AUSOs that would be hard for RANDOM
EDGE. However, perhaps one could modify the
construction so that it satisfies some further neces-
sary conditions for realizability. For example, one
can consider the Holt–Klee condition [14], which
requires that there are k vertex-disjoint oriented
paths from the source to the sink in every k-
dimensional face. This is known to hold for all real-
izable AUSOs of arbitrary polytopes but not nec-
essarily for general AUSOs, even in the case of the
3-cube.

2. Preliminaries and a simpler construc-

tion

We begin with a construction simpler than the one
used in the proof of Theorem 1. We believe that the
main idea is best explained on this simpler construc-
tion. We conjecture that the simpler construction also

gives mildly exponentially long running time for RAN-
DOM EDGE, but a proof appears more difficult and
technical than our current proof of Theorem 1.

Preliminaries on AUSOs. Let ei ∈ {0, 1}n be the
vector having 1 at position i and zeros elsewhere. For
zero-one vectors v and w, v + w is understood as the
modulo 2 sum of v and w. The notation (v, w) stands
for the concatenation of the vectors v and w. The zero
vector of any dimension is denoted by 0 and the reader
is trusted to figure out the correct length of the vector.

From now on, by an AUSO we will mean an acyclic
unique-sink orientation of the cube [0, 1]n (we will not
consider any other polytopes). The graph of the n-
dimensional cube is the usual n-dimensional (graph-
theoretic) cube with vertex set {0, 1}n. The neighbors
of a vertex v are v + ei, i = 1, 2, . . . , n.

Formally we identify an n-dimensional AUSO A
with its outmap sA: {0, 1}n → {0, 1}n, where sA(v)i =
1 if the edge {v, v + ei} is oriented from v towards
v + ei, and sA(v)i = 0 otherwise, i.e. if that edge
is oriented from v + ei towards v. Hence we have
sA(v)i = 1−sA(v+ei)i. It is known that the outmap sA

is a bijection for any AUSO A. For this and other facts
about unique sink orientations of cubes see, for exam-
ple, [26].

We say that two AUSO A and B are isomorphic
if there is a bijection between the vertices of A and
the vertices of B that preserves the oriented edges. We
note that there are 2nn! isomorphic copies of a single
n-dimensional AUSO, and n! among them (induced by
permutations of coordinates) have their sink at 0.

Here are two lemmas, special cases of results of [23],
which allow us to construct new AUSOs from old ones.
The first lemma uses the product structure of the cube.

Lemma 2 (Blowup construction) [23, Lemma
3] Let A be an m-dimensional AUSO and for each
u ∈ {0, 1}m let Bu be a d-dimensional AUSO. Then the
map sC : {0, 1}m+d → {0, 1}m+d defined by

sC(u, v) = (sA(u), sBu(v))

is the outmap of an (m + d)-dimensional AUSO C.

One can imagine that we blow up each vertex of A to
a d-dimensional cube, which is oriented according to
some AUSO, generally different for different vertices.
For us, however, a complementary view will be more
useful: We can obtain C by taking 2d copies of A and,
for each vertex u of A, interconnecting all the 2d copies
of u by a d-dimensional cubic “frame” oriented accord-
ing to Bu. This is illustrated in Fig. 1.

The second lemma, the heart of our recursion, al-
lows to change the orientation on a smaller subcube un-
der appropriate conditions. Let A be an n-dimensional
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Figure 1. The blowup construction

AUSO and let S be a face of the n-dimensional cube
(isomorphic to an m-dimensional cube for some m ≤
n). We call S a hypersink of A if all edges connect-
ing vertices of S to vertices outside S are oriented to-
wards S.

Lemma 3 (Hypersink reorientation) [23, Lemma
5] Let A be an n-dimensional AUSO and let S be an m-
dimensional hypersink of A. If the edges within S are re-
oriented according to an arbitrary m-dimensional AUSO
B, and the orientations of all other edges are left as in A,
then the resulting orientation of the n-dimensional cube
is an AUSO.

The Klee–Minty cube. A basic building block in the
simple construction, as well as in the proof of our main
result, is the m-dimensional Klee-Minty cube KMm.
First we describe it as an AUSO. The usual defini-
tion is recursive. The zero-dimensional cube KM0 is
just a vertex. To construct KMm, one takes two copies
K and K ′ of KMm−1 and flips the orientations of all
edges in one of them, say in K ′. Then one adds a per-
fect matching between the vertices of K and K ′ hav-
ing identical coordinates and orients these edges from
K ′ towards K. See Fig. 2 for a 3-dimensional illustra-
tion.

Here is a more explicit, nonrecursive description of
the outmap sKMm . Let v ∈ {0, 1}m be a vertex, and
let us suppose that in the above recursive construction
of KMm, the new coordinate (i.e. the direction of the
edges connecting K to K ′) is always added to the end,
so that vm = 0 means that v lies in K and vm = 1
means that v lies in K ′. Then it is easy to see that

sKMm(v) = vΣ,

where the ith coordinate of vΣ is (vm + vm−1 + · · · +
vi) mod 2, i = 1, 2, . . . , m.

2

3

1

Figure 2. The 3-dimensional Klee-Minty cube.

The dimensions are added in the indicated or-

der.

A simpler construction. In this subsection our ex-
planation will be somewhat informal. Let us suppose
that we have already constructed an n0-dimensional
AUSO A0, with sink at 0, such that RANDOM EDGE
started at a random vertex of A0 almost surely needs a
rather long time T0 to reach the sink. We choose some
suitable m = m(n0), say m =

√
n0, and for each ver-

tex u of A0, we choose an m-dimensional AUSO Bu by
randomly permuting the coordinates of KMm, each of
the m! coordinate permutations having the same prob-
ability and the choices independent for different u. We
let C be the blowup of A0 by these Bu. So, accord-
ing to our preferred view of the blowup construction,
we take 2m copies of A0 and interconnect them by the
m-dimensional frames Bu, the Klee–Minty cubes with
permuted coordinates. All Bu have sink at 0, thus in
the same copy S of A0, and this copy of A0 is a hy-
persink in C. We now reorient this hypersink: We form



a new n0-dimensional AUSO A′
0 by selecting one of

the 2n0n0! isomorphic copies of A0 uniformly at ran-
dom (note that the sink of A′

0 is not at 0 but rather
at a random vertex!). We then orient the hypersink
S of C according to A′

0 and we denote the resulting
(n0 + m)-dimensional AUSO by A1.

We introduce some terminology for the following dis-
cussion. An edge of A1 is called a

• frame edge if it belongs to one of the 2n0 m-
dimensional Klee–Minty frames,

• A0-edge if it belongs to one of the 2m−1 identical
copies of A0, and

• A′
0-edge if it belongs to the random isomorphic

copy A′
0 of A0 placed to the hypersink.

Let us consider the behavior of RANDOM EDGE on
A1. First we consider the phase before the walk enters
the hypersink (a random starting vertex almost surely
doesn’t lie in the hypersink). A step along a frame
edge can be interpreted as a step of RANDOM EDGE
within the appropriate frame Bu, which is isomorphic
to KMm. Each step along an A0-edge (an A0-step) cor-
responds to a step of RANDOM EDGE within A0, but,
crucially, an A0-step also has an interpretation within
KMm: If an A0-step goes from a vertex (u1, v) to a ver-
tex (u2, v) of A1, where {u1, u2} is an edge of A0, we
move from the frame Bu1 to the frame Bu2 . Since A0 is
acyclic, we never re-enter an already visited frame, and
so we can think of Bu2 as obtained from Bu1 by a ran-
dom permutation of coordinates. So if v1 is the vertex
of KMm corresponding to v in the canonical isomor-
phism of KMm with Bu1 , and v2 is the vertex of KMm

corresponding to v in the canonical isomorphism with
Bu2 , then v2 is obtained from v1 by a random permuta-
tion of coordinates. Thus RANDOM EDGE on A1 in-
duces a random process on KMm: each frame step cor-
responds to one step of RANDOM EDGE on KMm,
and each A0-step corresponds to passing from the cur-
rent vertex to a vertex obtained by a random permu-
tation of coordinates (we call this a reshuffle step).

Conceptually, the hypersink S of A1 can be reached
by two mechanisms:

• We reach the sink of some copy of A0. Then there
will be no more reshuffles and we have the usual
RANDOM EDGE on the current frame that, as
is well known, reaches the sink of that frame in
O(m2) steps.

• Alternatively, the hypersink is reached without
entering the sink of any of the copies of A0.
This means that the random walk with reshuffles
reaches the sink of KMm.

By the assumption of A0, the first mechanism needs
at least T0 steps almost surely. Intuitively, the second
mechanism will also need quite long time, since the ran-
dom walk with reshuffles is typically going to last long,
longer than T0, provided that reshuffles happen suffi-
ciently often. (The intuition is that even if, from the
point of view of RANDOM EDGE on KMm, we got
quite “near the sink” at some moment, a reshuffle is
likely going to ruin most of our progress and move us to
a vertex quite far away, again in terms of the progress
of RANDOM EDGE, not in terms of Hamming dis-
tance, say.)

So altogether we almost surely need at least T0 time
before reaching the hypersink S. Since S is a randomly
reoriented A0, no matter where we enter it, the rest
of the walk is equivalent to RANDOM EDGE started
at a random vertex of A0, and this is going to last
T0 steps almost surely. So the time at least doubles
by passing from A0 to A1. If we iterate this construc-
tion

√
n0 times, say, we obtain an AUSO of dimension

n0 + m
√

n0 = 2n0 where RANDOM EDGE will need

2
√

n0T0 steps.
The reason why we do not use the simple construc-

tion for the proof of our main result is that, in this set-
ting, the probability of a reshuffle could become too low.
In the next section we will show that a random walk
with reshuffles on the Klee–Minty cube almost surely
takes exponential time provided that the probability of
reshuffle is considerably larger than the probability of a
RANDOM EDGE step, but we cannot guarantee this
condition in the simple construction. Thus, after the
analysis of a random walk with reshuffles, we present
a more complicated construction that gets around this
obstacle.

3. Walk with reshuffles on the Klee-

Minty cube

Let us introduce more formally the random walk
with reshuffles discussed in the previous section. The
walk starts in a vertex v(0) of KMm chosen uniformly at
random. Being at a vertex v(i−1), the vertex v(i) is cho-
sen as follows:

• With some probability p
(i)
step we make one step of

RANDOM EDGE; that is, we choose one of the
edges going out from v(i−1) uniformly at random
and go to the corresponding adjacent vertex, which
becomes v(i).

• With some probability p
(i)
resh we reshuffle: v(i) is ob-

tained from v(i−1) by a random permutation of the
coordinates (all the possible m! permutations hav-
ing the same probability).



• With probability 1− p
(i)
step − p

(i)
resh we do not move:

v(i) = v(i−1).

We assume that p
(i)
resh ≥ presh and p

(i)
step ≤ pstep for

all i, where pstep and presh are some given parame-
ters. The random choice of the up-going edge and of
the reshuffling permutation are independent of all other
random choices in the walk. The particular probabili-

ties p
(i)
step and p

(i)
resh depend on the current state of the

random process. In the setting of the previous section,
these probabilities are determined by the current posi-
tion of another random walk, in a certain n-dimensional
AUSO with n much larger than m.

The random walk with reshuffles ends when it
reaches the sink (v(i) = 0). We want to prove that un-
der suitable restriction on pstep and presh, it almost
surely needs exponentially many steps:

Proposition 4 Suppose that presh ≥ 11pstep (the con-
stant 11 is rather arbitrary; any sufficiently large con-
stant would do). Then with probability at least 1 − e−αm

the random walk with reshuffles makes at least eβm steps,
where α and β are positive constants.

For a vertex v ∈ {0, 1}m we define the level `(v) as
the number of ones in v. We note that if V is a ver-
tex of level `, then the vertex obtained by a random
permutation of the coordinates of v is a random ver-
tex of level ` (with all

(

m
`

)

choices for the positions of
the ` ones having the same probability). First we need
to bound from above the probability that for a ran-
dom vertex of level `, with ` in a certain range, one
step of RANDOM EDGE in the Klee–Minty cube de-
creases the level (we note that such a step can either
increase the level by 1 or decrease it by 1).

Lemma 5 Let ` be given with `0 ≤ ` ≤ m/8, where `0

is a sufficiently large constant. Let v be a random vertex
of KMm of level `, and let v′ be a random successor of v
as in RANDOM EDGE. Then the probability of `(v′) =
`(v) − 1 is at most 0.4.

The constant 0.4 is certainly not optimal (and the
actual bound depends on the rather arbitrary choice of
the upper bound m/8). For us it is sufficient to have
the probability bounded away from 1

2 .

Proof. The number of successors of v is the number
of ones in the outmap sKMm

(v) = vΣ. If we choose the
1 at the ith position of vΣ, then v′i = 1 − vi and v′j =
vj for j 6= i. So the number of successors v′ of v with
`(v′) = `(v) − 1 is the number of indices i with both
vi = 1 and vΣ

i = 1. These i are the positions of ones
in v that are followed by an even number of ones in v,
and their number is d`/2e, for every v of level `.

Now one could easily derive an explicit expres-
sion, involving products of binomial coefficients, for the

number of v of level ` that have a given number of
ones in vΣ, and prove the lemma (or a more precise re-
sult) by suitable estimates. We present another proof
with almost no calculation, using a concentration re-
sult for the hypergeometric distribution.

It suffices to prove that with probability at least 0.9
the string vΣ has at least 2` ones. For such strings, the
probability of `(v′) = `(v) − 1 is at most d`/2e/2` <
1
3 , so the overall probability decreasing the level is at
most 0.1 + 0.9 · 1

3 = 0.4.
Let k1 > k2 > · · · > k` be the positions of the ` ones

in v, for convenience numbered in decreasing order; as
was remarked above, L = {k1, . . . , k`} is a random `-
subset of [m]. Let gi = ki−1 − ki denote the ith gap in
L, with the convention k0 = m and k`+1 = 0. Then the
number of ones in vΣ is g2 + g4 + · · · + g2d`/2e, the to-
tal size of the “even gaps”. Let us construct another `-
element subset L′ = {k′

1, . . . , k
′
`} of [m] by taking first

the even gaps and then the odd gaps. Namely, we set
k′
1 = g2, k′

2 = k′
1 + g4,. . . , k′

d`/2e = k′
d`/2e−1 + g2d`/2e,

k′
d`/2e+1 = k′

d`/2e + g1, k′
d`/2e+2 = k′

d`/2e+1 + g3, and so

on. The correspondence of L and L′ is bijective, and so
L′ is also a random `-subset of [m].

The probability that vΣ has less than q = 2` ones
equals the probability that the even gaps in L sum to
less than q, and this is also the probability that the first
d`/2e gaps in L′ sum to less than q, which in turn is
at most the probability that |L′∩ [q]| > d`/2e. Here we
can apply a tail estimate for the hypergeometric distri-
bution. The expected number of elements of a random
`-subset of [m] lying in [q] is λ = `q/m, and the prob-
ability of at least λ + t elements falling into [q] is at

most e−t2/2(λ+t/3); see, for example, the book of Jan-
son et al. [15], Theorem 2.10. In our situation we have
q = 2`, t = `/2− λ, and with ` ≤ m

8 we get λ ≤ `
4 and

t ≥ `
4 . Then e−t2/2(λ+t/3) = e−t/(2λ/t+2/3) ≤ e−t/3 ≤

e−`/12 ≤ e−`0/12. This can be made as small as desired
by choosing `0 sufficiently large. Lemma 5 is proved.

2

Proof of Proposition 4. We consider the sequence
W = (`(0), `(1), . . .), `(i) = `(v(i)), of levels of the
vertices in the random walk with reshuffles; this is a
kind of random walk on {0, 1, . . . , n}. We assume that
m is sufficiently large and, for simplicity of notation,
that it is divisible by 24. We define a “critical level”
`crit = m/12.

First we claim that with probability at least 1 −
e−Ω(m), the walk starts above the critical level. Indeed,
the expected level of a random vertex in {0, 1}m is m

2 ,
and by the standard Chernoff inequality, the probabil-
ity of the random vertex having level smaller than m

2 −t

is at most e−t2/2m.



Let us call the ith step of W level-changing if i = 0
or `(i) 6= `(i−1) (that is, if v(i) was obtained from v(i−1)

by a RANDOM EDGE step in the Klee–Minty cube).
If the random walk with reshuffling on KMm does move
at the ith step, i.e. if v(i) 6= v(i−1), then this move is
at least 11 times more likely to be a reshuffling than
a RANDOM EDGE step by the assumptions of the
proposition. In particular, when the walk does move
the first time after the (j − 1)st level-changing step,
it reshuffles with probability at least 11

12 . So with at
least this probability there is at least one reshuffling
between the (j − 1)st level-changing step and the jth
level-changing step.

Let kj = `(ij) be the level at the jth level-changing
step. Let us now assume kj−1 is in the range [`0,

m
8 ],

and let us estimate the probability of kj = kj−1 − 1.
If there is a reshuffling between the (j − 1)st level-
changing step and the jth level-changing step, which
happens with probability at least 11

12 , then by Lemma 5
this probability is at most 0.4. Hence the overall prob-
ability of kj = kj−1 − 1 is at most

1

12
+

11

12
· 0.4 = 0.45,

and the conditional expectation of kj given kj−1 is at
least kj−1 + 0.45(−1) + 0.55 · 1 = kj−1 + 0.1. So there
is an expected drift of at least +0.1 per level-changing
step.

If the walk starts above the critical level, which hap-
pens with high probability, it needs to pass the critical
level in order to reach 0 and finish. Let j0 be the small-
est j with kj = `crit. Let us call the level-changing
steps j0, j0 + 1, . . . , j0 + m/24 the first attempt, and
we call the first attempt successful if it ends up below
the critical level, i.e. if kj0+m/24 < `crit. If the first at-
tempt was not successful, we can define the second at-
tempt similarly, starting at the first level-changing step
j1 ≥ j0 + m/24 with kj1 = `crit, and so on. We prove
that each attempt succeeds with probability at most
e−Ω(m); this will imply that exponentially many at-
tempts are needed with probability exponentially close
to 1, and thus also the desired proposition.

Let the considered attempt start at the jth level-
changing step, and for i = 0, 1, 2, . . . , m/24, we de-
fine Xi = kj+i − 0.1i; this is the level after i level-
changing steps of the attempt minus the expected drift.
During the whole attempt the level stays in the range
[`crit −m/24, `crit + m/24] ⊆ [`0, m/8], and so the con-
ditional expectation of Xi given Xi−1 is at least Xi−1.
In other words, the Xi form a submartingale (if the
conditional expectation of Xi were equal to Xi−1, we
would get the perhaps more familiar notion of a mar-
tingale). As is well known and easy to check, stan-
dard proofs of Azuma’s inequality (see, e.g., Alon and

Spencer [3] or Janson et al. [15]) also yield the lower
tail estimate for a submartingale instead of a martin-
gale. In our case, we always have |Xi − Xi−1| ≤ 1.1,
and Azuma’s inequality gives that the probability of
Xm/24 ≤ X0 − t = `crit − t is at most e−24t2/3m. A suc-
cessful attempt requires Xm/24 ≤ `crit − 0.1m/24, so
we can set t = m/240 and we indeed obtain that the
probability of a successful attempt is e−Ω(m) as needed.
Proposition 4 is proved. 2

4. The construction

Here we prove Theorem 1. The construction is quite
similar to the one from Section 2 but in one iteration we
make k blowups by m-dimensional Klee–Minty cubes
rather than one.

Let a sufficiently large n be given. We define inte-
ger parameters n0 = n/2, m = n1/3, k = Cn1/3 for a
sufficiently large constant C, and t = n/2km (for sim-
plicity, let us assume that the defining expressions in-
deed come out integral). We define a sequence of AUSO
A0, A1, A2, . . . , At, where dim(Ai) = n0 + ikm. The fi-
nal product At has dimension n0 + tkm = n.

We can take more or less any n0-dimensional AUSO
for A0; as a tribute to Klee and Minty let it be KMn0 .

Having defined Ai−1, we construct Ai by describ-
ing the orientation of each edge. The vertex set of
Ai is {0, 1}ikm+n0 . We partition the coordinates into
blocks B0, B1, . . . , Bk: the initial block B0 has length
(i − 1)km + n0, and it is followed by the blocks
B1, B2, . . . , Bk of length m each. For an edge e, the co-
ordinate where the two endpoints of e differ is called
the label of e. The orientation of an edge will partly de-
pend on its label. As in the simple construction, we fix
an AUSO A′

i−1 selected uniformly at random among
all isomorphic copies of Ai−1. An edge of Ai with a la-
bel in B0 is oriented as the corresponding edge in Ai−1

if none of the Bj , j = 1, . . . , k is all zeros, and other-
wise, it is oriented as in A′

i−1. To orient the edges with
labels in other blocks, we choose a Klee-Minty cube
Ku,j by randomly permuting the coordinates of KMm

for each u ∈ {0, 1}|B0| and each j = 1, 2, . . . , k. Note
that each Ku,j has its sink at 0. We orient the edges
with label in block Bj according to these Klee-Minty
cubes (so the orientation of an edge in Bj depends only
on the coordinates in B0 and Bj).

For v ∈ {0, 1}ikm+n0 , let v[j] denote the restriction
of v to the block Bj , j = 0, 1, . . . , k. Formally, an edge
of label l from a vertex v = (v[0], v[1], . . . , v[k]) is ori-
ented towards v if and only if

• l ∈ B0, v[j] 6= 0 for every j = 1, . . . , k and the edge
of label l is oriented towards v[0] in Ai−1, or



• l ∈ B0, v[j] = 0 for some j = 1, . . . , k and the edge
of label l is oriented towards v[0] in A′

i−1, or

• l ∈ Bj and the edge of label l is oriented towards
v[j] in Kv[0],j .

Lemma 6 Ai is an AUSO.

Proof. We construct Ai from Ai−1 using k iterations
of the blowup construction (Lemma 2) and hyper-
sink reorientation (Lemma 3). To this end, we decom-
pose the construction of Ai from Ai−1 into k phases,
adding m dimensions in each phase. Let A0

i = Ai−1

and let Aj
i be the AUSO defined after the jth phase,

of dimension((i − 1)k + j)m + n0. To obtain Aj+1
i , we

first blow up the vertices of Aj
i by some copies of KMm.

More precisely, with the notation of Lemma 2 we take
A = Aj

i and Bu = Ku[0],j+1. Then we reorient the
(((i − 1)k + j)m + n0)-dimensional hypersink spanned
by the sinks of these Klee–Minty cubes using the fol-
lowing AUSO Cj

i . Leting C0
i = A′

i−1, Cj
i is a blowup of

Cj−1
i . More precisely, with the notation of Lemma 2,

let A = Cj−1
i and Bu = Ku[0],j . 2

Let us define some terminology. Let S be the set of
the vertices v with v[j] = 0 for some j = 1, . . . , k. Note
that no (directed) walk can leave S. If the label of an
edge is in the block B0, then depending on wheter its
endpoints are in S or not, we call it an A′

i−1-edge or
an Ai−1-edge, respectively. An edge with label in Bj ,
j = 1, 2, . . . , k, is called a j-frame edge.

Proof of Theorem 1. We prove that with probabil-

ity 1 − e−Ω(n1/3), RANDOM EDGE started at a ran-
dom vertex of the AUSO At constructed above needs
at least eΩ(n1/3) steps. The probability in this state-
ment is with respect to the random choices of the algo-
rithm, the random choice of the initial vertex, and the
random choices involved in the construction of At. This
implies, by a consideration in the spirit of Fubini’s the-
orem, that there is a specific instance of At with the
behavior of RANDOM EDGE as advertised in Theo-
rem 1.

We prove the following statement for all
i = 0, 1, . . . , t by induction on i: Assuming that the con-
stant C in the definition of k and t is sufficiently large,
the following holds with probability at least 1 − pi, where
pi = 2−3t+2i: when RANDOM EDGE is started at a ran-
dom vertex of Ai, the first 2i steps visit only vertices with
outdegree at least k.

In particular, for i = t we get that with probabil-

ity at least 1 − 2−t = 1 − e−Ω(n1/3) RANDOM EDGE

on At makes at least 2t = eΩ(n1/3) steps, which im-
plies Theorem 1.

For i = 0 the statement holds, since a random ver-
tex of any n0-dimensional AUSO has outdegree less
than k with probability 1

2n0

∑k−1
i=0

(

n0

i

)

= e−Ω(n) (here
we use that the outmap of any AUSO is a bijection,
so the number of vertices with outdegree k is

(

n
k

)

, plus
the standard Chernoff inequality.)

For the inductive step from i−1 to i, let us consider
the random walk W of RANDOM EDGE on Ai. The
cardinality of S is 2ikm+n0 − 2(i−1)km+n0(2m − 1)k, so
W starts outside S with probability at least 1− k2−m.
The steps along the Ai−1-edges (Ai−1-steps for short)
made before reaching a vertex of S define a trajec-
tory W0 of RANDOM EDGE on Ai−1, and for each
j = 1, 2, . . . , k, the steps using the j-frame edges and
the Ai−1-steps define a random walk with reshuffles
on KMm, which we call Rj . By the inductive assump-
tion, the following statement (∗) holds with probabil-
ity at least 1 − pi−1:

(∗) The first 2i−1 steps of W0 visit only vertices of out-
degree at least k in Ai−1 and, in particular, they do
not reach the sink.

For a vertex v of Ai not lying in S, let dj denote the
number of outgoing j-frame edges and let d0 be the
number of outgoing Ai−1-edges. If RANDOM EDGE
on Ai is at v, then the probability of a reshuffle in
the corresponding step of Rj is equal d0/d, where
d = d0 + d1 + · · ·+ dk, while the probability of a RAN-
DOM EDGE step in Rj is dj/d. We have dj ≤ m, and
by (∗), we may assume d0 ≥ k during the first 2i−1

steps. Since k = Cm ≥ 11m, as long as d0 ≥ k holds,
the assumptions of Proposition 4 are met by Rj . So as-
suming (∗), with probability at least 1− e−αm Rj does
not reach the sink before step min(2i−1, eβm) = 2i−1

for large enough C (since i ≤ t = n1/3/2C).

After the first 2i−1 steps we cannot guarantee any-
more that reshuffles will be frequent enough in Rj .
But all vertices of Ai outside S have at least one
outgoing j-frame edge for every j = 1, 2, . . . , k, and
hence outdegree is still at least k until one of the Rj

reaches its sink. At that very moment, i.e. when W
first reaches a vertex v ∈ S, v[0] is a random ver-
tex of Ai−1 and further moves induce a trajectory W ′

0

of RANDOM EDGE on A′
i−1, the random isomorphic

copy of Ai−1. By inductive assumption, with probabil-
ity at least 1−pi−1, at least 2i−1 steps of W ′

0 are made
through vertices of outdegree at least k in A′

i−1. If this
happens then, of course, W also makes at least 2i−1

steps through vertices with outdegree at least k. Al-
together we showed that W makes at least 2i steps
through vertices of outdegree at least k with probabil-
ity at least 1 − k2−m − 2pi−1 − ke−αm. With a suffi-
ciently large C we have k2−m + ke−αm < 2−3t, and so



k2−m +2pi−1 +ke−αm < 2−3t+2i−1 +2−3t < 2−3t+2i =
pi. This finishes the induction step and concludes the
proof of Theorem 1. 2
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