
On the minimum degree of minimal Ramsey graphs for multiple

colours

Jacob Fox∗ Andrey Grinshpun† Anita Liebenau‡ Yury Person§

Tibor Szabó¶
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Abstract

A graph G is r-Ramsey for a graph H, denoted by G→ (H)r, if every r-colouring of

the edges of G contains a monochromatic copy of H. The graph G is called r-Ramsey-

minimal for H if it is r-Ramsey for H but no proper subgraph of G possesses this property.

Let sr(H) denote the smallest minimum degree of G over all graphs G that are r-Ramsey-

minimal for H. The study of the parameter s2 was initiated by Burr, Erdős, and Lovász

in 1976 when they showed that for the clique s2(Kk) = (k − 1)2. In this paper, we study

the dependency of sr(Kk) on r and show that, under the condition that k is constant,

sr(Kk) = r2 · polylog r. We also give an upper bound on sr(Kk) which is polynomial in

both r and k, and we show that cr2 ln r 6 sr(K3) 6 Cr2 ln2 r for some constants c, C > 0.

Keywords. Graph theory, Ramsey theory, minimal Ramsey graphs, minimum degree,

Erdős-Rogers function.

1 Introduction

A graph G is r-Ramsey for a graph H, denoted by G → (H)r, if every r-colouring of the

edges of G contains a monochromatic copy of H. The fact that, for any number of colours r

∗Department of Mathematics, Stanford University, Stanford, CA 94305. Email: fox@math.mit.edu. Re-

search supported by a Packard Fellowship, by NSF Career Award DMS-1352121, and by a Sloan Foundation

Fellowship.
†Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307. Email:

agrinshp@math.mit.edu. Research supported by a National Physical Science Consortium Fellowship.
‡School of Mathematical Sciences, Monash University, VIC 3800, Australia. This research was done when

the author was affiliated with the Institute of Mathematics, Freie Universität Berlin, 14195 Berlin, Germany.

Email: anita.liebenau@monash.edu. The author was supported by the Berlin Mathematical School. The

author would like to thank the Department of Mathematics, Massachusetts Institute of Technology, Cambridge,

MA 02139-4307 for its hospitality where this work was partially carried out.
§Institute of Mathematics, Goethe-Universität, 60325 Frankfurt am Main, Germany. Email:

person@math.uni-frankfurt.de
¶Institute of Mathematics, Freie Universität Berlin, 14195 Berlin, Germany. Email:

szabo@math.fu-berlin.de Research partially supported by DFG within the Research Training Group

Methods for Discrete Structures and by project SZ 261/1-1.

1



and every graph H, there exists a graph G such that G→ (H)r is a consequence of Ramsey’s

theorem [23]. Many interesting questions arise when we consider graphs G which are minimal

with respect to G → (H)r. A graph G is r-Ramsey-minimal for H (or r-minimal for H) if

G→ (H)r, but G′ 9 (H)r for any proper subgraph G′  G. LetMr(H) denote the family of

all graphs G that are r-Ramsey-minimal with respect to H. Ramsey’s theorem implies that

Mr(H) is non-empty for all integers r and all finite graphs H. However, for general H, it is

still widely open to classify the graphs in Mr(H), or even to prove that these graphs have

certain properties.

Of particular interest is H = Kk, the complete graph on k vertices, and a fundamental

problem is to estimate various parameters of graphs G ∈ Mr(Kk), that is, of r-Ramsey-

minimal graphs for the clique on k vertices. The best-studied such parameter is the Ramsey

number Rr(H), the smallest number of vertices of any graph inMr(H). Estimating Rr(Kk),

or even R2(Kk), is one of the main open problems in Ramsey theory. Classical results of

Erdős [15] and Erdős and Szekeres [17] show that 2k/2 6 R2(k) 6 22k. While there have been

several improvements on these bounds (see for example [10] and [28]), the constant factors

in the above exponents remain the same. For multiple colours, the gap between the bounds

is larger. Even for the triangle K3, the best known upper bound on the r-colour Ramsey

number Rr(K3) is of order 2O(r ln r) [30], whereas, from the other side, Rr(K3) > 2Ω(r) is the

best known lower bound (see [32] for the best known constant).

Other properties ofMr(Kk) have also been studied: Rödl and Siggers showed in [24] that, for

all k > 3 and r > 2, there exists a constant c = c(r, k) > 0 such that, for n large enough, there

are at least 2cn
2

non-isomorphic graphs G on at most n vertices that are r-Ramsey-minimal

for the clique Kk. In particular, Mr(Kk) is infinite. Another well-studied parameter is the

size Ramsey number R̂r(H) of a graph H, which is the minimum number of edges of a graph

in Mr(Kk), see, e.g., [3, 4, 16, 20, 25].

Interestingly, some extremal parameters of graphs in Mr(Kk) could be determined exactly

when the number of colours is two. In this paper, we consider the minimal minimum degree

of r-Ramsey-minimal graphs sr(H), defined by

sr(H) := min
G∈Mr(H)

δ(G)

where δ(G) denotes the minimum degree of G.

It is rather simple to see that, for any graph H,

r(δ(H)− 1) < sr(H) < Rr(H). (1)

Indeed, for r = 2, the proof of the lower bound is included in [19]; it generalises easily to

more colours. We include a similar argument at the beginning of Section 3. In [8], Burr,

Erdős, and Lovász showed that, rather surprisingly, the simple upper bound above is far from

optimal when r = 2, namely s2(Kk) = (k − 1)2 (another proof was later found by Fox and

Lin [19]).
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In this paper, we study the behaviour of sr(Kk) as a function of r and k. We mainly study

sr(Kk) as a function of r with k fixed. In particular, we determine sr(K3) up to a logarithmic

factor.

Theorem 1.1. There exist constants c, C > 0 such that for all r > 2, we have

cr2 ln r 6 sr(K3) 6 Cr2 ln2 r.

One can show that sr(Kk) > sr−1(Kk) (this follows from a stronger statement, cf. Theorem 1.5

and Proposition 3.2). However, it is not clear that sr(Kk) > sr(Kk−1). Therefore, the lower

bound on sr(K3) does not necessarily imply a similar lower bound on sr(Kk). We can in fact

only prove a super-quadratic lower bound on sr(Kk) that is slightly weaker.

Theorem 1.2. For all k > 4 there exist constants c = c(k), C = C(k) > 0 such that, for all

r > 3,

c r2 ln r

ln ln r
6 sr(Kk) 6 C r2(ln r)8(k−1)2 .

The proof of the upper bounds in Theorems 1.1 and 1.2 are of asymptotic nature and require

r to be rather large. Moreover, the exponent of the (ln r)-factor in the latter upper bound

depends on the size of the clique. Therefore, we also prove an upper bound on sr(Kk) which

is polynomial both in r and in k and is applicable for small values of r and k.

Theorem 1.3. For k > 3, r > 3, sr(Kk) 6 8(k − 1)6r3.

Tools. We give an overview of the tools we use to prove bounds on sr(Kk). The first step will

be to reduce finding sr(Kk) to a simpler problem. We call a sequence of pairwise edge-disjoint

graphs G1, . . . , Gr on the same vertex set V a colour pattern on V . For a graph H, a colour

pattern G1, . . . , Gr is called H-free if none of the Gi contains H as a subgraph. A graph with

coloured vertices and edges is called strongly monochromatic if all its vertices and edges have

the same colour. An r-colouring is a function χ : V → [r].

Definition 1.4. The r-colour k-clique packing number, Pr(k), is the smallest integer n such

that there exists a Kk+1-free colour pattern G1, . . . , Gr on an n-element vertex set V with the

property that any r-colouring of V contains a strongly monochromatic Kk.

While Burr, Erdős, and Lovász [8] do not explicitly define P2(k) in their proof of s2(Kk) =

(k− 1)2, they do essentially show that s2(Kk) = P2(k− 1) and it is then not hard to see that

P2(k−1) = (k−1)2. Here we generalise their result to an arbitrary number r of colours.

Theorem 1.5. For all integers r, k > 2 we have sr(Kk+1) = Pr(k).

The lower bound sr(Kk+1) > Pr(k) is not difficult to derive from the definitions. The upper

bound s2(Kk+1) 6 P2(k) follows from a powerful theorem of [8]. We use later generalisations

of this theorem by Burr, Nešetřil, and Rödl [9] and, recently in 2008, by Rödl and Siggers

[24] to derive sr(Kk+1) 6 Pr(k) for arbitrary r > 2.

The problem then becomes to obtain bounds on Pr(k). We will see that Pr(k) relates closely

to the so-called Erdős-Rogers function, which was first studied by Erdős and Rogers [14] in

1962. We will be particularly concerned with the special case of the Erdős-Rogers function,

denoted by fk,k+1(n), which is defined to be the largest integer α so that in any Kk+1-free
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graph on n vertices, there must be a vertex-set of size α that contains no Kk. For our bounds,

we will rely heavily on the modern analysis of fk,k+1 found in [11, 12, 13, 26]. In Section 3, we

will see that essentially Pr(k) = Ω
(
r(fk,k+1(r))2

)
, so lower bounds on fk,k+1 directly translate

to lower bounds on Pr(k). In Section 4, we obtain upper bounds on Pr(k) by packing r graphs,

each giving good upper bounds on fk,k+1, into the same vertex set.

Organisation. In the next section, we prove that sr(Kk+1) = Pr(k). In Section 3, we prove

the lower bounds on Pr(k) in Theorem 1.1 and Theorem 1.2. In Section 4, we prove the

upper bounds in Theorem 1.1, Theorem 1.2, and Theorem 1.3. We close this paper with

some concluding remarks.

2 Passing to Pr(k)

In this section we conclude Theorem 1.5 from Lemmas 2.1 and 2.3.

Lemma 2.1. For all r, k > 1, we have sr(Kk+1) > Pr(k).

Proof. Let G be an r-Ramsey-minimal graph for Kk+1 with a vertex v of degree sr(Kk+1).

Let χ : E(G − v) → [r] be an r-colouring of G − v without a monochromatic Kk+1; such

a colouring exists by the minimality of G. Let G1, . . . , Gr ⊆ G[N(v)] be the pairwise edge-

disjoint subgraphs of the r colours within the neighbourhood N(v) of v; they form a Kk+1-

free colour pattern on N(v). We show that any vertex-colouring of G[N(v)] must contain a

strongly monochromatic k-clique and hence, by the definition of Pr(k), the number of vertices

|N(v)| = sr(Kk+1) must be at least Pr(k). Indeed, given any vertex-colouring of N(v) we

may define an extension of χ to the edges incident to v by colouring an edge vu with the

colour of the vertex u ∈ N(v). Since G is r-Ramsey for Kk+1, this extension of χ contains a

monochromatic (k+1)-clique H. Moreover, H must contain v (as χ was free of monochromatic

Kk+1). By the definition of the extension of χ, the vertices of H in N(v) form a strongly

monochromatic Kk in G[N(v)].

In order to show sr(Kk+1) 6 Pr(k), we first prove a theorem that guarantees a fixed colour

pattern on a given induced subgraph of some graph G in any monochromatic H-free r-

colouring of G. A similar theorem was proved for H = Kk and for r = 2 in [8], where

they use it to show s2(Kk+1) 6 P2(k). The tools used to prove this were generalised to any

3-connected graph H in [9], and, more recently, to any number of colours and any graph H

which is 3-connected or a triangle [24].

Theorem 2.2. Let H be any 3-connected graph or H = K3 and let G1, . . . , Gr be an H-

free colour pattern. Then there is a graph G with an induced copy of the edge-disjoint union

G1 ∪ · · · ∪Gr so that G9 (H)r and in any monochromatic H-free r-colouring of E(G) each

Gi is monochromatic and no two distinct Gi and Gj are monochromatic of the same colour.

Proof. We use the idea of signal sender graphs which was first introduced by Burr, Erdős

and Lovász [8]. Let r > 2 and d > 0 be integers and H be a graph. A negative (positive)
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signal sender S = S−(r,H, d) (S = S+(r,H, d)) is a graph S with two distinguished edges

e, f ∈ E(S) of distance at least d, such that

(a) S 9 (H)r, and

(b) in every r-colouring of E(S) without a monochromatic copy of H, the edges e and f

have different (the same) colours.

We call e and f the signal edges of S.

Burr, Erdős and Lovász [8] showed that, when r = 2 and H is a clique on at least three

vertices, then positive and negative signal senders exist for arbitrary d. Later, Burr, Nešetřil

and Rödl [9] extended these results to arbitrary 3-connected H. Finally, Rödl and Siggers [24]

constructed positive and negative signal senders S−(r,H, d) and S+(r,H, d) for any r > 3,

d > 0 as long as H is 3-connected or H = K3.

Let H be a graph that is either 3-connected or H = K3 and let G1, . . . , Gr be an H-free

colour pattern on vertex set V . We construct our graph G using the signal senders of Rödl

and Siggers. We first take the graph on V which is the edge-disjoint union of the edge sets of

the graphs Gi and add r isolated edges e1, . . . , er disjoint from V . Then for every i and every

edge f ∈ E(Gi) we add a copy of S+(r,H, |V (H)|), such that f and ei are the two signal

edges and the sender graph is otherwise disjoint from the rest of the construction. Finally,

for every pair of edges ei, ej , we add a copy of S−(r,H, |V (H)|), such that ei and ej are the

two signal edges and the sender graph is otherwise disjoint from the rest of the construction.

By the properties of positive and negative signal senders, in any r-colouring of G without a

monochromatic H, each Gi must be monochromatic and no two Gi, Gj may be monochromatic

in the same colour.

Now we need only to show that there exists an r-colouring of G with no monochromatic H.

For this, we first colour each Gi with colour i. Then, we extend this colouring to a colouring

of each signal sender so that each signal sender contains no monochromatic copy of H. This is

possible since each positive (negative) signal sender has a colouring without a monochromatic

copy of H in which the signal edges have the same (different) colours. Let us consider a copy

of H in G. We will see that H is contained either within G1 ∪ · · · ∪Gr or within one of the

signal senders and hence it is not monochromatic. If this was not the case, then there would

be a vertex v1 of H that is not in any of the signal edges, that is, v1 ∈ V (S) for some signal

sender S but not contained in any of the two signal edges of S. Since H is not entirely in S,

there must be a vertex v2 ∈ V (H) \ V (S). This immediately implies that H 6= K3, since v1

and v2 are not adjacent. Since H is 3-connected there are three internally disjoint v1, v2-paths

in H. These paths can leave S only through one of its two signal edges. Hence there is a path

of H in S between the two signal edges. This is a contradiction because the distance of the

two signal edges in S is at least |V (H)|.

Theorem 2.2 allows us to finish the proof of Theorem 1.5.

Theorem 2.3. sr(Kk+1) 6 Pr(k).

5



Proof. Let a Kk+1-free colour pattern G1, . . . , Gr be given on vertex set V with |V | = Pr(k),

so that any r-colouring of V contains a strongly monochromatic Kk. Take G as in Theorem

2.2 with H = Kk+1, and define G′ to be G with a new vertex v which is incident only to V .

We claim that G′ → (Kk+1)r, that is for any r-colouring χ of G′ we find a monochromatic

Kk+1. If already the restriction of χ to V (G) contains a monochromatic Kk+1 then we are

done. Otherwise, by Theorem 2.2, we have that, after potentially permuting the colours, each

subgraph Gi ⊆ G[V ] is monochromatic in colour i. We define a colouring of V by colouring

u ∈ V with χ(uv). Then, by the choice of G1, . . . , Gr, there is a strongly monochromatic

clique in V . This clique along with vertex v forms a monochromatic Kk+1 in the colouring χ.

So G′ → (Kk+1)r. Now observe that any r-Ramsey-minimal subgraph of G′ must contain

the vertex v, since G′ − v = G is not r-Ramsey for Kk+1 by Theorem 2.2. Hence for the

minimum degree of any r-Ramsey-minimal subgraph G′′ ⊆ G′ we have that sr(Kk+1) 6
δ(G′′) 6 degG′′(v) 6 degG′(v) = Pr(k).

3 Lower bounds on Pr(k)

First, we prove a simple linear lower bound on Pr(k). This simple estimate will later be used

to obtain a super-quadratic lower bound.

Lemma 3.1. For all r > 2 and k > 3, we have Pr(k) > (k − 1)r.

Proof. We will show that for any given colour pattern G1, . . . , Gr on the vertex set V , |V | 6
(k − 1)r, there is a vertex-colouring of V without a strongly monochromatic Kk and hence,

Pr(k) > (k − 1)r. Observe that every vertex v ∈ V has degree at most k − 2 in at least

one of the colour classes, say Gi(v). Colouring vertex v with colour i(v) ensures that v is not

contained in any strongly monochromatic Kk, as its degree in Gi(v) is too low. Hence, as

promised, this vertex-colouring of V produces no strongly monochromatic Kk.

For a graph F , the k-independence number αk(F ) is the largest cardinality of a subset I ⊆
V (F ) without a Kk. For k = 2, this is the usual independence number α(F ). Recall that

the Erdős-Rogers function fk,k+1(n) is defined to be the minimum value of αk(F ) over all

Kk+1-free graphs F on n vertices.

The following proposition provides the recursion for our lower bound.

Proposition 3.2. For all r, k > 2 we have that Pr(k) satisfies the following inequality:

Pr(k) > Pr−1(k) + fk,k+1(Pr(k))

Proof. Take G1, . . . , Gr to be a Kk+1-free colour pattern on vertex set V , |V | = Pr(k), so

that any r-colouring of the vertices contains a strongly monochromatic Kk. Let I ⊆ V be a

k-independent set of size αk(Gr) in the graph Gr. We claim that the Kk+1-free colour pattern

G1, . . . , Gr−1 restricted to the vertex set V \ I has the property that any (r − 1)-colouring

c : V \ I → [r − 1] contains a strongly monochromatic Kk. Indeed, the extension of c to V
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which colours the vertices in I with colour r must contain a strongly monochromatic Kk and

this must be inside V \ I, since I does not contain Kk at all. Hence |V \ I| > Pr−1(k) and

then, since Gr is a Kk+1-free graph on Pr(k) vertices, we have that

Pr(k) = |V \ I|+ |I| > Pr−1(k) + αk(Gr) > Pr−1(k) + fk,k+1(Pr(k)).

Therefore, we are interested in good lower bounds on the Erdős-Rogers function fk,k+1(n).

It is easy to see that every Kk+1-free graph F on n vertices contains a Kk-free set of size

at least b
√
nc. If there exists a vertex v of degree at least b

√
nc, then N(v) is a Kk-free

set of size at least b
√
nc. Otherwise, ∆(F ) 6 b

√
nc − 1 and we can use the well-known fact

that α(F ) > n/(∆(F ) + 1) (cf. [2]) to deduce that αk(F ) > α(F ) > b
√
nc. Therefore,

fk,k+1(n) > b
√
nc.

A result of Shearer [26] implies that f2,3(n) > (1− o(1))
√

(n lnn)/2, which is the best known

lower bound on f2,3(n). Bollobás and Hind [7] proved that f3,4(n) >
√

2n. This lower bound

was subsequently improved by Krivelevich [22]. Recently, Dudek and Mubayi [11] showed

that this result can be strengthened to

fk,k+1(n) = Ω

(√
n log n

log log n

)
by using a result of Shearer [27].

Proof of the lower bounds in Theorem 1.1 and 1.2. Let k be fixed and and for brevity let us

write Pr := Pr(k). Let fk,k+1(n) > g(n)
√
n for n > n0, where g(n) = gk(n) is a function such

that Cg2(n−1)
n > g2(n) − g2(n − 1) > 0 for n > n0 with some constant C = C(k). Note that

one can take g2(n) = 1
2

√
lnn by [26] and for k > 3 one can take gk(n) = c

√
lnn

ln lnn with some

constant c = c(k) by [11].

We show that there exists a constant c′ = c′(k) such that for r > n0 + 1,

Pr > c′(rg(r))2,

which then implies the lower bounds in Theorems 1.1 and 1.2.

We prove this statement by induction on r. For r = n0 + 1 this is true provided c′ is chosen

small enough. For r > n0 + 1, by Proposition 3.2 and since fk,k+1 is non-decreasing, we have

that

Pr > Pr−1 + fk,k+1(Pr−1) > Pr−1 +
√
Pr−1g(Pr−1).

Using the induction hypothesis, Lemma 3.1 and that g is non-decreasing for r − 1 > n0, we

obtain

Pr > c′((r − 1)g(r − 1))2 +
√
c′(r − 1)g(r − 1)g(r − 1)

> c′(rg(r))2 + r(g(r − 1))2

(
√
c′ − 2c′ − c′r

(
(g(r))2

(g(r − 1))2
− 1

)
−
√
c′

r

)
.

By our assumption on g the last term is positive, provided c′ is small enough.
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4 Packing (n, r, k)-critical graphs

In this section we prove the upper bounds in Theorems 1.1, 1.2 and 1.3. Our task is to derive

upper bounds for Pr(k), that is we want to find Kk+1-free colour patterns such that every

r-colouring of the vertices produces a strongly monochromatic Kk. Let us first motivate the

idea behind our proofs. Given a colour pattern G1, . . . , Gr on an n-element vertex set V and

any r-colouring of V , at least one of the colours, say i, occurs n/r times. If every set of at least

n/r vertices in Gi contains a Kk, then we must have a strongly monochromatic clique in colour

i. This motivates the following definition: we call a graph F on n vertices (n, r, k)-critical if

Kk+1 6⊆ F and αk(F ) < n/r. We have thus obtained the following lemma.

Lemma 4.1. If there exists a colour pattern G1, . . . , Gr where each Gi is (n, r, k)-critical,

then Pr(k) 6 n.

For the rest of this section, we will focus on packing r edge-disjoint (n, r, k)-critical graphs

into the same n-element vertex set, such that n is as small as possible.

In order to produce at least one (n, r, k)-critical graph, let us recall the Erdős-Rogers function,

defined as fk,k+1(n) = min{αk(F )}, where the minimum is taken over all Kk+1-free graphs

F on n vertices. By definition, we have for all u ∈ R that

fk,k+1(n) < u ⇐⇒ there exists an (n, n/u, k)-critical graph. (2)

So the question whether at least one (n, r, k)-critical graph exists on n vertices is equivalent

to the question whether fk,k+1(n) < n/r.

When k = 2, an (n, r, 2)-critical graph is precisely an n-vertex triangle-free graph with in-

dependence number less than n/r. Hence an (n, r, 2)-critical graph exists if and only if

n < R (3, dn/re). It is known that R(3, k) = Θ
(
k2/ ln k

)
where the upper bound was first

shown by Ajtai, Komlós and Szemerédi [1] and the matching lower bound was first established

by Kim [21]. Therefore, if G is an (n, r, 2)-critical graph, then n > c · r2 ln r for some constant

c > 0, and (n, r, 2)-critical graphs do exist for n = C · r2 ln r for some constant C > 0. For

our purpose, however, we need to pack r many (n, r, 2)-critical graphs in an edge-disjoint

fashion into n vertices. The next lemma states that we can do so at the expense of a factor

of ln r.

Lemma 4.2. Let r be an integer. Then there exists a colour pattern G1, . . . , Gr on vertex set

[n], where n = O(r2 ln2 r), such that each Gi is (n, r, 2)-critical.

Lemma 4.2 together with Lemma 4.1 and Theorem 1.5 complete the proof of the upper bound

of Theorem 1.1.

For fixed k > 3, Dudek, Retter, and Rödl [12] recently showed that fk,k+1(n) = O
(

(lnn)4k2√n
)

.

That is, they constructed a Kk+1-free graph F on n vertices (where n is large enough) such

that every subset of c(lnn)4k2√n vertices contains a Kk. This is an (n, r, k)-critical graph F

with n = c2
(
(2 + o(1)) ln r

)8k2
r2. Again, we would like to pack r of those graphs into Kn.

But rather than taking a fixed (n, r, k)-critical graph F and pack it into Kn, we construct r

(edge-disjoint) (n, r, k)-critical graphs G1, . . . , Gr simultaneously as subgraphs of Kn. As it
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turns out, this simultaneous construction is only little harder than the construction itself in

[12]; we prove it by black-boxing theorems from [12].

Lemma 4.3. For all integers k > 3 there exist a constant C = C(k) > 0 and r0 ∈ N such

that, for all r > r0, the following holds. There exists a colour pattern G1, . . . , Gr on vertex

set [n], where n 6 C (ln r)8k2 r2, such that each Gi is (n, r, k)-critical.

Lemma 4.3 together with Lemma 4.1 and Theorem 1.5 complete the proof of the upper bound

of Theorem 1.2.

For the upper bound in Theorem 1.3, we are motivated by graphs constructed by Dudek

and Rödl in [13]. The graph F on n vertices constructed in [13] is (n, r, k)-critical with

n = O(k6r3). Here it is not as clear to just refer to lemmas from [13] in order to do a

“simultaneous” construction. So we will start the construction from scratch and provide all

the details needed.

Lemma 4.4. Let k, r > 3. Then there exists a colour pattern G1, . . . , Gr on vertex set [n],

where n 6 8k6r3, such that each Gi is (n, r, k)-critical.

Lemma 4.4 together with Lemma 4.1 and Theorem 1.5 imply Theorem 1.3.

4.1 Proofs of the Lemmas

In the rest of this section we prove Lemmas 4.2, 4.3, and 4.4, each concerned with packing

(edge-disjointly) r graphs G1, . . . , Gr which are all (n, r, k)-critical.

Packing many K3-free graphs with small independence number.

Here, we prove Lemma 4.2. To that end, we will show the existence of a graph F on n :=

Cr2 ln2 r vertices, where C = 1000, which can be written as a union of edge-disjoint graphs

G1, . . . , Gr which are all K3-free and without independent sets of size n/r. We will find

the graphs Gi successively as subgraphs of Kn. We adapt a proof by Spencer [29], who used

the Local Lemma to show the existence of one K3-free graph G with independence number

O(
√
n lnn).

Lemma 4.5 (Lovász Local Lemma, see, e.g., [2, Lemma 5.1.1]). Let A1, A2, . . . , An be events

in an arbitrary probability space. A directed graph D = (V,E) on the set of vertices V =

{1, . . . , n} is called a dependency digraph for the events A1, A2, . . . , An if for each i, 1 6 i 6
n, the event Ai is mutually independent of all the events {Aj : (i, j) 6∈ E}. Suppose that

D = (V,E) is a dependency digraph for the above events and suppose there are real numbers

x1, . . . , xn such that 0 6 xi < 1 and P(Ai) 6 xi
∏

(i,j)∈E(1− xj) for all 1 6 i 6 n. Then

P

(
n∧
i=1

Ai

)
>

n∏
i=1

(1− xi).

In particular, with positive probability no event Ai holds.

Given r, set m := n/r = Cr ln2 r and q :=
(
m
2

)
/(2r). For a graph H on n vertices, we define

emin(m,H) (emax(m,H)) to be the smallest (largest) number of edges that appear in any

9



subset S ⊆ V (H) of size |S| = m. The following lemma is the crucial step to find the graphs

Gi.

Lemma 4.6. Let H = (V,E) be a graph on n vertices, where n > n0 is large enough, and

assume emin(m,H) >
(
m
2

)
/2. Then there is a subgraph H ′ ⊆ H on the same vertex set such

that H ′ = (V,E′) is triangle-free, has no independent set on m vertices, and emax(m,H ′) 6 q.

Proof. Let c1 = 1/4 and c2 = 1/20. Choose H ′ by including each edge of H independently

with probability p := c1n
−1/2. For a subset S ⊆ V , let e(S) and e′(S) denote the num-

ber of edges in H[S] and H ′[S], respectively. It suffices to show that H ′ is triangle-free,

emin(m,H ′) > 1, and emax(m,H ′) 6 q with positive probability. To that end, we want to

apply the Lovász Local Lemma, and, therefore, we define the set of bad events in the natural

way. Namely, for every S ∈
(
V
3

)
that forms a triangle in H, we set TS to be the event that

H ′[S] is a triangle as well. Clearly, the probability of such an event is pT := p3. Further, for

every S ∈
(
V
m

)
, we set IS to be the event that either S is an independent set in H ′ or satisfies

e′(S) > q. Then,

P(IS) 6 P(e′(S) = 0) +P(e′(S) > q)

6 (1− p)e(S) +

(
e(S)

q

)
pq

6 (1− p)(
m
2 )/2 +

((
m
2

)
ep

q

)q
= (1− p)(

m
2 )/2 + (2epr)q.

Note that (1−p)(
m
2 )/2 = exp

[
−p
(
m
2

)
/2 (1 + o(1))

]
= e−pqr(1+o(1)) and (2epr)q = o(e−pqr(1+o(1))),

since pr → 0, so that for n large enough

P(IS) 6 2(1− p)(
m
2 )/2 =: pI .

Let E be the collection of bad events. That is, E = {TS : H[S] ∼= K3} ∪ {IS : S ∈
(
V
m

)
}. In

the auxiliary dependency graph D, we connect two of the events AS , AS′ ∈ E if |S ∩ S′| > 2.

Then AS ∈ E is mutually independent from the family of all AS′ for which {AS , AS′} is not

an edge in this dependency graph. To apply the Lovász Local Lemma, we now bound the

degrees in D. We denote by N(E) the neighbours in the dependency graph D of the event

E. If |S| = 3 we have∣∣N(TS) ∩ {TS′ :
∣∣S′∣∣ = 3}

∣∣ 6 3n, and∣∣N(TS) ∩ {IS′ :
∣∣S′∣∣ = m}

∣∣ 6 (n
m

)
.

If |S| = m we have∣∣N(IS) ∩ {TS′ :
∣∣S′∣∣ = 3}

∣∣ 6 (m
2

)
(n− 2) <

(
m

2

)
n, and

∣∣N(IS) ∩ {IS′ :
∣∣S′∣∣ = m}

∣∣ 6 (n
m

)
.

10



Therefore, by Lemma 4.5, if there exist real numbers x, y ∈ [0, 1) such that

pT 6 x(1− x)3n(1− y)(
n
m) (3)

pI 6 y(1− x)(
m
2 )n(1− y)(

n
m), (4)

then there exists a graph H ′ such that none of the events in E occurs. We show that these two

conditions are fulfilled for x = c2n
−3/2 and y =

(
n
m

)−1
. First note that, for n large enough,

x(1− x)3n(1− y)(
n
m) = c2n

−3/2e−1(1 + o(1)) > p3,

so Inequality (3) holds. Now, (4) is equivalent to

22/(m2 )(1− p) 6 y2/(m2 )(1− x)2n(1− y)2(nm)/(m2 ).

We use 1− p 6 e−p and 1− z > e−z−z
2

for z 6 0.6 to claim (4) holds if

exp

[
2 ln 2(
m
2

) − p] 6 exp

[
2 ln y(
m
2

) − 2n(x+ x2)−
2
(
n
m

)(
m
2

) (y + y2)

]
.

By definition of m, 2 ln y

(m2 )
> − 4√

C
n−1/2(1 + o(1)) and 1/m2 = o

(
n−1/2

)
. So (4) holds if

exp
[
−c1n

−1/2(1 + o(1))
]
6 exp

[
−(4/

√
C + 2c2)n−1/2(1 + o(1))

]
,

which is satisfied by choice of C, c1, c2. Applying Lemma 4.5 yields the existence of a subgraph

H ′ such that none of the events in E hold, i.e. H ′ has the desired properties.

Proof of Lemma 4.2. Let r large enough be given, and set m := n/r = Cr ln2 r and q :=(
m
2

)
/(2r) as before. Define H1 := Kn. We choose our graphs inductively as subgraphs of H1;

given Hi for i 6 r such that emin(m,Hi) >
(
m
2

)
− (i− 1)q, we have since i 6 r that

emin(m,Hi) >

(
m

2

)
− rq =

1

2

(
m

2

)
,

so, by Lemma 4.6, we may find Gi a subgraph of Hi with emax(m,Gi) 6 q such that Gi is

triangle-free and has no independent set on n/r vertices. Then take Hi+1 = Hi − Gi. The

graph Hi+1 will be edge-disjoint from Gi (and, inductively, from G1, . . . , Gi−1), and

emin(m,Hi+1) > emin(m,Hi)− emax(m,Gi) >

(
m

2

)
− (i− 1)q − q =

(
m

2

)
− iq,

as desired.

An upper bound tight up to a polylogarithmic factor in r

Here, we prove Lemma 4.3. We will rely heavily on the graphs constructed in [12] and use its

construction as a black box.

11



Proof of Lemma 4.3. Fix k > 3 and let r be large enough. We need to construct r graphs on

n = O(r2 (log r)8k2) vertices that are Kk+1-free, but every subset of size n/r contains a Kk.

Let q be the largest prime power such that

q 6 128k(2 log r)4k2r.

Then by Bertrand’s postulate, q > 64k(2 log r)4k2r, and therefore, q > 64k(log q)4k2r since r

is large enough compared to k. Consider the affine plane of order q. It has n := q2 points

and q2 + q lines such that any two points lie on a unique line, every line contains q points,

and every point lies on q+ 1 lines. It is a well-known fact that affine planes exist whenever q

is a prime power. We call two lines L and L′ in the affine plane parallel if L ∩ L′ = ∅. In the

affine plane of order q, there exist q + 1 sets of q parallel lines. Let (V,L) be a hypergraph

where the vertex set V is the point set of the affine plane of order q, and the hyperedges are

lines of the affine plane, with one set of parallel lines removed. Then (V,L) is a q-uniform

hypergraph on q2 vertices such that any two hyperedges meet in at most one vertex.

In [12], Dudek et al. consider a random subhypergraph (V,L′) of (V,L) and show that they

can embed the required graph G “along the hyperedges” of (V,L′). For our purposes, let us

call a hypergraph (V,H) good if there exists a graph G on vertex set V such that

(i) Kk+1 6⊆ G,

(ii) every subset of size 64k(log q)4k2q of V contains a Kk in G, and

(iii) any edge of G lies inside a hyperedge of H, i.e. for every e ∈ E(G) there is some h ∈ H
such that e ⊆ h.

Clearly, by (i) and (ii) any such graph G is (n, r, k)-critical, since n
r = q2

r > 64k(log q)4k2q by

the choice of n and q. Though it is not explicitely stated as a lemma, the following is proven

in Lemma 2.2 of [12].

Lemma 4.7 ([12] Lemma 2.2∗). Let (V,L′) be the (random) hypergraph obtained by picking

each hyperedge of (V,L) with probability log2 q
q . Then (V,L′) is good with probability at least

1/2− o(1).

To complete the proof of the lemma it would be enough to find r hypergraphs L1, . . . ,Lr
which are good and satisfy that the hyperedges of different hypergraphs intersect in at most

one vertex. To see this, let Gi be the graph associated with hypergraph Li. Then, as

mentioned above, all the graphs Gi are (n, r, k)-critical. Furthermore, they are edge-disjoint,

since for every i the edges of Gi lie inside hyperedges of Li by (iii), and hyperedges of Li and

Lj intersect in at most one vertex (since they correspond to lines in the affine plane).

To find the r hypergraphs L1, . . . ,Lr which are good, choose a c-edge-colouring of (V,L) at

random, where c := q
log2 q

. Note that, since k > 3 and by choice of q, c satisfies c > 4r.

Let Li be the sub-hypergraph in colour i (1 6 i 6 c). Clearly, no two hypergraphs Li and

Lj contain the same hyperedge. Moreover, since hyperedges are lines in the affine plane, no

two hyperedges intersect in more than one vertex. The probability that a line ` ∈ L is in Li

12



is log2 q
q . So Li has the same distribution as the random hypergraph (V,L′) in Lemma 4.7.

Therefore, Li is good with probability at least 1/4, provided q is large enough. Hence, the

expected number of good hypergraphs Li is at least c/4 > r. So, there exists a c-colouring of

(V,L) such that at least r of the monochromatic hypergraphs are good. After relabelling, we

have the desired hypergraphs, finishing the proof of Lemma 4.3.

An upper bound polynomial in both k and r

Here, we prove Lemma 4.4. Let r > 2, k > 3. For n 6 8k6r3 we need to construct r (n, r, k)-

critical graphs Gi on n vertices which are edge-disjoint. We will define incidence structures

Ii = (P,Li) on the same set of points such that the families of lines Li are disjoint for distinct

i. Further, any three lines within one Li do not form a triangle. We will then, analogously

to Dudek and Rödl [13], enrich the lines in Li randomly, and show that the resulting graphs

are edge-disjoint and each of them are (n, r, k)-critical with positive probability.

Proof of Lemma 4.4. First, let us define the incidence structures I. Let q be the smallest

prime power such that k2r 6 q, and let Fq be the finite field of order q. The common vertex

set of our graphs is V := F
3
q , i.e. n = |V | 6 8k6r3. For every λ ∈ Fq \ {0}, we will define an

incidence structure Iλ = (V,Lλ) where Lλ is a family of lines in F3
q . For λ ∈ Fq \ {0} set

Mλ :=
{

(1, λα, λα2) : α ∈ Fq \ {0}
}
.

We call Mλ the λ-moment curve. In [31], Wenger used the usual moment curve M1 to

construct dense C6-free graphs. Note that for non-zero λ1 6= λ2 the two curves Mλ1 and Mλ2

do not intersect. An important and crucial property is that, for any λ 6= 0, any three vectors

from Mλ are linearly independent, that is for distinct α1, α2, α3,

det

 1 λα1 λα2
1

1 λα2 λα2
2

1 λα3 λα2
3

 = λ2(α3 − α1)(α3 − α2)(α2 − α1) 6= 0.

In general, a line in F3
q is a set of the form `s,v = {βs + v : β ∈ Fq}, where s ∈ F3

q \ {0} is

called the slope. We define

Lλ := {`s,v : s ∈Mλ,v ∈ F3
q};

that is, in the incidence structure Iλ = (F3
q ,Lλ) we only allow lines with slope vectors from

the λ-moment curve. Clearly, |Lλ| = |Mλ| q
3

q = q2(q − 1) since each line contains q points.

We establish the following properties about each structure Iλ, λ 6= 0.

(1) Every point v ∈ V is contained in q − 1 lines from Lλ and every line ` ∈ Lλ contains q

points.

(2) Any two points lie in at most one line.

(3) No three lines in Lλ intersect pairwise in three distinct points (i.e. form a triangle).

Further, we have for λ1 6= λ2,
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(4) Lλ1 ∩ Lλ2 = ∅.

For (1), note that every slope vector in Mλ gives rise to exactly one line through a given

point v ∈ V . The second part of (1) follows from the definition of a line. Property (2) holds

because lines are affine subspaces of dimension 1 in the vector space F3
q . For (3), suppose

three lines in Lλ intersect pairwise in three distinct points. Then their three slope vectors

would be linearly dependent, a contradiction to the linear independence of any three vectors

in Lλ we established above. Property (4) simply follows from Mλ1 ∩Mλ2 = ∅ for λ1 6= λ2.

Now, we are ready to define our graphs G1, . . . , Gq−1. Let λ ∈ Fq \ {0}. We partition every

line ` ∈ Lλ randomly into k sets L
(`)
1 , . . . , L

(`)
k each of cardinality l1 :=

⌊ q
k

⌋
or l2 :=

⌈ q
k

⌉
.

Note that l1, l2 > rk. To be precise, between all partitions of a line ` =
⋃̇k

j=1L
(`)
j where∣∣∣L(`)

1

∣∣∣ = · · · =
∣∣∣L(`)
k′

∣∣∣ = l1 and
∣∣∣L(`)
k′+1

∣∣∣ = · · · =
∣∣∣L(`)
k

∣∣∣ = l2 we choose one uniformly at random,

choices for distinct lines in Lλ being independent. The graph Gλ on the vertex set V = F
3
q

is defined as follows. For every ` ∈ Lλ and any i 6= j, we include the edges of a complete

bipartite graph between the vertex sets L
(`)
i and L

(`)
j on `. That is, the graph Gλ consists of

a collection of Turán graphs on q vertices with k parts. Each Turán part “lives” along one

of the lines ` ∈ Lλ. By Property (2), these parts are edge-disjoint. Further, by Property (3),

Gλ is Kk+1-free. Also, for distinct λ ∈ F3
q , by Property (4), the graphs Gλ are edge disjoint.

To finish the proof, we show that for any fixed λ ∈ Fq \ {0} the graph Gλ is (n, r, k)-critical

with positive probability. As the choices of the Gλ are done independently, there is a choice

of G1, . . . , Gq−1 with the desired properties.

The calculations are similar to those in [13]. For a subset W ⊆ V (G), let A(W ) denote the

event that Gλ[W ] contains no Kk. Let U ⊆ V (G) be a subset of size |U | =
⌊
n
r

⌋
. Then, since

by Property (3) any Kk can only appear within a line ` ∈ Lλ,

A(U) ⊆
⋂
`∈Lλ

A(U ∩ `),

and therefore, since all the events A(U ∩ `) are independent,

P(A(U)) 6
∏
`∈Lλ

P(A(U ∩ `)).

For a line ` ∈ Lλ, set u` := |U ∩ `|, and let ` =
⋃k
j=1 L

(`)
j be the partition we chose at random.

Then the event A(U ∩ `) is equivalent to the existence of a j ∈ [k] such that U ∩ L(`)
j = ∅.

But, for fixed j ∈ [k],

P

(
U ∩ L(`)

j = ∅
)

=

(q−u`∣∣∣L(`)
j

∣∣∣)( q∣∣∣L(`)
j

∣∣∣) =
(q − u`) · · ·

(
q − u` −

∣∣∣L(`)
j

∣∣∣+ 1
)

q · · ·
(
q −

∣∣∣L(`)
j

∣∣∣+ 1
)

6

(
1− u`

q

)∣∣∣L(`)
j

∣∣∣
6 exp

(
− l1u`

q

)
.
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Therefore,

P(A(U)) 6
∏
`∈Lλ

P

(
∃ j ∈ [k] : U ∩ L(`)

j = ∅
)

6 k|Lλ| exp

−∑
`∈Lλ

l1u`
q


= k|Lλ| exp

(
−q − 1

q
l1|U |

)
,

since every point in U belongs to exactly q−1 lines (Property (1)), and therefore
∑

`∈Lλ u` =∑
`∈Lλ |U ∩ `| = (q − 1)|U |. We obtain,

P

(
∃U ∈

(
V⌊
n
r

⌋) : A(U)

)
6

(
n⌊
n
r

⌋) k|Lλ| exp

(
−q − 1

q
l1

⌊n
r

⌋)
6 (re)n/r kq

2(q−1) exp

(
−q − 1

q
(rk)

⌊n
r

⌋)
6 exp

[
q3

(
ln r

r
+

1

r
+ ln k − 3

4
k

)]
< 1

for k > 3 and r > 3. Therefore, there exists an instance of Gλ such that every subset U of

size at least
⌊
n
r

⌋
contains a Kk in Gλ.

5 Concluding remarks

We have seen, as a consequence of Proposition 3.2 and Theorem 1.5, that sr(Kk) > sr−1(Kk).

However, it is not that clear that sr(Kk) is also increasing in k. We usually expect that

graphs which are Ramsey for Kk should be “larger” than those which are Ramsey only for

Kk−1. It would be quite unintuitive if the following conjecture was not true.

Conjecture 5.1. For all r > 3, k > 3 we have that sr(Kk) > sr(Kk−1).

We also saw that the Erdős-Rogers function is tightly connected to the study of sr(Kk).

For our lower bounds in Section 3, we essentially showed that Pr(k) = Ω
(
r(fk,k+1(r))2

)
,

provided gk(n) =
fk,k+1(n)√

n
is any decent polylogarithmic function (which we believe it is). On

the other hand, we saw in Section 4 that the known constructions for Kk+1-free graphs with

small k-independence number can be modified to constructions of r pairwise edge-disjoint such

graphs on the same or just slightly larger vertex set. In fact, if a packing of essentially optimal

(n, r, k)-critical graphs G, that is, those with parameters n/r = Θ(αk(G)) = Θ(fk,k+1(n)),

was possible then we would get an upper bound that matches our lower bounds. Indeed, then√
n = Θ(r · gk(n)) = Θ(r · gk(r)) = Θ(

√
r · fk,k+1(r)), so by Lemma 4.1 we would have

Pr(k) 6 n = Θ
(
r(fk,k+1(r))2

)
.

We strongly believe the following is true.
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Conjecture 5.2. For every fixed k > 3,

sr(Kk) = Θ
(
r · (fk−1,k(r))

2
)
.

Therefore, we believe that tightening the known bounds on fk−1,k(n) will directly contribute

to tightening the bounds on sr(Kk). The currently best known bounds [12] on the Erdős-

Rogers function are

Ω

(√
n lnn

ln lnn

)
= fk,k+1(n) = O

(
(lnn)4k2√n

)
,

so it is not yet clear how strongly the logarithmic factor depends on k. We wonder whether

the upper bound can be strengthened in the following way.

Question 5.3. Does there exist a universal constant C (independent of k) such that fk,k+1(n) =

O
(
(lnn)C

√
n
)
? And does the construction of such a Kk+1-free graph on n vertices with k-

independence number less than O
(
(lnn)C

√
n
)

generalise to a packing of such graphs?

A positive answer to both questions would imply that there is a universal constant C > 0

such that sr(Kk) = O(r2(ln r)C).

In the special case of K3, in the proof of Lemma 4.2 we iteratively applied the Local Lemma to

find edge-disjoint triangle-free subgraphs Gi ⊆ Kn with independence number O(
√
n lnn) and

this implied our upper bound in Theorem 1.1. This approach was an adaptation of the classical

application of the Local Lemma by Spencer [29] to lower bound off-diagonal Ramsey numbers

and obtain R(3, k) > c (k/ ln k)2. Subsequently Kim [21] proved the existence of a triangle-

free graph G on n vertices with independence number O
(√

n lnn
)

, hence establishing that

the correct order of magnitude of R(3, k) is k2/ ln k. Earlier Bollobás and Erdős suggested an

alternative approach to the problem of finding better lower bounds on R(3, k): the triangle-

free process. In 2009, Bohman [5] managed to reprove Kim’s theorem using the triangle-

free process. Very recently, Fiz Pontiveros, Griffiths and Morris [18], and independently

Bohman and Keevash [6], improved the constant factor in the analysis and showed that

R(3, k) > (1/4− o(1))k2/ ln k. We are optimistic that one can apply the triangle-free process

iteratively, with some modifications, and thus find not only one, but a packing of triangle-

free graphs G1, . . . , Gr on n vertices, all having independence number O(
√
n lnn). Thus, we

conjecture that our lower bound on sr(K3) is tight.

Conjecture 5.4. sr(K3) = Θ
(
r2 ln r

)
.
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