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Abstract

Let m and b be positive integers and let F be a hypergraph. In an (m, b)
Maker-Breaker game F two players, called Maker and Breaker, take turns
selecting previously unclaimed vertices of F . Maker selects m vertices per
move and Breaker selects b vertices per move. The game ends when every
vertex has been claimed by one of the players. Maker wins if he claims all
the vertices of some hyperedge of F ; otherwise Breaker wins. An (m, b)
Avoider-Enforcer game F is played in a similar way. The only difference
is in the determination of the winner: Avoider loses if he claims all the
vertices of some hyperedge of F ; otherwise Enforcer loses.

In this paper we consider the Maker-Breaker and Avoider-Enforcer
versions of the planarity game, the k-colorability game and the Kt-minor
game.

1 Introduction

Let m and b be two positive integers. We are given a set X and a hypergraph
F ⊆ 2X . During the (m, b) positional game F , two players take turns claiming
previously unclaimed elements of X. In every round, the first player claims m
elements, and then the second player claims b elements. The set X is called
the “board”; m and b are the biases of the first and second players respectively.
For the purposes of this paper F is assumed to be monotone increasing. We
investigate positional games with two different kinds of rules for determining
the winner.
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In a Maker/Breaker-type positional game, the two players are called Maker and
Breaker and F is referred to as the family of “winning sets”. Maker wins the
game if the set M he has claimed by the end of the game (i.e., when every
element of the board has been claimed by one of the players) is a winning set,
that is M ∈ F . Otherwise Breaker wins. Observe that, since F is assumed to be
monotone increasing, the game could essentially be stopped as soon as Maker
occupied a minimal (with respect to inclusion) winning set F ∈ F ; the position
on X \ F can no longer influence the outcome of the game. Hence, Breaker
wins if and only if he claims at least one element in every minimal winning
set. Since a monotone increasing family and the family of its minimal elements
uniquely determine each other, often, when there is no risk of confusion, we use
F for the family of minimal winning sets as well. A classical example of the
Maker-Breaker setting is the popular boardgame HEX.

In an Avoider/Enforcer-type positional game, the players are called Avoider and
Enforcer and F is called the family of “losing sets”. Avoider wins the game if
the set A he has claimed by the end of the game (i.e., when every element of the
board has been claimed by one of the players) is not a losing set, that is, A /∈ F .
Otherwise Enforcer wins. Again, observe that the game could be stopped as
soon as Avoider fully occupies a minimal losing set, since then Enforcer surely
wins no matter how the game proceeds. Having this in mind, we will sometimes
use F to denote the family of minimal losing sets.

The identity of the player making the first move does not affect the asymptotics
of our results. However, for convenience, we will assume that Maker (Avoider)
is the first player in all Maker/Breaker (Avoider/Enforcer) games we discuss.

In this paper, we investigate Maker/Breaker and Avoider/Enforcer positional
games played on the board E(Kn) – the edges of the complete graph on n
vertices.

Maker-Breaker games The study of positional games on the edges of a
(complete) graph was initiated by Lehman [20] who, in particular, proved that
in the (1, 1) game Maker can easily build a spanning tree (by “easily” we mean
that he can do so within n−1 moves). Chvátal and Erdős [10] suggested to “even
out the odds” by giving Breaker more power, that is, by increasing his bias.
They determined that the (1, b) game Tn of “Connectivity”, where the family
Tn of minimal winning sets consists of the edge-sets of all spanning trees of Kn,
is won by Maker even when the bias b of Breaker is as large as cn/ log n for some
small constant c > 0, while for some large enough constant C > 0, Breaker wins
if his bias is at least Cn/ log n. They also showed that the (1, 1) game Hn of
“Hamiltonicity”, where Maker’s goal is to build a Hamiltonian cycle (the family
Hn of minimal winning sets consists of the edge-sets of all Hamiltonian cycles
of Kn), is won by Maker for sufficiently large n. They conjectured that in fact
Maker can win the (1, b) Hamiltonicity game for some b that tends to infinity
with n. This was proved by Bollobás and Papaioannou [9], who showed that
Maker wins Hamiltonicity against a bias of Ω(log n/ log log n). Finally, Beck [1]
gave a winning strategy for Maker against a bias of Ω(n/ log n).

Following [14] it will be convenient to introduce the following notation. For a
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family F of winning sets, let bF be the non-negative integer for which Breaker
has a winning strategy in the (1, b) game F if and only if b ≥ bF . Note that
bF is well-defined for any (monotone increasing) family F (unless F contains
a hyperedge of size at most one). By the above, bTn = Θ(n/ log n) and bHn =
Θ(n/ log n).

There is an intriguing relation between the threshold biases of the Connectivity
and Hamiltonicity games and the threshold probability at which the random
graph G(n, p) first possesses these properties. The number of edges of the
random graph G(n, p) around this threshold p = log n/n has the same order
of magnitude as the number of edges Maker has in his graph after playing
against the threshold bias bTn or bHn . This phenomenon (known as the Erdős
paradigm) was pointed out by Beck [1], where this observation is attributed
to Erdős (indeed the first such result appeared already in [10]). Since then,
several other games have been found to have a threshold bias which is closely
linked to a meaningful random graph threshold related to that particular game
(see, e.g., [2, 4, 5, 6, 25]). Note, that the asymptotic values of the threshold
biases bTn and bHn are not known in general. It can still turn out that these
threshold biases are asymptotically equal to the inverse of the corresponding
sharp thresholds for the appropriate properties of random graphs.

In this paper we investigate this connection further and find three more in-
stances where such an intuition proves to be correct. Let NPn, NCk

n, Mt
n

consist of the edge-sets of all non-planar graphs on n vertices, the edge-sets of
all non-k-colorable graphs on n vertices, and the edge-sets of all graphs on n
vertices containing a Kt-minor (a graph G contains an H-minor if H can be ob-
tained from G by the deletion and contraction of some of its edges), respectively.
Obviously, all three families are monotone increasing.

In the game NPn, which we call the “planarity game” (although perhaps “non-
planarity” would have been a more appropriate name), Maker’s goal is to claim
all edges of a non-planar graph. In Theorem 2.1 we show that the correspond-
ing threshold bias bNPn is asymptotically n/2. Note that this result is a con-
sequence of the result for the minor game we obtain in Theorem 4.1, as the
presence of a K5-minor guarantees non-planarity. Nevertheless, we include an
alternative, direct proof of Theorem 2.1 which approaches planarity from a
different angle, and, in our opinion, is more instructive and serves as a good
example of how Maker can win by adopting the role of Avoider in a different
game.

Coming back to the relation between the probability thresholds of random
graphs and the thresholds for the game bias, we note that the threshold prob-
ability pNPn of non-planarity in the random graph is 1/n, that is, pNPn =
Θ(1/bNPn). However, the number of edges of G(n, pNPn) is concentrated
around one half of the number of edges in Maker’s graph in the (1, bNPn ,NPn)
game (the non-planarity threshold is sharp, so such a comparison makes sense).

In the “k-colorability game”, the family of winning sets is NCk
n, that is, Maker

wins the game if he claims a non-k-colorable graph. In Theorem 3.1 we show
that the threshold bias is linear for a fixed k by establishing that there are
absolute constants c1, c2 such that c1

n
k log k ≤ bNCk

n
≤ c2

n
k log k for any k. For the
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special case k = 2, that is, the bipartite game, a more accurate result was proved
by Bednarska and Pikhurko [8]. They showed that (1−1/

√
2−o(1))n ≤ bNC2

n
≤

dn/2e−1. Again, one can compare these results with the corresponding random
graph threshold pNCk

n
= 2k log k

n for non-k-colorability and find the reciprocal
relation.

Finally, we turn to a more general setting. In the Kt-minor game the family of
winning sets is Mt

n; hence, Maker wins the game if he is able to claim the edges
of some Kt-minor of Kn. This game is in some sense a generalization of both
the planarity and the colorability games we have discussed. Indeed, Wagner’s
Theorem gives a full description of planarity via the language of forbidden
minors. Furthermore, if a graph is not r-colorable then it contains a Ks-minor
for s = r/(c

√
log r) where c is an absolute constant (see [17], [26]), and the

famous and long standing Hadwiger conjecture asserts that in fact it contains
a Kr-minor. The opposite implication is trivially false as for every positive
integer n, the complete bipartite graph Kn,n admits a Kn-minor.

In Theorem 4.1 we prove that the corresponding threshold bias bMt
n

is asymp-

totically n/2 for every 3 ≤ t ≤ c
√

n/ log n, for an appropriate constant c. Note
that for the case t = 3, an accurate threshold bias follows from a result of Bed-
narska and Pikhurko [7], as a graph is K3-minor free if and only if it is a forest
(see the exact statement in Theorem 2.2 in Section 2).

Avoider-Enforcer games. At first sight, the definition of Avoider/Enforcer
games seems less natural than that of Maker/Breaker games and accordingly
the theory is much less developed. We, however, argue that besides being
interesting in their own right (see [14] for a comprehensive discussion), they
are essential in studying Maker/Breaker games. Avoider/Enforcer games arise
naturally whenever one would like to play (what looks like) Maker/Breaker
games on a monotone decreasing family. For example, the set Pn of planar
graphs is a monotone decreasing family. If for example, ”Maker’s” goal is
to keep his graph planar to the end of the game, then he can be thought of
as Avoider, playing an Avoider/Enforcer game on the (monotone increasing)
family of losing sets 2E(Kn) \ Pn = NPn.

Moreover, for certain Maker/Breaker games the best known Maker strategies in-
volve building a pseudo-random graph with certain parameters (see [13, 15]). It
is proved that the particular pseudo-random properties of Maker’s graph imply
the graph-theoretic properties in question, entailing his win. Here, pseudo-
random properties include bounds on the number of edges between pairs of
disjoint vertex sets from below and from above. Hence, in such a game the
family F is the intersection of a monotone increasing family and a monotone
decreasing family.

Avoider/Enforcer games were studied in [3, 14, 21, 22, 23]. Similarly to Maker/Breaker
games, one would like to define for each monotone increasing family F the
Avoider/Enforcer threshold bias fF . A reasonable choice for fF would be the
non-negative integer for which Avoider wins the (1, b) game F if and only if
b ≥ fF . While the similar threshold bF does exist for Maker/Breaker games on
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(essentially) any hypergraph, for Avoider/Enforcer games it generally does not
(see [14]).

Following [14], it will be convenient to introduce the following notation. For a
hypergraph F we define the lower threshold bias f−

F to be the largest integer
such that Enforcer can win the (1, b) game F for every b ≤ f−

F , and the upper
threshold bias f+

F to be the smallest non-negative integer such that Avoider can
win the (1, b) game F for every b > f+

F . Except for certain degenerate cases, f−
F

and f+
F always exist and satisfy f−

F ≤ f+
F . Whenever f−

F = f+
F , the threshold

bias fF of the Avoider-Enforcer game F does exist and satisfies fF = f+
F .

In [14] the existence of the threshold fTn was established for the connectivity
game and it was proved that fTn is roughly n/2. For the perfect matching
game and Hamiltonicity game it was shown that f−

Mn
= Ω(n/ log n) and f−

Hn
=

Ω(n log log log log n/ log n log log log n), respectively. Note that it is not known
if the threshold bias for any of these natural games exists.

In this paper, we give bounds on the lower and upper threshold biases for the
planarity, k-colorability and Kt-minor games. Note that, unlike the games of
Connectivity and Hamiltonicity, these Avoider-Enforcer games seem to be more
natural than their Maker-Breaker analogs.

In Theorem 2.3 we prove that Avoider can keep his graph planar against any
bias which is larger than 2n5/4, whereas Enforcer wins when playing with a bias
no larger than n

2 − o(n). As in the case of the Maker-Breaker planarity game,
the second part of this result is a direct consequence of our result for the minor
game presented in Theorem 4.7. Nevertheless, we include an alternative, direct
proof which relies on other properties of planar graphs. We believe it is more
illustrative and gives more insight into the course of the game.

In Theorem 3.4 we show that playing against a bias of at least 2kn1+1/(2k−3),
Avoider can keep his graph k-colorable, whereas Enforcer wins if his bias is at
most n

ck log k .

In the Avoider-Enforcer version of the Kt-minor game, Avoider’s task is to build
a Kt-minor free graph. As in the planarity and colorability games, Avoider’s
goal in this game is very natural. Indeed, many graph-theoretic properties can
be expressed in a “forbidden minor” fashion.

We show that, playing with a linear bias, Enforcer can make Avoider build a
graph that admits a Kt minor for t which is as large as c

√

n/ log n. Moreover,
in Theorem 4.7 we prove that even when playing with a bias which is arbitrarily
close (from below) to n/2, Enforcer can make sure that by the end of the game
Avoider will claim a Kt-minor for t = na0 , where a0 > 0 is an appropriate
constant.

For the sake of simplicity and clarity of presentation, we do not make a partic-
ular effort to optimize the constants obtained in theorems we prove. We also
omit floor and ceiling signs whenever these are not crucial. All of our results
are asymptotic in nature and whenever necessary we assume that n is suffi-
ciently large. Throughout the paper, log stands for the natural logarithm. Our
graph-theoretic notation is standard and follows that of [11].

The rest of the paper is organized as follows: in Section 2 we discuss the Maker-
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Breaker and Avoider-Enforcer planarity games, in Section 3 we discuss the
colorability games and in Section 4 we discuss the minor games. Finally, in
Section 5 we present some open problems.

2 Planarity games

2.1 The Maker-Breaker planarity game

The following theorem states that the threshold bias at which Maker’s win turns
into a Breaker’s win in the planarity game is “around” n/2.

Theorem 2.1
bNPn =

n

2
− o(n).

Proof Let b ≥ n/2. The existence of a winning strategy for Breaker in the
planarity game is an easy consequence of the following result of Bednarska and
Pikhurko.

Theorem 2.2 [7, Corollary 10] Suppose that CycleMaker and CycleBreaker
select respectively 1 and b edges of Kn and CycleMaker wins if he builds a cycle.
Then CycleMaker has a winning strategy (no matter who starts) if and only if
b < dn/2e.

The assertion of Theorem 2.2 implies that with the bias b ≥ n/2, Breaker can
prevent Maker from building a cycle. It follows that at the end of the game
Maker’s graph will be a forest which is obviously planar.

Next, let 0 < ε < 1/3 (the restriction ε < 1/3 is technical) and let b ≤
(1/2 − ε) n, where n = n(ε) is sufficiently large. We will provide Maker with a
strategy for building a non-planar graph. Let α = 2ε

1−2ε and let αn = αn(ε) be
the real number satisfying the equation

(1 + αn)n =

(

n
2

)

(1
2 − ε)n + 1

.

Then limn→∞ αn = α. Let mn denote the number of edges that Maker will
claim by the end of the game on Kn. We have mn − (1 + α

2 )n = Ω(n).

Let k = k(ε) be the smallest positive integer such that

(

1 +
α

2

)

>
k

k − 2
.

Maker’s goal is to avoid cycles of length smaller than k, which we will call “short
cycles”, during the first

(

1 + α
2

)

n moves. If he succeeds, Maker’s graph will at
that point of the game have

(

1 +
α

2

)

n >
k

k − 2
n
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edges and girth at least k. But, it is well-known that a planar graph with girth
at least k cannot have more than k

k−2(n − 2) edges. Hence, Maker’s graph will
already be non-planar, and he will win no matter how the game continues.

It remains to show that Maker can indeed avoid claiming a short cycle during
the first (1 + α

2 )n moves. His strategy is the following. For as long as possible
he claims edges (u, v) that satisfy the following two properties:

(a) (u, v) does not close a short cycle;

(b) the degrees of both u and v in Maker’s graph are less than n1/(k+1).

It suffices to prove that when this is no longer possible, that is, every remaining
unclaimed edge violates either (a) or (b), Maker has already claimed at least
(1 + α

2 )n edges.

Every edge that violates property (b) must have at least one endpoint of degree
n1/(k+1) in Maker’s graph. Since Maker’s graph at any point of the game
contains at most (1+α)n edges, there are at most 2(1+α)n1−1/(k+1) vertices of
degree at least n1/(k+1). Therefore, the number of edges that violate property
(b) is at most

n · 2(1 + α)n1−1/(k+1) = o(n2).

For any fixed s < k and every vertex v, the number of paths of length s that
have v as one endpoint is at most ∆s, where ∆ is the maximum degree in
Maker’s graph. If we assume that property (b) has not been violated, then
∆ ≤ n1/(k+1). Therefore, there are at most

n ·
k−1
∑

s=3

ns/(k+1) = o(n2)

edges that close a short cycle.

Thus, the total number of edges that violate (a) or (b) if claimed by Maker, is
o(n2). On the other hand, after (1 + α

2 )n moves have been played, the number
of unclaimed edges is Θ(n2). Hence, in the first (1 + α

2 )n moves Maker can
claim edges that satisfy properties (a) and (b), which means that he does not
claim a short cycle. This completes the proof of the theorem. 2

2.2 The Avoider-Enforcer planarity game

In the following theorem we give an upper bound and a lower bound for the
threshold bias at which Enforcer’s win turns into an Avoider’s win in the pla-
narity game.

Theorem 2.3
n

2
− o(n) ≤ f−

NPn
≤ f+

NPn
≤ 2n5/4.

Proof Assume first that b ≥ 2n5/4. We will provide Avoider with a strategy
for building a planar graph. The game is divided into four stages. Avoider’s
strategy is the following.
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In the first stage, Avoider builds a matching by repeatedly claiming an edge
that connects two vertices, neither of which is incident with any other edge
previously claimed by him. The first stage ends when no such unclaimed edge
remains and so Avoider cannot further extend his matching. We denote the set
of vertices that are covered by Avoider’s matching by M .

Next, in the second stage Avoider claims edges with one endpoint in M and the
other in V \ M such that throughout the second stage every vertex of V \ M
has degree at most one in Avoider’s graph. The second stage ends when no
such unclaimed edge remains.

In the third stage Avoider builds another matching on M . More precisely,
he repeatedly claims edges that connect two vertices of M , neither of which
is incident with any other edge previously claimed by him in the third stage.
The third stage ends when no such unclaimed edge remains and Avoider cannot
further extend this second matching.

In the fourth and final stage, Avoider claims edges arbitrarily to the end of the
game. If we prove that in this stage Avoider will claim at most one edge, then
the upper bound of the theorem will follow. Indeed, the graph that is spanned
by Avoider’s edges from the first and third stages is a union of two matchings,
that is, a union of disjoint paths and cycles. Furthermore, if we add Avoider’s
edges from the second stage to this graph, then we simply add ”hanging” edges
(edges with one endpoint having degree one). Clearly, if we now add any single
edge that may have been claimed by Avoider in the fourth stage to that graph,
it remains planar.

Let e be the number of edges that Avoider claims in the entire game. By the end
of the first stage, Enforcer must have claimed all the edges with both endpoints
in V \M . Since Avoider’s matching on M consists of at most e edges, we have
|V \ M | ≥ n − 2e and therefore Enforcer has already claimed at least

(n−2e
2

)

edges. It follows that there are at most
(

n

2

)

−
(

n − 2e

2

)

≤ 2en

unclaimed edges left in the graph and Avoider will claim at most 2en
b of them.

In the second stage, Avoider claims edges between M and V \ M . When this
is no longer possible, every unclaimed edge between M and V \ M is incident
with a vertex of V \M which has degree one in Avoider’s graph. It follows that,
at this point, the number of unclaimed edges between M and V \M is at most

2e · 2en

b
=

4e2n

b
.

In the third stage, Avoider builds his second matching on M . When this is no
longer possible, the number of unclaimed edges with both endpoints in M is at
most

(

2e

2

)

−
(

2e − 4en/b

2

)

≤ 8e2n

b
.

To see this, it is enough to observe that the number of vertices that are incident
with the second matching is at most 4en/b, and that all edges with endpoints in
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M that are not adjacent to the second matching must be claimed by Enforcer
after the third stage.

Putting everything together, the total number of unclaimed edges after the
third stage is at most

4e2n

b
+

8e2n

b
=

12e2n

b
.

Since e < n2/2b, we have that the number of edges to be played in the fourth

stage is at most 12e2n
b ≤ 3n5

b3
≤ b, which means that in the fourth stage Avoider

will claim at most one edge.

Next, fix an ε > 0 and assume that b ≤ n
2 (1−ε). We will provide Enforcer with

a strategy, which guarantees that Avoider will occupy the edges of a non-planar
graph. If b ≤ n/7, then the number of edges Avoider claims in the entire game
is at least b

(n
2

)

· (b + 1)−1c > 3n, and thus Avoider surely loses regardless of
Enforcer’s strategy. Hence, from now on we can assume that b > n/7. Let
k = k(ε) be the smallest positive integer such that 1

1−ε/2 > k
k−2 . Enforcer’s

strategy will be to prevent Avoider from claiming a cycle of length smaller than
k, which we will call a “short cycle”. If he succeeds, then at the end of the
game Avoider’s graph will have at least

⌊

(n
2

)

b + 1

⌋

≥ n

1 − ε/2
>

k

k − 2
n

edges for sufficiently large n, and girth at least k. As we have mentioned before,
a graph with such properties cannot be planar, thus Enforcer wins.

It remains to show that Enforcer can indeed prevent Avoider from claiming a
short cycle. In order to do that we will use the following theorem of Bednarska
and  Luczak.

Theorem 2.4 [5, Theorem 1] For every graph G which contains at least three
non-isolated vertices there exist positive constants c and n0 such that, playing
the (1, q) game on Kn, G-Breaker can prevent G-Maker from building a copy of
G provided that n > n0 and q > cn1/m2(G), where

m2(G) = max
H⊆G

v(H)≥3

e(H) − 1

v(H) − 2
.

For a cycle Ci of length i, we have m2(Ci) = i−1
i−2 . Therefore, there exist

constants ci, i = 3, . . . , k − 1 such that for sufficiently large n, Enforcer can
prevent Avoider from claiming a copy of Ci, if the number of edges he is allowed

to claim per move is at least cin
i−2
i−1 . Since for sufficiently large n

k−1
∑

i=3

cin
i−2
i−1 ≤ n

7
≤ b,

Enforcer can simultaneously prevent Avoider from claiming any short cycle
Ci, 3 ≤ i < k, by simply playing all k − 3 games in parallel. That is, after
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Avoider claims an edge, Enforcer responds by claiming c3n
1
2 edges according

to the strategy in the “triangle avoidance game”, then he claims c4n
2
3 edges

according to the strategy in the “4-cycle avoidance game”, and so on. His
different strategies, for the different cycle-games, might call for claiming the
same edge more than once, in which case he just claims an arbitrary unclaimed
edge instead. It is easy to see that this cannot harm him. This concludes the
proof of the theorem. 2

3 k-colorability games

3.1 The Maker-Breaker k-colorability game

The following theorem states that the threshold bias at which Maker’s win
turns into a Breaker’s win in the k-colorability game, where k is fixed and n
is sufficiently large, is of order n. This is true for every k ≥ 2. However, for
convenience, and since the case k = 2 was treated in [8], we will assume that
k ≥ 3.

Theorem 3.1 For every k ≥ 3 and sufficiently large n, there exist constants
sk and s′k such that

s′kn ≤ bNCk
n
≤ skn,

where sk ∼ 2
k log k and s′k ∼ log 2

2k log k as k → ∞.

Proof Assume first that b ≤ n
ck log k , where c > 2/ log 2. We will provide Maker

with a strategy for building a non-k-colorable graph. Maker’s goal will be to
prevent Breaker from building a clique of size dn/ke, and this is enough to
ensure his win. Indeed, Maker’s graph is surely not k-colorable if it does not
admit an independent set of size dn/ke.
Let F be the hypergraph whose vertices are the edges of Kn and whose hyper-
edges are the dn/ke-cliques of Kn. We name the players of the (b, 1,F) game,
CliqueMaker and CliqueBreaker. As was mentioned before, Maker wins the
k-colorability game if he claims a vertex in every hyperedge of F , that is, if
he is able to win the F game as CliqueBreaker. We will use Beck’s criterion,
which is applicable to any Maker/Breaker-type game.

Theorem 3.2 [1, Theorem 1] If

∑

D∈H

(1 + q)−|D|/p <
1

q + 1
,

then Breaker wins the (p, q) game H.

We have

∑

D∈F

2−|D|/b ≤
(

n

dn/ke

)

2−(dn/ke
2 )/b ≤ (ek)dn/ke2−(dn/ke

2 )/b

≤ 2
n log2 e

k
+

n log2 k
k

+log2(ek)− cn2k log k

2k2n
+nck log k

2kn = o(1).
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Hence, Maker can win the k-colorability game.

Assume now that b ≥ skn, where sk is a constant depending on k that will
be determined later. We will provide Breaker with a strategy, to force Maker
into building a k-colorable graph. We will make use of the following theorem
of Kim.

Theorem 3.3 [16, Corollary 1.2] If G is a graph with maximum degree ∆ and
girth at least 5, then

χ(G) ≤ (1 + ν(∆))
∆

log ∆
,

where ν(∆) → 0 as ∆ → ∞.

Let ∆0 be the maximal value of ∆ for which

(1 + ν(∆))
∆

log ∆
≤ k

(if no such ∆0 exists or if ∆0 < 2, then we take sk = 1/2 and so Breaker wins
by Theorem 2.2).

Since ν(∆) → 0 as ∆ → ∞, we have that ∆0 ∼ k log k as k → ∞. Breaker’s
goal will be to force Maker to build a graph with maximum degree at most ∆0

and girth at least 5. By Theorem 3.3 Maker’s graph will then be k-colorable. In
each move, Breaker will use c3n

1/2 of his edges to prevent Maker from building
a triangle (recall that m2(C3) = 2), and c4n

2/3 of his edges to prevent Maker
from building a cycle of length 4 (m2(C4) = 3/2), where c3 and c4 are the
constants whose existence is guaranteed by Theorem 2.4. Breaker will use all
of his remaining b′ := b− c3n

1/2 − c4n
2/3 = (1 − o(1))b edges to make sure that

the maximum degree in Maker’s graph does not surpass ∆0. Hence, if Maker
claims the edge (u, v), then Breaker will claim 1

2b′ edges incident with u and
1
2b′ edges incident with v (if there are only r < 1

2b′ unclaimed edges incident
with u or v, then Breaker will claim all of them and additional 1

2b′−r arbitrary
unclaimed edges). It follows that the maximum degree in Maker’s graph will
be at most

1 +
n − 1

b′/2
≤ 1 +

2n

(1 − o(1))b
≤ 1 +

2

sk
+ o(1),

where the o(1) term tends to zero as n tends to infinity. Therefore, if sk =
d 2

∆0−1.5e, then Maker’s graph will have maximum degree at most ∆0. Hence,
Breaker can force Maker to build a graph with maximum degree at most ∆0 and
girth at least 5, and thus he can win. Note that sk, defined this way, satisfies
sk ∼ 2

k log k as k → ∞. This concludes the proof of the theorem. 2

3.2 The Avoider-Enforcer k-colorability game

In the following theorem we give an upper bound and a lower bound for the
threshold bias at which Enforcer’s win turns into an Avoider’s win in the k-
colorability game.
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Theorem 3.4 For every k ≥ 3 there exists a constant s′k, such that

s′kn ≤ f−
NCk

n
≤ f+

NCk
n
≤ 2kn1+ 1

2k−3 .

Moreover, s′k ∼ log 2
2k log k as k → ∞.

Proof Assume first that b ≤ n
ck log k . We will provide Enforcer with a strategy

which ensures that by the end of the game, Avoider’s graph will not be k-
colorable. Enforcer’s goal will be to avoid building a clique of size dn/ke. If
he achieves this goal, Avoider’s graph will not contain an independent set of
size dn/ke and so will not be k-colorable; thus Enforcer will win. Let F be the
hypergraph whose vertices are the edges of Kn and whose hyperedges are the
dn/ke-cliques of Kn. We name the players of the (b, 1,F) game CliqueAvoider
and CliqueEnforcer. As mentioned above, Enforcer will win the k-colorability
game if he will not claim all vertices in any hyperedge of F , that is, if he is able
to win as CliqueAvoider.

We will use the following criterion, applicable to any Avoider/Enforcer-type
game.

Theorem 3.5 [14, Theorem 1.1] If

∑

D∈H

(

1 +
1

b

)−|D|

<

(

1 +
1

b

)−b

,

then Avoider wins the (b, 1) game H.

We have

∑

D∈F

(

1 +
1

b

)−|D|

≤
(

n

dn/ke

)(

1 +
1

b

)−(dn/ke
2 )

≤ (ek)dn/ke2−(dn/ke
2 )/b

≤ 2
n log2 e

k
+

n log2 k
k

+log2(ek)− cn2k log k

2k2n
+nck log k

2kn = o(1).

Applying Theorem 3.5 we conclude that there exists a winning strategy for
CliqueAvoider, and thus Enforcer wins the k-colorability game.

Next, let b > 2kn1+ 1
2k−3 . We will provide Avoider with a strategy for building a

(k−1)-degenerate graph (a graph G is called r-degenerate if there is an ordering
of the vertices, v1, . . . , vn, such that every vertex has at most r neighbors with
a higher index). Clearly, that would entail Avoider’s win in the k-colorability
game as every (k − 1)-degenerate graph is k-colorable.

Avoider will play several auxiliary minigames one after the other, never starting
a new minigame before finishing the previous one, until all edges are claimed
and the k-colorability game is over. Before we describe his strategy in detail,
let us define two basic types of minigames.

Minigame Type I. For a set of vertices A, the (A)-minigame is played on those
edges with both endpoints in A which are still unclaimed at the beginning of

12



this minigame. Note that some edges within A may have already been claimed
during previous minigames. We say that the vertices of A are designated to
the (A)-minigame. When we say that Avoider is playing the (A)-minigame, we
mean that Avoider is repeatedly claiming independent edges with both end-
points in A for as long as possible, that is, he extends a matching on A until it
is no longer possible. When Avoider cannot further extend his matching, the
(A)-minigame is over. At this point we denote the set of vertices of A incident
with an edge, claimed by Avoider in this minigame by A1, and let A2 = A\A1.
Note that by the end of the (A)-minigame, all edges with both endpoints in A2

have already been claimed by one of the players.

Minigame Type II. Let A and B be two disjoint sets of vertices. The (A : B)-
minigame is played on those edges with one endpoint in A and the other in B
which are still unclaimed at the beginning of this minigame. Again, we assume
that the (big) game is in progress, meaning that some of the edges between
A and B may have already been claimed in previous minigames. We say that
the vertices of B are designated to the (A : B)-minigame. When we say that
Avoider is playing the (A : B)-minigame, we mean that Avoider is repeatedly
claiming edges between A and B such that no vertex in B is incident with
more than one of Avoider’s edges claimed in this minigame. When this is no
longer possible, the (A : B)-minigame is over. At this point, let B1 denote the
set of vertices of B that are incident with an edge claimed by Avoider in this
minigame, and let B2 = B \B1. Note that all edges with one endpoint in A and
the other in B2 have already been claimed by one of the players. The vertices
in B2 are called finished.

Now we can describe the way Avoider plays the game. We introduce a minigame
pool P, which is a dynamic collection of minigames that will be updated during
the game – it will contain minigames waiting to be played by Avoider. At each
moment P will contain at most one minigame of Type I and at most k − 1
minigames of Type II.

Avoider will maintain a partial ordering of the vertices, which he will refine
whenever a minigame is over. In this partial ordering, the vertices designated to
the same minigame will be incomparable to each other, the vertices designated
to the lone minigame of Type I in the pool will be above all the other vertices
and for any minigame (A : B) of Type II, every vertex of A will be above every
vertex of B.

Given a partial ordering, let the up-degree of v be the number of Avoider’s edges
(v, u) where either u is above v or they are incomparable.

To each minigame in the pool, we assign an integer parameter, that will help us
keep track of the degeneracy of Avoider’s graph throughout the game. Thus,
instead of the (A)-minigame (or the (A : B)-minigame), we will consider the
(A)l-minigame (or the (A : B)l-minigame) for an appropriate integer l. During
play, Avoider maintains the following property: if a vertex is designated to a
minigame with parameter l, then its up-degree is at most l.

In the beginning of the game P contains only one minigame – the (V (Kn))0-
minigame. The partially ordered set on V (Kn) contains no relations.

13



We say that the size of an (A)-minigame is 1
2 |A|2, and the size of an (A : B)-

minigame is |A| · |B|. Note that the size of a minigame is an upper bound on
the number of edges it contains.

When the game is played, Avoider repeatedly chooses a minigame of the largest
size in the pool P, removes it from the pool, plays it to its end, and then updates
P and the partial ordering as follows. If the minigame played was an (A)l-
minigame, then he places two new minigames into P, the (A1)l+1-minigame
and the (A1 : A2)l-minigame. Furthermore, the designation of the vertices of
A is lifted and replaced by that of the vertices of A1 to the (A1)l+1-minigame
and that of the vertices of A2 to the (A1 : A2)l-minigame. The partial order is
refined by placing every vertex of A1 above every vertex of A2.

On the other hand, if the minigame played was an (A : B)l-minigame, then
Avoider places only the (A : B1)l+1-minigame back into P. Furthermore, the
designation of the vertices of B is lifted – the vertices of B2 are finished and the
vertices of B1 are designated to the (A : B1)l+1-minigame. The partial order is
not affected.

This shows that indeed in every stage of the game P will contain at most (in
fact, exactly) one minigame of Type I.

Note that at any point of the game, every unclaimed edge is in exactly one of
the minigames in P. Moreover, every vertex of Kn will be either finished or
designated to exactly one minigame in the pool.

After having played an (A : B)-minigame of Type II, the up-degree of the
finished vertices, that is, the vertices of B2, is fixed and in particular will not
be increased in later stages of the game. This is because there are simply no
more unclaimed edges which go to higher or incomparable vertices left. Indeed,
the edges with both endpoints in B were all claimed during that minigame of
Type I after which the vertices of B were designated to a Type II minigame.
The edges (u, v), where u ∈ B2 and v is above u were all claimed during the
(A : B)-minigame. Furthermore, the up-degree of every vertex of B2 was not
changed during the (A : B)-minigame, so if the parameter of the (A : B)-
minigame was l, then the up-degree of the vertices in B2 is at most l at the end
of the game.

It is clear that as long as Avoider follows this strategy and the parameter of
every minigame in P is at most l, Avoider’s graph is l-degenerate. Therefore,
it suffices to prove that after the first minigame with parameter k − 2 is taken
out of the pool to be played, Avoider plays at most one more move in the whole
game. Note that whenever a minigame of Type II is played the size of the pool
P is not changed, and whenever a minigame of Type I is played both the size
of the pool P and the parameter of the new minigame of Type I are increased
by one. It follows that proving the above will show that indeed, throughout the
game, there will be at most k − 1 minigames of Type II in P.

We will prove by induction on l that any minigame in the pool which has

parameter 0 ≤ l ≤ k − 2 is of size at most n2
(

2k2n2

b2

)l
. First, for the base

step, note that the size of any minigame with parameter l = 0 is less than n2.
Now let us assume that l is an integer with 0 < l ≤ k − 2 and the induction
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hypotheses holds for all games with parameter less than l. For a minigame M
in the pool with parameter l we consider three cases.

Case 1. M is an (A1)l-minigame that was inserted into the pool after the
(A)l−1-minigame has ended. Just before Avoider started playing the (A)l−1-
minigame there was no minigame in the pool of larger size. Since the total
number of games in the pool was at most k, the total number of unplayed
edges at that point was at most k times the size of the (A)l−1-minigame. By

the induction hypotheses, this is at most kn2
(

2k2n2

b2

)l−1
. The number of edges

Avoider will play during the (A)l−1-minigame is certainly bounded from above
by the total number of edges that Avoider will claim until the end of the whole

k-colorability game, which is at most kn2

b

(

2k2n2

b2

)l−1
. Avoider’s strategy for the

(A)l−1-minigame guarantees that the set A1 will be of size at most twice this
much, and hence the (A1)l-minigame will be of size at most

1

2
|A1|2 ≤ 1

2

(

2kn2

b

(

2k2n2

b2

)l−1
)2

≤ n2 ·
(

2k2 · n2

b2

)l

.

Case 2. M is an (A1 : A2)l-minigame that was inserted into the pool after
the (A1 ∪ A2)l-minigame has ended. The size of the (A1 : A2)l-minigame is
obviously bounded from above by the size of the (A1 ∪ A2)l-minigame, which
we already upper-bounded in Case 1.

Case 3. M is an (A : B1)l-minigame that was inserted into the pool after the
(A : B)l−1-minigame has ended. As in Case 1, we can bound the number of
edges Avoider will play during the (A : B)l−1-minigame from above, by the total
number of edges that Avoider will claim until the end of the whole k-colorability
game. Thus, knowing that the (A : B)l−1-minigame was of maximal size in P
before it was played, we get that Avoider will make at most

k|A||B|
b

≤ kn2

b

(

2k2n2

b2

)l−1

moves until the end of the game. Therefore, the size of B1 is also at most that
much. Since the size of A is at most n2/b (the total number of vertices that
can have positive degree in Avoider’s graph), the total size of the (A : B1)l-

minigame is at most n2
(

2k2n2

b2

)l
. This concludes the induction step.

At the point when a minigame with parameter k−2 becomes the largest size in
the pool, then the total number of edges to be played in the remainder of the

game is at most kn2
(

2k2n2

b2

)k−2
which is less than b, meaning that Avoider will

play at most one move before the game ends. However, at this point Avoider’s
graph is (k − 2)-degenerate, so we are done. 2

Remark: The graph built by Avoider in the proof of Theorem 2.3 is clearly
3-colorable. It follows that if k ≥ 3 and b ≥ 2n5/4, then Avoider can win the
(1, b) k-colorability game. For k = 3 this yields a better result than the one
given in Theorem 3.4. Moreover, it is easy to see that if b > n3/2, then Avoider
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can build a graph which consists of a matching and one additional edge; clearly
such a graph is 2-colorable. Hence, using Enforcer’s strategy from Theorem 3.4
we get

cn ≤ f−
NC2

n
≤ f+

NC2
n
≤ n3/2,

for an appropriate constant c > 0.

4 Minor games

4.1 The Maker-Breaker minor game

In the Maker-Breaker version of the game, Maker’s goal is to build a graph that
contains a Kt-minor. The following theorem states that the threshold bias at
which Maker’s win turns into a Breaker’s win in the Kt-minor game for every
3 ≤ t ≤ c

√

n/ log n, for an appropriate constant c, is asymptotically n/2.

Theorem 4.1 For every fixed ε > 0, there exists a constant C = C(ε), such
that if n is sufficiently large and b ≤ (1 − ε)n/2, then Maker has a winning
strategy for the (1, b) game Mt

n for every t < C
√

n/ log n.

As a corollary we have the asymptotics of bMt
n

for arbitrary fixed t.

Corollary 4.2 Let t ≥ 3 be a positive integer. Then

bMt
n

=
n

2
− ot(n).

The lower bound in the corollary follows from Theorem 4.1, while if b ≥ n/2,
then Breaker, as in the proof of Theorem 2.1, can force Maker to build a forest,
which does not contain a Kt-minor for any t ≥ 3.

In the proof of Theorem 4.1 we will use the following result of Kostochka and
of Thomason.

Theorem 4.3 ([17], [26]) There exists a constant c′ such that every graph of
average degree at least c′r

√
log r admits a Kr-minor.

Proof of Theorem 4.1 Assume that b ≤ (1 − ε)n/2. We will provide Maker
with a strategy for building a graph that admits a large minor. Maker’s strategy
is divided into two stages. In the first stage that lasts exactly m − 1 (where m
is to be determined later) rounds, Maker builds a tree T = (V,E) that satisfies
the following properties:

1. |V | = m ≥ εn,

2. the degree of every u ∈ V is at most 3,

3. there remain at least ε2n2/3 unclaimed edges with both endpoints in V .
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Maker’s strategy for building such a tree is very simple: he starts by claiming an
arbitrary edge and then, for as long as possible he claims a previously unclaimed
edge (u, v) such that, in his current graph, u has degree 1 or 2 and v is isolated;
such an edge, when exists, is chosen arbitrarily. Clearly this results in a tree
with maximum degree at most 3. Now, assume that using this strategy Maker
was able to build a tree on m vertices but could not extend it to a tree on
m + 1 vertices (while maintaining the maximum degree criterion). This means
that every edge (u, v) such that, in Maker’s graph, u has degree 1 or 2 and v is
isolated, must have been claimed by Breaker. Since Maker’s graph is a tree, at
least half its vertices have degree at most 2 and so Breaker must have claimed at
least m

2 (n−m) edges. But at this point, Breaker has at most m(1−ε)n/2 edges
entailing m ≥ εn. Furthermore, the number of edges with both endpoints in V
that Breaker could have claimed is at most m(1−ε)n/2− m

2 (n−m) = m2

2 −mεn
2 .

It follows that there must be at least mεn
2 − 3m

2 ≥ ε2n2/3 unclaimed edges with
both endpoints in V . This ends the first stage.

Before claiming edges in the second stage, Maker would like to partition T into
roughly

√
n connected components of roughly the same size. The following

result of Krivelevich and Nachmias asserts that he can.

Lemma 4.4 [18, Proposition 4.5] Let G = (V,E) be a connected graph on
r vertices with maximum degree at most k. Then for every positive integer l,
there exist pairwise disjoint sets V1, . . . , Vs ⊆ V , with the following properties:

1. lk ≤ |Vi| ≤ lk2 for every 1 ≤ i ≤ s.

2.
∑s

i=1 |Vi| ≥ r − lk.

3. G[Vi] is connected for every 1 ≤ i ≤ s.

Using Lemma 4.4 with r = m, l = ε−1√m and k = 3 we conclude that at least
m − 3ε−1√m of the vertices of T can be partitioned into parts V1, . . . , Vs such
that 3ε−1√m ≤ |Vi| ≤ 9ε−1√m and T [Vi] is connected for every 1 ≤ i ≤ s.
Note that ε

√
m/10 ≤ s ≤ ε

√
m/3.

A pair (Vi, Vj) will be called good if there are at least b + 1 unclaimed edges
(u, v) where u ∈ Vi and v ∈ Vj. We claim that at least an ε2/20 fraction of the
total number of pairs is good. Indeed, assume for the sake of contradiction that
there are less than ε2

(s
2

)

/20 good pairs, then there are at most

3mε−1√m +

s
∑

i=1

(|Vi|
2

)

+ b

(

s

2

)

+ ε2

(

s

2

)

(9ε−1√m)2/20

unclaimed edges in V (the first term stands for the edges incident with vertices
outside

⋃s
i=1 Vi, the second term stands for edges inside the Vi’s, the third term

stands for unclaimed edges that might remain between any pair, even if it is not
good, and the fourth term stands for edges between good pairs).For sufficiently
large n this is strictly less than ε2n2/3; this contradicts Maker’s strategy for
the first stage.
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For every good pair (Vi, Vj), let Ai,j be any set of b + 1 unclaimed edges with
one endpoint in Vi and the other in Vj. Trivially, by simply not claiming more
than one edge from any Ai,j (and not claiming edges outside the Ai,j ’s for as
long as possible), Maker can claim an edge of Ai,j for at least half of the good
pairs (Vi, Vj). In the second stage, Maker will use this strategy; denote Maker’s
graph at the end of the second stage by H. Consider the graph H̃ on the vertex
set V (H̃) = {V1, . . . , Vs}, where (Vi, Vj) is an edge iff Maker has claimed an
edge (x, y) such that x ∈ Vi and y ∈ Vj. The average degree in H̃ is at least

ε2
(

s
2

)

/20

s
≥ ε3√m/400 ≥ ε4√n/400

and so by Theorem 4.3 it admits a Kt-minor for t = C
√

n/ log n, for an appro-
priate constant C. Since T [Vi] is connected for every 1 ≤ i ≤ s, H admits the
same minor and the proof of Theorem 4.1 is complete. 2

4.2 The Avoider-Enforcer minor game

In this game, Enforcer would like to make Avoider build a graph that admits a
Kt-minor. As in the Maker-Breaker case, we allow t to be a function of n.

In the first theorem, we show that with a linear bias Enforcer can win the game
for t which is as large as c

√

n/ log n.

Theorem 4.5 If b ≤ n/19, then Enforcer has a winning strategy for the (1, b)
game Mt

n, for every t < c
√

n/ log n, where c is some absolute constant.

In the proof of Theorem 4.5, we will use a result of Plotkin, Rao and Smith.
Before we can state their result, we need the following definition.

Definition. Let G = (V,E) be a graph on n vertices. A set S ⊂ V is called
a separator if every connected component of G[V \ S] contains at most 2n/3
vertices.

Theorem 4.6 [24, Corollary 2.4] Let G be a graph on n vertices and let h be
a function of n. If G does not have a separator of size at most O(h

√
n log n),

then G admits a Kh minor.

Proof of Theorem 4.5 Assume that b ≤ n/19; we will present a winning
strategy for Enforcer. We will prove that Enforcer can make Avoider build a
graph in which there is an edge between any two disjoint vertex sets of size at
least s = (1/3 − ε)n each, where ε > 0 is some small constant. Let Hn denote
the hypergraph whose vertices are the edges of Kn and whose hyperedges are
all the subgraphs of Kn, isomorphic to Ks,s. Enforcer’s goal is to avoid claiming
any hyperedge of Hn. Using the criterion given by Theorem 3.5, we obtain

∑

D∈Hn

(

1 +
1

b

)−|D|

≤
(

n

n/3

)(

n

n/3

)

2−n2/(9+ε′)b = o(1).
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Thus, Enforcer can make sure that Avoider’s graph will not contain a sepa-
rator of size at most εn and so, by Theorem 4.6, Avoider’s graph will admit
a Kh minor for h = Θ(

√

n/ log n). This concludes the proof of the Theorem. 2

In the following theorem we show that even when the bias b is almost as large
as n/2, Enforcer can still make Avoider claim all edges of a Kt-minor, where t
is some constant power of n. On the other hand, we also prove an upper bound
for the upper threshold bias of this game.

Theorem 4.7 For every ε > 0 there exists a constant a0 = a0(ε) > 0, such
that for every 4 ≤ t ≤ na0 we have

(

1

2
− ε

)

n ≤ f−
Mt

n
≤ f+

Mt
n
≤ 2n5/4.

Before proving this theorem, we will state and prove a graph-theoretic lemma,
which may also be of independent interest.

Lemma 4.8 Let G = (V,E) be a graph with average degree 2+α, for some α >
0, and girth g∗ ≥

(

1 + 2
α

)

(4 log2 t + 2 log2 log2 t + c), where c is an appropriate
constant. Then G admits a Kt-minor.

Proof In the proof of the lemma we will use the following result of Kühn and
Osthus (a similar result was also obtained by Diestel and Rempel [12]).

Theorem 4.9 [19, Corollary 5] Let t ≥ 3 be an integer. There exists a con-
stant c such that every graph of minimum degree at least 3 and girth at least
4 log2 t + 2 log2 log2 t + c contains a Kt-minor.

We repeatedly apply two deletion operations on G, which do not decrease the
average degree and (trivially) do not decrease the girth. The first operation is
the deletion of a vertex of degree at most one. Such an operation obviously
does not decrease the average degree. In the second type of operation, given
a path u1, u2, . . . , uk, with k ≥ 2 + 2/α, such that each of the internal vertices
u2, u3, . . . , uk−1 has degree two in G, we remove u2, . . . , uk−1. Again the average
degree of the new graph is at least 2 + α. To verify this, let us assume that
from a graph with e edges and v vertices satisfying 2e

v ≥ 2 + α we remove the
internal vertices of a path with k ≥ 2 + 2/α vertices. Then we obtain a graph
with average degree at least

2(e − k + 1)

v − (k − 2)
≥ 2 + α,

as claimed. Let G2 be the graph we obtain from G by repeated applications of
these two operations. Since the average degree was not decreased in any step of
the process, G2 is not empty. It also follows that δ(G2) ≥ 2, the girth of G2 is at
least g∗ and every path of G2, with internal vertices of degree two, is of length
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at most 1 + 2/α. Let G3 denote the graph obtained from G2 by contracting
every path u1, u2, . . . , uk, such that ui has degree two in G2 for every 1 < i < k,
into a single edge. Again, this operation does not decrease the average degree
and therefore G3 is not empty. Clearly δ(G3) ≥ 3. Moreover, since every such
path in G2 is of length at most 1 + 2/α it follows that the girth of G3 is at
least g = g∗

1+2/α ≥ 4 log2 t + 2 log2 log2 t + c. Applying Theorem 4.9 we conclude
that G3 admits a Kt-minor. Since G3 was obtained from G by the deletion and
contraction of edges (and the removal of isolated vertices), G admits the same
minor and the proof is complete. 2

Proof of Theorem 4.7 Let ε > 0 and let n = n(ε) be sufficiently large.
Assume that b ≤ (1/2 − ε)n, and 4 ≤ t ≤ na0 , where a0 = a0(ε) is a “small”
positive constant whose value will be determined later. If b ≤ n/19, then by
Theorem 4.5 Enforcer wins. Hence, from now on we can assume that n/19 <
b ≤ (1/2 − ε)n.

Let α = α(n, ε) > 0 be the real number that satisfies

(1 + α)n =

(n
2

)

(1/2 − ε)n + 1
,

and let

` = 5a0

(

1 +
2

α

)

log2 n.

Enforcer’s goal is to make sure that Avoider claims the edges of at most o(n)
cycles of length at most `, throughout the game. In order to prove that Enforcer
is able to do so, we will use a generalization of the Erdős-Selfridge Theorem,
that applies to Maker-Breaker games in which the goal of Maker is to claim d
(instead of just one) winning sets.

Theorem 4.10 ([1, 5]) If for positive integers d and b we have
∑

A∈F

(1 + b)−|A| < d,

then Breaker (as the first player) has a winning strategy in the (1, b) Maker-

Breaker game
{

∪B∈F B : F ∈
(F

d

)

}

(a minimal hyperedge of
{

∪B∈F B : F ∈
(F

d

)

}

is the union of d, not necessarily disjoint, hyperedges of F).

Assume that on his first move, Avoider claims some edge e. Enforcer will claim
the role of Breaker, as the first player, in the game on E(Kn) \ {e}, in which
the winning sets are the cycle of length at most `. We have

∑

A∈F

(1 + b)−|A| ≤
∑

A∈F

( n

19

)−|A|

≤
∑

3≤i≤`

(n)i

2i

( n

19

)−i

≤
∑

3≤i≤`

19i

≤ ` · n5a0(1+ 2
α) log2 19 = o(n),
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where the last equality follows from an appropriate choice of a0.

Applying Theorem 4.10, we conclude that in the entire game, Avoider will claim
the edges of at most o(n) cycles of length at most ` in E(Kn) \ {e}.

Let GA denote Avoider’s graph after he has played exactly (1+α)n moves. The
average degree in GA is 2 + 2α. We will prove that Enforcer has won the game
already at this point. Remove the edge e, as well as one edge from every cycle
of length at most ` in GA; denote the resulting graph by G′

A. Clearly the girth
of G′

A is at least `. Moreover, the average degree in G′
A is at least 2 + α since

we removed just o(n) edges from GA.

Since ` ≥
(

1 + 2
α

)

(4 log2 t + 2 log2 log2 t + c), where c is the constant given by
Theorem 4.9, we conclude that G′

A admits a Kt-minor by Lemma 4.8. Clearly
GA admits the same minor.

If b ≥ 2n5/4, then playing as in the proof of Theorem 2.3 Avoider builds a graph
that does not admit a K4-minor. 2

Remark: As in the remark following the proof of Theorem 3.4, if b > n3/2,
then Avoider can create a K3-minor-free graph (i.e., a forest). Moreover, our
strategy for Enforcer is valid also for t = 3.

5 Concluding remarks and open problems

Maker/Breaker thresholds. In Section 3 it was proved that bNCk
n

= Θ(n)
for every fixed k. We believe that in fact the following stronger statement holds.

Conjecture 5.1 There is a constant c, such that for every k ≥ 3 and suffi-
ciently large n we have

bNCk
n

=
(c + o(1))

k log k
n.

For both the planarity and the Kt-minor Maker/Breaker games, the second
order terms are unknown; this is worth studying, in particular the dependence
of the threshold bMt

n
on t.

Asymptotic monotonicity of Avoider/Enforcer games. We say that an
Avoider-Enforcer game F is monotone, if the existence of an Avoider’s winning
strategy for the (1, q,F) game implies his win in the (1, q+1,F) game, or equiv-
alently, if f+

F = f−
F . Following [14], the function f(n) is called an asymptotic

threshold bias of the game Bn if both f−
Bn

= Θ(f(n)) and f+
Bn

= Θ(f(n)). If

an asymptotic threshold bias exists, that is, if f−
Bn

= Θ
(

f+
Bn

)

, then the game
Bn is called asymptotically monotone. In [14] it was conjectured that the per-
fect matching, and Hamiltonicity games are monotone. Here we conjecture the
following.

Conjecture 5.2 The Avoider-Enforcer non-planarity, non-k-colorability and
Kt-minor games are asymptotically monotone.
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Avoider’s strategies. For all of the Avoider-Enforcer games studied in this
paper, there is a significant gap between the upper and lower bounds on the
threshold biases. It would be interesting to close, or at least to reduce, these
gaps. We do not believe that any of the upper bounds for f +

F , proved in this
paper are tight. As a first step, it would be desirable to obtain an upper bound
for the upper threshold bias f+

Mt
n

of the Kt-minor game which does depend on
t.

The reason for the difficulty of finding upper bounds is due partly to the lack
of a usable criterion for Avoider’s win, similar to Theorem 3.5, in a (1, q) game
where q > 1. This is reminiscent of the difficulties that arise in the Hamiltonicity
game Hn and in the perfect matching game Mn (see [14]). Let us recall that it
is not even known whether Avoider can win (1, n/100,Mn) or (1, n/100,Hn).
It seems quite reasonable that he can, knowing that Avoider wins (1, n,Mn)
and (1, n/2,Hn) irregardless of his strategy.
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JumbleG, Combin. Probab. Comput. 14 (2005), 783–793.

[14] D. Hefetz, M. Krivelevich and T. Szabó, Avoider-Enforcer games, J. of
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