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Abstract

An Avoider-Enforcer game is played by two players, called Avoider
and Enforcer, on a hypergraph F ⊆ 2X . The players claim previously
unoccupied elements of the board X in turns. Enforcer wins if Avoider
claims all vertices of some element of F , otherwise Avoider wins. In a more
general version of the game a bias b is introduced to level up the players’
chances of winning; Avoider claims one element of the board in each of his
moves, while Enforcer responds by claiming b elements. This traditional
set of rules for Avoider-Enforcer games is known to have a shortcoming:
it is not bias monotone.

We relax the traditional rules in a rather natural way to obtain bias
monotonicity. We analyze this new set of rules and compare it with the
traditional ones to conclude some surprising results. In particular, we show
that under the new rules the threshold bias for both the connectivity and
Hamiltonicity games, played on the edge set of the complete graph Kn,
is asymptotically equal to n/ log n. This coincides with the asymptotic
threshold bias of the same game played by two “random” players.

1 Introduction

In this paper we consider Avoider-Enforcer games. To motivate our investiga-
tion we start with a short discussion of their widely studied ancestors, Maker-
Breaker games.
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Biased Maker-Breaker games. Let p and q be positive integers and let
F ⊆ 2X be a hypergraph over the vertex set X. In a (p : q) Maker-Breaker
game F , two players, called Maker and Breaker, take turns selecting previously
unclaimed vertices of X (with Maker going first). Maker selects p vertices per
turn and Breaker selects q vertices per turn. If the number of unclaimed vertices
is strictly less than p (or q) before a move of Maker (or Breaker, respectively)
then he must claim all the remaining free vertices. The integers p, q are called
the biases of the respective players, the members of the family F are called
the winning sets and the base set X is called the board. The game ends when
every element of the board has been claimed by one of the players. Maker wins
the game if he claims all the vertices of some winning set; otherwise Breaker
wins. Note that there is no possibility of a draw. The parameters F , p, q
unambiguously determine the outcome of the (p : q) Maker-Breaker game F ,
that is, determine whether Maker has a strategy to win against an arbitrary
Breaker, or Breaker has a strategy to beat an arbitrary Maker. In the former
case we say that the game is a Maker’s win, whereas in the latter case we say
that the game is a Breaker’s win.

Chvátal and Erdős [7] studied Maker-Breaker games played on the edge set of
the complete graph Kn as the board. They have come to realize that natural
graph games are often “easily” won by Maker when played in a fair fashion
(that is, with p = q = 1). They explored a more general question: What is the
largest bias b of Breaker, against which Maker can still win a particular game,
if his bias is 1? For such a question to make sense, one would like to have the
following property: if the (1 : b) game F is a Breaker’s win for some integer b,
then the (1 : b′) game F is also a Breaker’s win for any b′ ≥ b. It is easy to
see that this holds for any family F . More generally, Maker-Breaker games are
bias monotone, that is, claiming more elements of the board per turn cannot
“harm” a player. Formally, if Maker wins the (p : q) Maker-Breaker game F for
some hypergraph F and positive integers p, q, then he also wins the (p + 1 : q)
and the (p : q − 1) games (the analogous statement for Breaker’s win holds as
well).

For a family F of sets, let the threshold bias bF be the non-negative integer
for which Maker has a winning strategy in the (1 : b) game F if and only if
b < bF . Note that, by the aforementioned monotonicity, bF is well-defined for
any (monotone increasing) family F (unless F = ∅ or F contains a hyperedge
of size at most one).

Chvátal and Erdős [7] have initiated the study of the biased graph games “con-
nectivity”, “Hamiltonicity”, and “triangle”, where the families of winning sets
are the family T = T (n) ⊆ 2E(Kn) of all n-vertex connected graphs, the fam-
ily H = H(n) ⊆ 2E(Kn) of all n-vertex Hamiltonian graphs, and the family
KK3 = KK3(n) ⊆ 2E(Kn) of all n-vertex graphs containing a triangle, respec-
tively (the parameter n is routinely suppressed in our notation). They showed
that bT = Θ

(
n

log n

)
and noted the remarkable phenomenon that this threshold

bias is of the same order of magnitude as the threshold bias of the “connectivity
game” in which both players play randomly, rather than cleverly. This fact is
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a consequence of the classic work of Erdős and Rényi on random graphs, and
therefore the phenomenon is often referred to as the “random graph intuition”.

In [1], Beck has studied the unbiased clique game. He has proved that the size
of the largest clique the first player can build in an unbiased game is almost
exactly the same as the size of the largest clique in the random graph G(n, 1/2).
Subsequently, Beck [2] has shown that the random graph intuition is valid for
the Hamiltonicity game as well; in particular bH = Θ

(
n

log n

)
. The current best

estimate,
(log 2− o(1))

n

log n
≤ bH,

is due to Krivelevich and Szabó [13]. Here, and throughout the paper, log
stands for the natural logarithm.

For the connectivity game Gebauer and Szabó [9] have recently shown that the
random graph intuition is correct even asymptotically, that is,

bT = (1 + o(1))
n

log n
.

Biased Avoider-Enforcer games. Avoider-Enforcer games are the misère
version of Maker-Breaker games. Generally speaking, a misère game is played
according to its conventional rules, except that it is played to “lose”. This
concept has been extensively studied in combinatorial game theory, see, e.g., [6].

The following problem of Beck (see [5, Open problem 20.2]) motivated most of
our research on Avoider-Enforcer games.

Consider the Reverse Hamiltonian Game, played on the edges of Kn, where
Avoider takes 1 and Enforcer takes f edges per move; Enforcer wins if at the end
Avoider’s graph contains a Hamiltonian cycle. Is it true that, if f = c0n/ log n
for some absolute positive constant c0 and n large enough, then Enforcer can
win the game?

While this question was answered positively in [13] (following progress in [10]),
several new problems have surfaced in the process.

Let us now give the formal definition of Avoider-Enforcer games as defined in
the literature (see, e.g., [14, 3, 5, 4]). Let p and q be positive integers and let
F ⊆ 2X be a hypergraph. In a (p : q) Avoider-Enforcer game F two players,
called Avoider and Enforcer, take turns selecting previously unclaimed elements
of X (with Avoider going first). Avoider selects p vertices per move and Enforcer
selects q vertices per move. If the number of unclaimed vertices is strictly less
than p (or q) before a move of Avoider (or Enforcer, respectively), then he must
claim all of the remaining free vertices. The game ends when every element of
the board has been claimed by one of the players. Avoider wins the game if he
does not claim all the vertices of any hyperedge of F ; otherwise Enforcer wins.
Fittingly, we call the members of the family F losing sets. Since there is no
possibility of a draw, the parameters F , p, q unambiguously determine whether
the (p : q) Avoider-Enforcer game F is an Avoider’s win or an Enforcer’s win.
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Similarly to Maker-Breaker games, one would like to define for every family F
the Avoider-Enforcer threshold bias fF as the non-negative integer for which
Enforcer wins the (1 : b) game F if and only if b < fF . Somewhat surprisingly,
unlike for Maker-Breaker games, such a threshold does not exist in general
for Avoider-Enforcer games (see [10]). Even more discouragingly, we cannot
establish the existence of a threshold bias even for such a natural graph game
as Hamiltonicity. In fact, the smallest bias b for which we can show that the
(1 : b) game H is an Avoider’s win is the trivial b = n/2 (with this bias, Avoider
will have less than n edges at the end of the game, and will thus win irregardless
of his strategy). This is in striking contrast to the Maker-Breaker counterpart
of the Hamiltonicity game, where the order of magnitude of the threshold bias
is known.

Regarding the random graph intuition, the main motivation behind the afore-
mentioned problem of Beck, we face yet another surprise for Avoider-Enforcer
games. In [10] it was shown that, in general, the random graph intuition is
not true in a strong sense, as for the connectivity game the Avoider-Enforcer
threshold bias fT does exist for every n and is equal to bn−1

2 c. That is, the
threshold bias of the Maker-Breaker connectivity game is (1 + o(1)) n

log n while
the threshold bias of its misère version is of linear order!

Following [10], let us introduce some relevant terminology. For a hypergraph F
we define the lower threshold bias f−F to be the largest integer such that Enforcer
can win the (1 : b) game F for every b ≤ f−F , and the upper threshold bias f+

F to
be the smallest non-negative integer such that Avoider can win the (1 : b) game
F for every b > f+

F . Except for certain degenerate cases, f−F and f+
F always

exist and satisfy f−F ≤ f+
F . Observe that whenever f−F = f+

F , the threshold bias
fF of the Avoider-Enforcer game F does exist and satisfies fF = f+

F .

In order to overcome the non-monotonicity of Avoider-Enforcer games and, as
a consequence, the lack of a well-defined threshold bias, we offer a modification
of the rules of Avoider-Enforcer games. We refer to the new rules as monotone
rules, while the original set of rules will be referred to as strict rules. In this
new setting of Avoider-Enforcer games everything remains the same as before
except that we allow both players to claim more elements per turn than their
respective bias. Formally, in a monotone (p : q) Avoider-Enforcer game F ⊆ 2X ,
Avoider claims at least p elements of X per turn and Enforcer claims at least
q elements of X per turn. It is easy to see that Avoider-Enforcer games with
these rules are bias monotone. Hence, one can define the threshold bias fmon

F
of the monotone game F as the non-negative integer for which Enforcer has a
winning strategy in the (1 : b) game if and only if b ≤ fmon

F .

Our relaxation of the rules of Avoider-Enforcer games is inspired by the seem-
ingly plausible assumption that “taking more edges cannot possibly help a
player in an Avoider-Enforcer game”. The presumed analogy to Maker-Breaker
games further supports the idea of monotone rules, since the analogous relax-
ation of the rules of Maker-Breaker games does not change the outcome of the
game – it is known that allowing a player to claim less edges than his respective
bias in a Maker-Breaker game cannot help him. Formally, in a monotone (p : q)
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Maker-Breaker game F , Maker claims at most p elements per turn and Breaker
claims at most q elements per turn. Then, if we denote the threshold bias of
the monotone game by bmon

F , it is easy to see that bmon
F = bF for every family

F .

One may wonder about the relationship between a biased Avoider-Enforcer
game played according to the strict rules and the same game played according to
the monotone rules. Is it true that our relaxation of the rules has no significant
effect, other than making the game bias-monotone? Is it plausible to believe
that even if there is some alternation in the identity of the winner of a strict
game F , the inequalities

f−F ≤ fmon
F ≤ f+

F , (1)

should hold for every family F?

Unexpectedly, neither of the inequalities (1) is true in general. In fact, (1) does
not even hold for such a natural graph game as connectivity, which is even
bias monotone under the strict rules (see Theorem 1.1 below, and Theorem 1.5
in [10]).

Let k be a positive integer and let Dk ⊆ 2E(Kn) denote the hypergraph contain-
ing the edge sets of all graphs on n vertices with minimum degree at least k.
The main result of our paper is the following theorem.

Theorem 1.1 If b ≥ n−1
log(n−2)−1 and n is sufficiently large, then Avoider has a

winning strategy in the monotone (1 : b) game D1. Therefore,

fmon
D1

≤ (1 + o(1))
n

log n
.

As was mentioned earlier, Theorem 1.1 coupled with Theorem 1.5 of [10] ex-
emplifies that in the connectivity game Avoider does benefit from having the
possibility of taking more than one edge in each move. As proved in [10], when
playing according to the strict rules, Avoider can only win if the bias of Enforcer
is at least as large as bn−1

2 c + 1, so Avoider will have strictly less than n − 1
edges at the end. On the other hand, when playing according to the monotone
rules, Avoider can avoid building a connected graph even if Enforcer’s bias is
as small as Θ

(
n

log n

)
.

Corollary 1.2 Inequality (1) does not hold in general, not even in the special
case where the threshold bias for the strict game exists.

Combined with the results of [13], Theorem 1.1 also has the following important
corollary. Let Ck ⊆ 2E(Kn) denote the hypergraph containing the edge sets of
all k-connected spanning subgraphs of Kn.

Corollary 1.3

fmon
Dk

, fmon
T , fmon

Ck
, fmon
H = (1 + o(1))

n

log n
. (2)
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Corollary 1.3 states that the random graph intuition holds asymptotically for all
of the above games. Note that for some of these games, such as “Hamiltonicity”
or “k-connectivity”, where k ≥ 2, currently we do not have such tight results
for the Maker-Breaker version.

The upper bound in equation (2) follows from Theorem 1.1, whereas the lower
bound was essentially proved in [13]. For the latter, we must observe that the
proof in [13] depends on the use of a general sufficient condition for Avoider’s
win from [10] for strict Avoider-Enforcer games. Minor changes to its proof
show that the same sufficient condition for Avoider’s win holds for the monotone
game as well (we omit the straightforward details).

Theorem 1.4 [10, Theorem 1.1] Avoider wins the (p : q) game F (both with
strict and monotone rules), provided that

∑

D∈F

(
1 +

1
p

)−|D|
<

(
1 +

1
p

)−p

.

Avoiding small graphs. All the games discussed in Corollary 1.3 have one
common property – the size of the losing sets grows with n. The extreme
opposite of these are games with losing sets of constant size, in particular games
in which Enforcer wants to make Avoider claim a copy of some fixed graph H.
Let KH ⊆ 2E(Kn) consist of the edge sets of the subgraphs of Kn which contain
H as a subgraph. In the KH game, one property of the monotone rules seems
to play an important role. Namely, Avoider will surely lose the game if he
claims a copy of H− (a copy of H with one edge missing), for which the missing
edge is still unclaimed and there are “many”, that is, at least b, additional
unclaimed edges. Since this is not the case when playing with the strict rules,
one may expect this to influence the outcome of the game in Enforcer’s favor,
especially when the losing sets are small. In particular, it may be reasonable to
compare the outcomes and strategies of both players in the strict H− game and
the monotone H game. We will analyze the smallest non-trivial cases of the
H-game on Kn; namely, the monotone triangle game (that is, when H = K3),
and the strict 2-path game (that is, when H = P3 = K−

3 is the path of length
2).

The 2-path game KP3 is an example of an Avoider-Enforcer game for which the
strict threshold bias does not exist, but inequality (1) holds.

Theorem 1.5 f+
KP3

=
(
n
2

)− 2, f−KP3
= Θ

(
n3/2

)
, and fmon

KP3
=

(
n
2

)− bn
2 c − 1.

We note that while the third statement of this theorem is easy to verify, the
first two will be proved in Section 3.2.

For the Maker-Breaker triangle game Chvátal and Erdős [7] proved that the
threshold bias bKK3

is of order
√

n; the dissimilarity with the monotone Avoider-
Enforcer threshold bias is striking.
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Theorem 1.6
fmon
KK3

= Θ
(
n3/2

)
.

It was proved in [12] that the threshold bias for the Maker-Breaker non-k-
colorability game is of order n for every fixed k ≥ 2. Theorem 1.6 may suggest
that the threshold bias for the monotone Avoider-Enforcer k-coloring game is
of superlinear order in n, as it provides such a result for k = 2.

For the sake of simplicity and clarity of presentation, we do not make a par-
ticular effort to optimize the constants obtained in theorems we prove. We
also omit floor and ceiling signs whenever these are not crucial. Many of our
results are asymptotic in nature and whenever necessary we assume that n is
sufficiently large. Our graph-theoretic notation is standard and follows that
of [15]. In particular, if G = (V, E) is a graph and u ∈ V , then the G-degree of
u is the number of neighbors u has in G.

The rest of this paper is organized as follows: In Section 2 we prove Theorem 1.1,
and in Section 3 we prove Theorem 1.6 and Theorem 1.5. In Section 4 we present
some conclusions and open problems.

2 Isolating a vertex

Proof of Theorem 1.1. We present a winning strategy for Avoider. At any
point of the game, let A be the set of vertices that have positive degree in
Avoider’s graph. Avoider will make sure that A grows by at most two vertices
in each round and after each of his moves there is no free edge within A.

Avoider’s strategy: As long as |V \ A| ≥ 5, Avoider does the following. Let
M ⊆ V \ A denote the subset of vertices, which have the smallest E-degree
(that is, degree in Enforcer’s graph) among the vertices of V \ A. If there is
an unclaimed edge uv such that v ∈ M and u ∈ A, then Avoider claims all
unclaimed edges wv for which w ∈ A. Otherwise, if all edges with one endpoint
in A and the other in M were already claimed by Enforcer, then Avoider claims
an arbitrary free edge uw as well as all free edges with one endpoint in {u,w}
and the other in A.

If |V \ A| ≤ 4, then Avoider changes his strategy. He chooses an arbitrary
vertex z ∈ V \ A of maximum E-degree and claims all of the remaining free
edges, except for the ones which are incident with z.

First we show that this strategy is well-defined, that is, unless Avoider has
already won, he can always follow it.

For as long as |V \ A| ≥ 5 Avoider can follow his strategy unless Enforcer has
already claimed all edges incident with V \A, in which case Avoider had already
won.

Since A is increased by 1 or 2 in each round, the first time Avoider encounters
|V \A| ≤ 4, the value of |V \A| is either 4 or 3. Let z ∈ V \A be an arbitrary
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vertex of maximal E-degree among the vertices of V \ A. We will show that
at that point there must be at least one free edge which is not incident with
z. Assume for the sake of contradiction that every free edge is incident with z,
then for all other vertices u ∈ (V \A) \ {z}, the only free incident edge can be
zu. In fact, zu must be free for all u ∈ (V \ A) \ {z} as, otherwise, Enforcer
would have claimed all edges incident with u and thus Avoider would have won
already. Then, since |(V \ A) \ {z}| ≥ 2, the E-degree of z is at most n − 3,
while dE(u) ≥ n− 2 for any u ∈ (V \A) \ {z}, contradicting the maximality of
the E-degree of z.

We have thus proved that Avoider can follow his strategy until |V \ A| first
drops below 5, and for one additional move. In the following we will prove that
he will not have to play another move; that is, there will be at most b free edges
left on the board, each of them incident with z. Enforcer must claim all of them
in his next move and so the game ends with Avoider’s win.

Assume now that Avoider plays the game against some fixed strategy of En-
forcer. For clarity, we introduce an indexing of the set A. For i ≥ 0, let Ai

be the set of those vertices that have a positive degree in Avoider’s graph just
before his (i + 1)st move. Let d∗i be the average degree of vertices of V \ Ai in
Enforcer’s graph, that is,

d∗i =

∑
v∈V \Ai

dE(v)

|V \Ai| .

Let g be the smallest integer, such that |V \Ag−1| ≤ 4.

Claim 2.1 For every 1 ≤ j ≤ g − 1, we have

d∗j ≥ min




|Aj |∑

i=2

b

n− i
, n− 1− b



 .

Before proving this claim, let us show that it readily implies Theorem 1.1.
By definition, before Avoider’s move in round g, we have |V \ Ag−1| = 3 or
|V \Ag−1| = 4. Hence by Claim 2.1 we have either

dE(z) ≥ d∗g−1 ≥ n− 1− b,

or

dE(z) ≥ d∗g−1 ≥
|Ag−1|∑

i=2

b

n− i
≥

n−4∑

i=2

b

n− i
=

n−2∑

j=4

b

j
> b(log(n−2)−2) ≥ n−1−b.

In his gth move, Avoider claims all edges other than the ones which are incident
with z. Then, at most b free edges will remain, all of them incident with z.
Enforcer must claim all of them, thus isolating z in Avoider’s graph.

Proof of Claim 2.1. We proceed by induction on i. For i = 1 the statement is
certainly true as after Avoider’s first move we have |A1| = 2, and on his first
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move, Enforcer has claimed at least b edges. Each of these edges has at least
one endpoint in V \A1, entailing d∗1 ≥ b

n−2 .

Next, assume that after the lth move of Enforcer, where 1 ≤ l ≤ g − 2, the
statement is true. We show that it remains true after the next round. We
distinguish between two cases.

Case 1. There exists an unclaimed edge uv such that u ∈ Al, and v ∈ V \ Al

satisfies dE(v) = min{dE(w) : w ∈ V \Al}.
In this case we have |Al+1| = |Al|+ 1. Assume first that

∑|Al|
i=2

b
n−i ≤ n− 1− b,

then by induction we have d∗l ≥
∑|Al|

i=2
b

n−i . The vertex v was of minimum
degree in Enforcer’s graph on V \Al, and so the value of d∗l was not decreased
by Avoider’s move. In his counter move, Enforcer has claimed at least b edges.
Each of these edges has at least one endpoint in V \Al+1, since Avoider made
sure that all edges spanned by Al+1 are already claimed. Hence, the value of
d∗l was increased by at least b

n−|Al+1| = b
n−(|Al|+1) . Therefore, after both players

have made their (l + 1)st move, we have

d∗l+1 ≥ d∗l +
b

n− (|Al|+ 1)
≥
|Al+1|∑

i=2

b

n− i
.

Next, assume that
∑|Al|

i=2
b

n−i > n − 1 − b. By the induction hypothesis and
Avoider’s strategy, d∗l+1 ≥ d∗l ≥ n− 1− b holds in this case.

Case 2. All edges uv such that u ∈ Al, and v ∈ V \ Al satisfying dE(v) =
min{dE(w) : w ∈ V \Al}, were already claimed by Enforcer.
Then, the degree of every vertex of V \ Al ⊃ V \ Al+1 in Enforcer’s graph is
at least |Al|, implying d∗l+1 ≥ |Al|. It follows that if |Al| ≥ n − 1 − b, then we
are done. Assume now that |Al| < n − 1 − b. The size of Al is increased by
either one or two in Avoider’s (l + 1)st move. Hence, after this move, we have
d∗l+1 ≥ |Al| ≥ |Al+1| − 2 >

∑|Al+1|
i=2

b
n−i , where the last inequality clearly holds

for Al+1 of size 3 ≤ |Al+1| ≤ n− b as each summand is at most 1, and the sum
of the first two is b

n−2 + b
n−3 < 1. 2

Remark. Our proof of Theorem 1.1 is some sort of a dynamic version of
the Box Game defined in [7]. It is interesting to note that Avoider’s strategy
here is similar to Maker’s strategy in the Box Game which means that, when
the hyperedges are pairwise disjoint, a player who wants to claim a complete
hyperedge and a player who wants to avoid one, will essentially choose the same
strategy.

Remark. The first phase of Avoider’s strategy resembles in a way some strate-
gies used in Nim-like games, as in every move Avoider attaches vertices to A
by claiming all free edges between one or two vertices of V \ A and A. Hence,
his opponent is forced to touch a vertex outside of A in every move.

9



3 Avoiding and enforcing a small subgraph

3.1 Triangle game

Proof of Theorem 1.6. First, assume that b > n3/2. In his strategy, Avoider
will always claim exactly one edge per turn. For as long as possible he claims
independent edges, that is, he greedily builds a matching of maximum possible
size. We will prove that when he can no longer extend his matching, the game
is almost over, that is, Avoider will claim at most one more edge. This suffices
to prove our claim as a union of a matching and a single edge is bipartite. Let

e denote the number of edges in Avoider’s matching; clearly e ≤
⌈

(n
2)

b+1

⌉
. At the

point when Avoider cannot further extend his matching, Enforcer must have
claimed at least

(
n−2e

2

)
edges (every edge which is not incident with Avoider’s

matching). It follows that the number of unclaimed edges is at most
(
2e
2

)
+

2e(n− 2e) < b and so Avoider will win.

Next, assume that b ≤ 1
5n3/2. Due to the bias-monotonicity of Avoider-Enforcer

games with monotone rules, it is enough to present a winning strategy for
Enforcer for b = 1

5n3/2. Set t = n1/2.

The game is divided into two phases. The first phase lasts as long as Avoider’s
graph A is a matching with at most t edges; the first move of Avoider which
violates this condition starts the second phase (it is therefore possible that the
first phase will not take place at all).
A vertex is called good if it is isolated in A. A good vertex v is called fulfilled
if Enforcer claimed all edges between v and other good vertices; a good vertex
which is not fulfilled is called unfulfilled. Note that once a vertex becomes
fulfilled it stays that way until the end of the first phase.
In each round of the first phase Enforcer acts as follows. He spots an unfulfilled
vertex v and claims the unclaimed edges between v and all other good vertices;
hence v becomes fulfilled. Enforcer continues fulfilling unfulfilled vertices this
way, for as long as he has not yet claimed at least b edges in his move. Note
that in each of his moves during the first phase Enforcer claims at least b but
no more than b + n edges.
In the second phase Enforcer will make at most two moves. His course of play
depends on Avoider’s graph.

Case 1. A contains a vertex x of degree at least 2.
In this case Enforcer needs only one more move. He spots the edge xy that
is claimed by Avoider the earliest among all A-edges incident to x. Let xz be
another, arbitrary edge claimed by Avoider. In his move Enforcer claims all
unclaimed edges except for yz.

Case 2. A is a matching M ′ consisting of more than t edges.
In this case Enforcer will need at most two more moves. Let e1, e2, . . . , et denote
the first t edges of M ′ that were claimed by Avoider (breaking ties arbitrarily),
let M = {e1, . . . , et}, and let VM be the set of vertices covered by the edges
of M . Enforcer claims every unclaimed edge with both endpoints in V \ VM ;
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denote the number of such edges by r. If r < b, then Enforcer also claims
2d b−r

2 e additional edges between VM and V \ VM as follows. He spots d b−r
2 e

pairs (u,ww′), with u ∈ V \ VM and ww′ ∈ M , such that both uw and uw′ are
unclaimed and claims these edges. Note that in this turn Enforcer claims at
most b + 1 edges between VM and V \ VM . After Avoider’s next move Enforcer
spots an arbitrary vertex x of A-degree at least 2, say xy and xz were claimed
by Avoider, and claims all unclaimed edges except for yz.

In the following we will show that, unless he has already won, Enforcer is
always able to follow his strategy while playing against an arbitrary strategy
of Avoider. We will also show that Enforcer does not claim the edge yz, which
implies that the above strategy of Enforcer is a winning one, since in both cases
Avoider must occupy the triangle on the vertices x, y and z.

First we show that Enforcer can always follow his strategy during the first
phase. During the first phase at most t edges were claimed by Avoider and thus
there are at least n− 2t good vertices. Since Enforcer claims at most t(b + n)
edges during the entire first phase, there are at least

(
n−2t

2

)− t(b + n) > b + n
unclaimed edges which are spanned by good vertices. It follows that Enforcer
has a legitimate move at any point during the first phase.

Let the second phase start in round g; note that 1 ≤ g ≤ t + 1. The following
claims will be useful in showing that Enforcer can follow his strategy during
the second phase and that the edge yz is not claimed by Enforcer.

Claim 3.1 (i) If vw is an isolated edge in Avoider’s graph, then neither v nor
w was ever a fulfilled vertex.
(ii) At least one endpoint of every edge claimed by Enforcer in the first phase
is fulfilled.

Proof of Claim 3.1. (i) Before Avoider claims the edge vw, both of the endpoints
were good. If one of them was fulfilled, then the edge vw would have already
been claimed by Enforcer.
(ii) Clear from the strategy of Enforcer. 2

Claim 3.2 At the end of the first phase the following is true for every good
vertex u. For any pair v, w such that either vw ∈ E(A) or both v and w are
good, we have that either both edges vu and wu are unclaimed or they were both
claimed by Enforcer.

Proof of Claim 3.2. We prove the assertion of the claim by induction on the
number of rounds. The claim is clearly true at the beginning of the game. Now
suppose the claim is true before the ith move of Avoider (in the first phase). In
his ith move, Avoider claims independent edges between good and unfulfilled
vertices. For these pairs the statement was true by the induction hypothesis
and Avoider’s move does not change that. Enforcer fulfills several good vertices
in his ith move; this also preserves the correctness of the statement. 2
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Let us look at the board just after Avoider’s first move of the second phase
(that is, his gth move).

Case 1. There is a vertex x of degree at least 2 in A.
Recall the selection of y: xy was claimed by Avoider the earliest among the
A-edges incident to x. We can assume that yz was not claimed by Avoider, as
otherwise he had already lost. For a contradiction, assume that yz was claimed
by Enforcer in the first phase. By Claim 3.1(ii) at least one of the endpoints of
yz was fulfilled by the end of the first phase, let w ∈ {y, z} be the first one to
be fulfilled and let w̄ be the other vertex of {y, z}. Then by Claim 3.1(i), xw
must have been claimed by Avoider only in the second phase. Hence xw was
free at the time Enforcer was fulfilling w, he still did not claim it while he did
claim ww̄ = yz. That is, at that time w̄ must have been good, while x must
have been not good. So xw̄ was not yet claimed by Avoider, but there must
have been another edge xu already claimed by Avoider contradicting Enforcer’s
choice of the A-neighbor y of x. It follows that the edge yz is indeed unclaimed
at this point.

By the Mantel-Turán theorem we can also assume that |A| ≤ n2/4, as otherwise
Avoider has already lost. In the first phase, Enforcer has claimed at most t(b+n)
edges, so right after Avoider’s gth move at least

(
n
2

)− n2/4− t(b + n) ≥ b + 1
edges are still unclaimed. Enforcer can thus follow his strategy, claim all free
edges except yz and make Avoider lose on his next move.

Case 2. Avoider’s graph is a matching M ′ containing more than t edges.
Recall that e1, e2, . . . , et are the first t edges of M ′, M = {e1, . . . , et}, and VM

is the set of vertices covered by the edges of M .

Note first that by Claim 3.2, for any pair (u, xy), u ∈ V \ VM and xy ∈ M , we
have that either both ux and uy are unclaimed or both of them were already
claimed by Enforcer. Hence, Enforcer can claim the unclaimed edges between
VM and V \ VM in pairs, as required by his strategy.

We will now show that just before Enforcer’s first move of the second phase,
there are at least 3(b + 1) unclaimed edges between VM and V \ VM . This
is enough to ensure that Enforcer will be able to follow his strategy for the
remainder of the game. In his gth move Enforcer takes at most b + 1 edges
between VM and V \ VM . In Avoider’s subsequent move, Avoider cannot claim
more than half of the unclaimed edges between VM and V \ VM without losing
immediately. Indeed, by Claim 3.2 and Enforcer’s strategy for his gth move, if
vw ∈ M and u ∈ V \ VM , then uv is unclaimed if and only if uw is unclaimed,
and by claiming both of them, Avoider would build a triangle on u, v, w. Hence
after Avoider’s (g + 1)st move there are at least b + 1 free edges between VM

and V \ VM , enough for Enforcer to make his last move.

To follow his strategy in his last move, Enforcer also needs a vertex x ∈ VM of
A-degree at least 2. Such a vertex will be created by Avoider in his (g + 1)st
move, as after Enforcer’s gth move none of the edges in V \ VM are free. Then
Enforcer will win after Avoider’s next move, as he could not have claimed yz.
Indeed, if {y, z} ⊆ VM , this follows from Claim 3.1, parts (i) and (ii), and
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otherwise from Claim 3.2 and Enforcer’s strategy for his gth move.

It remains to show that at least 3(b+1) edges between VM and V \VM are free
after Avoider’s gth move. In fact we will prove that at least one third of the
|VM ||V \ VM | edges between VM and V \ VM are unclaimed. This will conclude
the proof of the theorem as 2t(n− 2t)/3 ≥ 3(b + 1) for large enough n.

Let m = dt/2e, and let e1, e2, . . . , em be the first m edges to be claimed by
Avoider. Assume that Avoider claimed em in move g′ ≤ g. After round g′ − 1,
we denote the number of edges claimed by Enforcer by `, and the number of
fulfilled vertices by k. We have that ` ≤ m(b + n) =

(
1
10 + o(1)

)
n2. On the

other hand, by Enforcer’s strategy we get ` ≥ (
k
2

)
+ k(n− 2m− k). Combining

the two inequalities gives k2− 2(1− o(1))kn+
(

1
5 + o(1)

)
n2 > 0 from which we

infer that k < n/9.

Thus there are at least n − 2t − n/9 unfulfilled vertices U before round g′.
At this moment the edges between these vertices and the endpoints of the ei,
1 ≤ i ≤ m are free by Claim 3.1 (i) and (ii). These edges stay unclaimed
throughout the first phase, since even if some vertices of U become fulfilled,
they will not be connected to an endpoint of ei, as these vertices are not good
anymore. Hence all these edges are unclaimed at the end of the first phase
and thus the number of unclaimed edges between VM and V \ VM is at least
2m(n− 2t− n/9) > |VM ||V \ VM |/3. 2

3.2 P3-game

The bounds on the strict thresholds in Theorem 1.5 follow readily from the
following lemma.

Lemma 3.3 Let n be sufficiently large and r be the remainder of the integer
division of

(
n
2

)
by b + 1.

(i) If b < 1
5n3/2, then Enforcer wins the (1 : b) 2-path game with strict rules,

independently of the value of r.

(ii) Let b > 2n3/2. If 0 < r < 2(n − 2), then Enforcer wins the (1 : b) 2-path
game with strict rules, but if r > n3/2, then Avoider wins this game.

Proof of Lemma 3.3

(i) Let b < 1
5n3/2 be an integer. We give a strategy for Enforcer to win the

strict (1 : b) P3-game.

Let m =
⌊

1
5

(n
2)

b+1

⌋
. At any point of the game, let H denote the graph consisting of

all edges that were previously claimed (by either Avoider or Enforcer). During
the first m rounds Enforcer claims mb edges according to the following simple
strategy. He claims an arbitrary free edge uv, such that both endpoints u and
v have H-degree strictly less than n/2.
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From round m+1 on, Enforcer changes his strategy. We say that an unclaimed
edge is a threat, if it is adjacent to an edge of Avoider. Enforcer identifies an
arbitrary set T of b + 1 threats and in his following moves he claims arbitrary
free edges with the only restriction that he claims an edge from T only if all
other edges are claimed.

It is clear that if Enforcer is able to always act according to the above strategy,
then he wins the game. Indeed, in the move right after Enforcer claimed his
first edge from T , Avoider must also occupy an edge of T and thus create a
copy of P3.

To finish the proof of part (i), we show that Enforcer can follow his strategy
while playing against an arbitrary fixed strategy of Avoider. At any point
during this game let l denote the number of vertices v satisfying dH(v) ≥ n

2 .
Then up to round m we have

1
5

(
n

2

)
≥ m(b + 1) ≥ 1

2
· n

2
· l,

entailing l ≤ 2
5(n − 1) < n

2 − 1. That is, up to round m, there are more than
n
2 +1 vertices of H-degree less than n

2 . We conclude that there are two vertices
u and v of H-degree less than n

2 , such that the edge uv is unclaimed and is thus
available for Enforcer to claim.

Unless Avoider had already lost, Avoider’s graph after his (m + 1)st move is
a matching consisting of exactly m + 1 edges. Each edge of Avoider creates
2(n − 2) potential threats and each actual threat is created by at most two
edges of Avoider. Hence, the number of threats after Avoider’s (m + 1)st move
is at least

(m + 1)(2(n− 2))
2

≥
(
n
2

)

5(b + 1)
(n− 2) ≥ (n− 2)3

10(b + 1)
> b,

as b < 1
5n3/2 and n is sufficiently large. We conclude that after Avoider’s

(m + 1)st move Enforcer can find a set T of b + 1 threats and this enables him
to follow his strategy from round m + 1 onward.

(ii) Let b > 2n3/2. By the definition of the strict game, Enforcer in his last
move claims the last unclaimed r−1 edges. If n3/2 < r, then Avoider’s strategy
throughout the game is to claim arbitrary edges which are not threats. This
is always possible as long as the number of threats is less than r. The total
number of edges played by Avoider is at most(

n
2

)

b + 1
+ 1 ≤ 1 +

√
n

4
.

Hence the number of threats at any point of the game is at most
(
1 +

√
n

4

)
(2n−

2) < r, and Avoider wins the game.

On the other hand, if 0 < r < 2(n− 2), then Enforcer wins the game. Indeed,
already on his first move, Avoider creates 2(n− 2) threats, which Enforcer can
avoid taking until the very end. 2
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4 Concluding remarks and open problems

Strict vs. monotone rules. In this paper, we have shown that the out-
come of strict Avoider-Enforcer games can differ substantially from the out-
come of monotone Avoider-Enforcer games (even when the strict game is bias-
monotone).

A natural question one may ask is: Which set of rules is “better” than the
other?

The advantage of monotone rules is of course the existence of a threshold bias
for every game. Moreover, some of the obtained results concerning the threshold
bias of the monotone Avoider-Enforcer game tend to show great similarity to
their Maker-Breaker analogues.

The benefit of the strict rules lies in their applicability to Maker-Breaker games
(see, e.g., [12]) or to discrepancy type games (see, e.g., [5, 8, 11]). In these
applications, in order to provide a strategy for Maker or for Breaker, one defines
an auxiliary Avoider-Enforcer game which models the original Maker-Breaker
game, and uses the winning strategy of Avoider or Enforcer in the auxiliary
game. Clearly, in this situation the monotone rules are useless.

It would be very interesting to study further the differences between the two sets
of rules. Finding additional examples that support the random graph intuition
for monotone rules would be particularly desirable. The strict versions of the
Avoider-Enforcer planarity, k-colorability and minor games have already been
analyzed in [12]; it would be worthwhile to investigate them in the monotone
setting.

Avoiding small graphs. Another possible line of research is the further
study of the monotone H-game for some fixed graph H on at least four vertices.

It seems that in the strict (1 : b) H-game the remainder r of the integer division
of

(
n
2

)
by b + 1 plays a significant role. Namely, if r = 1, then Avoider is to

claim the last edge of the game, and he will therefore lose if at any point of the
game there is an unclaimed edge which completes an Avoider’s copy of H− into
an H.

On the other hand, if r is large, and it can be as large as b, then Avoider will
lose the game only if at some point of the game there are r unclaimed edges
such that each of them completes an Avoider’s copy of H− into an H.

Since r can change drastically with small changes of b, we believe that in any
strict H-game the gap between f−KH

and f+
KH

will be substantial.

Conjecture 4.1 For every graph H, the thresholds f−KH
and f+

KH
are not of

the same order.

This conjecture has been verified for the P3-game in Theorem 1.5.
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As mentioned earlier, there are reasons to believe that the monotone H-game
would behave similarly to the strict H−-game. We are curious whether the fact
that the thresholds f−KP3

and fmon
KK3

(as obtained in Theorem 1.5 and Theorem 1.6
respectively) are of the same order is merely a coincidence, in particular since
P3 = K−

3 and the respective players’ optimal strategies exhibit similarities.
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