Dense graphs with cycle neighborhoods

AKOS SERESS AND TIBOR SZABO

ABSTRACT. For all € > 0, we construct graphs with n vertices and > n2—e
edges, for arbitrarily large n, such that the neighborhood of each vertex is
a cycle. This result is asymptotically best possible.

1. Introduction

For a graph G(V, E) and v € V, we denote by N, the subgraph of G spanned
by the neighborhood of v. Let P be a family of graphs. G(V, E) is said to satisfy
local property P if forallv eV, N, € P.

Early investigations dealt mostly with the case |P| = 1, i.e., when all neigh-
borhoods are isomorphic. The major question is the existence of an appropriate
G. Good summaries of results of this type can be found in the survey papers
Hell [6] and Sedlacek [13].

More recently, the cases when P consists of all cycles, all paths, or all match-
ings were investigated. At these instances, the question of existence is easy; so
the main focus is on the following extremal problem. What is the maximum
number of edges, e = e(n), in graphs on n vertices satisfying one of these local
properties?

For 3-connected planar graphs, Zelinka [15, 16] proved that e(n) = 2n +
3[n/4] — 6 and e(n) = (12/5)(n — 2) in the cases of paths and matchings, re-
spectively. Obviously, e(r) = 3n — 6 in the cycle case.

For general graphs, Clark, Entringer, McCanna, and Székely [4] showed, using
a result of Ruzsa and Szemerédi [12], that e(n) = o(n?) in all three instances.

Ruzsa and Szemerédi also gave graphs satisfying the local property ‘matching’

CI

and having > en” Vi°s" > n?~¢ edges (for a simple construction, see [4]). For
the cases of paths and cycles, it is shown in [4] that e(n) > enlogn, by adding

diagonals to certain two-dimensional faces of hypercubes.
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The purpose of the present paper is to close the gap between the lower and
upper bound in the cycle and path case. Our main result is

THEOREM 1.1. There exists an infinite sequence S of integers and an absolute

constant ¢ > 0 such that for each n € S, there i1s a graph on n veriices with

9___°¢c
>n  Vieslesn edges and satisfying the local property ‘cycle’.

Graphs with cycle neighborhoods look locally as plane triangulations, so the
minimum genus embeddings of the graphs constructed in Theorem 1.1 give a
triangulation of the surface. These triangulations are automatically clean tri-
angulations, as defined by Hartsfield and Ringel [5]: every face is a triangle,
and every triangle of the graph is a face. Hartsfield and Ringel gave clean tri-
angulations of genus g surfaces with (4 + o(1))g faces. (Later, Archdeacon [1]
gave clean triangulations with (44 o(1))g faces and with minimal essential cycle
length > k, for all fixed k.) The condition that the number of faces is (440(1))g
is equivalent to |V| = o(|E|) for the embedded graph G(V, E); so, their graphs
are dense in the sense that the number of edges is nonlinear. Qur graphs provide
clean triangulations essentially as dense as possible.

Topological properties of graphs with cycle neighborhoods were investigated
e.g. by Malnic and Mohar [9]. That paper also describes the relation with the
notion representativity of graphs, studied, among others, in [10],[11],[14].

A modification of the construction for Theorem 1.1 gives the following.

THEOREM 1.2. There exists an infinite sequence S of integers and an absolute

constant ¢ > 0 such that for each n € S, there is a graph on n veriices with

9 __c
>n  Vieslesn edges and satisfying the local property ‘path’.

2. A hamiltonian graph

In this section, which serves as a preparation, we define an auxiliary graph
H(X,k) and prove that it is hamiltonian. Let X be a finite set, |X| > 2,
and k& > 2 an integer. The vertex set V(X k) of H(X, k) is defined as the
set of sequences of length k|X| containing each element of X exactly k times:
V(X k) = {(v1,v2, ..., oy x)) : Ve € X([{i : vi = 2} = k)}. u,v € V(X, k) are
adjacent if and only if they agree in exactly k| X|—2 positions (and, consequently,
for the two exceptional coordinates 4, j, u; = v; and u; = v;).

THEOREM 2.1. For all X, k, the graph H(X, k) is hamiltonian.

There are numerous algorithms for generating all permutations of a multiset,
and some of them (cf. [3],[7],[8]) provide a sequence of permutations such that
consecutive ones are obtained from each other by a transposition. In other words,
these algorithms show that the graph H(X, k) has a hamiltonian path. We have
to prove slightly more; namely, the existence of a hamiltonian cycle.

For the proof, we need the following lemma. Let V;» C {0, 1}" denote the set
of 0-1 vectors containing exactly k£ 1’s. We say that u € V;* can be obtained
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Case of even n Case of odd n
FIiGuRrE 1

from v € V? by shifting a block of 1’s if u,v agree in all but two coordinates
i<jandu =wv;=1foralli<l<j.

LEMMA 2.2. For every k > 2 and n > k there exists a cyclic ordering v7[0],
op[1], ..., v [(}) = 1] of V" such that

vi[(h) -1 = (1,1,...,1,0,1,0...,0),
k—1

v;ﬂl[o] = (1515"')1)1)0)0)"')0)5
k

o[ = (0,1,1,...,1,1,0,...,0),
k

and for each 0 <1 < (:) — 1, v[i + 1] can be obtained from v}[i] by shifting a
block of 1's. (We use the convention v}[(7)] = v7[0].)

Proor. We will prove the Lemma by induction on k. In the case k = 2, there
is a natural bijection between V3* and the grid points (7, j) with 1 <i < j < n,
the grid point (i, j) corresponding to v € V3" with v; =v; = 1 (and v; = 0 for
all other coordinates). In this representation on grid points, shifting a block of
1’s corresponds to one step parallel to a coordinate axis (for a block of length
1) or one step on the line y = 2 + 1 (for a block of length 2). A required cyclic
ordering can be obtained from Figure 1.

Let us now assume that k > 3 and we proved the statement for k — 1. First,
we notice that concatenating the vector (1,0,0,...,0) of length n — m to the
elements of V7, we obtain the set an’m+1 of those v € V;* in which the last
nonzero coordinate is in the m-+15* position. Also, using the induction hypothesis
for V™|, we obtain a cyclic ordering v;”m-}'] [0],92”"7"“ (1], .. .,DZ’m+1[(kT1) —1]
of an’m'l'l. Finally, we observe that vZ’m+2[1] and v:f’m+2[(r£f11) — 1] can be
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obtained from v}’ ™+111] and vy’ m+1[(k ,) — 1], respectively, by shifting a block
of 1’s of length 1.

Using the above observation, we define the cyclic ordering of V}* as follows.
For 1 < i < (kkl) 1, v7[i] is defined as the i element of V;***!. The

next (Zfi) — 1 elements are from V" SEERY {v} #2101}, in the reverse order-

ing from v}’ k+2[(:f]1) — 1] to v’ ¥+211]. The next (’H'Q) — 1 elements are from

an’k+3 \ {v} #3101} in the forward ordering, etc. Flnally, we use the elements
o7 0], 0" [0], ., 0 F 0] to get back to 7 [0] = »7F[0] = (1,1, ...,1,0,0, ...0).
L

k
Formally, let

v?m"'l[i], jfj— e 1) 1)+ iforsomek<m<n—1

1) — 1 with m — k even,

,_\

vy [J] = ”Zm+][<k)_i]’ ifj_ — 1) +iforsomek <m<n-—1

— 1 with m — k odd,
v 0], H()—n+k i< ().

O

Now we are ready to prove Theorem 2.1 by induction on |X|. For the case
|X| = 2, Lemma 2.2 gives an even stronger result than needed about V2F =
V(X,k).

Next, suppose that |X| > 3, and write X in the form X = {z} U X',
|X'] = |X] — 1. By the induction hypothesis, there is a hamiltonian cycle
u[0], u[1], ..., u[m — 1], m = (k| X’])!/((k)X'1) in H(X' k) and, by Lemma 2.2, a
cyclic ordering v[0],[1],...,o[l = 1], = (kllfl) in kalxl.

There is a natural bijection between V(X k) and V(X', k) x kale defined as
follows. Given z € V(X k), the positions of the k occurences of z in z determine
an element v € VMX| and deleting these k coordinates from z we obtain an
element u € V(X' k). We shall use the notation 2z = (u,v) to denote this
correspondence.

It is clear from the definition of the graph H (X, k) that for all 0 < i < m and

v E Vklxl z = (u[f],v) and 2z’ = (u[i + 1], v) are connected in H(X, k). Also, for
all0<i<landu € V(X' k), z= (u,v[d]) and 2’ = (u,v[i + 1]) are connected
in H(X,k) since 2’ can be obtained from z by shifting a block of 2’s and so z, 2’
differ in exactly two coordinates. Finally, we note that m = |V(X’, k)| is even.

Using the observations from the previous paragraph, it is clear that
(u[0], o[0]), (0], o[1]), . .. (u[0], o[ — 1),

(ul1], o1l = 1)), (u[1], o1 = 2]). ... u[1], o[0]),
(ul2], o[0]), (u[2], o[1)), .., (u[2], ofl — 1)),
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(u[m — 1],0[l — 1]), (u[m — 1], [l — 2]), ..., (u[m — 1],v[0])
is a hamiltonian cycle in H(X, k). O

3. Equations in V(X k)

In this section we specify the choice of the set X in the construction of the
graph H(X, k) so that V(X, k) becomes a subset of a vector space. Hence we
can talk about adding the elements of V(X, k). The main result of the section
is that certain equations have only few solutions in V(X k).

Let d be a positive integer such that p = 8d+1is prime. Also, let F' C (d,2d] =
{d+1,d+2,...,2d} be a set such that F' contains no arithmetic progression of
length 3. Finally, we define X C GF(p) as X = F U (—F). In the following
proposition, all additions are defined in GF(p).

PRrROPOSITION 3.1. Let z € X be fired. Then the equation x +y = 2z has a
unique solution (x,y) € X x X, namely x =y = z.

Proor.

If 2,y € F then z+y € (2d,4d];
ifz,y € —F then x4y € (4d,6d);
otherwise z+y € (—d,d).

So, if  + y = 2z for some z € F then 2z € (2d, 4d] and both of z, y must be in
F'. But F'is free of arithmetic progressions of length 3, so the only possibility is
r=y=z.

Similarly, if z € —F" then both of z, y must be in —F'. —F' is free of arithmetic
progressions as well, implying that 2 = y = z. O

By Theorem 2.1, the graph H (X, k) is hamiltonian. Let us fix a hamiltonian
circuit A[1],h[2], ..., h[m], m = (k|X])!/((k)X]). To simplify later notation, we
also assume that h[1] can be obtained from h[m] by exchanging the last two
coordinates.

V(X,k) can be considered as a subset of the vector space GF(p)*IXI. For
v E GF(p)k|X|, we denote by v~ the vector obtained from v by deleting the last
two coordinates and by v* the sum of the last two coordinates of v.

In the following lemma, additions are defined in the vector space GF(p)k|X|.
Also, we use the convention h[m + 1] = h[1].

LEMMA 3.2. (i) For all 1 < j < m, the equation z +y = 2h[j] has a
unique solution (z,y) € V(X k) x V(X, k), namely x =y = h[j].

(i1) For all1 < j < m, the equation  +y = h[j]+h[j+ 1] has two solutions
(2,y) € V(X k) x V(X,k), namely 2 = hjl,y = h[j + 1] and =
B+ 1],y = Alj].

(ii1) The only solution of the equation (h[j] + h[j + 1])~ = 2h[1]™ is j = m.
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Proo¥. (i) For each 1 < i < k|X|, Proposition 3.1 implies that the i'l co-
ordinate of 2 and y must be the same as the i*M coordinate of h[j]. Hence
z =y = h[j].

(i) h[j] and h[j 4 1] agree in k|X| — 2 coordinates 7 and, by Proposition 3.1,
the i*" coordinate of  and y must be the same as of h[j] for these i. Also, each
element of X must occur exactly k times as coordinate of  (and y). Therefore,
it is uniquely determined which two elements of X occur in the remaining two
coordinates of . The two possible orderings of these two elements give the
solutions stated in the Lemma.

(iii) By Proposition 3.1, h[j],h[j + 1], and h[1] agree in the first k|X| — 2
coordinates. Also, the two elements of X occuring in the last two positions in
h[j],h[j + 1], and h[1] must be the same; therefore, one of h[j],h[j + 1] must
be equal to h[1] and the other one can be obtained by exchanging the last two
coordinates of h[1]. O

4. Cycle neighborhoods

In this section, we define graphs G(p, k) such that the neighborhood of each
vertex spans a cycle. Theorem 1.1 can be obtained by the appropriate choice of
the parameters p, k.

We start with the definition of G(p, k). Let p = 8d + 1 and X C GF(p) as
defined in Section 3. The vertex set of G(p, k) is defined as V(p, k) = AU B U
CUD, where A= B=(C=GF(p)"XI and D = GF(p)FIXI-1.

Before defining the edge set E(p, k) of G(p, k), we introduce some further
notation. Since we work with three copies of GF(p)lel, we write v4,vp,v¢
if we consider v € GF(p)k|X| as an element of A, B, or C, respectively. The
elements of D will be always written in the form (d,t) for some d € GF(p)k|X|_2
and ¢t € GF(p). Finally, recall that we denote by v~ the vector obtained from
v E GF(p)k|X| by deleting the last two coordinates and by »* the sum of the
last two coordinates of v. Also, h[1],h[2], ..., h[m], m = (k|X)!/((k)X]) is a
hamiltonian circuit in H(X, k) and h[1], h[m] differ in the last two coordinates.

The edge set E(p, k) of G(p, k) is defined as follows. The sets AU D, B, C
are independent. Let @a € A,b€ B,c € C,(d,t) € D. Then

{a,b} € E(p,k) iffa-beV(X,k)(—~ b—acV(X k)
{a,e} € E(p,k) iffa—ececV(X,k)(— c—acV(X,k))
{be} €E(pk) iff (i)e—b=nh[j]+h[j+1] forsomel<j<m-1
or (ii) ¢ — b = 2h[1] or ¢ — b = 2h[m]
{b,(d,t)} € E(p,k) iffb- =dandb" =1
{e,(d,t)} € E(p,k) iff (c—2h[1]) =dand (¢—2h[1])* =1

IfY C V(p, k) and 2 € V(p, k) then we denote the set of neighbors of zin Y
by Y;. Recall that N, denotes the subgraph of G(p, k) spanned by the neighbors
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of z.
LEMMA 4.1. For eacha € A, N4 s a cycle of length 2m.

Proor. By the definition of E(p, k), Ba = {(a —h[i])p : 1 < i< m} and
Co={(a+h[l)e : 1 <1< m}.

(a—h[i])p is adjacent to (a+h[l])c if and only if (i) there exists 1 < j < m—1
such that (a+h[l])—(a—h[i]) = h[j]+h[j+ 1] or (ii) (a+h[]])— (a—h[i]) = 2h[j]
for some j € {1, m}.

In case (i), we obtain that h[l] + h[i] = h[j] + h[j + 1]. By Lemma 3.2(ii), the
only solutions are l = j, i=j+landl =5+ 1, 1 =j,1 <j<m-—1. This
means that

{(a—hlil)s, (a+hli — e} € Bp,k) for 2< i < m
and
{(a— hi)s, (@ +hli+ )c} € Ep k) for 1 <i<m—1.

In case (ii), we obtain that h[l] + h[i]] = 2h[j]. By Lemma 3.2(i), the only
solutions are =i = j =1 and [ = i = j = m. These solutions define two more

edges in N,:

{(a —h[m])p, (a + h[m])c} and {(a —h[1])p, (a + A[l])c}.

Thus, altogether there are 2m edges in N4 and they form a cycle as indicated
on Figure 2.

Ba
a_h1 a—h2 a—h3 .............
a-+ hy a+hs a+hy e
Ca
FIGURE 2

O
LEMMA 4.2, For each b € B, Ny is a cycle of length 2m + 2.

ProoF. By the definition of E(p, k), Ay = {(b+h[l])a : 1 <1< m} and
Co={(b+hl] +hlj+ e - 1<j<m—1}U{(+2h[1])c, (b + 2hlm))c).
Dy contains just one element: (b~ ,b").

(b+h[l]) 4 is adjacent to (b+h[j]+h[j+1])c if and only if there exists 1 <7 < m
such that (64 h[j]+ h[j + 1]) — (b + h[]]) = A[:], i.e. h[j]+ h[j + 1] = R[] + A[4].
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By Lemma 3.2(ii), the only solutions are [ = j, i = j+landl=j+ 1, i =7,
1 < 7 <m— 1. This means that

{(b+h[j]+h[j+1])c, (b+h[j])at € E(p, k) for 1 <j<m—1
and
{®+hj]+hl+1)c,(b+hlj+1)a} € E(p,k)for 1 <j<m—1

b+ 2h[j])e (j = 1,m) is adjacent to (b + h[l])4 if and only if there exists
1 < i < m such that (b + 2h[j]) — (b + h[l]) = h[i] i.e. 2h[j] = h[l] + h[i]. By
Lemma 3.2(i), the only solutions are I =i =j =1 and I =i = j = m. These

solutions define two more edges in Ny:

{(b+ 2h[1))c, b+ A[1])a} and {(b-+ 2h[m])c, (b+ hlm])a}.

Finally, we claim that there are exactly two edges in Ny which are adjacent

to (b~,b%). Since (2h[1])~ = (2h[m])~ and (2h[1])* = (2h[m])*,
{(b+2h[1])c, (b7,b")} and {(b+ 2h[m])c, (b™,b")}

are in E(p, k). Moreover, by Lemma 3.2(iii), (b + h[j] + h[j + 1])c and (b7 ,b")
are not adjacent for 1 < j <m — 1.

Hence there are 2m + 2 edges in N and they form a cycle as indicated on
Figure 3.

Dy
/ (b,b%) \
Ap
.......... b+ hm_1 b+ h.,
b + hnz—l + hm
b+ 2hq b+hy+hs - " bthp_o+hm b+ 2h,,
Ch
FIGURE 3

O
LemMmA 4.3. For each ¢ € C, N¢ 1s a cycle of length 2m + 2.

Proor. This Lemma can be proven analogously to Lemma 4.2. N, is indi-
cated on Figure 4.
O
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D.
/ ((e = 2h1)=, (c = 2h1)*) \
Ae
c—hl C—h2 ..........
c_h2—h3" c_hm—Q_hm—l
Be
FIGURE 4

LEMMA 4.4. For each (d,t) € D, Nq is a cycle of length 16d + 2.

Proor. By the definition of E(p, k), Ba = {(d,s,t —s)p : s € GF(p)}
and Cia.y = {((d, s, —5')+2h[1])c : s' € GF(p)}. Moreover, (d,s,t—s)p and
((d,s',t — s") + 2h[1])¢ are connected if and only if (i) ((d,s’,7 — s") + 2h[1]) —
(d,s,t—s)=h[j]+h[j+1] forsome 1 < j<m—1or(ii) ((d,s',t—s")+2h[1])—
(d,s,t — s) = 2h[j] for some j € {1, m}.

By Lemma 3.2(iii), there are no edges in Ng defined in case (i). Tt is clear
that case (ii) defines the edges

{(d,s,t—s)p,((d,s,t —s)+2h[1])c : s € GF(p)}
in Ng. Also,
{(d,5,t = 5)p, ((d, 5,1 — 5) + 2h[m])c: : 5 € GF(p))

are edges in Ng since (2h[1])™ = (2h[m])” and (2h[1])* = (2h[m])* and so
((d,s,t —s) +2h[m])c € Ca ).

Thus there are 16d + 2 edges in Ngq and, since p is a prime, they form a cycle
as indicated on Figure 5.

d

To finish the proof of Theorem 1.1, let the integer £ > 2 be fixed. By a result
of Behrend [2], X can be chosen such that

(4.1) 1X| > d ~ Viera

for some absolute constant ¢’ > 0. Let n = |V(p, k)|. Then

(4.2) loglogn = loglog(3 + )(8d 4+ 1)HIX! = (14 o(1)) log d,

1
8d+ 1
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Clay
...... b—2hy + 4h,, b+ 2h,, b+ 2h, ) O
~~~~~~~ b—2h; + 2k, b b+2hy — 2k, b+4hy — 4h;, 0 c ¢
Ba,1
FIGURE b5

as d — co. As before, let m = (k|.X|)!/((D)IX]). Since most vertices of G(p, k)
have degree at least 2m, it is enough to prove that

1— c

(4.3) m>n Vieslgn

for some constant ¢ > 0. By Stirling’s formula,

( |X] EIX|
(271'/{3)%

m >

This, combined with 4.1 and 4.2, proves 4.3. O

5. Path neighborhoods

In this section, we construct graphs J(p, k) such that the neighborhood of
each vertex is a path.
J(p, k) is obtained from G(p, k) by deleting the vertices in D and the edges

{{om, (0 + 2[1])c} : v eGP},
The following lemma proves the correctness of this construction.

LEMMA 5.1. The neighborhood of each vertez in J(p, k) is a path of length
2m — 1.

Proor. Each @ € A is connected to the same vertices in G(p, k) and J(p, k).
Also, by Lemma 3.2(ii), the only edge deleted in the neighborhood of a is {(a —
B[1))3, (a + B[1])c .

For each b € B, two vertices were deleted from the neighborhood of b: b +
2h[1] € C and (b™,b") € D. These two vertices were connected in G(p, k), so
the J(p, k) neighborhood of b is obtained by deleting two consecutive vertices in
a cycle.

Similarly, the J(p, k) neighborhood of ¢ € C' is obtained by deleting the con-
secutive vertices ¢ — 2h[1] € B and ((e — 2h[1])~, (¢ — 2h[1])*)) in N.. O
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6. A related problem

In this section, we present another construction of a graph L(V, E') with local
property ‘cycle’, and state an extremal problem related to the ones investigated
in this paper. Although the graph L(V, E) will have only (3/4)|V|3/2 edges, the
construction is much simpler than the one described in Section 4.

Let A = (ai,j); B = (bi,j), X = (-’l'i,j), and YV = (yi,j); 1<4,j<k, bekxk
matrices. We identify each matrix with the set of its entries and we suppose that
the sets A, B, X,Y are pairwise disjoint. Let n = 4k? and define the vertex set
of L(V, E) as the set consisting of the 4k? elements of A, B, X,Y. The edges of
L(V, E) are defined as follows.

The sets A, B, and X UY are independent. ;; is connected to a;; for
1 <t <k (the i row of A) and to b;, for 1 <t < k (the j™" row of B). y; ; is
connected to a;; for 1 <t < k (the i column of A) and to b;; for 1 <t < k
(the % column of B). Finally, a;; is connected to b;4s 4+ and bjq¢ je41 for
1 <t <k (two diagonals of B; the indices are mod k).

It is easy to see that the neighborhood of each vertex spans a cycle: for
example, N, , 1s the cycle

1,1
(51,1, ai 1, b1,2; a1 2, 5173; ) bl,k; fll,k)

and Ny, , is the cycle

(bl,l; L11, b1,2; Y1,2, b2,2; L1,2, b2,3; Y13, -, Y1k, bk,k; L1k, bk,l; y1,1)~

The number of edges is 6k = (3/4)n/2.

As mentioned in the introduction, Clark, Entringer, McCanna, and Székely [4]
proved that e(n) = o(n?) for the local properties cycle, path, and matching. In
fact, they showed that for fixed k&, if every edge of a graph G(n, E) is contained
in at least one and at most k triangles then |E| = o(n?). This result motivates
the following question. Let G(n,c) be the family of graphs with n vertices and
> cn? edges satisfying the property that each edge occurs in a triangle. For
G € G(n,c), let f(G) be the minimal number & such that each edge of G occurs
in < k triangles, and let f(G(n,c)) = min{f(G) : G € G(n,¢)}.

Adding a complete bipartite graph between A and B to the graph L(V, E)
constructed above, we obtain a graph G € G(n, 1/16) with f(G) = \/n/2. Similar
constructions were given by N. Alon and L. Székely (personal communications).
In all three examples, G contains a large complete bipartite graph, which implies

J(G) > ¢/\/n. We believe that this cannot be avoided:

CONJECTURE 6.1. f(G(n,c)) = ¢'/n, where the constant ¢’ depends only on

Acknowledgment. We are indebted to Laszld Székely for calling our attention
to this topic and for fruitful discussions.
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