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Abstract

Ryser’s Conjecture states that for any r-partite r-uniform hypergraph, the vertex cover number
is at most r−1 times the matching number. This conjecture is only known to be true for r ≤ 3
in general and for r ≤ 5 if the hypergraph is intersecting. There has also been considerable effort
made for finding hypergraphs that are extremal for Ryser’s Conjecture, i.e. r-partite hypergraphs
whose cover number is r− 1 times its matching number. Aside from a few sporadic examples, the
set of uniformities r for which Ryser’s Conjecture is known to be tight is limited to those integers
for which a projective plane of order r − 1 exists.

We produce a new infinite family of r-uniform hypergraphs extremal to Ryser’s Conjecture, which
exists whenever a projective plane of order r − 2 exists. Our construction is flexible enough to
produce a large number of non-isomorphic extremal hypergraphs. In particular, we define what
we call the Ryser poset of extremal intersecting r-partite r-uniform hypergraphs and show that
the number of maximal and minimal elements is exponential in

√
r.

This provides further evidence for the difficulty of Ryser’s Conjecture.
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1. Introduction

A cover of a hypergraph is a set of vertices meeting every edge of the hypergraph. The vertex cover
number τ(H) of a hypergraph H is the number of vertices in the smallest cover of H. A matching
is a set of disjoint edges, and the matching number ν(H) of a hypergraph H is the maximum size
of a matching consisting of edges of H. A hypergraph with ν(H) = 1 is called intersecting.

A hypergraph is r-uniform if every edge has r vertices. Any r-uniform hypergraph H satisfies the
inequality τ(H) ≤ rν(H), since the union of the edges of a maximum matching is a cover. This
bound is sharp, as shown by the family of all subsets of size r in a ground set of size kr−1 which has
ν = k− 1 and τ = (k− 1)r. There is another sharp example for ν = 1: any r-uniform hypergraph
consisting of the lines of some projective plane of order r−1 (denoted by Pr). To obtain an
example for arbitrary ν, one can take the union of disjoint copies of Pr. A hypergraph is r-partite
if its vertex set V can be partitioned into r sets V1, . . . , Vr, called the sides of the hypergraph, so
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that every edge contains at most one vertex from each side. A conjecture commonly attributed
to Ryser (but which first appeared in a thesis by his student Henderson [11, 5]), asserts that the
upper bound τ(H) ≤ rν(H) can be improved if the hypergraph is r-partite:

Conjecture 1.1. For any r-partite r-uniform hypergraph we have

τ(H) ≤ (r−1)ν(H). (1)

When r = 2, Ryser’s Conjecture is equivalent to König’s Theorem. The only other known general
case of the conjecture is r = 3, which was proved by Aharoni [3]. However, the conjecture is also
known to be true for some special cases. In particular, it has been proven by Tuza [15] for r-partite
intersecting hypergraphs when r ≤ 5, and by Francetić, Herke, McKay, and Wanless [8] for r ≤ 9,
when one makes the further assumption that any two edges of the r-partite hypergraph intersect
in exactly one vertex.

Besides trying to prove the conjecture, there has also been considerable effort in understanding
which hypergraphs are extremal for Ryser’s Conjecture, i.e. finding r-partite hypergraphs H with
τ(H) = (r−1)ν(H). We call such an object an r-Ryser hypergraph (or, without specifying its
uniformity, a Ryser hypergraph). Denoted by Tr, the truncated projective plane of uniformity r
is obtained from Pr by the removal of a single vertex v and the lines containing v. The sides
V1, . . . , Vr of Tr are the sets of vertices other than v on the lines containing v. It is known and
not difficult to see that Tr is intersecting and its cover number is one less than its uniformity
r. Except for finitely many sporadic examples, all minimal hypergraphs known to attain Ryser’s
bound are subhypergraphs of truncated projective planes. Consequently, aside from finitely many
exceptions, the set of uniformities r for which Ryser’s Conjecture is known to be tight is limited
to those integers for which a projective plane of order r−1 exists.

Finite projective planes are only known to exist for orders that are prime powers, and it is a
long-standing open problem to decide whether there exists a projective plane of any other order.
A few non-existence results are known about projective planes, in particular it has been shown
that finite projective planes of order 6 and 10 do not exist [7, 13]. This implies that the first
values of r, for which the truncated projective plane construction of uniformity r does not work
are 7 and 11. Inspired by the lack of examples attaining Ryser’s bound for these values, Aharoni,
Barát and Wanless [4] constructed 7-partite intersecting hypergraphs with cover number 6. This
was also obtained independently by Abu-Khazneh and Pokrovskiy [2], who also constructed an
11-partite intersecting hypergraph with cover number 10. In [8] Francetić, Herke, McKay, and
Wanless constructed a 13-partite intersecting hypergraph with cover number 12.

1.1. Results

Our main goal is to construct intersecting r-Ryser hypergraphs for an infinite sequence of unifor-
mities r such that r−1 is not a prime power. We prove the following theorem.

Theorem 1.2. Let T be an r-partite r-uniform intersecting hypergraph, and let S ∈ T be an
edge such that S intersects every other edge in one vertex, τ(T − S) = r−1, and the only covers
of T − S of size r−1 are sides. Then there exists an intersecting (r + 1)-Ryser hypergraph H.

By the aid of the following Lemma, it is easy to see that for r ≥ 4, the truncated projective plane
Tr together with an arbitrary hyperedge S ∈ Tr satisfy the conditions in Theorem 1.2.

Lemma 1.3. If r ≥ 4, and W ⊂ V (Tr) such that |W | = r − 1 and W contains vertices from at
least two sides of Tr, then W covers at most |Tr| − 2 of the edges of Tr.

Proof. It follows from the axioms of finite projective planes that Tr is an (r−1)-regular hypergraph
with (r− 1)2 edges. Since |W | ≥ r− 1 ≥ 3, by the conditions of the lemma W must contain three
vertices w, v′, v′′ ∈ W such that w is in not in the same side as the other two vertices v′ and v′′.
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It then also follows from the axioms of finite projective planes that w is contained in an edge of
Tr that contains v′, and in an edge that contains v′′ (these two edges might be the same). In any
case w covers a common edge with v′ and a common edge with v′′. Hence, W will cover at most
(r − 1)2 − 2 edges of Tr.

Since explicit constructions of Tr are known when r−1 = q is a prime power, the following is
immediate.

Corollary 1.4. For any prime power q, there exists an intersecting (q + 2)-Ryser hypergraph.

Using this, one can argue that there are infinitely many values of uniformities for which Corol-
lary 1.4 gives a hypergraph that is tight for the bound in Ryser’s Conjecture, but for which there
can be no truncated projective plane construction (see Section 5).

The truncated projective plane construction provides a ready supply of graphs that satisfy the
conditions of Theorem 1.2. Kahn [12] proved that with high probability a randomly chosen 22r log r
lines of Pr cannot be covered with less than r points. Boros, Szőnyi and Tichler [6] modified Kahn’s
idea to show that the only covers of size r are lines in this case. Therefore, Theorem 1.2 can be
applied to these settings as well. However, the applications of the theorem is not limited to
subgraphs of projective planes. For instance, it can be used on the following 8-partite hypergraph,
which was constructed in [8], where it was labelled H38, and where it was proved that H38 is an
8-Ryser hypergraph that is also intersecting and linear, but is not a subhypergraph of T8.

bcdefgaa begcdafb bfegadcc bgafcedd cgbafdeb cadgbefe cdefgaba cefbagdf

dfbcgeaf dgfebacg dcgfabee deagfcbh efgabcda edfgcbab eabfdgch ecabgdfg

fedagbcd fgebdcae fagecdbf fdacbgec gcfadebc gaecfbdg gfdbcaeh gdbeacfd

aaaaaaai bbbbbbbi ccccccci dddddddi eeeeeeei fffffffi gggggggi adgbfecj

dbeacgfj gecfbdaj bafdgcej fcbgeadj egdcafbj cfaedbgj

We verified using the help of a computer that all 24 edges in the first three rows of the above pre-
sentation ofH38 satisfy the conditions of edge S in the statement of Theorem 1.2, and consequently
each allowing H38 to be used to construct a 9-partite extremal hypergraph.

Moreover, apart from the above direct applications, the construction that we use to prove Theo-
rem 1.2 is flexible enough to give not only one, but many non-isomorphic Ryser hypergraphs. This
highlights the difficulty of Ryser’s Conjecture, since a proof of it would eventually need to deal
with all these extremal constructions. Define an intersecting r-Ryser hypergraph to be minimal
if the deletion of any edge produces a hypergraph with cover number r − 2. We prove that there
are many minimal intersecting r-Ryser hypergraphs.

Theorem 1.5. There is an infinite sequence of integers r, for which there are exp(r0.5−o(1))
non-isomorphic minimal intersecting r-Ryser hypergraphs.

The notion of containment-maximal Ryser hypergraphs turns out to be more subtle, since these
hypergraphs may be infinite. It is nevertheless possible to give a meaningful definition of the
concept, and prove that the number of maximal intersecting r-Ryser hypergraphs is exponential
in
√
r. We postpone the precise statement of the relevant theorem to Section 4.

2. New extremals from old

In this section, we prove Theorem 1.2. We define an {r−1, r}-uniform hypergraph to be a family of
sets of size r−1 and r. Notice that in order to find an r-uniform hypergraph H with τ(H) = r−1,
it suffices to find an {r−1, r}-uniform H′ with τ(H′) = r−1. Once we have such a hypergraph,
we can construct an r-uniform hypergraph from H′ by adding a separate new vertex to each edge
of size r−1. For the rest of the paper, we also sometimes abuse notation to enhance readability
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by omitting braces around singleton vertex sets, so we write F − s instead of F \ {s} and F + s
instead of F ∪ {s}.

Let T be an r-partite r-uniform intersecting hypergraph with sides V1, . . . , Vr. Let S = {s1, . . . , sr}
be an edge of T , with si ∈ Vi, that satisfies the conditions in Theorem 1.2. Let F1, . . . , Fr be r
edges of T with si ∈ Fi ∩ S for each i, and also (Fi − si) ∩ (Fj − sj) 6= ∅ for all i, j. The edges
F1, . . . , Fs do not have to be distinct — one possibility is to take F1 = · · · = Fr = S.

We define an {r, r+1}-uniform, intersecting hypergraph H(T , S, F1, . . . , Fr), which has cover num-
ber r.

• The vertex set of H(T , S, F1, . . . , Fr) consists of the vertex set of T together with r vertices
v1, . . . , vr in side Vr+1.

• For an edge E 6= S of T satisfying E ∩ S = {si}, we define Ê = E + vi. That is, Ê is an
(r+ 1)-edge built from E by adding the vertex vi corresponding to the vertex of S which E
contains. Notice that Ê is well-defined since S intersects any other edge of T in exactly one
vertex.

Define

E1 = {Ê : E ∈ T − S}
E2 = {Fi : i = 1, . . . , r}
E3 = {Fi − si + vi : i = 1, . . . , r}.

We let H(T , S, F1, . . . , Fr) = E1 ∪ E2 ∪ E3.

In other words H(T , S, F1, . . . , Fr) has three parts: The first part consists of taking the (r + 1)-
edges Ê for all E ∈ T other than S. The second part consists of the r-edges Fi. The third part
consists of the r-edges created from F1, . . . , Fr by deleting for each Fi the designated vertex si
from its intersection with S, and then adding to it the corresponding vertex vi.

First we show that these hypergraphs are intersecting.

Lemma 2.1. H(T , S, F1, . . . , Fr) is intersecting.

Proof. The hypergraph induced by E1 ∪ E2 is intersecting since its restriction to the first r sides
gives a subhypergraph of T , which is an intersecting hypergraph. Furthermore for any i and j,
we have (Fi − si + vi) ∩ (Fj − sj + vj) ⊇ (Fi − si) ∩ (Fj − sj) 6= ∅ by assumption. Therefore the
hypergraph induced by E2 ∪ E3 is intersecting.

It remains to show that edges in E1 intersect those in E3. That is, Ê ∩ (Fi − si + vi) 6= ∅ for any
E 6= S and i = 1, . . . , r. Since T is intersecting, there is some vertex x ∈ E ∩ Fi. If x 6= si, then
x ∈ Ê ∩ (Fi − si + vi). Otherwise vi ∈ Ê ∩ (Fi − si + vi).

We show that the covers of the hypergraph H(T , S, F1, . . . , Fr) have a very specific struc-
ture.

Lemma 2.2. If C is a cover of H(T , S, F1, . . . , Fr), then C ′ = (C ∪ {si : vi ∈ C}) \ {v1, . . . , vr}
is a cover of T − S.

Proof. Let E be an arbitrary edge of T −S. We show that E ∩C ′ 6= ∅. We know that C ∩ Ê 6= ∅,
since C is a cover of H(T , S, F1, . . . , Fr). Let y be a vertex in C ∩ Ê. If y 6∈ {v1, . . . , vr}, then
y ∈ C ′ which implies C ′ ∩E 6= ∅. Otherwise y = vi for some i, which implies that si ∈ C ′ ∩E.

We now prove that H(T , S, F1, . . . , Fr) has cover number r. This immediately implies Theorem 1.2
(by taking H to be H(T , S, F1, . . . , Fr) with a new vertex added to each of its r-edges).
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Theorem 2.3. The hypergraph H(T , S, F1, . . . , Fr) is an (r + 1)-partite, {r, r + 1}-uniform, in-
tersecting hypergraph with τ(H(T , S, F1, . . . , Fr)) = r.

Proof. It is immediate that H(T , S, F1, . . . , Fr) is (r + 1)-partite and {r, r + 1}-uniform — the
r-edges E ∈ T − S just gained a vertex vi in Vr+1 in order to become Ê, whereas the r-edges
Fi had vertex si deleted in Vi, and vi added in Vr+1. From Lemma 2.1, H(T , S, F1, . . . , Fr) is
intersecting.

It remains to prove that H(T , S, F1, . . . , Fr) has cover number r. Suppose to the contrary that
there is a cover C of H(T , S, F1, . . . , Fr) with |C| ≤ r−1. Now C ′ is a cover of T −S by Lemma 2.2,
and |C ′| ≤ |C| ≤ r−1. By the assumption of Theorem 1.2, the cover C ′ must be one of the sides Vi
for some i ∈ {1, . . . , r}. Now the definition of C ′ implies that the cover C is either Vi or Vi−si+vi.
In the first case, C does not cover the edge Fi− si + vi, while in the second case, C does not cover
the edge Fi, both contradicting the assumption that C is a cover of H(T , S, F1, . . . , Fr).

3. Many minimal examples

The goal of this section is to prove Theorem 1.5. Using the notation of Section 2, let
S(Tr, S, F1, . . . , Fr) be the following hypergraph: the vertex set consists of the vertices of Tr
in sides V1, . . . , Vr together with r vertices v1, . . . , vr in side Vr+1. The edge set consists of E2∪E3,
where S = {s1, . . . , sr} is a fixed hyperedge of Tr and F1, . . . , Fr are r edges of Tr with si ∈ Fi ∩S
for each i, and also (Fi− si)∩ (Fj − sj) 6= ∅ for all i, j. First we prove a lemma which implies that
it is sufficient to find many non-isomorphic hypergraphs S(Tr, S, F1, . . . , Fr).

Lemma 3.1. Let S = {s1, . . . , sr}, F1, . . . , Fr, G1, . . . , Gr be edges of the truncated projective plane
Tr with S ∩ Fi = {si} = S ∩Gi. If there is a subhypergraph HF of H(Tr, S, F1, . . . , Fr) with cover
number τ(HF ) = r which is isomorphic to a subhypergraph HG of H(Tr, S,G1, . . . , Gr) with cover
number τ(HG) = r, then S(Tr, S, F1, . . . , Fr) is isomorphic to S(Tr, S,G1, . . . , Gr).

Proof. We claim that S(Tr, S, F1, . . . , Fr) is contained in HF . Indeed, if an edge Fi − si + vi was
missing from HF , then the side Vi would be a cover of size r−1. Similarly, if Fi was missing, then
Vi− si + vi would be a cover of size r−1. By the same argument, S(Tr, S,G1, . . . , Gr) is contained
in HG.

Let φ be an isomorphism from HF to HG. We claim that φ induces an isomorphism from
S(Tr, S, F1, . . . , Fr) to S(Tr, S,G1, . . . , Gr). Indeed, notice that in our construction the possi-
ble intersection sizes of edges in H(Tr, S, F1, . . . , Fr) are 1, 2, r−1, and r (since we are assuming
r ≥ 4). There are only r pairs of hyperedges that have intersection of size r−1: the pairs Fi and
Fi − si + vi. This implies that any isomorphism must map a pair of sets Fi and Fi − si + vi into
some pair Gj , Gj − sj + vj (in some order), consequently the restriction of φ onto the vertex set
of S(Tr, S, F1, . . . , Fr) is an isomorphism between this hypergraph and S(Tr, S,G1, . . . , Gr).

We will combine Lemma 3.1 with the following.

Lemma 3.2. For every integer r of the form q + 1, where q is a prime power, there are at least
exp(r0.5−o(1)) non-isomorphic hypergraphs S(Tr, S, F1, . . . , Fr) for the different choices of edges
S, F1, . . . , Fr ∈ Tr.

Proof. We give a lower bound on the number of non-isomorphic hypergraphs S(Tr, S, F1, . . . , Fr)
by showing that there are at least exp(r0.5−o(1)) distinct degree sequences which can occur in such
hypergraphs.

Let us choose t =
⌊
r0.5

2

⌋
positive integers x1, . . . , xt such that t + 2 < xi ≤ br0.5c for all i =

1, . . . , t and let xt+1 = r−1 − x1 − · · · − xt. We select appropriate edges F1, . . . , Fr of Tr for our
construction such that the degree sequence of the non-isolated vertices of V1 in S(Tr, S, F1, . . . , Fr)
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is (1, 2x1, . . . , 2xt, 2xt+1). This is possible since we can partition S\{s1} into t+1 sets S1, . . . , St+1

such that |Si| = xi, and as Fj , we select the line connecting sj to the ith vertex wi of V1 \ {s1},
where j ∈ Si. (Recall that for any two vertices in different sides of Tr there is exactly one line
passing through both of them.) Then the degree of wi in S(Tr, S, F1, . . . , Fr) is 2xi. We choose
F1 6= S to be an arbitrary line passing through s1. Now the vertex degrees in V1 are as promised.

We observe that all degrees of S(Tr, S, F1, . . . , Fr) are at most 2t+ 4 in the other sides, since there
are exactly t+2 vertices with non-zero degree in the first side (and no pair of vertices is contained in
two lines of Tr). Therefore, the multiset of degrees of the hypergraph S(Tr, S, F1, . . . , Fr) consists
of {2x1, . . . , 2xt, 2xt+1} and some multiset with elements from {0, 1, 2, . . . , 2(t + 2)}. Using the
fact that each xi is more than t+ 2, we obtain that each multiset {x1, . . . , xt} with elements from
{t+ 3, . . . , br0.5c} corresponds to a different S(Tr, S, F1, . . . , Fr).

The number of ways to choose the appropriate multiset is at least
(
t+br0.5c−(t+2)−1

t

)
≥ Ω

(
2
√

r

4
√
r

)
.

We can now prove Theorem 1.5.

Proof of Theorem 1.5. For every prime power q = r − 1 there are at least exp
(
r0.5−o(1)

)
differ-

ent (q + 2)-uniform hypergraphs of the form S(Tr, S, F1, . . . , Fr) by Lemma 3.2. Each of these
hypergraphs is contained in the corresponding (r + 1)-Ryser hypergraph H(Tr, S, F1, . . . , Fr).
Each H(Tr, S, F1, . . . , Fr) contains some minimal (r + 1)-Ryser hypergraph M(Tr, S, F1, . . . , Fr).
These exp(r0.5−o(1)) minimal extremal hypergraphsM(Tr, S, F1, . . . , Fr) are all non-isomorphic by
Lemma 3.1, since otherwise we would obtain an isomorphism between some of the corresponding
non-isomorphic hypergraphs of the form S(Tr, S, F1, . . . , Fr).

4. Many maximal examples and the Ryser poset

Theorem 1.5 proves that there are many minimal Ryser hypergraphs. We use the following lemma
to show that there are also many non-isomorphic maximal intersecting Ryser hypergraphs. The
lemma states that the hypergraphs H(Tr, S, F1, . . . , Fr) are essentially maximal. We mean this in
the sense that there are only “trivial” ways to add edges to them: any new edge must be a “twin
copy” of some F̂i, differing in one vertex only, either in side i or side r + 1.

Again, we use the truncated projective plane Tr for our construction in Theorem 1.2. Let us fix
an arbitrary line S ∈ Tr, and an appropriate selection of lines Fi 6= S with si ∈ Fi.

Lemma 4.1. For r ≥ 7, let G be an intersecting (r+1)-partite hypergraph containing H =
H(Tr, S, F1, . . . , Fr) and E ∈ G \ H. Then |E| = r + 1 and there is some i ≤ r and vertex v
such that either E = Fi + v (of type 1) or E = Fi − si + vi + v (of type 2).

Proof. Suppose the statement is false. Let G and E ∈ G provide a counterexample such that
|E ∩ V (H)| is as large as possible amongst all counterexamples.

Claim 4.2. |E ∩ V (H)| = r + 1.

Proof. We know that τ(H) = r and G ⊇ H is intersecting. Therefore, E ∩ V (H) must be a cover
of H.

First suppose that |E| < r + 1. Then E must be of size r and fully contained in V (H). Let Vj be
the side in which E has no vertex. We will show that we can add a vertex of Vj to E such that we
do not create an edge of type 1 or 2. Let i be an index such that |E ∩ Fi| is as large as possible.
Let x be a vertex in Vj ∩ V (H) which is not in Fi + vi. We will show that E + x is not of type
1 or 2. If |E ∩ Fi| ≤ r − 3, then |(E + x) ∩ Fk| ≤ r − 2 for all k, which implies E + x is not of
type 1 or 2. If |E ∩ Fi| ≥ r − 2, then since r ≥ 5, we have that |E ∩ Fk| ≤ r − 3 for all k 6= i. As
before, this implies that |(E + x) ∩ Fk| ≤ r − 2 for all k 6= i, and so the only way E + x could be
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of type 1 or 2 is if E + x = Fi + x or E + x = Fi − si + vi + x. However, in either case we would
obtain that E ∈ H contradicting the assumption of the lemma. Therefore, replacing E by E + x
increases the size of the intersection |E ∩ V (H)|, contradicting its maximality.

From now on we assume that |E| = r + 1.

Suppose now that there is an index i such that E ∩Vi ∩V (H) = ∅ and let x ∈ E ∩Vi. Since r ≥ 5,
there must be at least 4 vertices x1, x2, x3, x4 ∈ Vi ∩ V (H). Let Ei = E − x + xi for i = 1, . . . , 4
to get four sets, each having one more vertex in V (H) than E has. We show that one of these
edges Ei is neither in H nor has type 1 or 2. For such an edge, G′ = H ∪ {Ei} is an intersecting
hypergraph and for Ei ∈ G′ we have |Ei ∩ V (H)| > |E ∩ V (H)| contradicting the maximality
condition of the definition of E.

We check the required property of the Ei-s. Notice that the maximum intersection size between a
pair of (r+ 1)-edges of H is 2. Therefore, at most one of the edges E1, . . . , E4 is in H. Further, if
for distinct j and k we had Ej = Fa+ya and Ek = Fb+yb for some a, b ∈ {1, . . . , r} and vertices ya
and yb, then we would have Ej∩Ek = E−x ⊆ (Fa+ya)∩(Fb+yb). Since |(Fa+ya)∩(Fb+yb)| ≤ 3
for distinct a and b, |Ej∩Ek| ≥ r−1 implies that Fa = Fb and hence E = Fa+x, contradicting our
assumption that E is not of type 1. Similarly, if for distinct j and k we had Ej = Fa−sa +va +ya
and Ek = Fb− sb + vb + yb, then we would have Ej ∩Ek = E \Vi = (Fa− sa + va)∩ (Fb− sb + vb).
Since |(Fa − sa + va) ∩ (Fb − sb + vb)| ≤ 3 for distinct a and b, |Ej ∩ Ek| ≥ r−1 implies that
Fa = Fb and hence E = Fa − sa + va + x, contradicting our assumption that E is not of type 2.
In summary, at most three of the edges E1, . . . , E4 do not satisfy the required property and hence
one of them does provide the contradiction in the end of the previous paragraph.

Let vi be the vertex in E ∩ Vr+1 and B = E − vi + si. The set B intersects every edge of Tr
as well as each of the sides V1, . . . , Vr, i.e. B is a blocking set of Pr. Since B has size at most
q + 2 = r + 1, it must contain a full line L of Pr.

Let pi be the vertex in E ∩ Vi. Notice that B has only one vertex in each side, with the exception
of Vi, where B contains both si and pi (although it is possible that si = pi). Since B contains
the line L we have either B = L + si or B = L + pi. From the definition of B, we obtain that
E = L+ vi or E = L− si + pi + vi holds.

Suppose that E = L+ vi. If L = Fj for some j, then E is of type 1, and we are done. Otherwise

let sj be L ∩ S. If j = i, then E = L̂ ∈ H(Tr, S, F1, . . . , Fr), contradicting our assumption that
E is not from H(Tr, S, F1, . . . , Fr). If j 6= i, then L is disjoint from the edge Fj − sj + vj ∈ H,
contradicting G being intersecting.

Suppose that E = L − si + vi + pi. Since we are not in the previous case, we can assume that
si 6= pi. If L = Fi, then E is of type 2, and we are done. Otherwise E ∩ Fi = ∅ since L ∩ Fi = si
and vi /∈ Fi, contradicting G being intersecting.

4.1. The Ryser poset

Extremal r-uniform hypergraphs for Ryser’s Conjecture possess two properties for some integer ν:
they have matching number at most ν and vertex cover number at least (r−1)ν. The first of these
is a monotone decreasing property, while the second is monotone increasing. This suggests the
definition of a poset structure on the family of extremal r-graphs. While a similar poset can be
defined for arbitrary matching number ν, here we restrict ourselves for the intersecting case, as that
is already complicated enough. The r-Ryser posetRr contains all intersecting r-Ryser hypergraphs
(up to isomorphism), that is, all r-partite, r-uniform hypergraphs which are intersecting and have
vertex cover number r−1. The poset relation < is given by the sub-hypergraph relation.

The 2-Ryser poset R2 is an infinite chain of stars with K2 as its minimal element. The poset
R3 was determined in [9] (for arbitrary matching numbers). In the intersecting case, R3 has a
unique minimal element: the 3-graph R obtained from T3 by deleting one of its edges. Above R
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in the poset there is of course T3, but as well the direct product of three infinite chains with R
as their common minimal element. This is because one could add to R an arbitrary number of
twin copies of each of its three degree-one vertices, without losing its extremality for the 3-uniform
Ryser Conjecture.

To characterize r-Ryser hypergraphs, it is necessary to have a full understanding of the minimal
and maximal elements of the Ryser poset. What a minimal element in some Ryser poset should be
is quite clear: an r-Ryser hypergraph with the property that the deletion of any hyperedge reduces
the vertex cover number. These were discussed in Section 3. Naturally, one would want to define
the maximal elements of the Ryser poset as the hypergraphs with the property that the addition
of any new hyperedge increases the matching number. With this definition however we would not
have the very much desirable property that an intersecting r-Ryser hypergraph is always contained
in a maximal one. Indeed, as we saw above it is sometimes possible to add infinitely many “twin
copies” of an edge to an r-Ryser hypergraph without ever reaching a maximal element.

This issue can be resolved by allowing countably infinite r-Ryser hypergraphs into the poset.
When considering infinite hypergraphs however, a technical issue arises, since it is possible to have
two non-isomorphic hypergraphs which are both subgraphs of each other. To circumvent this, we
consider an equivalence relation ∼ on all r-uniform countable hypergraphs where H ∼ H′ if H is
contained in H′ and also H′ is contained in H. Then equivalence classes of intersecting extremal
hypergraphs form a poset under containment. Note that using the Sunflower Lemma it is not
difficult to see that the Ryser poset has finitely many maximal elements (an argument for why
this is true can be found in Chapter 2 of [1]). Combining Lemmas 3.2 and 4.1 we obtain the
following.

Corollary 4.3. There is an infinite sequence of integers r, for which there are exp(r0.5−o(1))
non-isomorphic maximal elements in the r-Ryser poset.

The maximal elements in Corollary 4.3 come from the hypergraphs H(Tr, S, F1, . . . , Fr), adding
infinitely many vertices to each partition, and then adding all the (infinitely many) copies of edges
of the forms Fi + v, v ∈ Vr+1, and Fi− si + vi + v, v ∈ Vi, for every i = 1, . . . , r. From Lemma 4.1
we have that the resulting infinite hypergraphs are maximal since the only edges which can be
added to them must be of the form Fi + v and Fi − si + vi + v, where v is a new vertex.

5. Concluding remarks

1. No truncated projective planes.. While it is only conjectured that projective planes, and hence
truncated projective planes, do not exist for orders other than prime powers, one can show that for
infinitely many of the uniformities r = p+ 2 our constructions deals with, a truncated projective
plane cannot exist. For this let us first note that there are infinitely many primes p of the form
8k+5 by Dirichlet’s Theorem. For such primes, by a well-known consequence of Fermat’s Theorem
on sums of two squares, p+1 = 2(4k+3) is not the sum of two squares since its prime factorization
must have a prime factor of the form 4m+3 with an odd exponent. Moreover p+1 is congruent to
2 modulo 4, so by the Bruck-Ryser Theorem there exists no projective plane of order p+ 1. Hence
our constructions of uniformity p + 2 provide extremal hypergraphs, where truncated projective
planes do not exist.

2. The Ryser poset.. Theorem 1.5 and Corollary 4.3 show that the Ryser poset (containing all
the intersecting r-Ryser hypergraphs) has many non-isomorphic maximal and minimal elements,
giving further support for the difficulty of Ryser’s Conjecture. A better understanding of the
Ryser poset seems essential to approach Ryser’s Conjecture in general. With Theorem 1.5 and
Corollary 4.3 we made the first steps in this direction. There are several other natural extremal
problems that arise.
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Figure 1: The Ryser posets for r = 3 and 4. The black dots represent vertices of the hyper-
graphs, and the coloured lines represent edges of the hypergraphs (with an edge containing a
vertex exactly when the corresponding coloured line passes through a black dot). For clarity,
we do not draw the hypergraphs in an obviously r-partite way. It is routine to check that the
hypergraphs are actually r-partite.
In each case r = 3 and 4, we draw the Hasse diagram for the Ryser poset. The thick solid grey
lines between the hypergraphs represent comparability in the Hasse diagram. Recall that the
Ryser poset is infinite. The thick dashed lines represent infinite chains in the poset ending in
an infinite hypergraph which is a maximal element in the poset.
The top and bottom rows in each diagram represent the maximal and minimal elements of the
respective poset.
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Problem 5.1. What is the smallest and largest number of edges in a minimal intersecting extremal
r-Ryser hypergraph?

For the number of edges in a maximal r-Ryser hypergraph, truncated projective planes and our
construction provide examples with Θ(r2) edges.

It was observed in [4] that if a projective plane of order r − 1 exists then one can construct quite
sparse intersecting Ryser hypergraphs randomly. Kahn [12] proved that with high probability a
randomly chosen 22r log r lines of Pr cannot be covered with less than r points. This construction
immediately implies a O(r log r) upper bond on the minimal size of an intersecting extremal r-
Ryser hypergraph. It is an open question of Mansour, Song, and Yuster [14] whether there exists
one with O(r) edges.

It would also be interesting to decide whether there exists maximal intersecting extremal r-Ryser
hypergraphs with sub-quadratic number of edges.

The 2-Ryser posetR2 and the 3-Ryser posetR3 are well understood (in fact a complete description
of extremal hypergraphs is known even when not restricting oneself to intersecting hypergraphs
[9]). For r = 4 we were able to completely determine the 4-Ryser poset. This was done by first
computationally finding all minimal intersecting 4-partite hypergraphs (Which was completed by
the first author in [1]). There are 3 minimal hypergraphs in the 4-Ryser poset. After finding the
minimal elements it is easy to check which edges can be added to them in order to find the full
4-Ryser poset. See Figure 1 for a diagram of the cases r = 3 and r = 4. Finding the Ryser poset
for r = 5 seems to be a hard problem.

3. Asymptotic Ryser.. Since there is still no construction of r-partite r-uniform hypergraphs with
τ(H) = r−1 for all r, it would be interesting to investigate hypergraphs with cover number close
to r−1. Notice that using trunctated projective planes it is possible to construct for every r an
r-partite intersecting hypergraph with τ(H) = r − o(r) by adding s = o(r) new vertices to each
edge in Tr−s. (The necessary prime r − s − 1 exists by the known estimates on gaps between
consecutive primes).

Any family of graphs satisfying τ(H) = r − o(r), which is different from the projective plane
construction would already be interesting. We set the following problem to motivate further
research.

Problem 5.2. For some fixed constant c and every r construct an r-uniform r-partite intersecting
hypergraph with τ(H) = r − c.

Note added in proof : This has been recently solved by Haxell and Scott [10]. For sufficiently large
r they constructed r-uniform hypergraphs with τ(H) = r − 4.

4. Non-intersecting Ryser.. We constructed intersecting extremal hypergraphs for Ryser’s Con-
jecture. It is easy to construct extremal hypergraphs with matching number equal to ν simply
by taking ν vertex-disjoint copies of an intersecting extremal hypergraph. A natural question is
whether all extremal hypergraphs for Ryser’s Conjecture can be built in a similar fashion out of
intersecting ones. For r = 3 we know that the answer is “yes” — Haxell, Narins, and Szabó [9]
showed that for any 3-partite hypergraph H with τ(H) = 2ν(H) contains ν(H) vertex-disjoint
intersecting hypergraphs with cover number 2.

Recently it was shown by Abu-Khazneh and Pokrovskiy that there exist 4-partite Ryser-
hypergraphs with matching number 2, that don’t contain vertex-disjoint copies of the edge-minimal
4-partite intersecting Ryser-hypergraphs. However, they still conjecture a generalisation of the tri-
partite Ryser-hypergraphs classification using a notion of vertex-minimality, which they back by
computational evidence. Chapters 5 and 6 of [1] contain more details on these insights.

Problem 5.3. What is the correct way – if at all possible – of generalising the classification of
tripartite Ryser-hypergraphs?
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