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Abstract

We study biased Maker-Breaker positional games between two players,
one of whom is playing randomly against an opponent with an optimal
strategy. In this paper we consider the scenario when Maker plays ran-
domly and Breaker is “clever”, and determine the sharp threshold bias of
classical graph games, such as connectivity, Hamiltonicity, and minimum
degree-k. We treat the other case, that is when Breaker plays randomly,
in a separate paper.

The traditional, deterministic version of these games, with two optimal
players playing, are known to obey the so-called probabilistic intuition.
That is, the threshold bias of these games is asymptotically equal to the
threshold bias of their random counterpart, where players just take edges
uniformly at random. We find, that despite this remarkably precise agree-
ment of the results of the deterministic and the random games, playing
randomly against an optimal opponent is not a good idea: the threshold
bias tilts significantly more towards the random player. An important
qualitative aspect of the probabilistic intuition carries through neverthe-
less: the bottleneck for Maker to occupy a connected graph is still the
ability to avoid isolated vertices in her graph.

1 Introduction

Let us be given a finite hypergraph F ⊆ 2X on a vertex set X. In the Maker-
Breaker positional game F two players, Maker and Breaker, alternately take
turns in occupying free elements of X, with Maker going first, until no free
element is left. Maker is the winner if he completely occupied a hyperedge of the
hypergraph F , otherwise Breaker wins. Such a game is of perfect information
with no chance moves, so one of the players has a winning strategy. That which
one, depends on the hypergraph F . A standard method, introduced by Chvátal
and Erdős [9], to measure the robustness of this winning strategy is to give the
“disadvantaged” player a bias, that is to allow him to occupy more than one
element of X in each turn. In an (a : b) biased game Maker occupies a elements
of X in each turn and Breaker occupies b elements.

For our investigation we will be concerned mostly with graph games, where
the board X is the edge set E(Kn) of the complete graph and the game hyper-
graph P ⊆ 2E(Kn) describes a graph property. In the present paper we study
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properties fundamental both in terms of graph theory and positional games.
These include connectivity, having a perfect matching, Hamilton cycle or min-
imum degree k. For this, let C(n), H(n), Dk(n) denote the family of edge sets
of n-vertex graphs that are connected, contain a Hamiltonian cycle, have mini-
mum degree k, respectively. Subsequently we suppress the parameter n in the
notation.

1.1 Threshold bias and probabilistic intuition

As it turns out, many of the natural graph games are relatively easy wins for
Maker if the game is played (1 : 1). Chvátal and Erdős [9] were the first to
study how large of a bias b Breaker needs in various graph games in order to
win the (1 : b) biased game. For a game hypergraph F we define bF to be the
smallest integer b such that Breaker has a winning strategy in the (1 : b) biased
game F and bF is called the threshold bias of the game.

Chvátal and Erdős [9] determined the order of magnitude of the threshold
bias of the connectivity game C and the triangle building game KK3 . They
have shown that bC = Θ

(
n

lnn

)
and bKK3

= Θ (
√
n). The constant factor in the

lower bound for bC was first improved by Beck [2]. Later Gebauer and Szabó
[11] established bC = (1 + o(1)) n

lnn , showing that the upper bound of Chvátal
and Erdős is asymptotically tight. For the Hamiltonicity game H Chvátal and
Erdős only showed that bH > 1. This was subsequently improved in a series of
papers by Bollobás and Papaioannou [8], Beck [3], Krivelevich and Szabó [19],
until Krivelevich [16] proved that bH = (1 + o(1)) n

lnn . In other words, building
a Hamiltonian cycle is possible for Maker against essentially the same bias as
building just a connected graph.

Erdős and Chvátal’s winning strategy for Breaker in the connectivity game
actually isolates a vertex of Maker’s graph, and thus wins the minimum degree-1
game as well. Further, since a win for Maker in the connectivity game also is
a win for him in the minimum degree-1 game, the results for Maker’s win of
the connectivity game carry over. Thus, in the minimum degree-1 game too,
the threshold bias is asymptotically equal to n

lnn . The message of this is that
in positional games, having an isolated vertex turns out to be the bottleneck
for having a connected graph. This phenomenon is familiar from the theory of
random graphs, where Erdős and Rényi [10] established that the sharp threshold
edge number to have a connected graph in the uniform random graph model
G(n,m) is the same as the one to have a graph with minimum degree 1.

In fact, as already Chvátal and Erdős realized, the similarities between ran-
dom graphs and positional games are even closer. In a positional game players
are playing “cleverly”, according to optimal strategies and exactly one of the
players has a deterministic winning strategy, which wins against any strategy
of the other player. The situation is different if both players play “randomly”,
that is, if both Maker and Breaker determine their moves by picking a uniformly
random edge out of the currently free edges; then we can only talk about the
“typical” result of the game. The graph of this RandomMaker will be a uniform
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random graph G ∼ G(n,m) with m =

⌈
(n2)
b+1

⌉
edges. Therefore RandomMa-

ker wins a particular game involving graph property P asymptotically almost
surely (a.a.s.) if and only if the random graph G ∼ G(n,m) possesses property
P a.a.s. Hence the classic theorem of Erdős and Rényi about the sharp con-
nectivity threshold in random graphs can be reformulated in positional game
theoretic terms.

Theorem 1.1 (Erdős-Rényi, [10]). For every ε > 0, the following holds in the
connectivity game C between RandomMaker and RandomBreaker.

(i) Pr
[
RandomMaker wins the

(
1 : (1− ε) n

lnn

)
connectivity game C

]
→ 1,

(ii) Pr
[
RandomBreaker wins the

(
1 : (1 + ε) n

lnn

)
connectivity game C

]
→ 1.

By this theorem the threshold biases of both the random connectivity game
and the clever connectivity game are (1 + o(1)) n

lnn . This remarkable agreement
means that for most values of the bias the result of the random and the clever
game is the same a.a.s. This phenomenon is referred to as the probabilistic
intuition. Since similar random graph theorems also hold true for the properties
of Hamiltonicity [1] and having minimum degree 1 [10], these games are also
instances where the probabilistic intuition is valid. One of the main directions
of research in positional game theory constitutes of understanding what games
obey the probabilistic intuition.

1.2 Half-Random Games

The meaning of the probabilistic intuition is that given any bias b ≤ (1 − ε)bP
or b ≥ (1+ε)bP , one could predict the winner of the “clever” (1 : b)-game P just
by running random experiments with two random players playing each other:
whoever wins in the majority of these random games is very likely to have the
winning strategy in the deterministic game between the clever players.

When learning about this interpretation, it is natural to inquire whether it is
just the success of the randomized strategy in the clever game what is behind the
whole phenomenon. Could it be that when Maker plays uniformly at random
against Breaker, who plays with a bias near to the threshold, then this Random-
Maker wins with high probability? In this paper we give precise quantitative
evidence that the answer to this question is negative. We will see that in all the
games discussed above, a player puts herself in serious disadvantage by playing
randomly instead of following a clever strategy.

In what follows we investigate half-random positional games, where one of
the players plays according to the uniform random strategy against an optimal
player. There are two versions: either Maker follows a strategy and Breaker’s
moves are determined randomly, or the other way around. We refer to the
players as CleverMaker/ RandomBreaker, and RandomMaker/ CleverBreaker,
respectively. In this paper we focus on the RandomMaker versus CleverBreaker
setup. Our approach to the other case requires mostly different combinatorial
methods and is treated in a separate paper [13].
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Below we define the notion of a sharp threshold bias for RandomMaker/ Cle-

verBreaker games. For this, when we talk about a game, we actually mean
a sequence of games, parametrized with the size n of the vertex set of the
underlying graph. Similarly, when we refer to a strategy of CleverBreaker, we
mean a sequence of strategies.

It will turn out that when Maker plays randomly, the disadvantage of making
random moves outweighs his huge advantage inherent in the (1 : 1) games, and
the half-random bias needs to tilt in his favor. This motivates the following
definition.

Definition 1.2. We say a function k : N0 7→ N0 is a sharp threshold bias of the
(a : 1) half-random positional game between RandomMaker and CleverBreaker,
if for every ε > 0 it satisfies the following two conditions

(a) RandomMaker wins the ((1 + ε)k(n) : 1)-biased game a.a.s. against any
strategy of CleverBreaker, and

(b) CleverBreaker has a strategy against which RandomMaker loses the
((1− ε) k(n) : 1)-biased game a.a.s.

Remarks. 1. Our paper is mostly about the failure of the uniformly random
strategy against a clever player in various classical graph games. There are other
natural games where the situation is completely different and the uniformly
random strategy is close to being optimal. Bednarska and  Luczak [5] consider
the H-building game KH , where Maker’s goal is to occupy a copy of a fixed
graph H. Even though their paper is about the classical game scenario with
clever players, their results also imply that the half-random (1 : b) H-game KH
between RandomMaker and CleverBreaker has a threshold bias around n

1
m2(H) ,

where m2(H) = maxK⊆H,v(K)≥3
e(K)−1
v(K)−2 . Bednarska and  Luczak not only prove

that RandomMaker succeeds against a bias cn
1

m2(H) for some small constant c
a.a.s., but also that even a CleverMaker would not be able to do much better.

That is, they give a strategy for CleverBreaker playing with a bias Cn
1

m2(H) ,
where C is some large constant, to prevent the creation of H by CleverMaker.
The H-game is an instance of a game where the threshold bias for the clever
game is of the same order of magnitude as for the half-random game — very
much unlike the games we consider in this paper.

2. Half-random versions of other positional games were also considered
earlier in different context. The well-studied notion of an Achlioptas process
can be cast as the RandomWaiter-CleverClient version of the classic Picker-
Chooser games introduced by Beck [4] (and renamed recently to Waiter-Client
by Bednarska-Bzdega, Hefetz,  Luczak [6]). In a (1 : 1) Waiter-Client game
the player Waiter chooses two, so far unchosen edges of Kn and offers them to
the player called Client, who selects one of them into his graph. Waiter wins
when Client’s graph has property P. A substantial amount of work [7, 21] was
focused on determining how long does it take for RandomWaiter to win when
the property P is to have a connected component of linear size. Bohman and
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Frieze [7] gave a simple strategy for CleverClient to significantly delay the win
of RandomWaiter compared to the well-known threshold from the work of Erdős
and Rényi in the game where both players play randomly.

1.3 Results

We first show that if a ≤ (1 − ε) ln lnn, then a simple and natural strategy of
CleverBreaker allows him to isolate a vertex in RandomMaker’s graph a.a.s.,
and therefore win the degree-1 game. Then we establish that this threshold is
asymptotically tight for all the games we are considering in this paper.

Theorem 1.3. Let k be a positive integer. The sharp threshold bias for the
(a : 1) minimum degree-k game between RandomMaker and CleverBreaker is
ln lnn.

Theorem 1.4. The sharp threshold bias for the (a : 1) connectivity game be-
tween RandomMaker and CleverBreaker is ln lnn.

Theorem 1.5. The sharp threshold bias for the (a : 1) Hamiltonicity game
between RandomMaker and CleverBreaker is ln lnn.

On the one hand these theorems show that mindless random strategies are
very ineffective for the games we consider here, where the goal is “global”. As
discussed earlier, randomized strategies are shown to be close to optimal for
games where the goal of Maker is “local”, for example when the goal of Maker
is to build a fixed subgraph H [5]. On the other hand, these theorems establish
that the bottleneck for winning connectivity and Hamiltonicity in half-random
games is to be able to win the minimum degree-1 game. This is similar to the
phenomenon that occurs in the fully random and the fully clever scenario.

Remarks. The results of this paper and of [13] are based on the Master
thesis of the first author [12]. Recently, Krivelevich and Kronenberg [17] also
studied half-random games independently (both in the CleverMaker-RandomBr-
eaker and the RandomMaker-CleverBreaker setup). For the RandomMaker-Cle-
verBreaker setup they determine the order of magnitude of the half-random
threshold bias of the Hamiltonicity and the k-connectivity game. Our main
results pin down the constant factors as well. (In the conclusion section we
indicate how the sharp threshold result for the k-connectivity game with arbi-
trary k ≥ 2 can be obtained easily by combining our proof technique for the
connectivity game with the minimum degree-k game.)
In [13] we determine the sharp threshold bias of the perfect matching and the
Hamiltonicity games in the CleverMaker-RandomBreaker setup. Krivelevich
and Kronenberg [17] obtain similar results with different methods.

1.4 Terminology and organization

We will use the following terminology and conventions. A move consists of
claiming one edge. Turns are taken alternately, one turn can have multiple
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moves. For example: With an (a : 1) bias, Maker has a moves per turn, while
Breaker has 1 move. A round consists of a turn by Maker followed by a turn by
Breaker. By a strategy we mean a set of rules which specifies what the player
does in any possible game scenario. For technical reasons we always consider
strategies that last until there are no free edges. This will be so even if the
player has already won, already lost, or his strategy description includes “then
he forfeits”; in these cases the strategy just always occupies an arbitrary free
edge, say with the smallest index. The play-sequence Γ of length i of an actual
game between Maker and Breaker is the list (Γ1, . . . ,Γi) ∈ E(Kn)i of the first i
edges that were occupied during the game by either of the players, in the order
they were occupied. We make here the convention that a player with a bias
b > 1 occupies his b edges within one turn in succession and these are noted
in the play-sequence in this order (even though in the actual game it makes no
difference in what order one player’s moves are occupied within one of his turns).
We denote Maker’s graph after t rounds with GM,t and similarly Breaker’s graph
with GB,t. Note that these graphs have at and bt edges respectively. We will use
the convention that Maker goes first. This is more of a notational convenience,
since the proofs can be easily adjusted to Breaker going first, and yielding the
same asymptotic results.

For a graph G = (V,E), a subset F ⊆ E of edges and a subset B ⊆ V of
vertices, we denote byG−F the graph with V (G−F ) = V and E(G−F ) = E\F ,
and by G−B the graph induced by G on V \B.

Due to the asymptotic nature of our statements we can always assume n to
be sufficiently large and we will routinely omit rounding signs, whenever they
are not crucial.

We introduce the useful notion of the permutation strategy in the next sec-
tion, and prove Theorems 1.3, 1.4 and 1.5 in Section 3.

2 The permutation strategy

In this section, we introduce an alternative way to think of half-random games
which will be important in many of our proofs. One feature that makes half-
random games more difficult to study than random games is that the graph of
the random player is not uniformly random: the moves of the clever player affect
it. Our goal is still to be able to somehow compare it to a random graph from
the uniform model G(n,m) with the appropriate number of edges and draw
conclusions from the rich theory of random graphs.

Any of the players in a positional game can use a permutation σ ∈ SE(Kn),

i.e., σ :
[(
n
2

)]
→ E(Kn), of the edges of Kn for his strategy as follows. The player

following the permutation strategy σ is scanning through the list (σ(1), . . . , σ(
(
n
2

)
))

during the game and in each of his moves he occupies the next free edge on it
(that is, the next edge which was not yet occupied by his opponent). The per-
mutation strategy gives rise to a natural randomized strategy for RandomMaker
when he selects the permutation uniformly at random. It turns out that playing
according to this random permutation strategy is equivalent to playing accord-
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ing to the original definition of RandomMaker’s strategy (i.e., always choosing
uniformly at random from the remaining free edges).

The following proposition formalizes this. Intuitively it is quite clear, in [13]
we give a formal proof of a more general statement. Here we only state the
special case we need. Since the goal of the game is not relevant here, we state
the proposition for graph games in general.

Proposition 2.1. For every strategy S of CleverBreaker in a (a : b)-game
on E(Kn) the following is true. For every m ≤

(
n
2

)
and every sequence Γ =

(Γ1, . . . ,Γm) of distinct edges, the probability that Γ is the play-sequence of a
half random game between CleverBreaker playing according to strategy S and
RandomMaker is equal to the probability that Γ is the play-sequence of the game
when RandomMaker plays instead according to the random permutation strategy.

For 1 ≤ m ≤
(
n
2

)
and a permutation σ ∈ SE(Kn), let Gσ (m) ⊆ Kn be

the subgraph with edge set E(Gσ (m)) = {σ(i) : 1 ≤ i ≤ m}. Note that if
σ is a permutation chosen uniformly at random out of all permutations, then
Gσ (m) is a graph chosen uniformly at random from all graphs with m edges,
i.e., Gσ (m) ∼ G(n,m). If RandomMaker plays a particular game according to a
permutation σ ∈ SE(Kn) and the last edge he takes in round i is σ(mi), then
RandomMaker’s graph after round i is contained in Gσ (mi). Here mi ≥ ia,
but the actual value of it depends on the strategy of CleverBreaker and the
permutation σ itself. Since CleverBreaker occupied ib edges so far and these
are the only edges RandomMaker possibly skips from his permutation, we also
have that mi ≤ i(a + b). Hence RandomMaker’s graph after the ith round is
always contained in the random graph Gσ (i(a+ b)).

3 CleverBreaker vs RandomMaker

In this section, we prove Theorems 1.3, 1.4, and 1.5. We start with showing
that a.a.s. CleverBreaker is able to isolate a vertex in RandomMaker’s graph
if the bias of RandomMaker is not too large. This provides the lower bound
on the sharp thresholds in all the games we study and is the topic of the next
subsection. We treat the upper bounds in Subsections 3.2 and 3.3.

3.1 CleverBreaker isolates a vertex of RandomMaker

In this subsection we prove the following theorem.

Theorem 3.1. Let ε > 0 and a ≤ (1−ε) ln lnn. Then there exists a strategy for
CleverBreaker, such that he a.a.s. wins the (a : 1)-biased minimum degree-1
game against RandomMaker.

Proof. Let v1, v2, . . . , vn be the vertices of the underlying complete graph. Cle-
verBreaker’s strategy is rather simple. CleverBreaker identifies the vertex vi
of smallest index which has degree 0 in Maker’s graph. Then he occupies the
free edges incident to vi, one by one, in an increasing order of the indices of their
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other endpoint. (We refer to this process as CleverBreaker trying to isolate
vi.) If he succeeds in occupying all n− 1 edges incident to vi, then he won the
game. Otherwise, that is if RandomMaker occupied an edge incident to vi while
CleverBreaker was trying to isolate it, CleverBreaker iterates: he identifies a
new vertex he tries to isolate. In this case we say that CleverBreaker failed to
isolate vi. If CleverBreaker fails to isolate

k(n) = k := (1− ε) lnn

4 ln lnn

vertices then he forfeits.
Recall the permutation strategy for the random player of Section 2, based

on a random permutation of the edges of E(Kn). Let us denote by W the set
of those permutations for RandomMaker which would result in a win for Cle-

verBreaker using this described strategy. Note that for k tries, Breaker spends
at most (n− 1)k < nk edges (and therefore turns) and hence the presence of a
permutation σ in W is determined by its first (a+ 1)nk edges.

LetA denote the set of those permutations σ for which the graphGσ ((a+ 1)nk)
of the first (a+ 1)nk edges has an isolated vertex. Since

(a+ 1)nk ≤ (ln lnn+ 1)n
(1− ε) lnn

4 ln lnn
≤ (1− ε)1

2
n lnn,

the classic result of Erdős and Rényi [10] on the sharp threshold in G(n,m) for
the minimum degree being at least 1 implies the following.

Lemma 3.2. A occurs a.a.s.

The following lemma guarantees that, conditioned on A, CleverBreaker

tries to isolate k vertices or wins already earlier.

Lemma 3.3. For every σ ∈ A \W CleverBreaker tries to isolate k vertices.

Proof. For any permutation σ ∈ A, the graph Gσ ((a+ 1)nk) contains the graph
of RandomMaker up to the point when CleverBreaker tries and fails to isolate
at most k vertices. On the other hand Gσ ((a+ 1)nk) does have an isolated
vertex by the definition of A, so CleverBreaker did not run out of isolated
vertices by the time he failed to isolate his (k − 1)st vertex.

The main ingredient of our proof is an estimation of the probability that
CleverBreaker fails to isolate his jth vertex, given that he already failed to
isolate the first j − 1 vertices. Let D0 := SE(Kn) be the set of all permutations,
and for 1 ≤ j ≤ k, let Dj denote the event (set of permutations) that induces a
game where CleverBreaker tries and fails to isolate at least the first j vertices.
Notice that D0 ⊇ D1 ⊇ · · · ⊇ Dk. Our eventual goal is to show that Dk ∩ A is
very small. To achieve this we bound |Dj ∩ A| in terms of |Dj−1 ∩ A|.

Proposition 3.4. For every n large enough and every j, 1 ≤ j ≤ k, we have

|Dj ∩ A| ≤
(

1− 1

ln1−ε2/2 n

)
|Dj−1 ∩ A|.
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Before we prove the proposition, let us show how it implies our theorem.
Following the strategy defined above, CleverBreaker forfeits either if he fails
every one of his first k tries to isolate a vertex, or if there is no more vertex
of Maker-degree 0. We saw in Lemma 3.3, that for any permutation in A the
latter one is not an option: CleverBreaker has to fail at least k times before
he runs out of vertices he can try. Therefore, using Proposition 3.4, we obtain

|Dk ∩ A|
|A|

≤
(

1− 1

(lnn)1−ε2/2

)
|Dk−1 ∩ A|
|A|

≤
(

1− 1

(lnn)1−ε2/2

)k
≤ e−k(lnn)−(1−ε2/2)

≤ e−(1−ε) (lnn)ε
2/2

4 ln lnn → 0.

Finally, since A holds a.a.s. by Lemma 3.2, we also have

Pr [CleverBreaker wins] ≥ Pr
[
Dk
∣∣ A]Pr [A] → 1.

To complete the proof of Theorem 3.1 we need to prove Proposition 3.4. For
that there is a subtle technicality that we have to take care of. If we assume
that A holds, we use knowledge of the first (a + 1)nk random edges of our
permutation and thus knowledge of RandomMaker’s moves up until the turn nk.
Therefore, if we consider the distribution of the next move of RandomMaker

among the free edges before turn nk, conditioned under A, this distribution
might not be uniform anymore. For example, if there is only one vertex ṽ left
with degree 0 in RandomMaker’s graph, then the probability that RandomMaker

chooses an edge incident to ṽ, under the condition that A holds, is 0. However,
while some edges may have very low probability to be chosen by RandomMaker,
we can show that there are no edges that have a particularly high probability
to be picked.

For a starting edge sequence π ∈ S(m)
E(Kn) of length m, let A(π) ⊆ A denote

the set of permutations σ ∈ A with initial segment equal to π. Given an edge
sequence η ∈ SE(Kn) and a strategy S of CleverBreaker, we say an edge
e ∈ E(Kn) to be (S, η)-Maker if it is taken by RandomMaker when he plays
according to η against strategy S. Let A(π;S; e) ⊆ A(π) denote the set of
permutations η ∈ SE(Kn) which start with π and after that the next (S, η)-
Maker edge is e.

Lemma 3.5. For every ε > 0 the following holds for large enough n. For
every strategy S of CleverBreaker, positive integer m ≤ (a + 1)nk, starting

permutation π ∈ S(m)
E(Kn) of length m and edge e ∈ E(Kn) we have that

|A(π;S; e)| ≤ (1 + ε)
2

n2
|A(π)|.
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Proof. We can assume that e is still unoccupied after the permutation strategy
has been played according to π, otherwise the statement is trivial (since the set
A(π;S; e) is empty).

We partition the sets A(π) and A(π;S; e) according to the sequence of edges
that come after π in a permutation η ∈ A(π) until the first (S, η)-Maker edge.
Let π′ be an arbitrary extension of π with a sequence τ containing only such
edges which were occupied by CleverBreaker when the permutation strategy
was played until roundm according to π. (τ = ∅, i.e., π′ = π is also a possibility.)
Note that the length of π′ is at most m+ m

a ≤ 2(a+ 1)nk = o(n2).

Let Â(π′;S) ⊆ A(π′) be the set of those permutations η which start with π′

and continue with an (S, η)-Maker edge. Let Âe(π′, S) ⊆ Â(π′, S) be the set of
permutations where the edge e comes immediately after π′. Unless otherwise
stated, from now on we consider π′ fixed and suppress it in the arguments of
Âe and Â.

To show the upper bound of the lemma, we will find for any permutation
η ∈ Âe many different permutations in Â. For any such η and edge f ∈ E(Kn)
we denote by ηfe the edge permutation with the positions of e and f interchanged.
Let M(η) be the set of those permutations ηfe which are in Â. That is,

M(η) :=
{
ηfe : f ∈ E(Kn), ηfe ∈ Â

}
.

There are three possible reasons why a permutation ηfe would not be in M(η):

1. Any permutation in Â must start with π′, hence we are not allowed to
swap e with any edge that comes up in π′. The number of these forbidden
edges is m ≤ (a+ 1)nk = o(n2).

2. In any permutation η ∈ Â the edge following π′ must be (S, η)-Maker,
hence we cannot swap e with any edge claimed by CleverBreaker up to
this point. There are at most m

a = o(n2) such edges.

3. Finally, the graph formed by the first (a+ 1)nk edges of any edge permu-
tation in Â must have an isolated vertex. So if Gη ((a+ 1)nk) had only
one isolated vertex ṽ, we might not be able to swap e with an edge f in-
cident to ṽ, since then Gηfe ((a+ 1)nk) might not have an isolated vertex

anymore. So we forbid a swap with the n − 1 = o(n2) incident edges to
the last isolated vertex of Gη ((a+ 1)nk).

Swapping e with any edge that is not in these three categories leads to an edge
permutation in Â. Therefore, |M(η)| ≥

(
n
2

)
−o(n2). By definitionM(η) ⊆ Â for

every permutation η ∈ Âe. The sets M(η) and M(ζ) are disjoint for η 6= ζ, as
clearly ηfe = ζf

′

e is only possible if f = f ′ and η = ζ. Hence for the cardinalities
we have ∣∣∣Â∣∣∣ ≥ ∑

η∈Âe

|M(η)| ≥
∣∣∣Âe∣∣∣ ((n

2

)
− o(n2)

)
. (1)
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Now recall that Â = Â(π′;S) and Âe = Âe(π′, S) where π′ was an arbitrary,
but fixed extension of π with an edge sequence τ containing only edges Clever-
Breaker took up to playing according to π.

Our focus of interest, the sets A(π) and A(π;S; e) are disjoint unions of the
sets Â(π′, S) and Âe(π′, S), respectively, where the disjoint union is taken over
all extensions π′ of π with distinct edges which were occupied by CleverBr-

eaker in the game played according to π. Therefore Equation (1) is also valid
for them and hence,

|A(π;S; e)| ≤ 1(
n
2

)
− o(n2)

|A(π)| ≤ 2(1 + ε)

n2
|A(π)|

for n large enough, which is the statement of the lemma.

With Lemma 3.5 proven, we can return to the main line of reasoning.

Proof of Proposition 3.4. Let σ ∈ A ∩ Dj−1 and let w1, . . . , wj−1, wj be the
vertices CleverBreaker tries to isolate, in this order, when he plays against σ.
Note that the first j − 1 of these vertices do exist because σ ∈ Dj−1 and then
wj also exists by Lemma 3.3. We define π = π(σ) to be the initial segment of σ,
which ends with the last edge RandomMaker takes in the round where he occupies
his first edge incident to wj−1. The length of π is at most (a+ 1)(n− 1)(j − 1),
so we will be able to use Lemma 3.5. Let Π be the set of all such π, i.e.,

Π = {π(σ) : σ ∈ A ∩ Dj−1} .

We classify the permutations σ ∈ Dj−1 ∩ A according to these initial seg-
ments. We will prove that for all π ∈ Π,

|(Dj ∩ A)(π)| ≤
(

1− 1

ln1−ε2/2 n

)
|(Dj−1 ∩ A)(π)|

and the statement follows since (Dj ∩A) is the disjoint union of the (Dj ∩A)(π)
when the disjoint union is taken over all π ∈ Π. The union is disjoint since no
element of Π is the prefix of another.

Let us fix an arbitrary initial segment π ∈ Π. After π has been played out,
CleverBreaker immediately identifies the next vertex wj he will try to isolate.
Suppose that r ≤ n − 1 edges incident to wj are free, that is CleverBreaker

occupied already n−1−r edges incident to wj during his previous tries to isolate
a vertex, while RandomMaker occupied none. In the next round CleverBreaker

occupies the free edge from wj to the vertex with the smallest index. Then
RandomMaker has a random edges and the question is whether he hits any of
the remaining r − 1 free edges incident to wj .

Note that all permutations starting with π are in Dj−1, and thus
(Dj−1 ∩ A) (π) = A(π). Therefore, the number of such permutations where
RandomMaker in his next move hits one of these edges is at most

(r − 1)
2(1 + ε)

n2
|(Dj−1 ∩ A)(π)|

11



by Lemma 3.5. Then the number of permutations where RandomMaker did not
play any of these edges is at least(

1− (r − 1)
2(1 + ε)

n2

)
|(Dj−1 ∩ A)(π)|.

We repeat the process for the a moves of RandomMaker, always taking a new set
Π, letting the initial segment π run until RandomMaker’s last move each time,
always conditioning that RandomMaker has not yet claimed an edge incident to
wj (i.e., allowing only such σ). Applying Lemma 3.5 iteratively, the number of
permutations where none of RandomMaker’s a edges are incident to vj is at least(

1− (r − 1)
2(1 + ε)

n2

)a
|(Dj−1 ∩ A)(π)|.

In order to estimate the number of permutations in which RandomMaker

does not take any edges incident to wj and hence CleverBreaker isolates wj ,
we repeat the above process over the relevant r − 1 turns. The calculation is
identical for each turn, except that the number of vacant edges incident to wj
decreases. Taking the product over these r − 1 turns, we obtain

|(Dj ∩ A)(π)| ≥
r−1∏
`=1

(
1− 2(1 + ε)`

n2

)a
|(Dj−1 ∩ A)(π)|

≥ e−a(
∑r−1
`=1

2(1+ε)`

n2 )−a(
∑r−1
`=1 (

2(1+ε)`

n2 )2)(Dj−1 ∩ A)(π)|
≥ e−a(1+ε)−O( an )(Dj−1 ∩ A)(π)|

≥ e−(1−ε2) ln lnn−O( ln lnn
n )(Dj−1 ∩ A)(π)|

≥
(

ln−(1−ε2/2) n
)
|(Dj−1 ∩ A)(π)|

using r ≤ n− 1 in the third inequality.

3.2 RandomMaker builds a connected graph with minimum
degree at least k

The proofs of the upper bound for all games in Theorems 1.3, 1.4 and 1.5 all
start out the same. First we establish that the vertices with many incident edges
occupied by CleverBreaker (called “bad vertices”) are well-connected to the
rest of the graph (called “good vertices”). Then we go on to show that the graph
of Maker on the good vertices is very close to being a uniformly random graph.
Then the upper bound in the min-degree-k and connectivity game follows easily.
To prove the existence of a Hamilton cycle is somewhat more technical and is
presented in its separate section.

Let ε > 0 fixed and a ≥ (1 + ε) ln lnn. We consider the (a : 1)-game on Kn

between RandomMaker and CleverBreaker playing according to an arbitrary

12



but fixed strategy S. First we introduce some notation. Let us fix a parameter,
α, 0 < α < 1

2 sufficiently small, such that

(1 + ε)(1− 3α)2 > 1 +
ε

2
. (2)

We will consider the first t := α
2 n lnn rounds of the game and show that Ran-

domMaker finishes his job within his first t turns, a.a.s.
The key idea of the proof is to divide the vertices in categories, based on how
many incident edges CleverBreaker claims. We call a vertex α-bad, if its degree
in CleverBreaker’s graph is 3αn or more and otherwise we call it α-good. Since
throughout this section α is fixed, we suppress it and talk about bad and good
vertices.

An important observation is that during the first t rounds the total degree
in CleverBreaker’s graph does not exceed 2t hence there cannot be more than

2t

3αn
=

2

3αn
· αn lnn

2
≤ lnn

bad vertices. In other words, the vast majority of vertices, namely n− lnn, are
still good after t turns.

3.2.1 Connecting the bad vertices

To grade the transition of a good vertex into a bad one we define the concept
of a candidate vertex. We say that a vertex u is

(i) an early candidate if CleverBreaker claimed his αn-th edge incident to u
before round t− (1− α)n, and

(ii) a late candidate, if u is not an early candidate and CleverBreaker claims
his 2αn-th edge incident to u in a turn s with t− (1− α)n ≤ s ≤ t− αn.

Observe that every vertex that is bad at turn t had to become (early or late)
candidate in a turn s ≤ t − αn. Indeed, if a vertex u is bad then it must have
had degree at least 2αn in CleverBreaker’s graph at round t− αn. If u is not
an early candidate then it got its αn-th edge and hence also its 2αn-th edge
after round t− (1− α)n, so it is a late candidate.

Note that only good vertices can become candidates and once a vertex be-
comes candidate it stays that way till the end. This also means in particular
that every bad vertex is also a candidate.

Let us now fix an integer k ≥ 1. In most definitions and statements that
follow k appears as a parameter, but we will suppress it if this creates no confu-
sion. Let us define an auxiliary digraph Dk = D which is built throughout the
first t rounds of the game on the vertex set [n] of the Kn the game is played on.
For this, we imagine that RandomMaker occupies the a edges within each of his
turn one after another, so we can talk, without ambiguity, about an edge being
occupied before another. The digraph D has no edges at the beginning of the
game. During the game we add edges to D in the following two scenarios:

13



(1) whenever a good vertex u becomes (early or late) candidate at some turn
of CleverBreaker, we immediately add to D up to k arbitrary arcs (u, v),
such that uv is occupied by RandomMaker already, the vertex v is not a
candidate, and d−D(v) = 0. If there are less than k such edges incident to u
we add them all.

(2) whenever RandomMaker occupies an edge uv in the game where the vertex u
is a candidate, we add the arc (u, v) to D if the vertex v is not a candidate,
d+
D(u) < k, and d−D(v) = 0.

We call the edges of D saviour edges. At any point of the game an arc (u, v)
is called a potential savior edge for u if the edge uv is unoccupied in the game,
the vertex u turned candidate already, the vertex v did not, d+

D(u) < k, and
d−D(v) = 0.

Lemma 3.6. For the maximum in- and out-degree of D we have ∆−(D) ≤ 1
and ∆+(D) ≤ k. The underlying graph of D is an acyclic subgraph of Maker’s
graph.

Proof. The bounds on the maximum in- and out-degree immediately follow from
the rules in (1) and (2), as it does that the underlying graph is a subgraph of
Maker’s graph. For acyclicity it is enough to check that at the time an arc
(u, v) is added to D, the tail vertex v is isolated in D. For this first note that
d−Dk(v) = 0, so v has no incoming arc. For v to have some out-going arc (v, w)
in D, v has to be a candidate already. But adding the arc (u, v) requires that
v did not turn candidate yet, a contradiction. Hence v was isolated before the
addition of (u, v).

In the remainder of this section we show that a.a.s. every bad vertex has
out-degree k in D.

Lemma 3.7. For every vertex u ∈ [n], the following holds:

(i) If u is an early candidate, then (1−3α)n rounds after it turned candidate,
d+
D(u) = k with probability 1− o(ln−1 n).

(ii) If u is a late candidate, then αn rounds after it turned candidate, d+
D(u) =

k with probability 1− o(1).

Proof. Let u be a vertex which turns candidate in round tu and assume that
d+
D(u) < k at that point (otherwise we are done). Let ` := k − d+

D(u) be the
number of saviour edges u must still collect. For i = 1, . . . , (1− 3α)n let Ei be
the event that no saviour edge from u is added to D at turn tu + i of Random-
Maker. If at least ` of the events Ei do not hold, then u has out-degree k.
We are interested in the probability

pi := Pr
[
Ei
∣∣ there are less than ` rounds tu + j, j < i, s.t. Ej holds

]
.

How many potential saviour out-edges are there for u? Since u turns candidate
in round tu and CleverBreaker claims at most one incident edge per turn, by
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round tu + i CleverBreaker has claimed at most 2αn + i edges incident to u
(this holds for both early and late candidates). There are at most 2t/αn =
lnn vertices that turned candidate before round t and each of these might
have at most k outneigbors. These are at most (k + 1) lnn further vertices
to where there is no potential saviour edge from u. Thus, there are at least
n− 1− (k− 1)− (2αn+ i)− (k+ 1) lnn ≥ (1− 3α)n− i potential k-savior edges
from u. Hence every edge RandomMaker claims in round tu+ i has probability at

least (1−3α)n−i
(n2)

to be a savior edge for u. This implies that pi, the probability

that RandomMaker does not claim any savior edge in his a moves this round can
be estimated as

pi ≤

(
1− (1− 3α)n− i(

n
2

) )a
< e−

2a
n (1−3α− i

n ).

Conversely, there are at least
(
n
2

)
− (a + 1)t =

(
n
2

)
− o(n2) free edges in total,

therefore

pi ≥

(
1− n− 1(

n
2

)
− o(n2)

)a
=

(
1− 2 + o(1)

n

)a
> e−

2a
n (1+o(1)).

We now consider the first Cn rounds after tu, for a constant 0 < C < 1 (for
(i) we choose C = 1 − 3α, for (ii) we choose C = α). Fix now an integer j,
0 ≤ j ≤ `−1 and let qj be the probability that there are exactly j rounds where
a saviour edge from u is occupied by RandomMaker. Then the probability that
d+
D(u) < k after round t+ Cn is

∑`−1
j=0 qj .

We classify these bad events according to the set J ∈
(

[Cn]
j

)
for which a

saviour edge for u was occupied by RandomMaker exactly in rounds tu + h,
h ∈ J , and apply the union bound:

qj ≤
∑

J∈([Cn]
j )

∏
h∈J

(1− ph)
∏

i∈[Cn]\J

pi

≤
(
Cn

j

)(
1− e− 2a

n (1+o(1))
)j ∏

i∈[Cn]\[j]

e−
2a
n (1−3α− i

n )

≤nj
(

2a

n
(1 + o(1))

)j
e−

2a
n ((1−3α)(Cn−j)−

∑
i∈[Cn]\[j]

i
n )

≤O((ln lnn)j)e−2a(C(1−3α)−C2

2 +o(1)).

In the second line we use that e−
2a
n (1−3α− i

n ) is monotone increasing in i. For
(i), we choose C = 1− 3α and obtain

qj ≤ O
(

(ln lnn)
j
e−a((1−3α)2+o(1))

)
≤ O

(
(ln lnn)

j
ln−(1+ε)((1−3α)2+o(1)) n

)
= O

(
ln−1− ε2 n

)
.
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For (ii), we choose C = α and obtain

qj ≤ O
(

(ln lnn)
j

ln−2(1+ε)α(1− 7α
2 )+o(1) n

)
= o(1).

As ` < k is constant, summing over these estimates for j = 0, 1 . . . , ` − 1 gives
the result in both cases (i) and (ii).

Corollary 3.8. For every ε > 0 there exists an α > 0, such that for every
k and every strategy S of CleverBreaker the following holds a.a.s. In the
(a : 1)-biased RandomMaker-CleverBreaker game with a = (1 + ε) ln lnn and
CleverBreaker playing with strategy S, we have d+

Dk
(u) = k for every α-bad

vertex u by the end of round t.

Proof. Recall that every bad vertex is an early or late candidate.
By Lemma 3.7(i) the probability that any early candidate vertex does not

have out-degree k in Dk by round t − 2αn is o(ln−1 n). Since there are at
most 2t

αn = lnn early candidates, the union bound gives that a.a.s. all early
candidates have out-degree k by round t.

By Lemma 3.7(ii) the probability that a late candidate vertex does not have
out-degree k in Dk by round t is o(1). Now we claim that the number of late
candidate vertices is O(1) and hence applying the union bound again we get that
they all have out-degree k by round t a.a.s. Indeed, since each late candidate
has at most degree αn in CleverBreaker’s graph at round t − (1 − α)n, Cle-
verBreaker needed to claim at least αn incident edges at each late candidate

in the next (1− 2α)n rounds. Thus, there can be at most 2 (1−2α)
α = O(1) late

candidate vertices, as promised.

Corollary 3.9. For every ε > 0 there exists α > 0, such that for every strategy S
of CleverBreaker the following holds a.a.s. In the (a : 1)-biased RandomMaker-
CleverBreaker game with a = (1 + ε) ln lnn and CleverBreaker playing with
strategy S, there are vertex-disjoint paths P1, . . . , Pκ in RandomMaker’s graph
that cover all α-bad vertices and have their start- and endpoints, and only these,
among the α-good vertices.

Proof. Let us use Corollary 3.8 with k = 2, so we can assume that every bad
vertex has out-degree 2 in D2. We start at an arbitrary bad vertex v having
no incoming edge (such a vertex exists, since D2 is acyclic by Lemma 3.6). We
follow both of its outgoing edges in D2 to create two vertex disjoint directed
paths from v. If we reach a good vertex we stop and choose it as the endpoint of
our path. Otherwise, i.e., if the reached vertex v′ is bad, it has out-degree 2 in
D2, and we continue along one of the out-going edges. Since D2 is acyclic and
the number of bad vertices is finite, we must reach a good vertex eventually.
Once both directed paths from v are completed, their union in the underlying
undirected graph of RandomMaker forms a path P1 with good endpoints and bad
interior vertices. We remove the vertices of P1 from D2 and continue iteratively
with a bad vertex that does not have an incoming edge, until there are no bad
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vertices left. Note that, crucially, after the iterative removal of such rooted
paths, all remaining vertices still have all their out-going edges, hence all re-
maining bad vertices still have out-degree 2. Indeed, all vertices have in-degree
at most 1 and those with in-degree exactly 1 that were removed also had their
ancestor removed.

3.2.2 On the good vertices

Now that we have “anchored” the bad vertices, let us turn to the good vertices.
We show that the graph spanned by them is close enough to a truly random
graph and make use of the strong expander properties of the latter. To make
these notions more precise, we switch to the point of view, where RandomMaker’s
turns are determined by a random permutation σ.

We consider the first at random edges of σ which surely were all “tried” to
be played by RandomMaker in the first t rounds. However he might not actually
own all of these, because CleverBreaker might have taken some of them by the
time they were tried by RandomMaker. In the greatest generality, to be able to
do multi-round exposure later, we consider subsets M ⊂ [at] of coordinates of
σ and we will be interested in the truly random graph Gσ (M) = G (M) that
consist of the edges exactly at these coordinates, that is,

E (G (M)) = {σ(m) : m ∈M}.

Note that the notion of Gσ ([i]) coincides with the notion of Gσ (i) defined
earlier.

We define now a set of edges that will be “forbidden” for our analysis. Recall
that we fixed a strategy S for CleverBreaker. Let Hσ,S (M) = H (M) be the
graph defined on the vertex set [n] containing those edges uv for which uv ∈
σ(M) and for both u and v the edge uv was among the first 3αn incident edges
which CleverBreaker, playing according to S, claimed in the first t rounds,
when the permutation game according to σ was played.

The crucial point of this definition is the following simple lemma:

Lemma 3.10. Let σ be an arbitrary permutation of the edges of Kn. Then for
every subset M ⊆ [at] the graph G (M)− E (H (M))− B, with B being the set
of α-bad vertices after t rounds, is a subgraph of RandomMaker’s graph.

Proof. Let uv be an edge of G (M) − E (H (M)) − B. Then u and v are both
good vertices after t rounds and hence CleverBreaker’s degree at both of them
is at most 3αn. Thus, since uv ∈ σ(M), if uv would have been claimed by
CleverBreaker up to round t then uv would be in E (H (M)). Consequently
the edge uv was not claimed by CleverBreaker in the first t rounds. Now,
since uv ∈ σ(M) ⊆ σ([at]) and RandomMaker did try to claim the first at least
at edges of σ in the first t rounds, he must have claimed uv by that time.

The following lemma ensures that not too many edges of cuts (X,X) :=
{xy : x ∈ X, y ∈ V \X} of G ([at]) are “blocked” by CleverBreaker as one of
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its first 3αn edges at the endpoints. In particular, every vertex has small degree
in H ([at]).

Lemma 3.11. The following is true a.a.s. For every subset X ⊆ [n], we have
that ∣∣E(H ([at])) ∩ (X,X)

∣∣ ≤ 8eαat|X|
n

.

Proof. We write H = H ([at]). We create a random permutation σ coordinate-
wise. The crucial observation is that whether σ(j) ∈ E(H) for some j ∈ [at]
depends only on the initial segment of the first j−1 edges of σ. Indeed, for σ(j)
to be in E(H), we need that at both of its endpoints σ(j) is one of the first 3αn
incident edges which CleverBreaker claims when Maker plays according to σ.
After Maker swiped through the first j − 1 edges of σ, two things can happen:
either σ(j) was taken by CleverBreaker in the game and hence it was already
decided whether it is one of the first 3αn CleverBreaker-edges at both of its
endpoints. If σ(j) was not taken in the game, then Maker takes it in its next
move and hence σ(j) will not become part of H later either.

Hence, conditioning on any initial segment π ∈ Sj−1
E(Kn), the probability that

the next edge σ(j) is in E(H) ∩
(
X,X

)
depends only on whether it is one of

the at most 3αn|X| edges that are already in H ([i− 1]) and go between X and
its complement. Furthermore, given that σ starts with π, σ(j) can take at least(
n
2

)
− at different values, each equally likely. Thus,

Pr
[
σ(j) ∈ E(H) ∩

(
X,X

) ∣∣ σ|[j−1] = π
]
≤ 3αn|X|(

n
2

)
− at

≤ 7α|X|
n

,

for large n. For our main estimate we can classify according to the set L of
coordinates where the corresponding edges of σ are from E(H) ∩

(
X,X

)
and

apply the union bound:

Pr

[
E(H) ∩

(
X,X

)
≥ 8eαat|X|

n

]
≤

∑
L⊂[at],

|L|= 8eαat|X|
n

Pr
[
∀j ∈ L : σ(j) ∈ E(H) ∩

(
X,X

)]

≤
(

at
8eαat|X|

n

)(
7α|X|
n

) 8eαat|X|
n

≤

(
eat

8eαat|X|
n

) 8eαat|X|
n (

7α|X|
n

) 8eαat|X|
n

=

(
7

8

) 8eαat|X|
n

.

Taking the union bound over all cuts (X,X), we see that

n/2∑
s=1

(
n

s

)(
7

8

) 8eαats
n

≤
n/2∑
s=1

(
n

(
7

8

)4eα2 lnn ln lnn
)s

= o(1).
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We also need the following standard fact from random graph theory; for
completeness we include a proof in the Appendix.

Lemma 3.12. Let δ > 0. The following holds a.a.s in a random graph G ∼
G(n,m) with m = δn lnn ln lnn. For every vertex set X ⊂ [n] of size |X| ≤ n

2 ,
we have

E(G) ∩
(
X,X

)
≥ |X| m

2n
.

3.2.3 CleverMaker builds a connected graph and achieves a large min-
imum degree

We now have all the necessary tools to conclude the theorems about the min-
degree k game and the connectivity game.

Proof of Theorems 1.3 and 1.4. By Theorem 3.1 here we need to take care of
the upper bounds only.

Let α < 1
32e be arbitrary such that (2) is satisfied. Define δ = (1 + ε)α2 ,

so at = m = δn lnn ln lnn. We show that by round t RandomMaker’s graph is
connected and has minimum degree at least k a.a.s.

Recall that by Corollary 3.8 and Lemma 3.6 all bad vertices have degree at
least k in RandomMaker’s graph by round t a.a.s. Moreover, by Corollary 3.9
and Lemma 3.6 every bad vertex is connected to some good vertex via a path
in RandomMaker’s graph a.a.s.

It is enough to show that RandomMaker’s graph induced by the set of good
vertices is connected and has minimum degree at least k. We will use Lemma 3.10.

Let X ⊆ [n] be an arbitrary subset of good vertices, of size |X| ≤ n
2 . By

Lemma 3.12 there are at least |X| at2n edges in G ([at]) between X and X. At

most 8eαat|X|
n of these at|X|

2n edges are in H ([at]) by Lemma 3.11, and at most
another |X| lnn of them are going to an α-bad vertex (since there are at most
lnn bad vertices).

The rest of these edges is in RandomMaker’s graph by Lemma 3.10. That
means that at least

((
1
2 − 8eα

)
at
n − lnn

)
|X| = Ω(|X| lnn ln lnn) ≥ k edges of

RandomMaker’s graph leave X to its complement among the good vertices. In
particular, each good vertex v has degree at least k in RandomMaker’s graph.

3.3 RandomMaker builds a Hamilton cycle

We now turn to the Hamiltonicity game. The plan is the following: We use
Corollary 3.9 to find paths covering the bad vertices. Then we connect them to
one long path, using short paths on the good vertices. Finally, we show that the
rest is Hamilton connected, which allows us to close the loop using all remaining
vertices. To find the short paths and prove Hamilton connectivity, we turn away
from the game for a while, and look at random graphs in general.
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3.3.1 Short Paths

The following precise notion of expansion from [18] will be central to our proofs.
Here N(X) denotes the set of vertices which have a neighbour in X.

Definition 3.13. Let λ and r be positive reals. A graph G is a half-expander
with parameters λ and r if the following properties hold:

1. For every set X of vertices of size |X| ≤ λn
r , |N(X)| ≥ r |X|,

2. for every set X of vertices of size |X| ≥ n
λr , |N(X)| ≥

(
1
2 − λ

)
n, and

3. for every pair of disjoint sets X,Y such that |X| , |Y | ≥
(

1
2 − λ

1/5
)
n,

e(X,Y ) > 2n.

The following tail estimates for the hypergeometric distribution will be very
convenient. Let F , f and l be positive integers such that f, l ≤ F . The value of
the random variable X is the size of the intersection of fixed f -element subset
M ⊆ [F ] with a uniformly chosen l-subset M∗. Note that the expected value of
X is fl

F . For the following standard estimates see e.g. [15] Theorem 2.10.

Theorem 3.14. Let X have the hypergeometric distribution with parameters
F , f and l. Then

Pr

[
X ≥ 2

fl

F

]
≤ e−

fl
3F , (3)

Pr

[
X ≤ fl

2F

]
≤ e−

fl
8F . (4)

We will use the theorem to estimate how many edges of a ”good” edge set
of size f are realized in G(n,m).

The following useful properties of the random graph are consequences of
Theorem 3.14; a proof is included in the Appendix.

Lemma 3.15. Let δ > 0. The following three properties hold with probability at
least 1− e−Ω(lnn ln lnn) in a random graph G ∼ G(n,m) with m = δn lnn ln lnn.

(a) Every vertex set X of size at most |X| ≤ n2

m has a neighborhood of size at
least |NG(X)| ≥ |X| m8n .

(b) for every pair of vertex sets X ⊂ [n] of size n
4 ≥ |X| ≥

64n2

m , and N ⊂ [n]
of size |N | ≤ n

2 there are at least |X| m8n edges between X and [n]\(X∪N)
in G.

(c) for every pair of disjoint vertex sets X,Y ⊂ [n] of size at least |X| , |Y | ≥ n
4

there are at least m |X| /8n edges between X and Y in G.

First we show that random graphs are half-expanders, with some resilience
to edge and vertex removal. This will be useful in particular with respect to
Lemma 3.11. We state the lemma in a bit more general form than is need in
this section in order to provide us with some leeway later.
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Lemma 3.16. Let 0 < λ < 2−11, δ > 0, and let D ⊆
( [n]
≤ln2 n

)
be a family of

n3 lnn vertex subsets such that each set D ∈ D has size at most |D| ≤ ln2 n.
Then in a random graph G ∼ G(n,m) with m = δn lnn ln lnn the following
holds with probability at least 1 − e−Ω(lnn ln lnn): for all D ∈ D and all graphs
H ⊂ Kn with maximum degree at most ∆(H) ≤ m

32n , the graph G− E(H)−D
is a half-expander with parameters λ and r = m

16n = δ
16 lnn ln lnn.

Proof. We first show the following.

Claim. With probability at least 1 − e−Ω(ln2 n ln lnn), for all D ∈ D and all
v ∈ [n], v has at most m

32n G-neighbors in D.

Proof. For a fixed vertex v, set D ∈ D and subset Q ⊆ D of size |Q| = q =

m
32n , the probability that all vertices in Q are G-neighbors of v is

(N−qm−q)
(Nm)

=∏q−1
i=0

m−i
N−i ≤

(
m
N

)q
, where N =

(
n
2

)
.

Taking the union bound over all v,D, and Q, yields that the failure probability
of the event in the claim is at most

n|D|
(
|D|
q

)(m
N

)q
≤ n · n3 lnn

(
200 ln2 n

n

)q
= n−Ω(lnn ln lnn)

and the claim is proved.

Since the events in the claim and Lemma 3.15 hold with probability at least
1− e−Ω(lnn ln lnn), it is enough to show that they imply the event in our lemma.

Let D ∈ D be an arbitrary set from the family D and let H be an arbitrary
graph with maximum degree ∆(H) ≤ m

32n . First note that by the property of
the claim, removing D and E(H) from G removes at most m

16n incident edges
at any vertex in V (G) \D.

To show the first property of Definition 3.13, fix X ⊂ V (G) \ D such that

|X| ≤ λ(n−|D|)
r . Note that then |X| ≤ n2

m , so by Lemma 3.15(a) the neigh-
borhood of X in G has size at least |NG(X)| ≥ |X| m8n . Removing D and

E(H) eliminates at most |X|m16n edges incident to X, which means that after the

removal, the neighborhood of X has size at least |X|m16n = r |X|.
For the second property, let us fix a set X of size |X| = n−|D|

λr . Note that
64n2

m ≤ |X| ≤ n
4 . Assume that the neighborhood N of X in G−E(H)−D has

size less than ( 1
2 − λ)(n− |D|). Then by the property in Lemma 3.15(b), there

are at least |X| m8n edges between X and [n] \ (X ∪N) in G. Removing D and
E(H) removes at most |X| m16n edges. Thus, there is an edge from X to outside
of N in G− E(H)−D, a contradiction to the definition of N .

For the third property, fix two disjoint vertex sets X,Y ⊂ [n] \D of size at
least

(
1
2 − λ

1/5
)

(n− |D|). Note that |X|, |Y | ≥ n
4 for n large enough, so we can

apply Lemma 3.15(c) and conclude that there are at least m|X|
8n edges between

X and Y in G. Therefore, at least
(

1
8 −

1
16

)
|X| mn ≥ 2n edges remain after

removing D and E(H), for n sufficiently large.
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Since we now know we are working with a half-expander, we can do the first
step towards Hamiltonicity by connecting vertices with short paths.

Theorem 3.17. There is a λ0 > 0 such that for all λ < λ0, the following holds:
Let G be a half-expander on n vertices with parameters λ and r ≥ 8

λ2 lnn, and
let k ≤ lnn. Then for all pairwise distinct points a1, . . . , ak, b1, . . . , bk, there
are vertex disjoint paths P1, . . . , Pk, each of length at most lnn, such that Pi
connects ai to bi.

Proof. We build the paths simultaneously, starting at both ends and keeping
sets of possible vertices at the different positions in the paths, from which we
then can choose to connect the two partial paths we built. Throughout the
proof, let q := r

8 lnn ≥
1
λ2 . Note that q ≥ 2 for λ0 sufficiently small.

Let j0 =
⌈

ln λn
r

ln q

⌉
. For 0 ≤ j ≤ j0 + 1 and 1 ≤ i ≤ k we will define vertex sets

D+
i,j and D−i,j , such that D+

i,0 = {ai} and D−i,0 = {bi}, all the 2(j0 + 2)k sets

D+
i,j and D−i,j are pairwise disjoint, for every i, j we have D+

i,j ⊆ N
(
D+
i,j−1

)
and

D−i,j ⊆ N
(
D−i,j−1

)
, and

∣∣D−i,j∣∣ =
∣∣D+

i,j

∣∣ = f(j) where

f(j) =


qj if j < j0
λn
r if j = j0
n
λr if j = j0 + 1.

We define the sets iteratively over j, where in each step, we iterate over i.
First, let D+

i,0 := {ai} and D−i,0 := {bi} for i = 1, . . . , k.
Now let us fix 1 ≤ j ≤ j0 + 1 and 1 ≤ i ≤ k, and assume that for all j′ < j and
all 1 ≤ i′ ≤ i, the sets D+

i′,j′ and D−i′,j′ are constructed, and for all i′′ < i, the

sets D+
i′′,j and D−i′′,j are constructed.

We first define

A±i,j := N
(
D±i,j−1

)
\

(⋃
i′′<i

D+
i′′,j ∪D

−
i′′,j

)
∪

 ⋃
1≤i′≤k,j′<j

D+
i′,j′ ∪D

−
i′,j′

 .

We show that we can find the D±i,j ⊆ A±i,j with the required properties by
proving ∣∣A±i,j∣∣ ≥ f(j).

Let us first consider the case j ≤ j0. Then for all j′ < j and 1 ≤ i′ ≤
k, we have

∣∣∣D±i′,j′ ∣∣∣ = f(j′) = qj
′
. Further, since G is a half-expander and∣∣D±i,j−1

∣∣ ≤ λn
r , we have

∣∣N (D±i,j−1

)∣∣ ≥ r ∣∣D±i,j−1

∣∣ = (8 lnn)qj . Finally note that∣∣∣D±i′′,j∣∣∣ ≤ qj for all i′′ < i (this holds also if j = j0, since f(j0) = λn
r ≤ qj0).
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Therefore,

∣∣A±i,j∣∣ ≥ ∣∣N(D±i,j−1)
∣∣− i−1∑

i′′=1

∣∣∣D+
i′′,j ∪D

−
i′′,j

∣∣∣− j−1∑
j′=0

k∑
i′=1

∣∣∣D+
i′,j′ ∪D

−
i′,j′

∣∣∣
≥ (8 lnn)qj − (lnn− 1)(2qj)− lnn

j−1∑
j′=0

2qj
′

≥ (4 lnn+ 2)qj ≥ qj ≥ f(j)

where we used that i ≤ k ≤ lnn, and
∑j−1
j′=0 q

j′ ≤ qj as q ≥ 2.
In the case j = j0 + 1, note that∣∣∣∣∣∣

⋃
1≤i′≤k

D+
i′,j0
∪D−i′,j0

∣∣∣∣∣∣ = 2k
λn

r
(5)

and ∣∣∣∣∣∣
⋃

1≤i′≤k,j′<j0

D+
i′,j′ ∪D

−
i′,j′

∣∣∣∣∣∣ = 2k

j0−1∑
j′=0

qj
′
≤ 4kqj0−1 ≤ 4k

λn

r
, (6)

by the definition of j0. Again using the half-expander property of G, we have
that ∣∣A±i,j0+1

∣∣ ≥ rλn
r
− 2(i− 1)

n

λr
−
(

2k
λn

r
+ 4k

λn

r

)
≥
(
λ2r − 2(lnn− 1)− 6λ2 lnn

) n
λr

≥ n

λr

using that r = 8q lnn, q ≥ 1
λ2 and i ≤ k ≤ lnn. This concludes the proof that

we can construct the sets D±i,j with the properties described above. We now

find paths for all i, using the D±i,j .
Suppose we have constructed appropriate paths P1, . . . , Pi−1 already. To con-
struct P1, let us first define

D±i,j0+2 = N
(
D±i,j0+1

)
\

 ⋃
1≤i′≤k

0≤j≤j0+1

(
D+
i′,j ∪D

−
i′,j

)
∪

i−1⋃
i′′=1

V (Pi′′)

 .

Since |D±i,j0+1| = n
λr we can use the second half-expander property for G. This,

together with the estimates (5), (6), and n
r ≤

λ2n
8 lnn implies

∣∣D±i,j0+2

∣∣ ≥ (1

2
− λ
)
n− lnn

(
2
n

λr
+ 2

λn

r
+ 4

λn

r
+ lnn

)
≥
(

1

2
− λ1/5

)
n,
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for λ small enough. If the sets D+
i,j0+2 and D−i,j0+2 are disjoint, then using the

third half-expander property we can conclude that there is an edge e between
them. Retracing a path from each endpoint of e through the D±i,j back to

D+
i,0 = {ai} and D−i,0 = {bi}, respectively, and concatenating them with e gives

us the required ai, bi-path Pi. The length of Pi then is j0 + 3 ≤ lnn, indeed. If
D+
i,j0+2 and D−i,j0+2 are not disjoint, we can trace back a path to ai and bi from

any vertex in the intersection and then Pi is of length j0 + 2.

The next corollary is a direct consequence of Lemma 3.16 and Theorem 3.17.

Corollary 3.18. Let δ > 0. The following holds in a random graph G ∼
G(n,m) with m = δn lnn ln lnn a.a.s. For all vertex sets B with |B| ≤ lnn,
all sequences of pairwise distinct points a1, . . . , ak, b1, . . . , bk ∈ V \B, k ≤ lnn,
and all graphs H with ∆(H) ≤ m

32n , there are vertex disjoint paths P1, . . . , Pk−1

in G−E(H)−B − {a1, bk}, each of length at most lnn, such that Pi connects
ai+1 to bi.

Proof. Let λ > 0 be small enough such that Lemma 3.16 and Theorem 3.17 both
hold. Further let D be the family of all vertex sets B∪{a1, bk} where |B| ≤ lnn.
Note that |D| =

(
n

lnn

)
≤ nlnn. Then by Lemma 3.16, a.a.s. for every B ∈ D

and every graph H ⊂ Kn with ∆(H) ≤ m
32n , the graph G−E(H)−B−{a1, bk}

is a half-expander with parameters λ and r = m
16n = δ

16 lnn ln lnn ≥ 8
λ2 lnn.

Applying Theorem 3.17 to these graphs concludes the proof.

3.3.2 Hamilton Connectivity

We now turn towards Hamilton connectivity. This section relies heavily on the
works of Lee and Sudakov [20] and Krivelevich, Lee, and Sudakov [18]. The
following properties prove to be a valuable criterion for Hamiltonicity.

Definition 3.19. Let ξ be a positive constant. We say that a graph G has
property RE (ξ) if it is connected, and for every path P with a fixed edge e, (i)
there exists a path containing e longer than P in the graph G∪ P , or (ii) there
exists a set of vertices SP of size |SP | ≥ ξn such that for every vertex v ∈ SP ,
there exists a set Tv of size |Tv| ≥ ξn such that for every w ∈ Tv, there exists a
path containing e of the same length as P that starts at v, and ends at w.

Definition 3.20. Let ξ be a positive constant and let G1 be a graph with
property RE (ξ). We say that a graph G2 complements G1, if for every path P
with a fixed edge e, (i) there exists a path containing e longer than P in the
graph G1 ∪P , or (ii) there exist v ∈ SP and w ∈ Tv, such that {v, w} is an edge
of G1 ∪G2 ∪ P (the sets SP and Tv are as defined in Definition3.19).

Proposition 3.21 ([18, Proposition 3.3]). Let ξ be a positive constant. If G1 ∈
RE (ξ) and G2 complements G1, then G1 ∪G2 is Hamilton connected.

Again, the notion of a half-expander comes in useful.
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Lemma 3.22 ([18, Lemma 3.5]). There exists a positive λ0 such that for ev-
ery positive λ ≤ λ0, the following holds for every r ≥ 16λ−3 lnn: every half-
expander on n vertices with parameters λ and r has property RE

(
1
2 + λ

)
.

The next lemma and its proof are based on [20] and adapted to our situation.

Lemma 3.23. For all 0 < λ ≤ 1/2 there is a β > 0 such that for all δ > 0, for
a random graph G ∼ G(n,m) with m = δn lnn ln lnn edges, the following holds
with probability at least 1− e−Ω(m):
For every graph H with maximum degree ∆(H) ≤ m

8n , the graph G − E(H)
complements every subgraph R ⊆ G with property RE( 1

2 + λ) that has at most
βm edges.

Proof. Let us fix a graph R ⊆ Kn with at most βm edges such that R ∈
RE

(
1
2 + λ

)
. We will estimate the probability that R ⊆ G and there exists an

H with maximum degree ∆(H) ≤ m
8n , such that the graph G− E(H) does not

complement R.
For this we fix a path P and an edge e ∈ E(P ) and estimate from above the

probability that there exists an H with maximum degree ∆(H) ≤ m
8n , such that

(i) in R∪P no path containing e is longer than P and (ii) for every v ∈ SP and
every w ∈ Tv we have vw 6∈ E((G−E(H))∪R∪P ) (where SP is the set of size
|SP | ≥

(
1
2 + λ

)
n and Tv the set of size |Tv| ≥

(
1
2 + λ

)
n from Definition 3.19

applied to R). Observe that (i) is not a random statement, hence we can assume
that it holds for P and e, otherwise the probability is 0.

Note also that if there exists a vertex v ∈ SP and a w ∈ Tv such that
{v, w} ∈ E(R), then the probability is 0 as well. Thus from now on we also
assume that for all v ∈ SP and all w ∈ Tv, the edge {v, w} 6∈ E(R).

Let now S′P = {v1, . . . , vλn} be an arbitrary subset of SP of size |S′P | = λn.
For all v ∈ S′P , let T ′v be a subset of Tv \ S′P of size |T ′v| = 1

2n. Note that the
edge sets E′v = {{v, w} : w ∈ T ′v} for v ∈ S′P are all disjoint, since S′P is disjoint
from every T ′v. Hence their union

E′ := {{v, w} : v ∈ S′P , w ∈ T ′v}

has size |E′| = λ
2n

2.
We will show that with high probability, for every H with ∆(H) ≤ m

8n , there
is a v ∈ S′P and a w ∈ T ′v such that {v, w} is an edge of G−E(H). For that, it is
sufficient that, independently of H, there are at least λm/4 edges in E(G)∩E′.
Indeed, removing the edges of any graph H with maximum degree ∆(H) ≤ m

8n

can eliminate at most |S′P | m8n ≤
λm
8 edges from E(G) ∩ E′, which means that

at least λm
8 > 0 edges of E′ are left in (E(G) \ E(H)) ∩ E′.

Recall that we assumed that E(R) is disjoint from E′, but condition on
E(R) ⊆ E(G). Thus, the size of E(G) ∩ E′ has a hypergeometric distribution
with parameters F =

(
n
2

)
\ |E(R)| ≤ n2/2, f = |E′| = λn2/2 and l = m −

|E(R)| ≥ m/2. Hence for the expectation we have fl
F ≥

λm
2 and then Theorem

3.14 implies that

Pr
[
|E(G) ∩ E′| ≤ λm/4

∣∣ R ⊂ G] ≤ e−λm/16.
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Taking the union bound for all choices of P and e ∈ E(P ) we obtain that

Pr
[
G does not complement R

∣∣ R ⊂ G] ≤ nn!e−λm/16.

Finally, taking the union bound for all R ⊆ Kn with at k ≤ βm edges and using
that Pr [R ⊂ G] ≤ ( m

(n2)
)k, we obtain that our failure probability is at most

∑
R∈RE( 1

2 +λ),|E(R)|≤βm

Pr
[
G does not complement R

∣∣ R ⊂ G]Pr [R ⊂ G]

≤ nn!e−λm/4
βm∑
k=1

((n
2

)
k

)(
m(
n
2

))k ≤ e−λm/5 βm∑
k=1

(em
k

)k
≤ e−λm/5βm

(
e

β

)βm
.

Here we used that the terms of the last sum are monotone increasing for k ≤ βm,
as long as β < 1. Thus the event of the lemma fails with probability e−Ω(m)

provided β is sufficiently small.

The next statement wraps up this section.

Corollary 3.24. There is a γ > 0 such that for every δ > 0 and every family
D ⊆

( [n]
≤ln2 n

)
of at most n3 lnn vertex subsets of size at most ln2 n each, the

following holds with probability at least 1 − e−Ω(lnn ln lnn) for a random graph
G ∼ G(n,m), with m = δn lnn ln lnn:
For every D ∈ D and every graph H ⊂ Kn with ∆(H) ≤ γmn , the graph
G− E(H)−D, is Hamilton connected.

Proof. Let λ0 as in Lemma 3.22 and 0 < λ < min
(
λ0, 2

−11
)
. Let 0 < β < 1

such that Lemma 3.23 holds and let γ = β
32 . Let D ⊆

( [n]
≤ln2 n

)
be a family of

at most n3 lnn vertex subsets of size at most ln2 n each. Then let G ∼ G(n,m)
be a random graph and let G′ be a uniformly random subgraph of G with βm

2
edges. Let E be the event that for every D ∈ D and H ⊆ Kn with ∆(H) ≤ γmn ,

the graph G′−E(H)−D is a half-expander with parameters λ and r = βm
32n . By

definition, G′ is distributed like G
(
n, βm2

)
and thus by Lemma 3.16, E holds

with probability at least 1− e−Ω(lnn ln lnn).
We now fix a D ∈ D. Let AD be the event that G − D has at least m/2

edges. We show that AD fails with probability at most e−Ω(n). Let N :=
(
n
2

)
.

Note that there are at most n |D| edges incident to D. Then the probability
that removing D from G removes at least k = 1

2m edges is at most(
n|D|
k

)(
N−k
m−k

)(
N
m

) ≤
(
en |D|
k

)k (m
N

)k
≤
(

4e ln2 n

n− 1

)k
≤ e−Ω(m lnn).

From now on we condition on AD holding.
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Let BD be the event that for every H ⊆ Kn−|D| with ∆(H) ≤ m
16(n−|D|) ,

G−E(H)−D complements every one of its subgraphs with at most βm
2 edges

that has property RE
(

1
2 + λ

)
.

Now we condition further on G−D having exactly k ≥ m/2 edges. Note that
then G−D is distributed as G(n−|D| , k). Under this condition then, by Lemma
3.23, BD fails with probability at most e−Ω(m). Since the events |E(G−D)| = k,
k ≥ m/2 partition the event AD, we obtain that Pr

[
BD|AD

]
≤ e−Ω(m). Hence,

in total we get that

Pr

[ ⋃
D∈D

BD

]
≤ |D|

(
e−Ω(m) + e−Ω(m lnn)

)
= e−Ω(m).

Thus, with probability at least 1 − e−Ω(lnn ln lnn) both the event E and the
events BD hold for every D ∈ D.

If E holds, then by Lemma 3.22, G′ − E(H) −D has property RE
(

1
2 + λ

)
for every D ∈ D and H ⊆ Kn with ∆(H) ≤ γmn .

If BD holds, then G−E(H)−D complements the G′−E(H)−D, because the
latter has propertyRE

(
1
2 + λ

)
and has at most βm

2 edges. Thus, by Proposition
3.21, G−E(H)−D is Hamilton connected (recall thatG′ is a subgraph ofG).

3.3.3 Proof of the Hamiltonicity threshold

We are now ready to return to the Hamiltonicity game.

Proof of upper bound in Theorem 1.5. Let ε > 0 fixed and let a = (1+ε) ln lnn.
Furthermore let CleverBreaker play according to an arbitrary fixed strategy
S.

Fix an α < 1
16e min{γ(3.24),

1
32}, such that inequality (2) holds as well. Recall

that t = α
2 n lnn. We show that RandomMaker builds a Hamilton cycle in the

first t rounds of the (a : 1)-biased Hamiltonicity game a.a.s.
By Proposition 2.1 we work in the setup where RandomMaker plays according

to a random permutation σ ∈ SE(Kn) against CleverBreaker’s fixed strategy
S. To use our random graph statements we generate σ in three steps. First
we select the initial segment σ1 of the first at

2 edges of σ uniformly at random.
Then, independently, we select another sequence σ2 of at

2 edges uniformly at

random from all
(n2)!

((n2)−
at
2 )!

choices and append, in this order, those edges of σ2

to σ1 which do not appear in it already. Finally, we choose a uniformly random
permutation σ3 of the rest of the edges and append it, to obtain σ. We define
the set M2 = M2(σ1, σ2) ⊆ [at] to be the set of those coordinates where the
edges of σ2 appear in σ.

We thus refined the probability space to a triplet (σ1, σ2, σ3). But still,
clearly the permutation σ created this way is a uniformly random permutation
of the edges of Kn. Further, the graphs G ([at/2]) and G (M2) as defined in
Section 3.2.2 are independent and are drawn independently from the distribution
of G(n, at/2). We define five events. Let δ = α

4 (1 + ε).
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First, let A be the event containing those triplets (σ1, σ2, σ3) for which
∆ (H ([at])) ≤ 8eαat

n and let A1 be the event containing those σ1 for which
∆ (H ([at/2])) ≤ 8eαat

n (note that H ([at/2]) depends only on σ1). Observe that
A implies A1 and by Lemma 3.11, A holds a.a.s.

Furthermore, let B1 be the event containing those σ1 for which the uniform
random graph G ([at/2]), with at

2 = m = δn lnn ln lnn edges, has the property
that for any subset B ⊆ V , |B| ≤ lnn, any sequence of at most k ≤ lnn
pairs of vertices a1, . . . ak, b1, . . . bk ∈ V \ B, and any graph H ⊆ Kn with
maximum degree ∆(H) ≤ m

32n there exist k − 1 pairwise disjoint paths Pi ⊆
G ([at/2])−E(H)−B−{a1, bk}, i = 1, . . . k−1, of length ≤ lnn each, connecting
bi to ai+1. By Corollary 3.18, we have that B1 holds a.a.s.

Let σ1 ∈ A1∩B1. For a setB ∈
(

V
≤lnn

)
and for a sequence a1, . . . ak, b1, . . . , bk ∈

V \B of at most 2 lnn distinct vertices let us denote byD∗(B, a1, . . . ak, b1, . . . , bk) ⊆
V the union of B ∪ {a2, . . . , ak, b1, . . . , bk−1} with the union of the vertex sets
of the k − 1 pairwise disjoint paths of length ≤ lnn connecting bi to ai+1, for
i = 1, . . . k − 1, in G ([at/2]) − E(H ([at/2])) − B − {a1, bk}. Note that these
k− 1 paths do exist since the maximum degree ∆(H ([at/2])) ≤ 8eαat

n ≤ m
32n by

σ1 ∈ A1 and hence the property from B1 can be applied. (In case the choice of
the family of paths is not unique then it is selected according to an arbitrary,
but fixed preference order.)

Let us denote byD∗(σ1) = D∗ the family containingD∗(B, a1, . . . ak, b1, . . . , bk)
for all choices of B ∈

(
V
≤lnn

)
, and a1, . . . , ak, b1, . . . , bk ∈ V \B. Clearly, |D∗| <

n3 lnn. Furthermore note that every D∗ ∈ D∗ has at most lnn+(lnn−1) lnn =
ln2 n elements.

Let B2 be the event containing the pairs (σ1, σ2) for which σ1 ∈ A1∩B1 and
for which the uniform random graph G (M2) ∼ G(n, at2 ), has the property that
for every D ∈ D∗(σ1) and any graph H with maximum degree ∆(H) ≤ γ(3.24)

m
n

the graph G (M2) − E(H) − D is Hamilton connected. Note that by Corol-
lary 3.24, the event B2 conditioned on any σ1 ∈ A1 ∩ B1 holds with probability
at least 1− e−Ω(lnn ln lnn). Here it is crucial that, although M2 depends on both
σ1 and σ2, the graph G (M2) is independent of σ1 by construction.

Finally, we let S be the event containing those triplets (σ1, σ2, σ3) for which
after t rounds there are disjoint paths Q1, . . . , Qk, k ≤ lnn, covering the set B
of α-bad vertices and having their endpoints, and only those, among the α-good
vertices. Note that by Corollary 3.9, S holds a.a.s.

Then, formally, we have that

Pr
[
A
]

+ Pr
[
B1

]
+ Pr

[
B2

]
+ Pr

[
S
]

=

= Pr
[
A
]

+ Pr
[
B1

]
+

∑
σ1∈A1∩B1

Pr
[
B2

∣∣ σ1

]
Pr [σ1] + Pr

[
S
]

= o(1) + o(1) + e−Ω(lnn ln lnn)
∑

σ1∈A1∩B1

Pr [σ1] + o(1) = o(1).

It remains to show that for any triplet (σ1, σ2, σ3) such that (σ1, σ2, σ3) ∈
A∩S, σ1 ∈ B1 and (σ1, σ2) ∈ B2 hold, RandomMaker following the permutation
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strategy according to the σ induced by the triplet (σ1, σ2, σ3) builds a Hamilton
cycle against CleverBreaker playing with his fixed strategy S (by the end of
round t).

First we show that RandomMaker’s graph after t rounds contains a single
path of length at most ln2 n covering the set B of all α-bad vertices. Indeed,
S guarantees paths Q1, . . . , Qk, k ≤ lnn, partitioning B, and having their
endpoints a1, b1, a2, b2, . . . , ak, bk, and only those among the α-good vertices.
Recall that |B| ≤ lnn. Since σ1 ∈ B1 ∩ A1, there are k − 1 pairwise disjoint
paths Pi ⊆ G ([at/2]) − E(H ([at/2])) − B − {a1, bk}, i = 1, . . . k − 1, of length
at most lnn connecting bi to ai+1. Since only good vertices are involved in
these paths, by Lemma 3.10 the paths are indeed in RandomMaker’s graph. The
concatenation of the paths Pi and Qj gives a single a1, bk-path P of length at
most ln2 n covering all bad vertices.

Since (σ1, σ2, σ3) ∈ A and (σ1, σ2) ∈ B2, the graph G (M2) − H ([at]) −
(V (P ) \ {a1, bk}) is Hamilton connected, and thus contains a Hamilton path
Q connecting a1 and bk. Note that removing V (P ) \ {a1, bk} removes all bad
vertices and thus, again by Lemma 3.10, Q is contained in RandomMaker’s graph.

The concatenation of Q and P gives a Hamilton cycle. Here we used that
even though G ([at/2]) and G (M2) might have common edges, for Q we used
only those edges of G (M2) that are left after deleting the internal vertices of
P .

4 Remarks and Open Problems

In this paper we determined the sharp threshold bias of the minimum-degree-k,
connectivity and Hamiltonicity games in the half-random RandomMaker vs Cle-
verBreaker scenario. To prove that the sharp threshold bias of the half-random
k-connectivity game is also ln lnn, we can proceed as we did when deriving
connectivity and minimum-degree-k. Suppose there is a vertex cut S of size at
most k− 1 in RandomMaker’s graph. Note that for every bad vertex there exists
k vertex disjoint paths to good vertices, so the deletion of k − 1 vertices will
not disconnect all of these paths: any bad vertex will still be connected to a
good vertex after the deletion of S. So it is enough to show that the graph of
RandomMaker induced by the good vertices is not disconnected with the removal
of S. This can be done similarly as we show the 1-connectedness of the graph:
the only difference is that for any X, |X| ≤ n/2 we show that the number of
edges going to X \S is at least Ω(|X| lnn ln lnn) > 0. For this one needs to also
subtract from the calculations there the number of edges incident to S, which
is negligeble.

It would also be interesting to study other natural half-random games, for
example non-planarity, non-k-colorability, and k-minor games, as well as their
half-random Avoider-Enforcer and Waiter-Client variants. Hefetz, Krivelevich,
Stojaković and Szabó [14] proved that the threshold biases for the clever Maker-
Breaker version of all these games are linear in n. The half-random RandomMa-

ker-CleverBreaker threshold of all these games will also be larger than n1−ε
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for every ε > 0. This is because for each of these properties P there exists a
graph H = H(P, ε) possessing P, which is of constant size (bounded by some
function f(1/ε)) and sparse (in the sense that 1/m2(H) > 1 − ε). Then Ran-

domMaker will occupy this H against CleverBreaker a.a.s. by the results of
[5]. It would be interesting to decide whether for these games RandomMaker

performs roughly the same as CleverMaker (like for KH) or significantly worse
(i.e., in the order of magnitude). Note that for the games of the present paper,
with spanning graph properties, RandomMaker performs significantly worse than
CleverMaker, because the isolation of just one vertex already can win the game
for CleverBreaker.

Finally, it is well-known that for a fixed graph H the threshold bias n1/m(H)

of the random H-building game is coarse. It is unclear however whether the
RandomMaker vs CleverBreaker half-random H-creation game cannot have a
sharp threshold bias, we tend to think it does. Note that by [5] we know the
order of magnitude of the threshold, it is n1/m2(H), where m2(H) is the usual
maximum 2-density of H.
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and minor games. SIAM Journal on Discrete Mathematics, 22:194–212,
2008.

[15] S. Janson, T.  Luczak, and A. Ruciński. Random graphs, volume 45. John
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5 Appendix

Proof of Lemma 3.12. Fix a set X ⊂ [n] of size |X| ≤ n/2. Applying Theorem
3.14 to the edge set

(
X,X

)
between X and its complement, with F =

(
n
2

)
and l = m, the probability that less than m|X|(n−|X|)

2(n2)
≥ |X| m2n edges are

present in G between X and X is at most e−|X|
m
8n . Taking the union bound

over all subsets X, we obtain that the failure probability is
∑n/2
k=1

(
n
k

)
e−k

m
8n =∑n/2

k=1 e
k(O(lnn)−Ω(lnn ln lnn)) = o(1).
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Proof of Lemma 3.15. The following claim directly implies part (a) of the lemma.

Claim: With probability at least 1−e−Ω(lnn ln lnn) for every vertex set X of size

at most |X| ≤ n2

m there is a sequence of vertices v1, . . . , v|X|/2 ∈ X and disjoint

sets N1, . . . , N|X|/2 ⊂ [n] \X of size m
4n each, such that for all i = 1, . . . , |X|2 we

have Ni ⊆ N(vi).

Proof. To prove the claim, let us first fix X and write X =
{
s1, . . . , s|X|

}
.

We inductively define sets Mi: if there exist at least m
4n neighbors of s1 in X,

then let M1 be the set containing the m
4n neighbours with the lowest index.

Otherwise let M1 = ∅. Similarly, let then Mi be the set of the m
4n neighbors of

si in X \
(⋃

j<iMj

)
with the lowest index provided there are at least m

4n such

neighbors, and the empty set otherwise.
Further, call each si a success, if Mi 6= ∅ or

∑i−1
j=1 d(sj) ≥ m

2 . Note that if

there are less than |X|2 failures, then either (1) the claim holds forX, or (2)X has
at least m

4 incident edges. However, the number of edges incident to X has the

hypergeometric distribution with parameters F =
(
n
2

)
, f = |X| (n−|X|) +

(|X|
2

)
and l = m. For the expectation we have |X|mn ≤ fl

F ≤
|X|m

2(n−1) ≤
m
8 , hence by

Theorem 3.14 the probability of (2) is at most e−m|X|/3n. We show now that

with high probability there are less than |X|2 failures.
We go through the si in increasing order, and determine the probability of

a failure, conditioned under the exact sets of neighbors of the s1, . . . , si−1. So,
fix an i ≤ |X| and condition on the event that for j < i, the neighborhood of sj
is NG(sj) = Bj for some fixed sets Bj .
Now if

∑
j<i |Bj | ≥

m
2 , then si is a guaranteed success. Otherwise, there are

l ≥ m
2 edges left to place in G, and F ≤

(
n
2

)
potential edges to choose from.

The “good” edges are all the edges from si to X \
⋃
j<iMj , there are at least

f ≥ n− |X| − (i− 1) m4n ≥
n
2 of them. For the expectation we have fl

F ≥
m
2n , so

by Theorem 3.14 the probability that si is a failure, that is, that less than m
4n

of the good edges are realized, is at most e−m/16n.

Thus, by the union bound the probability that there are |X|2 elements of X
that are failures is at most(

|X|
|X|/2

)(
e−m/16n

)|X|/2
= e−Ω(m|X|/n).

This means that the probability that the claim does not hold for X is at most
e−Ω(m|X|/n) + e−m|X|/3n.

Now taking the union bound over all X, |X| ≤ n2

m , the probability that the
event of the claim does not hold is at most

n/ ln2 n∑
x=1

ex lnne−Ω(mx/n) = e−Ω(lnn ln lnn).
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We prove that part (b) holds with probability at least 1− e−n/10. Let us fix
sets X and N . The number of edges between X and [n] \ (X ∪N) has the hy-
pergeometric distribution with parameters F =

(
n
2

)
, f = |X| |[n] \ (X ∪N)| ≥

|X| n4 and l = m. By Theorem 3.14, we have that the probability that there

are less than |X| m8n ≤
fl
2F edges between X and [n] \ (X ∪ N) is at most

e−fl/8F ≤ e−|X|
m

32n ≤ e−2n. Since there are at most 2n2n pairs of sets X and
N , the probability that the statement fails is at most e(2 ln 2−2)n ≤ e−n/10.

Finally we show that part (c) holds with probability at least 1 − e−m/129.
Let us fix disjoint vertex sets X,Y ⊂ [n] of size at least |X| , |Y | ≥ n

4 . The
number of edges between X and Y follows the hypergeometric distribution with

parameters F =
(
n
2

)
, f = |X| |Y | ≥ |X|n

4 and l = m. By Theorem 3.14, we

have that the probability that there are less than |X| m8n ≤
fl
2F edges between

X and Y is at most e−fl/8F ≤ e−|X|m/32n ≤ e−m/128. Since there are at most
2n2n ≤ eo(m) pairs of sets X and Y , the claim follows by taking the union bound
over all such X and Y .
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