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Abstract

We consider an extension of the Monotone Subsequence Lemma, of Erdés and Szekeres
in higher dimensions. Let v',...v" € R? be a sequence of real vectors. For a subset
I C [n] and vector € € {0,1}? we say that I is c-free, if there are no i < j € I, such that
for every k = 1,...d, 'Ufc < 'ui iff ¢, = 0. We construct sequences of vectors with the
property, that the largest c-free subset is small for every choice of ¢. In particular, for
d = 2 the largest c-free subset is O(ng) for all the four possible ¢. The smallest possible
value remains far from being determined.

We also consider and resolve a simpler variant of the problem.

1 Introduction

The classic lemma of Pél Erdés and Gyodrgy Szekeres [5] about monotone subsequences can
also be formulated as a Ramsey-type coloring statement.
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Lemma 1 [5] Let Hy and H, be linear orderings of the n-element set V. Define a 2-coloring
of the edges of the complete graph on vertex set V' by coloring the edge uv blue if the order
of uw and v in Hy agrees with that in Hy, and coloring it red otherwise. Then there exists a
monochromatic clique of size [\/n].

Moreover, this result is best possible. That is, there exist linear orderings Hy, Hy such that

in the corresponding coloring the largest monochromatic clique is of size [v/n .

In the present paper we consider a generalization of this Lemma.

Let H = (Hy, ..., Hy) be a list of d + 1 linear orderings on a finite set V. Let us 2¢-color
the edges of the complete graph on the vertex set V' by coloring the edge uv with the color
(c1,---,¢q) € {0,1}%, where ¢; = 0 if H; agrees with Hy on {u,v}, and ¢; = 1 otherwise.

The first natural generalization of Lemma 1 coming into mind is about determining the
size of the largest monochromatic subset one can guarantee. As it turns out this question is
solved easily with repeated applications of the Erdds-Szekeres Lemma (N. G. de Bruijn, see
[7]). Instead, we concentrate on the property of a monochromatic subset in a 2-edge-coloring,
that it does not contain all the colors. We will try to determine the size of the largest subset
missing at least one of the 2% colors.

We found this problem interesting in its own combinatorial right. The original motivation,
however, stems from real analysis. M. Laczkovich [8] raised the problem whether any compact
set, of positive Lebesgue measure in d-space admits a contraction onto a ball. J. Matousek
[11] formulated a related combinatorial question; we consider yet a slightly different version
with implications to the original analysis problem of Laczkovich.

We note here that several other extensions of Lemma 1 exist in the literature. The paper
of V. Chvatal and J. Komlds [4] generalizes the transitive tournament structure of linear
orderings to arbitrary directed graphs. In a more recent paper, R. Siders [12]| considers a
version in higher dimensions. He resolves the question of M. Kruskal (see [7]) about how
small the size of the largest monotone subsequence could be in any direction (not just in the
direction of the coordinate axes).

Let us make things more precise by introducing a few definitions. For ¢ € {0,1}% we call
a subset U C V ¢-free if U spans a subgraph with no edge of color ¢&. We define mz(V,H) to
be the size of the maximal éfree subset in V. Let m(V,H) = maxzmz(V,H) and m(n,d) =
min m(V, H) where the maximum ranges over the colors ¢ € {0,1}¢ and the minimum ranges

over the n element sets V' and the lists 7 of (d + 1) linear orderings of V.
PROBLEM: Determine m(n,d). Find the order of magnitude for fixed d > 0.



All orders of magnitude, and all the O, o, and © notations in this paper are in the variable

n with respect to a fixed d unless otherwise stated.

We trivially have m(n,0) = 1. For d = 1 our problem reduces to the lemma of Erdés
and Szekeres and one gets m(n,1) = [y/n]. For d > 1, however, the problem starts to get
interesting. A trivial lower bound is m(n,d) > m(n,1) = [\/n ] for d > 1.

For an easy upper bound of m(n, d) = O(nddﬁ), one can generalize the construction usually

associated with the second part of Lemma 1.
Construction 1

Let n = nd*" let V consist of the (d+1)-tuples from {0, ...,ng—1} let H = (Hy, ..., Hy) such
that H; extends the natural ordering according to the i coordinate (label the coordinates
from 0 to d). Let ¢ € {0,1}? be a color. We define a partition of V into at most (3ny — 2)¢

monochromatic subsets Rz, where @ € {—(ng — 1),...,0,1,...2ny — 2}%. Let
R; ={(zo,x1,...,xq) €V :d = (x1,...,24) + zo(2¢— (1,...,1))}.

It is clear that each Rj; is monochromatic in the color ¢, thus a c-free subset does not contain
more than one element of it. This implies mz(V, H) < (3ng —2)? and since ¢ was arbitrary we
have m(n,d) < m(V,H) < (3ng — 2)? = O(nd+i). O

The problem of obtaining a decent lower bound resisted our attempts so far. Currently we
do not know anything better than m(n,d) > y/n. This is immediate from the Erdds-Szekeres
Lemma and proves unnecessarily too much. It provides a subset of size [y/n | free of not just
one, but half of the colors.

With the hope that it might shed some light on the problem, L. Pésa (see in [9]) suggested a
related simpler question. Instead of d+ 1 linear orderings, consider a d-tuple P = (Py,...,Py)
of partitions of a base set V. With the aid of these partitions, we define a 2%-edge-coloring
of the complete graph on vertex set V by letting & = (cy,¢o,...,cq) € {0,1}¢ be the color
of the edge uv, where ¢; = 0 if v and v are in the same class of P; and ¢; = 1 otherwise.
We define the analogue of mz(V,H), m(V,H), and m(n,d) for this coloring. For ¢ € {0,1}¢
let 7z(V,P) be the size of the maximal c-free subset of V. Let r(V,P) = maxzrz(V,P),
and r(n,d) = minr(V,P), where the maximum ranges over the colors ¢ € {0,1}¢ and the
minimum ranges over the n element sets V' and the d-tuples P of partitions of V. Our goal is
also similar: the determination of r(n, d).

In Section 2 we consider this problem on partitions. As it turns out Construction 1 can
be translated into the language of partitions. We also prove a matching lower bound in

Theorem 2, thus obtain a precise answer for many values of the parameter n: r(n¢t! d) = n?.
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This implies the asymptotic characterization of r(n,d): r(n,d) ~ n##. The same result was
independently proved by L. Pésa (for d = 2), Gy. Petruska [9] and it is also a consequence of
a result of A. Schwenk and I. Munro [13]. Our approach provides a more general statement
in a different sense.

One could also consider the random version of the original problem. Brightwell [3, Corol-
lary 2], answering a problem raised by Winkler [14], showed that Construction 1 is very typical
in the following sense. If we choose d + 1 linear orderings independently and uniformly from
all linear orderings of the set V, then almost always m(V,H) = @(nd%l)

After seeing the results of the simpler variant and the random version, it might seem
plausible to conjecture for our original problem that m(n,d) = @(ndd?). As we show in
Section 3, this, however, is not the case. We improve on Construction 1 to obtain m(n,d) =
O(n®), with an exponent satisfying e; < ﬁ for d > 2. For example we have m(n,2) =
O(n®®) < n?/3. For large values of d we have e; = 1 — 2/d + o(1/d), where the o bound is in
the variable d.

2 Partitions

Theorem 2 Let P, ..., Py be d partitions of the n element set V. Let us define a 2%-edge-

coloring of the complete graph on vertex set V by letting ¢ = (c1,ca, - - ., cq) € {0,1}¢ to be the

color of the edge uv, where ¢; = 0 if u and v are in the same class of P; and ¢; = 1 otherwise.
There exists a color ¢ and a é-free subset B C 'V, with |B| > Nt

We obtain Theorem 2 as a consequence of a stronger statement. We consider a coarser

coloring of K, by just d 4+ 1 colors, and prove that the geometric average of the sizes of the
largest subsets avoiding one of these colors is at least n®(¢+1),
Theorem 3 Let Py,..., Py be d partitions of the n element set V. Let us define a d+ 1-edge-
coloring of the complete graph on vertex set V by coloring the edge uv by the largest value i
(0 <i < d) such that u and v are in the same class of the first i partitions.

Then there exist subsets By, By,..., By of V, where B; spans a subgraph free of color i,

and
d

1=0

Notice that any i-free subset of V is free of not just one, but 2¢~% colors in the coloring of

Theorem 2. Hence Theorem 2 follows as a consequence.



Proof of Theorem 3. We proceed by induction on d. The case d = 1 is immediate. Now
let us assume that the statement is true for d — 1.
Consider the restrictions of P»,...,P,; to the classes Si,...,S; of P;. By the induction

. . d .
hypothesis there exist subsets Bi,..., B} of S; for every j (1 < j < k), such that []|B]| >
_ ' i=1
S]*~ and B is i-free. We define B; := Us_; B} C'V for 1 < i < d. B; is clearly an i-free set.

As ijl |Sj| = n, we can use the weighted version of the inequality between the arithmetic

and geometric mean, with weights |.S;|/n, to estimate the size of B;.
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Let us define By to be one of the largest classes in P; and let ¢t = |By|. By is clearly O-free.

Using (1) and the induction hypothesis, we obtain
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In the last inequality the denominator is a weighted geometric average of the |S;|, whereas

the numerator is their maximum, so Theorem 3 follows. [J
Recall the definition of r(n, d) from the Introduction.

Corollary 4 For positive integers d and ny we have
r(ndtt, d) = nd.

For arbitrary n and fized d we have

d

r(n,d) = (14 o(1))n@1.

Proof. Theorem 2 provides the lower bound on r(n, d).
Construction 1 can be transformed into a construction of partitions and provides the upper
bound. Let n = nd™, and V = {0,1,...,n9 — 1}¢*1. For each i = 1,2,...,d we define the
partition P; using the i"* coordinates: two elements of V are in the same class of P; if they

th

have the same i** coordinate. (Coordinates are labeled from 0 to d.)



Take a color &= (¢q,...,c4). One can partition V into ¢-monochromatic subsets Rz of size
no (@ € {0,1,...ng — 1}%). Indeed, let

R; ={(i,%) :i€{0,1...,ng — 1}, 7 = @ +ic},

where the sum in the coordinates is computed modulo ny.

Thus for any color ¢, the size of the largest ¢-free subset is at most nd. O
Remark Theorem 2 was also proved independently by Pésa for d = 2, and Petruska [9] for
arbitrary d. Their proof is different from ours.

A. Schwenk and I. Munro [13] found a generalization of Theorem 2 in a direction differing
from the one of Theorem 3. They showed, that for any 1 < k < [ and any subset V C R!
of size n, the geometric mean of the sizes of the projections to the (Ilc) possible k-dimensional
subspaces spanned by coordinate axes is at least n*/!. Applied with | = d+1, k = d, this result
is equivalent to the following statement in the setting of Theorem 2: the geometric mean of
the sizes of the largest subsets of V', free of d + 1 specific colors (the colors having at most a
single 1), is at least na%i. This is also a special case of our Theorem 3.

3 The construction

In this section we present a generalization of Construction 1 to improve on the exponent of
the upper bound for m(n,d) provided d > 2.

Theorem 5 We have m(n,d) = O(n®), with

i1 (d
eq = 1 — max 72;:0 (J)
d i<d+1 324
In particular, m(n,2) = O(n®®) and there exists an absolute constant ¢ > 0, such that for

every fized d we have
C\/lo_gd)

m(n,d) < O <n1_3+ 372

Proof. We start by defining a product operation. Let #' = (H|,..., H)) be d + 1 linear
orderings on the finite set V' and let #" = (H{, ..., H]) be d+1 linear orderings on the finite
set V". We define V' = V' x V" to be the Cartesian product and H' x H" = H = (H,, ..., Hy)

to be d + 1 orderings on V', where H; is the lexicographic ordering of V' using the orderings
H! and H! on the coordinates (i = 0,1,...,d).

Lemma 6 For any color ¢ € {0,1}? we have mz(V,H) = maz(V',H') - me(V", H").
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Proof. For the > direction take subsets S’ of V', and S” of V", which are both é-free and
notice that S’ x S” C V is also c-free.

For the < direction of the claim take a cé-free subset S C V. Note that the projection S’
of S to V' is é-free, and the slice S, = {b € V"|(a,b) € S} is also c-free for any a € V'. O

In what follows, we modify Construction 1 to obtain a list H = (Hy,..., Hy) of linear
orderings such that mgz(V,#) is substantially lower for most of the colors but it is very high
(in fact n) for the remaining colors. Then we use the product construction of Lemma 6 for
averaging.

Let 1 < i< d+1 and let us take an 4 dimensional linear subspace W of IR%*! in general
position with respect to the coordinate axes. In the following we consider d, ¢ and W fixed,
and use the O notation with respect to n. Consider (a rotation of) the ¢ dimensional unit
square grid in W. Let V be the n points of this grid closest to the origin. Notice that the
diameter of V is O(n'/?). For i = 0,1...,d define H; to be the linear ordering given by the
ordering of the 1™ coordinates of the points. (Coordinates are labeled from 0 to d.)

The color of the edge 4w (i, € V) depends on which of the 2¢*! space orthant contains
the vector 7 — 7. An orthant @ is associated with the same color as —@, hence the 2¢+1/2
colors. Let us denote by @)z the union of the two orthants associated with the color ¢. In the
following claim we show that the magnitude of mz(V,H) depends only on whether QzNW is

trivial or not.

Claim 7 If Q"W = {0} then ma(V,H) =n. If QzNW # {0}, then mz(V,H) = O(n'5).

Proof. The first statement simply follows from the definition of )z and from the fact that
W is closed under subtraction.

To prove the second statement choose a vector ¥ € W that lies in the interior of Q7. Let
S C V be a subset not containing the color ¢.

Let us project S in the direction of ¢’ onto the subspace of W orthogonal to ¥ and call the
projected point set Sy. Recall that ¢ is in the interior of )z and thus there exists a positive
angle o with the property that any vector within angle at most « from ' is in Qz. Clearly
for any two vectors 4 and @ € S the distance of their projections g, wy € Sy is at least sin «
times the distance of 4 and W, as otherwise the difference @ — « (or @ — @) is within angle
« from ¥, making ¢ the color of the edge 47, a contradiction. Thus the minimum distance in
Sy is constant, while the diameter is at most the diameter of S, which is O(n'/?). A simple
volume calculation shows that |S| = [Sy| = O(n'T). O

Suppose that in the construction above we have [ = [(i) colors with mz(V,H) = O(n'~/%)
and 2¢ —1 colors with mz(V,#) = n. There are 2¢ ways to reverse some of the linear orderings
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H,,..., H; and obtain a different construction H’, j = 1,2,...,2% For each of them the set
of I colors with mz(V, H?) = O(n'T ) might be different. Because of symmetry any fixed color
¢ occurs | times out of the 2¢ with mz(V, H’) = O(n'~1/%).

Now we use the product construction to multiply these 2¢ systems. For the resulting family

(V*,H*) the values mg(V*, H*) average out for every color ¢,
AV HY) Hmc (V,#9) = 0 (T4 D) = 0 (N7 )

where N = [V*| = n*'
Assuming the next lemma on the value of | (as a function of i) the first statement of
Theorem 5 follows. For the last statement of the theorem notice that with the choice 7 =

|d/2 + 10y/dlogd]| Chernoff bound gives Z ( )/ (i2%) = 2/d — O(y/log d/d?) where the O

is with respect to d. [J

Lemma 8 If W C IR*™! is an i-dimensional linear subspace in general position with respect

to the coordinate axes, then W nontrivially intersects exactly 2 Z;;B (‘;) of the 241 orthants
Of qu‘—l.

Proof. The intersections of the d + 1 coordinate hyperplanes of IR with W are d + 1
(1 — 1)-dimensional linear subspaces of W in general position. Thus counting the (d + 1)-
dimensional orthants intersected nontrivially by W is the same as counting the connected
parts IR is cut by d + 1 subspaces of dimension i — 1 in general position.

Our formula for this number can easily be established by a recurrence relation. We tried
to find the oldest reference instead. In 1852 L. Schléfli [10] proved that j affine hyperplanes
in general position partition the Euclidean k-space into a(j, k) = Zt 0 ( ) parts. Notice that
he uses affine subspaces and we use linear subspaces. We partition the i-space by d + 1 linear
subspaces of dimension 7 — 1. Fix one of the subspaces S and consider affine hyperplanes S;
and S parallel to S that lie on different sides of S. Clearly each part of the i-space intersects
exactly one of S7 or Sy, thus the number of parts in our partition is the total number of parts
S1 and S, is partitioned by the other d of our subspaces. As the subspaces different from S
intersect S; and Sy in affine subspaces in general position we have that both S; and S5 is
partitioned into a(i — 1, d) parts, proving the theorem. [

In Theorem 5 the value of e, is defined with the help of the dimension parameter 7. The
construction in the proof works for each value 1 < ¢ < d + 1 and choosing ¢ optimally yields
the exponent ez. Observe that the choice ¢+ = d + 1 provides a version of Construction 1

from the Introduction. By choosing 7 = d we obtain a construction beating the random one
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even for small values of d. For d = 2, 3, and 4 this is the optimal choice for 7 and we get
m(n,2) = O(n®?®), m(n,3) = O(n'"7?*), and m(n,4) = O(n**/%*). For d = 5, the optimal
choice is i = 4 that yields m(n,5) = O( 51/64) " For large values of d the optimal choice for i is
d/2+ O(y/dlogd) yieldingeg =1—2+0 (%) where the O notation refers to asymptotics
in d.

4 Concluding Remarks and Open Problems

Remarks.
1. It would seem natural to try to prove an na+1 lower bound to the average of the sizes
|Bz| for all 2¢ colors ¢ in the setting of Theorem 2, where By C V is a c-free subset of

maximum size. This is not possible because there are counterexamples with two partitions,

where Z |B;| < 4n?/3. Theorem 3 implies this bound for many subsets of the set of colors and
1=
it would be interesting to characterize the subsets of colors, for which such a bound holds.

2. Our argument for Theorem 3 gives a similar result for a coloring induced by 2 linear
orderings and d — 1 partitions.

3. Since the proof of the current best lower bound for m(n,2) provides a subset of size n'/?
containing only 2 of the 4 colors, it seems reasonable to conjecture, that lim,_,o, m(n,2)/n'/? =
0o. We don’t know anything better for large d either. As a first step, it would even be

172 = oo,

interesting to see whether there is a constant d, for which lim,, ,,, m(n,d)/n
4. The result of Brightwell [3, Corollary 2] states that if d + 1 linear orders are chosen
independently and uniformly out of all linear orders of V', then almost always (i.e. with
probability tending to 1)

Cmdd? < m(V, H) < and;il.

This also implies that the median of m(V,H) is @(nddﬁ). Using standard technic involving
Talagrand’s Inequality, one can obtain a stronger concentration inequality about the value of
m(V, H).

Theorem 9 Let m be the median of m(V,H) and let w(n) — oo arbitrarily slowly. Then
Pr(Im(V, ) — m| > w(n)n? %@ 0) = o(1).

The proof is a standard application of Talagrand’s Inequality. For a clear explanation of this
powerful probabilistic tool, see for example [1]. The proof of the case d = 1 is included there
[1, page 109], and the exact same argument works word by word for arbitrary d. We don’t

include the details here.



For the case d = 1, Baik, Deift and Johansson [2] obtained that the actual variation of
m(V,H) about its median is of the order n!/® (and not n'/4, given by the Talagrand inequality).
They actually established a very precise estimate of the distribution of m(V,H). It would be
interesting to find a precise estimate on the distribution (or at least the variation) of m(V, H)

in higher dimension as well.
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