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ABSTRACT
We study the impact of metric constraints on the realizabil-
ity of planar graphs. Let G be a subgraph of a planar graph
H (where H is the “host” of G). The graph G is free in
H if for every choice of positive lengths for the edges of G,
the host H has a planar straight-line embedding that re-
alizes these lengths; and G is extrinsically free in H if all
constraints on the edge lengths of G depend on G only, ir-
respective of additional edges of the host H.

We characterize all planar graphs G that are free in ev-
ery host H, G ⊆ H, and all the planar graphs G that are
extrinsically free in every host H, G ⊆ H. The case of
cycles G = Ck provides a new version of the celebrated car-
penter’s rule problem. Even though cycles Ck, k ≥ 4, are
not extrinsically free in all triangulations, it turns out that
“nondegenerate” edge lengths are always realizable, where
the edge lengths are considered degenerate if the cycle can
be flattened (into a line) in two different ways.

Separating triangles, and separating cycles in general, play
an important role in our arguments. We show that every
star is free in a 4-connected triangulation (which has no
separating triangle).
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1. INTRODUCTION
Representing graphs in Euclidean space such that some or

all of the edges have given lengths has a rich history. For ex-
ample, the rigidity theory of bar-and-joint frameworks, mo-
tivated by applications in mechanics, studies edge lengths
that guarantee a unique (or locally unique) representation
of a graph. Our primary interest lies in simple combinatorial
conditions that guarantee realizations for all possible edge
lengths. We highlight two well-known results similar to ours.
(1) Jackson and Jordán [4, 12] gave a combinatorial charac-
terization of graphs that are generically globally rigid (i.e.,
admit unique realizations for arbitrary generic edge lengths).
(2) Connelly et al. [5] showed that a cycle Ck, k ≥ 3, embed-
ded in the plane can be continuously unfolded into a convex
polygon (i.e., the configuration space of the planar embed-
dings of Ck is connected), solving the so-called carpenter’s
rule problem.

We consider straight-line embeddings of planar graphs
where some of the edges can have arbitrary lengths. A
straight-line embedding (for short, embedding) of a planar
graph is a realization in the plane where the vertices are
mapped to distinct points, and the edges are mapped to
line segments between the corresponding vertices such that
any two edges can intersect only at a common endpoint. By
Fáry’s theorem [9], every planar graph admits a straight-line
embedding with some edge lengths. However, it is NP-hard
to decide whether a planar graph can be embedded with pre-
scribed edge lengths [7], even for planar 3-connected graphs
with unit edge lengths [3], but it is decidable in linear time
for triangulations [6] and near-triangulations [3]. Finding
a straight-line embedding of a graph with prescribed edge
lengths involves a fine interplay between topological, met-



ric, combinatorial, and algebraic constraints. Determining
the impact of each of these constraints is a challenging task.
In this paper, we characterize subgraphs for which the met-
ric constraints on the straight-line embedding remain inde-
pendent from any topological, combinatorial, and algebraic
constraints. Such subgraphs admit arbitrary positive edge
lengths in an appropriate embedding of the host graph. This
motivates the following definition.

Definition 1. Let G = (V,E) be a subgraph of a planar
graph H (the host of G). We say that

• G is free in H when, for every length assignment
` : E → R+, there is a straight-line embedding of the
host H in which every edge e ∈ E has length `(e);

• G is extrinsically free in H when, for every length
assignment ` : E → R+, if G has a straight-line embed-
ding with edge lengths `(e), e ∈ E, then H also has a
straight-line embedding in which every edge e ∈ E has
length `(e).

Intuitively, if G is free in H, then there is no restriction on
the edge lengths of G; and if G is extrinsically free in H, then
all constraints on the edge lengths depend on G alone, rather
than the edges in H \ G. Clearly, if G is free in H, then it
is also extrinsically free in H. But not all extrinsically free
subgraphs are free. For example, K3 is not free since the
edge lengths have to satisfy the triangle inequality, but it is
an extrinsically free subgraph in K4. It is easily verified that
every subgraph with exactly two edges is always free (every
pair of lengths can be attained by an affine transformation);
but a triangle K3 is not free in any host (due to the triangle
inequality).

Results. We characterize all graphs G that are free as a
subgraph of every host H.

Theorem 1. A planar graph G = (V,E) is free in every
planar host H, G ⊆ H, if and only if G consists of isolated
vertices and

• a matching, or

• a forest with at most 3 edges, or

• the disjoint union of two paths, each with 2 edges.

Separating 3- and 4-cycles in triangulations play an im-
portant role in our argument. A star is a graph G = (V,E),
where V = {v, u1, . . . , uk} and E = {vu1, . . . , vuk}. We
obtain the following result for stars in 4-connected trian-
gulations (the proof is available in the full version of the
paper).

Theorem 2. Every star in a 4-connected triangulation is
free.

If a graph G is free in H, then it is extrinsically free, as
well. We completely classify graphs G that are extrinsically
free in every host H.

Theorem 3. Let G = (V,E) be a planar graph. Then G
is extrinsically free in every host H, G ⊆ H, if and only if
G consists of isolated vertices and

• a forest as listed in Theorem 1 (a matching, a forest
with at most 3 edges, the disjoint union of two paths,
each with 2 edges), or

• a triangulation, or

• a triangle and one additional edge (either disjoint from
or incident to the triangle).

When G = Ck is a cycle with prescribed edge lengths, the
realizability of a host H, Ck ⊂ H, leads to a variant of the
celebrated carpenter’s rule problem. Even though cycles on
four or more vertices are not extrinsically free, all nonreal-
izable length assignments are degenerate in the sense that
the cycle Ck, k ≥ 4, decomposes into four paths of lengths
(a, b, a, b) for some a, b ∈ R+. Intuitively, a length assign-
ment on a cycle Ck is degenerate if Ck has two noncongruent
embeddings in the line (that is, in 1-dimensions) with pre-
scribed edge lengths. We show that every host H, Ck ⊂ H,
is realizable with prescribed edge lengths of Ck, i.e., H ad-
mits a straight-line embedding in which every edge of Ck

has its prescribed length, if the length assignment of Ck is
nondegenerate.

Theorem 4. Let H be a planar graph that contains a cy-
cle C = (V,E). Let ` : E → R+ be a length assignment such
that C has a straight-line embedding with edge lengths `(e),
e ∈ E. If ` is nondegenerate, then H admits a straight-line
embedding in which every edge e ∈ E has length `(e).

Organization. Our negative results (i.e., a planar graph
G is not always free) are confirmed by finding specific hosts
H, G ⊆ H, and length assignments that cannot be real-
ized (Section 2). We give a constructive proof that every
matching is free in all planar graphs (Section 3). In fact, we
prove a slightly stronger statement: the edge lengths of a
matching G can be chosen arbitrarily in every plane graph
H with a fixed combinatorial embedding (that is, the edge
lengths and the outer face can be chosen arbitrarily). The
key tools are edge contractions and vertex splits, reminis-
cent of the technique of Fáry [9]. Separating triangles pose
technical difficulties: we should realize the host H even if
one edge of a separating triangle has to be very short, and
an edge in its interior has to be very long. Similar problems
occur when two opposite sides of a separating 4-cycle are
short. We use grid embeddings and affine transformations
to recursively construct embeddings for all separating 3- and
4-cycles (Section 3.2). All other subgraphs listed in Theo-
rem 1 have at most 4 edges. We show directly that they
are free in every planar host (Section 4). In Section 5 we
show that for cycles with prescribed edge lengths any host
H is realizable if the length assignment is nondegenerate.
We conclude with open problems in Section 7.

Related Problems. As noted above, the embeddability
problem for planar graphs with given edge lengths is NP-
hard [3, 7], but efficiently decidable for near-triangulations [3,
6]. Patrignani [16] also showed that it is NP-hard to decide
whether a straight-line embedding of a subgraph G (i.e., a
partial embedding) can be extended to an embedding of a
host H, G ⊂ H. For curvilinear embeddings, this problem
is known as planarity testing for partially embedded graphs
(Pep), which is decidable in polynomial time [2]. Recently,
Jeĺınek et al. [13] give a combinatorial characterization for
Pep via a list of forbidden substructures. Sauer [17, 18] con-
siders similar problems in the context of structural Ramsey
theory of metric embeddings: For an edge labeled graph G
and a set R ⊂ R+ that contains the labels, he derived condi-
tions that ensure the existence of a metric space M on V (G)
whose distances extend the labeling in G.



Definitions. A triangulation is an edge-maximal planar
graph with n ≥ 3 vertices and 3n − 6 edges. Every trian-
gulation has well-defined faces where all faces are triangles,
since every triangulation is a 3-connected polyhedral graph
for n ≥ 4. A near-triangulation is a 3-connected planar
graph in which all faces are triangles with at most one ex-
ception (which is typically the outer face). A 3-cycle t in
a near-triangulation T is called a separating triangle if the
vertices of t form a 3-cut in T . A triangulation T has no
separating triangles iff T is 4-connected.

Tools from Graph Drawing. To show that a graph
G = (V,E) is free in every host H, G ⊆ H, we design
algorithms that, for every length assignment ` : E → R+,
construct a desired embedding of H. Our algorithms rely
on several classical building blocks developed in the graph
drawing community.

By Tutte’s barycenter embedding method [20], every 3-
connected planar graph admits a straight-line embedding in
which the outer face is mapped to an arbitrarily prescribed
convex polygon with the right number of vertices. Hong
and Nagamochi [11] extended this result, and proved that
every 3-connected planar graph admits a straight-line em-
bedding in which the outer face is mapped to an arbitrarily
prescribed star-shaped polygon with the right number of
vertices.

A grid-embedding of a planar graph is an embedding in
which the vertices are mapped to points in some small h ×
w section of the integer lattice Z2. For an n-vertex pla-
nar graph, the dimensions of the bounding box are h,w ∈
O(n) [8, 19], which is the best possible [10]. The angu-
lar resolution of a straight-line embedding of a graph is the
minimum angle subtended by any two adjacent edges. It
is easy to see that the angular resolution of a grid embed-
ding, where h,w ∈ O(n), is Ω(n−2). By modifying an incre-
mental algorithm by de Fraysseix et al. [8], Kurowski [14]
constructed grid embeddings of n-vertex planar graphs on
a 3n × 3

2
n section of the integer lattice with angular reso-

lution at least
√

2

3
√

5n
∈ Ω(1/n). Kurowski’s algorithm em-

beds a n-vertex triangulation T with a given face (a, b, c)
such that a = (0, 0), b = (3n, 0) and c = (b3n/2c, b3n/2c).
It has the following additional property used in our argu-
ment. When vertex c is deleted from the triangulation T ,
we are left with a 2-connected graph with an outer face
(a = u1, u2, . . . , uk = b). In Kurowski’s embedding, the
path (a = u1, u2, . . . , uk = b) is x-monotone and the slope
of every edge in this path is in the range (−1, 1).

2. SUBGRAPHS WITH CONSTRAINED
EDGE LENGTHS

It is clear that a triangle is not free, since the edge lengths
have to satisfy the triangle inequality in every embedding
(they cannot be prescribed arbitrarily). This simple obser-
vation extends to all cycles.

Observation 1. No cycle is free in any planar graph.

Proof. Let C be a cycle with k ≥ 3 edges in a planar graph
H. If the first k − 1 edges of C have unit length, then
the length of the k-th edge is at most k − 1 by repeated
applications of the triangle inequality. 2

Observation 2. Let T be a triangulation with a separat-
ing triangle abc that separates edges e1 and e2. Then the

subgraph G with edge set E = {ab, bc, e1, e2} is not free in
T . (See Fig. 1.)

Proof. Since abc separates e1 and e2, in every embedding
of T , one of e1 and e2 lies in the interior of abc. If ab and
bc have unit length, then all edges of abc are shorter than 2
in every embedding (by the triangle inequality), and hence
the length of e1 or e2 has to be less than 2. 2

Based on Observations 1 and 2, we can show that most
planar graphs G are not free in some appropriate triangula-
tions T , G ⊆ T .

Theorem 5. Let G = (V,E) be a forest with at least 4
edges, at least two of which are adjacent, such that G is not
the disjoint union of two paths of length two. Then there is
a triangulation T that contains G as a subgraph and G is
not free in T .

Proof. We shall augment G to a triangulation T such that
Observation 2 is applicable. Specifically, we find four edges,
ab, bc, e1, e2 ∈ E, such that either e1 and e2 are in distinct
connected components of G or the (unique) path from e1 to
e2 passes through a vertex in {a, b, c}. If we find four such
edges, then G can be triangulated such that abc is a triangle
(by adding edge ac), and it separates edges e1 and e2. See
Fig. 1 for examples. We distinguish several cases based on
the maximum degree ∆(G) of G.

a
b

c

a
b

c

a b

c

e1

e2

e1

e2

e1

e2

Figure 1: Triangulations containing a bold subgraph
G with edges ab, bc, e1 and e2. In every embedding,
one of e1 and e2 lies in the interior of triangle abc,
and so min{`(e1), `(e2)} ≤ `(ab) + `(bc). Left: G has
four edges, two of which are adjacent. Middle: G is
a star. Right: G is a path.

Case 1: ∆(G) ≥ 4. Let b be a vertex of degree at least 4 in
G, with incident edges ab, bc, e1 and e2. Then e1 and e2 are
in the same component of G, and the unique path between
them contains b.

Case 2: ∆(G) = 3. Let b be a vertex of degree 3, and
let e1 be an edge not incident to b. If e1 and b are in the
same connected component of G, then let ba be the first
edge of the (unique) path from b to e1; otherwise let ba be
an arbitrary edge incident to b. Denote the other two edges
incident to b by bc and e2. This ensures that if e1 and e2
are in the same component of G, the unique path between
them contains b.

Case 3: ∆(G) = 2. If G contains a path with 4 edges, then
let the edges of the path be (e1, ab, bc, e2). Now the (unique)
path between e1 and e2 clearly contains a, b, and c, so we
are done in this case. If a maximal path in G has 3 edges,
then let these edges be (ab, bc, e1), and pick e2 arbitrarily
from another component. Finally, if the maximal path in G
has two edges, then let these edges be (ab, bc), and pick e1
and e2 from two distinct components (this is possible since
G is not the edge-disjoint union of two paths of length two).
2



3. EVERY MATCHING IS FREE
In this section, we show that every matching M = (V,E)

in every planar graph H is free. Given an arbitrary length
assignment for a matching M of H, we embed H with the
specified edge lengths on M . Our algorithm is based on a
simple approach, which works well whenM is“well-separated”
(defined below). In this case, we contract the edges in M

to obtain a triangulation Ĥ; embed Ĥ on a grid cZ2 for a
sufficiently large c > 0; and then expand the edges of M to
the prescribed lengths. If c > 0 is large enough, then the last

step is only a small “perturbation” of Ĥ, and we obtain a
valid embedding of H with prescribed edge lengths. If, how-
ever, some edges in M appear in separating 3- or 4-cycles,
then a significantly more involved machinery is necessary.

3.1 Edge Contraction and Vertex Splitting
A near-triangulation is a 3-connected planar graph in which

all faces are triangles with at most one exception (which
is typically considered to be the outer face). Let M be a
matching in a planar graph H with a length assignment
` : M → R+. We may assume, by augmenting H if neces-
sary, that H is a near-triangulation. Let D be an embedding
of H where all the bounded faces are triangles. We will con-
struct a new embedding of H with the same vertices on the
outer face where every edge e ∈M has length `(e).

Edge contraction is an operation for a graph G = (V,E)
and an edge e = v1v2 ∈ E: Delete v1 and v2 and all in-
cident edges; add a new vertex v̂e; and for every vertex
u ∈ V \ {v1, v2} adjacent to v1 or v2, add a new edge uv̂e.
Suppose G is a near triangulation and v1v2 does not belong
to a separating triangle. Then v1v2 is incident to at most
two triangle faces, say v1v2w1 and v1v2w2, and so there are
at most two vertices adjacent to both v1 and v2. The cyclic
sequence of neighbors of v̂e is composed of the sequence of
neighbors of v1 from w1 to w2, and that of v2 from w2 to
w1 (in counterclockwise order). The inverse of an edge con-
traction is a vertex split operation that replaces a vertex v̂e
by an edge e = v1v2. See Fig. 2.

v1v2

w1

w2

v̂e

w1

w2

v̂e

w1

w2

Re

Figure 2: Left: An edge e = v1v2 of a near trian-
gulation incident to the shaded triangles v1v2w1 and
v1v2w2. Middle: e is contracted to a vertex v̂e. The
triangular faces incident to v̂e form a star-shaped
polygon. Right: We position edge e such that it con-
tains v̂e, and lies in the shaded double wedge, and in
the kernel of the star-shaped polygon centered at v̂e.
For simplicity, we consider only part of the double
wedge, lying in a rectangle Re of diameter 2ε.

Suppose that we are given an embedding of a triangula-
tion, and we would like to split an interior vertex v̂e into an
edge e = v1v2 such that (1) all other vertices remain at the
same location; and (2) the common neighbors of v1 and v2
are w1 and w2 (which are neighbors of v̂e). Note that the
bounded triangles incident to v̂e form a star-shaped poly-

gon, whose kernel contains v̂e in the interior. We position
e = v1v2 in the kernel of this star-shaped polygon such that
the line segment e contains the point v̂e, and vertices w1 and
w2 are on opposite sides of the supporting line of e. There-
fore, e must lie in the double wedge between the supporting
lines of v̂ew1 and v̂ew2 (Fig. 2, right). In Subsection 3.2,
we position e = v1v2 such that its midpoint is v̂e; and in
Section 4, we place either v1 or v2 at v̂e, and place the other
vertex in the appropriate wedge incident to v̂e.

3.2 Proof of Theorem 7
We now recursively prove that every matching in every

planar graph is free. In one step of the recursion, we con-
struct an embedding of a subgraph in the interior of a sepa-
rating triangle (resp., a separating 4-cycle), where the length
of one edge is given (resp., the lengths of two edges are
given). The work done for a separating triangle or 4-cycle
is summarized in the following lemma.

Lemma 6. Let H = (V,E) be a near-triangulation and let
M ⊂ E be a matching with a length assignment ` : M → R+.

(1) Suppose that a 3-cycle (v1, v2, v3), where v1v2 ∈M , is
a face of H. There is an L > 0 such that for every triangle
abc with side length |ab| = `(v1v2), |bc| > L and |ca| >
L, there is an embedding of H with prescribed edge lengths
where the outer face is abc and v1, v2 and v3 are mapped to
a, b and c, respectively.

(2) Suppose that a 4-cycle (v1, v2, v3, v4), where v1v2 ∈M
and v3v4 ∈ M , is a face of H. There is an L > 0 such that
for every convex quadrilateral abcd with side lengths |ab| =
`(v1v2), |cd| = `(v3v4), |ac| > L, there is an embedding of H
with prescribed edge lengths where the outer face is abcd and
v1, v2, v3 and v4 are mapped to a, b, c and d, respectively.

Proof. We proceed by induction on the size of the matching
M . We may assume, by applying an appropriate scaling,
that min{`(e) : e ∈M} = 1.

(1) Consider an embedding D of H where v1v2 ∈ M is
an edge of the outer face, and let M ′ = M \ {v1v2}. Let
C1, . . . , Ck be the maximal separating triangles that include
some edge from M ′, and the chordless separating 4-cycles
that include two edges from M ′ (more precisely, we con-
sider all such separating triangles and separating chordless
4-cycles and among them we choose those that are not con-
tained in the interior of any other such separating triangle or
chordless 4-cycle). Let H0 be the subgraph of H obtained by
deleting all vertices and incident edges lying in the interiors
of the cycles C1, . . . , Ck. Let M0 ⊆M ′ denote the subset of
edges of M ′ contained in H0. Let

λ0 = max{`(e) : e ∈M0}. (1)

For i = 1, . . . , k, let Hi denote the subgraph of H that con-
sists of the cycle Ci and all vertices and edges that lie in
Ci in the embedding D; and let Mi ⊂ M ′ be the subset of
edges of M ′ in Hi. Applying induction for Hi and Mi, there
is an Li > 0 such that Hi can be embedded with the pre-
scribed lengths for the edges of Mi in every triangle (resp.,
convex quadrilateral) with two edges of lengths at least Li.
Let L′ = max{Li : i = 1, . . . , k}.

By construction, M0 is a well-separated matching in H0

(recall that v1v2 is not in M0). Successively contract every
edge e = uv ∈M0 to a vertex v̂e. We obtain a planar graph

Ĥ0 = (V̂0, Ê0) on at most n (and at least 3) vertices.



Let D̂0 be a grid embedding of Ĥ0 constructed by the
algorithm of Kurowski [14], where the outer face is a triangle
with vertices (0, 0), (3n − 7, 0), and (b 3n−7

2
c, b 3n−7

2
c); the

only horizontal edge is the base of the outer triangle; and

the angular resolution of D̂0 is % ≥
√
2

3
√
5n
∈ Ω(1/n). The

minimum edge length is 1, since all vertices have integer
coordinates. There is an ε ∈ Ω(1/n) such that if we move

each vertex of D̂0 by at most ε, then the directions of the
edges change by an angle less than %/2, and thus we retain
an embedding. We could split each vertex v̂e, e ∈M , into an
edge e that lies in the ε-disk centered at v̂e, and in the double
wedge determined by the edges between v̂e and the common
neighbors of the endpoints of e (Fig. 2, right). However,
we shall split the vertices v̂e, e ∈ M , only after applying
the affine transformation α that maps the outer triangle of

D̂0 to a triangle abc such that α(v1) = a, α(v2) = b and
α(v3) = c. (The affine transformation α would distort the
prescribed edge lengths if we split the vertices now.)

In the grid embedding D̂0, the central angle of such a dou-
ble wedge is at least % ∈ Ω(1/n), i.e., the angular resolution

of D̂0. The boundary of the double wedge intersects the
boundary of the ε-disk in four vertices of a rectangle that
we denote by Re. Note the center of Re is v̂e, and its di-
ameter is 2ε ∈ Ω(1/n). Hence, the aspect ratio of each Re,
e ∈ M0, is at least tan(%/2) ∈ Ω(1/n), and the width of Re

is Ω(1/n2).
We show that if L = max{10n(L′ + 2λ0 + |ab|), ξn3λ0},

for some constant ξ > 0, then the affine transformation α
satisfies the following two conditions. The first condition
allows splitting the vertices v̂e, e ∈M , into edges of desired
lengths, and the second one ensures that the existing edges
remain sufficiently long after the vertex splits.

(i) every rectangle Re, e ∈ M0, is mapped to a parallel-
ogram α(Re) of diameter at least λ0 (defined in (1));

(ii) every nonhorizontal edge in D̂0 is mapped to a segment
of length at least L′ + 2λ0.

For (i), note that α maps a grid triangle of diameter
3n − 7 < 3n into triangle abc of diameter L. Hence, it
stretches every vector parallel to the preimage of the diam-
eter of abc by a factor of at least L/(3n). Since the width of
a rectangle Re, e ∈M0, is Ω(1/n2), the diameter of α(Re) is
at least Ω(L/n3). If L ∈ Ω(n3λ0) is sufficiently large, then
the diameter of every α(Re) is at least λ0.

For (ii), we may assume w.l.o.g. that the triangle abc is
positioned such that a = (0, 0) is the origin, b = (|ab|, 0) is
on the positive x-axis, and c is above the x-axis (i.e., it has
a positive y-coordinate). Then, the affine transformation α
is a linear transformation with an upper triangular matrix:

α

([
x
y

])
=

[
A B
0 C

] [
x
y

]
=

[
Ax+By

Cy

]
,

where A,C > 0, and by symmetry we may assume B ≥ 0.
We show that if L ≥ 10n(L′ + 2λ0 + |ab|), then α maps

every nonhorizontal edge of D̂0 to a segment of length at
least L′ + 2λ0.

A nonhorizontal edge in the grid embedding D̂0, directed
upward, is an integer vector (x, y) with x ∈ [−3n+7, 3n−7]
and y ∈ [1, 3n−7

2
]. It is enough to show that (Ax + By)2 +

(Cy)2 > (L′+ 2λ0)2 for x ∈ [−3n, 3n] and y ∈ [1, 3
2
n]. Since

α maps the right corner of the outer grid triangle (3n−7, 0)
to b = (|ab|, 0), we have A = |ab|/(3n − 7). Since |ac| > L,
where a = (0, 0) and c = α

(
(b 3n−7

2
c, b 3n−7

2
c)
)
, we have(

A · 3n− 7

2
+B · 3n− 7

2

)2

+

(
C · 3n− 7

2

)2

=

= |ac|2 > L2 ≥ 100n2(L′ + 2λ0 + |ab|)2. (2)

We distinguish two cases based on which term is dominant
in the left hand side of (2).

Case 1: (C · 3n−7
2

)2 ≥ 50n2(L′ + 2λ0 + |ab|)2. In this

case, we have C2 > (L′ + 2λ0)2, and so (Cy)2 > (L′ +
2λ0)2 since y ≥ 1.

Case 2: (A · 3n−7
2

+B · 3n−7
2

)2 > 50n2(L′+2λ0 + |ab|)2.

In this case, we have A · 3n−7
2

+ B · 3n−7
2

> 7n(L′ +
2λ0+|ab|). Combined with A = |ab|/(3n−7), this gives
B > 4(L′ + 2λ0 + |ab|). It follows that (Ax + By)2 >
(L′ + 2λ0)2, as claimed, since |Ax| ≤ |ab| and y ≥ 1.

We can now reverse the edge contraction operations, that
is, split each vertex v̂e, e ∈ M0, into an edge e of length
`(e) within the parallelogram α(Re). By (i), we obtain a
embedding of H0. Each cycle Ci, i = 1, . . . , k, is a trian-
gle (resp., quadrilateral) where the edges of M0 have pre-
scribed lengths, and any other edge has length at least L′ =
max{Li : i = 1, . . . , k} by (ii). By induction, we can insert
an embedding of Hi with prescribed lengths on the match-
ing Mi into the embedding of the cycle Ci, for i = 1, . . . , k.
We obtain the required embedding of H.

(2) The proof for the case when the outer face of H is
a 4-cycle follows the same strategy as for (1), with some
additional twists.

Suppose we are given a convex quadrilateral abcd as de-
scribed in the statement of the lemma. Denote by q the
intersection of its diagonals. We show that (|aq| and |bq| are
both at least L/3) or (|cq| and |dq| are both at least L/3) if
L > 9 max(|ab|, |cd|). Indeed, we have |ac| > |bc|−|ab| > 8

9
L

from the triangle inequality for abc. Since |ac| = |aq|+ |cq|,
we have |aq| > 4

9
L or |cq| > 4

9
L. If |aq| > 4

9
L, then

|bq| > |aq| − |ab| > 1
3
L from the triangle inequality for abq;

otherwise |dq| > |cq| − |cd| > 1
3
L. Assume w.l.o.g. that

|aq| > L/3 and |bq| > L/3. In the remainder of the proof,
we embed H such that almost all vertices lie in the triangle
abq, and the vertices v1, v2, v3, and v4 are mapped to a, b,
c, and d, respectively.

Similarly to (1), we define H0 as the graph obtained by
deleting all vertices and incident edges lying in the interior of
maximal separating triangles or chordless 4-cycles, contain-
ing an edge from M \ {v1v2}. Define L′ as before, by using
the inductive hypothesis in the separating cycles. Contract
successively all remaining edges of M \{v1v2} that are in H0

(including edge v3v4) to obtain a graph Ĥ0. Denote by v̂3
the vertex of Ĥ0 corresponding to v3v4 ∈ M , and consider
an embedding of H with the outer face v1v2v̂3.

We again use the embedding D̂0 of Kurowski [14], such
that v1, v2 and v̂3 are mapped to (0, 0), (3n − 7, 0), and
(b 3n−7

2
c, b 3n−7

2
c), respectively. We first split vertex v̂3 into

two vertices v3 and v4, exploiting the fact that v̂3 is a bound-

ary vertex in D̂0 and some special properties of the embed-
ding in [14] (described below); and then split all other con-

tracted vertices of Ĥ0 similarly to (1).



v1 = u0 uk = v2

v̂3

p

v3
v4

u1

v̂3

p

v3
v4

u1

v1 = u0 uk = v2

Figure 3: Left: The embedding D̂0 into a triangle
v1v2v̂3, and the x-monotone path v1 = u0, u1, . . . , uk

formed by the neighbors of V̂3. A point p lies above
v̂3, and the rays emitted by p in directions (1, 2) and
(−1, 2). Right: Vertex v̂3 is split into v3 and v4 on
the two rays emitted by p.

Denote the neighbors of v̂3 in D̂0 in counterclockwise order
by v1 = u0, u1, . . . , uk = v2 (Fig. 3, left). The grid embed-
ding in [14] has the following property (mentioned in Sec-
tion 1): the path u0, . . . , uk is x-monotone and the slope of
every edge is in the range (−1, 1). Let p = (b 3n−7

2
c, 2b 3n−7

2
c),

and note that the slope of every line between p and u1, . . . , uk,
is outside of the range (−2, 2). Similarly, if we place the
points v3 (resp., v4) on the ray emitted by p in direction
(1, 2) (resp., (−1, 2)), then the slope of every line between
v3 (resp., v4) and u1, . . . , uk is outside of (−2, 2).

We can now split vertex v̂3 as follows. Refer to Fig. 3.
Let α be the affine transformation that maps the triangle
v1v2p to abq such that α(v1) = a, α(v2) = b and α(p) = q.
Since the diagonals ac and ce intersect at q, the segments
v1α
−1(c) and v2α

−1(d) intersect at p. We split vertex v̂3 into
v3 = α−1(c) and v4 = α−1(d). By the above observation, the
edges incident to v3 and v4 remain above the x-monotone
path u0, . . . , uk. (Note, however, that the angles between
edges incident with v3 or v4 may be arbitrarily small.)

With a very similar computation as for (1), we conclude
that for a large enough L ∈ Ω(L′+λ0) we can guarantee the
same two properties we needed in (1), that is, α maps every
small rectangle Re to a parallelogram α(Re) whose diameter
is at least λ0, and every nonhorizontal edge to a segment of
length at least L′+ 2λ0. Hence, every remaining contracted

vertex ve in D̂0 can be split within the parallelogram α(Re)
as in (1). To finish the construction, it remains to apply
the inductive hypothesis to fill in the missing parts in the
maximal separating triangles or 4-cycles. 2

We are now ready to prove the main result of this section.

Theorem 7. Every matching in a planar graph is free.

Proof. Let H = (V,E) be a planar graph, and let M ⊆ E
be a matching with a length assignment ` : M → R+. We
may assume, by augmenting H with new edges if necessary,
that H is a triangulation. Consider an embedding of H such
that an edge e ∈ M is on the outer face. Now Lemma 6
completes the proof. 2

4. GRAPHS WITH 3 OR 4 EDGES
By Theorems 5 and 7, a graph G with at least five edges

is free in every host H if and only if G is a matching. For
graphs with four edges, the situation is also clear except for
the case of the disjoint union of two paths of two edges each.
In this section we show that every forest with three edges,
as well as the disjoint union of two paths of length two are
always free.

We show (Lemma 9) that it is enough to consider hosts H
in which G is a spanning subgraph, that is, V (G) = V (H).
For a planar graph G = (V,E), the triangulation of G is an
edge-maximal planar graph T , G ⊂ T , on the vertex set V .

Lemma 8. If G is a subgraph of a triangulation H with
0 < |V (G)| < |V (H)|, then there is an edge in H between a
vertex in V (H) and a vertex in V (H)− V (G) that does not
belong to any separating triangle of H.

Proof. Let V = V (G) denote the vertex set of G and
U = V (H) \ V . Let E(U, V ) be the set of edges in H be-
tween U and V . Since H is connected, E(U, V ) is nonempty.
Consider an arbitrary embedding of H (with arbitrary edge
lengths). For every edge uv ∈ E(U, V ), let k(uv) denote the
maximum number of vertices of H that lie in the interior of
a triangle (u, v, w) of H. Let uv ∈ E(U, V ) be an edge that
minimizes k(uv). If k(uv) = 0, then uv does not belong to
any separating triangle, as claimed. For the sake of contra-
diction, suppose k(uv) > 0, and let (u, v, w) be a triangle
in H that contains exactly k(uv) vertices of H. Since H
is a triangulation, there is a path between u and v via the
interior of (u, v, w). Since u ∈ U and v ∈ V , one edge of this
path must be in E(U, V ), say u′v′ ∈ E(U, V ). Note that any
triangle (u′, v′, w′) of H lies inside the triangle (u, v, w), and
hence contains strictly fewer vertices than (u, v, w). Hence
k(u′v′) < k(u, v) contradicting the choice of edge uv. 2

Lemma 9. If a planar graph G is free (or extrinsically
free) in every triangulation of G, then G is free (or extrin-
sically free, respectively) in every planar host H, G ⊆ H.

Proof. Let G = (V,E) be a planar graph with a length
assignment ` : E → R+. It is enough to prove that G is
(extrinsically) free in every triangulation H, G ⊂ H. We
proceed by induction on n′ = |V (H)| − |V (G)|, the number
of extra vertices in the host H. If n′ = 0, then H is a trian-
gulation of G, and G is free in H by assumption. Consider
a triangulation H, G ⊂ H, and assume that the claim holds
for all smaller triangulations H ′, G ⊂ H ′.

By Lemma 8, there is an edge e = uv in H between
v ∈ V (G) and u ∈ V (H) − V (G) that does not belong to
any separating triangle. Contract e into a vertex v̂e to ob-
tain a triangulation H ′, G ⊂ H ′. By induction, H ′ admits
a straight-line embedding in which the edges of G have pre-
scribed lengths. Since e is not part of a separating triangle
of H ′, we can split vertex v̂e into u and v such that v is
located at point v̂e, and v lies in a sufficiently small neigh-
borhood of v̂e (refer to Fig. 2). Thus, we obtained a straight
line embedding of H in which edges of G have prescribed
lengths. 2

The next theorem finishes the characterization of free graphs.

Theorem 10. Let G be a subgraph of a planar graph H,
such that G is
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Figure 4: (a) Embedding of a star with three leaves. (b) Embedding of a path of three edges. (c) Graph
H ′ and regions that are used for splitting v̂e. (d) Graph H ′ and its spanning subgraph G whose edges have
prescribed lengths.

(1) the star with three edges; or

(2) the path with three edges; or

(3) the disjoint union of a path with two edges and a path
with one edge; or

(4) the disjoint union of two paths with two edges each.

Then G is free in H.

Proof. By Lemma 9 it is enough to prove the theorem in
the case when G is a spanning subgraph of H. We can also
assume that H is a triangulation.
(1) If G is the star with three edges, then H is K4. Embed
the center of the star at the origin. Place the three leaves lie
on three rotationally symmetric rays emitted by the origin,
at prescribed lengths from the origin (Fig. 4(a)). The re-
maining three edges are embedded as straight line segments
on the convex hull of the three leaves.
(2) Let G be the path (v1, v2, v3, v4) with `(v1v2) ≥ `(v3v4).
Embed v2 at the origin, place v1 and v3 on the positive x-
and y-axis respectively, at prescribed distance from v2. Note
that ∆ = conv(v1, v2, v3) is a right triangle whose diameter
(hypotenuse) is larger than the other two sides (Fig. 4(a)).
Thus we can embed v4 at a point in the interior of ∆ at
distance `(v3v4) from v3. Since the four vertices have a
triangular convex hull, H = K4 embeds as a straight-line
graph.
(3) Suppose that G = (V,E) is the disjoint union of path
(v1, v2, v3) and (v4, v5). Since H has five vertices there ex-
ists at most one separating triangle in H. Thus, the path
of G with two edges contains an edge, say e = v1v2, that
does not belong to any separating triangle. Contract edge
e to a vertex v̂e, obtaining a triangulation H ′ = K4 on four
vertices, and a perfect matching G′ ⊂ H ′. Let us embed
the two edges of G′ with prescribed lengths such that one
lies on the x-axis, the other lies on the orthogonal bisector
of the first edge at distance `(e) from the x-axis. This de-
fines a straight-line embedding of H ′, as well. We obtain a
desired embedding of H by splitting vertex v̂e into edge e
such that v2 is embedded at point v̂e and v1 is mapped to a
point in the kernel of the appropriate star-shaped polygon
(c.f. Fig. 2). By the choice of our embedding of H ′, the
diameter of this kernel is more than `(e), and we can split
v̂e without introducing any edge crossing (Fig.4(c))
(4) Assume that G is the disjoint union of two paths P1 and
P2, each with two edges. Since G is a spanning subgraph of
H, neither path can span a separating triangle. Moreover,
as there exist at most two separating triangles in H. One

of the paths, say P1, contains an edge e that is not part
of a separating triangle. Contract edge e to v̂e, obtaining
a triangulation H ′ and a subgraph G′. Similarly to the
case (3), embed H ′ respecting the lengths of all the edges
of G′ such that all edges between the two components of G′

have length at least `(e). By the choice of our drawing of
H ′, the kernel of the appropriate star-shaped polygon has
diameter at least `(e). Therefore, we can split e into two
vertices such that the middle vertex of P1 remains at v̂e,
and the endpoint of P1 is embedded at distance `(e) from v̂e
(Fig. 4(d)). 2

5. EMBEDDING A CYCLE WITH NONDE-
GENERATE LENGTHS

We say that a length assignment ` : E → R+ for a cycle
C = (V,E) is feasible if C admits a straight-line embedding
with edge length `(e) for all e ∈ E. Lenhart and White-
sides [15] showed that ` is feasible for C iff no edge is sup-
posed to be longer than the semiperimeter s = 1

2

∑
e∈E `(e).

Recall that three positive reals, a, b and c, satisfy the trian-
gle inequality iff each of them is less than 1

2
(a+ b+ c).
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Figure 5: Left: A planar graph H with a Hamil-
ton cycle C (think lines). Right: The graph H has
a 3-cycle (1,3,6) such that C admits a straight-line
embedding with the same edge lengths as in the left
and all edges of C are along the edges of triangle
(1,3,6).

By Lemma 9, it is enough to prove Theorem 4 in the case
when C is a Hamilton cycle in H. Consider a Hamilton cycle
C in a triangulation H. We construct a straight-line embed-
ding of H with given nondegenerate edge lengths using the
following two-step strategy. We first embed C on the bound-
ary of a triangle T such that each edge of H − C is either



an internal diagonal of C or a line segment along one of the
sides of the triangle T (Lemma 11). If any edge of H − C
overlaps with edges C, then this is not a proper embedding
of H yet. In a second step, we perturb the embedding of C
to accommodate all edges of H (see Section 5.1).

Lemma 11. Let H be a triangulation with a Hamilton cy-
cle C = (V,E) and a feasible nondegenerate length assign-
ment ` : E → R+. Then, there is a 3-cycle (vi, vj , vk) in H
such that the prescribed arc lengths of C between these ver-
tices, i.e., the three sums of lengths of edges corresponding
to these three arcs, satisfy the triangle inequality.

Proof. Consider an arbitrary embedding of H (with arbi-
trary lengths). The edges of H are partitioned into three
subsets: edges E of the cycle C, interior chords Eint and ex-
terior chords Eext. Each chord vivj ∈ Eint∪Eext decomposes
C into two paths. If the length assignment ` is nondegener-
ate, then there is at most one chord vivj ∈ Eint ∪ Eext that
decomposes C into two paths of equal length. Assume, by
exchanging interior and exterior chords if necessary, that no
edge in Eext decomposes C into two paths of equal length.

Denote by δij > 0 the absolute value of the difference
between the sums of the prescribed lengths on the two paths
that an exterior chord vivj produces. Let vivj ∈ Eext be an
exterior chord that minimizes δij . The chord vivj is adjacent
to two triangles, say (vivjvk) and (vivjvk′), where vk and
vk′ are vertices of two different paths determined by vivj .
Assume, without loss of generality, that vk is part of the
longer path (measured by the prescribed length). The path
length between vi and vk (resp., vj and vk) cannot be less
than δij otherwise δkj < δij (resp., δik < δij). Therefore
the three arcs between vi, vj , and vk satisfy the triangle
inequality. 2

5.1 A Hamilton Path with Given Edge Lengths
Our main tool to “perturb” a straight-line drawing with

collinear edges is the following lemma.

Lemma 12. Let H be a planar graph with n ≥ 3 vertices
and a fixed combinatorial embedding; let P = (V,E) be a
Hamilton path in H with both of its endpoints incident to the
outer face of H; and let ` : E → R+ be a length assignment
with L =

∑
e∈E `(e) and `min = mine∈E `(e).

For every ε ∈ (0, `min), H admits a straight-line embed-
ding such that the two endpoints of P are at points origin
(0, 0) and (0, L− ε) on the x-axis, and every edge e ∈ E has
length `(e).

Proof. We proceed by induction on n = |V |, the number of
vertices of H. The base case is n = 3, where P consists of
a single edge, P = H, and we can place the two endpoints
of P at (0, 0) and (L − ε, 0). Assume now that n > 3 and
the claim holds for all instances where H has fewer than n
vertices.

We may assume, by adding dummy edges if necessary,
that H is a triangulation. Denote the vertices of the path P
by (v1, v2, . . . , vn). By assumption, the endpoints v1 and vn
are incident to the outer face (i.e., outer triangle). Denote
by vk, 1 < k < n, the third vertex of the outer triangle. Let
P1 = (v1, . . . , vk) and P2 = (vk, . . . , vn) be two subpaths

of P , with total lengths L1 =
∑k−1

i=1 `(vivi+1) and L2 =∑n−1
i=k `(vivi+1). We may assume without loss of generality

that L1 ≤ L2. We may assume, by applying a reflection

if necessary, that the triple (v1, vk, vn) is clockwise in the
given embedding of H. Let H1 (resp., H2) be the subgraph
of H induced by the vertices of P1 (resp., P2); and let E1,2

denote the set of edges of H between {v1, . . . , vk−1} and
{vk+1, . . . , vn}. In the remainder of the proof, we embed P1

and P2 by induction, after choosing appropriate parameters
ε1 and ε2.

We first choose “preliminary” points pi for each vertex
vi as follows. Let (p1, pk, pn) be a triangle with clockwise
orientation, where p1 = (0, 0), pn = (L−ε, 0), and the edges
p1pk and pkpn have length L1 and L2 respectively. (See
Fig. 6.) Place the points p2, . . . , pk−1 on segment p1pk, and
the points pk+1, . . . , pn−1 on segment pkpn such that the
distance between consecutive points is |pipi+1| = `(vivi+1)
for i = 1, . . . , n− 1.

Note that segment p1pk has a positive slope, say s; and
pkpn has negative slope, s. The slope of every segment pipj ,
for vivj ∈ E1,2, is in the open interval (s, s). Let [r, r] be
the smallest closed interval that contains the slopes of all
segments pipj for vivj ∈ E1,2. Let t ∈ (r, s) and t ∈ (s, r)
be two arbitrary reals that “separate” the sets of slopes. We
shall perturb the vertices p2, . . . , pn−1 such that the direc-
tions of the edges of H2, E1,2, and H1 remain in pairwise
disjoint intervals (2s, t), (t, t), and (t, 2s), respectively.
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Figure 6: Top: A path P = (p1, . . . p8) embedded
on the boundary of a triangle (p1, p5, p8) with pre-
scribed edge lengths. The edges of H − P between
different sides of the triangle are solid thin lines,
the edges of H − P between vertices of the same
side of the triangle are dotted. Middle: When point
p5 is shifted down to p5(δ), then in any embedding
of C with prescribed edge lengths, vertex pi is lo-
cated in a region Ri(δ) for i = 2, 3, 4, 6, 7. Bottom: A
straight-line embedding of H is obtained by embed-
ding the subgraphs induced by P1 = (p1, . . . , p5) and
P2 = (p5, . . . , p8) by induction.

Suppose that we move point pk to position pk(δ) = pk +
(0,−δ). In any straight-line embedding of P1 with v1 = p1
and vk = pk(δ), each vertex vi, i = 2, . . . , k−1, must lie in a
region Ri(δ), which is the intersection of two disks centered
at p1 and pk(δ) of radius |p1pi| and |pipk|, respectively (Fig-
ure). Similarly, in any straight-line embedding of P2 with



vk = pk(δ) and vn = pn, each vertex vi, i = k+ 1, . . . , n− 1,
must lie in a region Ri(δ), which is the intersection of two
disks centered at pk(δ) and pn of radius |pkpi| and pipn|,
respectively. We also define one-point regions R1(δ) = {p1},
Rk(δ) = {pk(δ}, and Rn(δ) = {pn}. Choose a sufficiently
small δ > 0 such that the slope of any line intersecting Ri(δ)
and Rj(δ) is in the interval

• (t, 2s) if 1 ≤ i < j ≤ k;

• (t, t) if vivj ∈ E1,2;

• (2s, t) if k ≤ i < j ≤ n.

Embed vertices v1, vk and vn at points p1, pk(δ) and pn,
respectively. If H1 (resp., H2) has three or more vertices,
embed it by induction such that the endpoints of path P1 are
p1 and pk(δ) (resp., the endpoints of P2 are pk(δ) and pn).
Each vertex vi is embedded in a point in the region Ri, for
i = 1, . . . n. By the choice of δ, the slopes of the edges of H1

and H2 are in the intervals (t, 2s) and (2s, t), respectively,
while the slopes of the edges in E1,2 are in a disjoint interval
(t, t). Thus, these edges are pairwise noncrossing, and we
obtain a proper embedding of graph H. 2

6. CONSTRUCTIONS WITH DEGENERATE
LENGTHS

In this section, we show that cycles on more than three
vertices are not extrinsically free. For an integer k ≥ 4,
we define the graph Hn on the vertex set {v1, v2, . . . , vn}
as a union of a Hamilton cycle Cn = (v1, v2, . . . , vn), and
two spanning stars centered at v1 and vn respectively. Note
that Hn is planar: the two stars can be embedded in the
interior and the exterior of an arbitrary embedding of Cn.
Fig. 7 (left) depicts a straight-line embedding of H6.
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Figure 7: Left: A straight-line embedding of H6.
Right: A straight-line embedding of C6 with pre-
scribed edge lengths.

We show that Cn is not extrinsically free in the host Hn.
Consider the following length assignment on the edges of
Cn: let `(v1v2) = `(vn−1vn) = 1

4
, `(vi, vi+1) = 1 for i =

2, 3, . . . , n− 2, and `(v1vn) = n− 3. Fig. 7 shows a straight-
line embedding of Cn with the prescribed edge lengths. In
the full version of the paper, we prove that Hn admits no
straight-line embedding that realizes the prescribed lengths
on the edges of the cycle Cn.

6.1 Proof of Theorem 4
By Lemma 9, it is enough to prove Theorem 4 in the case

when C is a Hamilton cycle in H.

Theorem 13. Let H be a planar graph that contains a
cycle C = (V,E). Let ` : E → R+ be a feasible nonde-
generate length assignment. Then H admits a straight-line
embedding in which each e ∈ E has length `(e).

Proof. We may assume that H is an edge-maximal pla-
nar graph, that is, H is a triangulation. By Lemma 11, H
contains a 3-cycle (va, vb, vc) such that the prescribed arc
lengths of C between these vertices, i.e., the three sums of
lengths of edges corresponding to these three arcs, satisfy
the triangle inequality.

Let P1, P2, and P3 denote the paths along C between
the vertex pairs (va, vb), (vb, vc), and (vc, va); and let their
prescribed edge lengths be L1, L2, and L3, respectively. For
j = 1, 2, 3, let Hj be the subgraphs of H induced by the
vertices of the path Pj . Denote by E1,2,3 the set of edges of
H between an interior vertex of P1, P2, or P3, and a vertex
not on the same path. Consider a combinatorial embedding
of H (with arbitrary edge lengths) such that (va, vb, vc) is
triangle in the exterior of C. In this embedding, all edges
in E1,2,3 are interior chords of C.

p3

p2

p1

p7
p6

p5

p4

p3(δ)

q2

p1(δ)

q7 p6(δ)

q4

q5p5

p6p1

p3

Figure 8: Left: A cycle C = (p1, . . . p8) embedded on
the boundary of a triangle (p1, p3, p6) with prescribed
edge lengths. Right: When the vertices of the tri-
angle are translated by δ towards the center of the
triangle, we can embed the subgraphs induced by
(p1, p2, p3), (p3, p4, p5, p6) and (p6, p7, p1) by straight-line
edges so that they do not cross any of the diagonals
between different sides of the triangle.

Similarly to the proof of Lemma 12, we start with a “pre-
liminary” embedding, where the vertices vi are embedded
as follows. Let (pa, pb, pc) be a triangle with edge lengths
|papb| = L1, |pbpc| = L2, and |pcpa| = L3. Place all other
points pi on the boundary of the triangle such that the dis-
tance between consecutive points is |pipi+1| = `(vivi+1) for
i = 1, . . . , n−1. Suppose, without loss of generality, that no
two points have the same x-coordinate. Note that the slope
of every line segment pipj , for vivj ∈ E1,2,3 is different from
the slopes of the sides of the triangle that contains pi and
pj . Let η be the minimum difference between the slopes of
two segments pipj , with with vivj ∈ E1,2,3.

Move points pa, pb, and pc toward the center of triangle
(pa, pb, pc) by a vector of length δ > 0 to positions pa(δ),
pb(δ), and pc(δ). In any straight-line embedding of C with
va = pa(δ), vb = pb(δ) and vc = pc(δ), each vertex vi,
i = 2, . . . , n, must lie in a region Ri(δ), which is the inter-
section of two disks centered at two vertices of the triangle
(pa(δ), pb(δ), pc(δ)). Choose a sufficiently small δ > 0 such
that the slopes of a line intersecting Ri(δ) and Rj(δ) with
vivj ∈ H is within η/2 from the slope of the segment pipj .

Embed vertices vi, vj and vk at points pi(δ), pj(δ) and
pk(δ), respectively. If H1 (resp., H2 and H3) has three or
more vertices, embed it using Lemma 12 such that the end-
points of the path P1 are pi(δ) and pk(δ) (resp., pj(δ), pk(δ)
and pk(δ), pi(δ)). Each vertex vi is embedded in a point in



the region Ri, for i = 1, . . . n. By the choice of δ, the slopes
of the edges of H1, H2, and H3 are in three small pairwise
disjoint intervals, and these intervals are disjoint from the
slopes of any edge vivj ∈ E1,2,3. Therefore, the edges of H
are pairwise noncrossing, and we obtain a proper embedding
of H. 2

7. CONCLUSION
We have characterized the planar graphs G that are free

subgraphs in every host H, G ⊆ H. In Section 3, we showed
that every triangulation T has a straight-line embedding in
which a matching M ⊂ T has arbitrarily prescribed edge
lengths, and the outer face is fixed. Several related questions
remain unanswered.

1. Given a length assignment ` : M → [1, λ] for a match-
ing M in an n-vertex planar graph G, what is the min-
imum Euclidean diameter (resp., area) of an embed-
ding of G with prescribed edge lengths?

2. Is there a polynomial time algorithm for deciding whether
a subgraph G of a planar graph H is free or extrinsi-
cally free in H?

3. Is there a polynomial time algorithm for deciding whether
a planar graph H is realizable such that the edges of
a cycle C = (V,E) have given (possibly degenerate)
lengths?

4. Which planar graphs G are free in every 4-connected
triangulation H, G ⊆ H? We know that stars are, but
we do not have a complete characterization.

Recently, Alamdari et al. [1] proved that given any two topo-
logically equivalent embeddings of a planar graph, one can
continuously morph one embedding into the other in O(n2)
successive linear morphs (where each vertex moves with con-
stant speed). Combined with our Theorem 1, this implies
that if we are given two length assignments `1 : M → R+

and `2 : M → R+ for a matching M in an n-vertex triangula-
tion T , one can continuously morph an embedding with one
length assignment into an embedding with the other assign-
ment in O(n2) linear morphs. It remains an open problem
whether fewer linear morphs suffice between the embeddings
that admit two different length assignments of M .
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