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Abstract

We investigate a game played on a hypergraph H = (V,E) by two players,
Balancer and Unbalancer. They select one element of the vertex set V alternately
until all vertices are selected. Balancer wins if at the end of the game all edges e ∈ E
are roughly equally distributed between the two players. We give a polynomial time
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algorithm for Balancer to win provided the allowed deviation is large enough. In
particular, it follows from our result that if H is n-uniform and has m edges, then
Balancer can achieve having between n/2−

√

ln(2m)n/2 and n/2+
√

ln(2m)n/2 of
his vertices on every edge e of H. We also discuss applications in positional game
theory.

1 Introduction

In the classical theory of Maker/Breaker positional games a hypergraph H = (V, E) is
given and the players, Maker and Breaker, take turns in occupying a previously unoccupied
element of the “board” V . The goal of Breaker is to prevent Maker from fully occupying an
edge. The well-known criterion of Erdős and Selfridge [4] provides a strategy for Breaker
to win. In a more general setting, the criterion of Beck [2] ensures that Breaker can select
more than α|e| elements of each edge e ∈ E, for some α ≥ 0.

In these Maker/Breaker-type games Breaker does not care about fully occupying an
edge himself. In the so-called Avoider/Forcer-type games this is the only thing player
“Avoider” cares about not doing. More precisely Avoider wins the game against Forcer
if at the end of the game he does not occupy any edge. More generally, Avoider wins if
he occupies less than (1 − α)|e| elements from any edge e ∈ E, for some α ≥ 0. Lu [7]
obtained criteria similar to the ones of Erdős and Selfridge, and of Beck for this case.

In the present paper we investigate a game where one of the players, called Balancer,
must achieve the goals of both Breaker and Avoider. Balancer’s main difficulty is that
while as Breaker he cannot hurt himself by selecting any particular vertex, as Avoider he
can. Similarly, as Avoider he cannot hurt himself by not occupying any particular vertex
while as Breaker he can. The classical Erdős-Selfridge-type criteria do not immediately
generalize to this setting.

Now we give a precise formulation of our game. Given a hypergraph H = (V, E),
the game Discrepancy is played by two players, called Balancer and Unbalancer. They
take turns in occupying previously unoccupied elements of V . The game ends when all
elements are occupied by one of the players. Balancer’s aim is to achieve a situation
where each edge e ∈ E(H) has about the same number of Balancer’s and Unbalancer’s
vertices. In order to quantify this, assume that E(H) = {e1, . . . , em}, and in addition to
H a target vector b = (b1, . . . , bm}, bj ≥ 0, is given. Let B and U be the subsets occupied
by Balancer and Unbalancer, respectively, at the end of the game. Then Balancer wins
the (H,b)-game if for every edge ej ∈ E(H) one has: ||B ∩ ej| − |U ∩ ej|| ≤ bj, otherwise
the game is won by Unbalancer.

A more convenient (yet completely equivalent) game description is as follows: Balancer
labels each of his vertices by +1, Unbalancer’s labels are −1. Let f : V → {−1, +1} be
the labeling in the end of the game. Define f(ej) =

∑

v∈ej
f(v). Then the game is won

by Balancer if and only if |f(ej)| ≤ bj for every j = 1, . . . , m.
The study of games where both Breaker- and Avoider-type goals should be achieved

by one of the players was first suggested in [6] and a method was developed to deal with
such situations. In particular a player can successfully create a pseudo-random graph of
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density 1/2 and consequently, as it follows from properties of pseudo-random graphs [5],
create, for example, (1/4 − o(1))n pairwise edge-disjoint Hamiltonian cycles.

In this note we suggest a completely different approach, whose correctness is proved
with basically no calculation. An added advantage of our strategy is that it supplies a
polynomial time algorithm for Balancer to win even if Unbalancer has unbounded com-
putational power. Our main result is the following.

Theorem 1 Let H = (V, E) be a hypergraph with edge set E = {e1, . . . , em}. Let further
b = (b1, . . . , bm) be a target vector. Assume that |V | is even and Balancer moves first.
Then he has a winning strategy for (H,b) provided

m
∑

i=1

e
−

b2i
2|ei| ≤ 1

2
.

In particular Balancer has a winning strategy if bj ≥
√

2 ln(2m)|ej| for j = 1, . . . , m.

In a sense the theorem gives a strategy for Balancer to create a pseudo-random coloring
of the board while playing against an adversary. The deviation between the colors in each
set is comparable to the one one would get from a random coloring.

A stronger result of a special case of Theorem 1 was proved in [6, Lemma 3.]. There it
is shown that if bj = |ej| (i.e. Balancer’s goal is that no hyperedge is “monochromatic”),
then a condition

∑m
i=1 2−|ei| < 1/4 suffices for Balancer to win.

2 Playing Discrepancy

In this section we present two proofs of the main result. The first one involves essentially
no computation, but gives a slightly weaker result obtained by replacing the 1/2 in the
statement of the theorem by 1/8. The second one requires a limited amount of computa-
tion, but proves the slightly stronger assertion as stated in the theorem and has another
algorithmic advantage explained before the proof.
First proof of Theorem 1 (weaker version). We will call the conditions f(ej) ≤ bj

a positive condition and f(ej) ≥ −bj a negative condition. Balancer wins if at the end
of the game all of these conditions are met. We define the weight W +

j (at the start
of the game) of the j-th positive condition as follows: Let X1, . . . , X|ej | be independent
uniform ±1 random variables. Let W +

j be the probability that X1 + . . . + Xi > bj for
some 0 ≤ i ≤ |ej|. For a negative condition the weight W−

j is the probability that some
X1 + . . . + Xi < −bj. When i = 0 the sum is interpreted as zero.

We define the weight W to be the sum of all the weights W +
j and W−

j . Observe that
the condition of the theorem (with 1/2 replaced by 1/8) implies W < 1/2. Indeed, for
W+

j we need to estimate the probability that the random walk of length |ej|, starting
at zero ever exceeds bj. Notice that by the ”mirror principle” this is less than twice
the probability that the random walk of length |ej| ends up bigger than bj, which has

probability at most e
−

b2j

2|ej | by the Chernoff bound. The estimation of W−
j is analogous.
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Hence the following claim implies Theorem 1.
Claim. If the initial weight W satisfies: W < 1/2, then Balancer has a winning

strategy.
Proof. Assume that in the beginning of the game all vertices v ∈ V (H) are labeled

f(v) = 0 by f . Then as the game proceeds Balancer changes the labels of his vertices
from 0 to 1, while Unbalancer changes his from 0 to −1. We extend the definition of the
weight of a condition for an arbitrary stage of the game. Let f : V → {0,−1, +1} denote
a current labeling. For an edge ej ∈ E define

mj = |{v ∈ ej : f(v) = 0}| .

In case a condition was violated earlier in the game (irrespective of the current value
of f(ej)) let the weight of the condition be 1. Otherwise, we define the weight (for the
positive condition) as the probability that f(ej)+X1 + . . .+Xi > bj, for some 0 ≤ i ≤ mj

where the Xi = ±1 are independent and uniform random variables. The definition of the
weight for a negative condition is similar. When i = 0 the sum is f(ej) so the weight is
1 if the condition is currently breached. The weight W is the sum of the weights over
all the conditions j. Balancer’s strategy is now simple to describe: He always moves so
as to minimize the weight. At the end of the game the weight is simply the number of
conditions that have been breached at some point during the game. Hence to infer the
theorem it suffices to show that the weight does not increase in a single round.

Observe that for any unclaimed vertex x, the decrease in the value of W if x is taken
by Balancer is equal to the increase of the value of W if x is taken by Unbalancer. Indeed,
for each condition, its weight Ŵ is the average of the condition’s weight after Balancer
takes x and its weight after Unbalancer takes x. Hence it suffices to show that after an
arbitrary move x by Balancer, Unbalancer, by moving y 6= x, does not increase the weight
by more than he could have by moving y before the move of Balancer. Since the weight
is the sum of the weights of the conditions it suffices to show this for a single condition j.
All cases are trivial except when both x, y are in the set ej. Say the original weight of the

condition was Ŵ and let Ŵ x be the new weight after Balancer takes x and Ŵ y be the new
weight after Unbalancer takes y (but without a move by Balancer!) and Ŵ xy be the new
weight after they both move in the set. So we would like to infer Ŵ xy −Ŵ x ≤ Ŵ y −Ŵ or

equivalently Ŵ xy ≤ Ŵ x+Ŵ y−Ŵ . Note that Ŵ = Ŵ x+Ŵ y

2
since the weight is the average

of the new weights with a random first move. Thus we would like to see Ŵ xy ≤ Ŵ . Notice
that looking at the definition of the weight this is tautological! The original Ŵ was the
probability that a random walk starting at a point of a certain length (the number of still
unchosen vertices) ever reaches a boundary while Ŵ xy is the probability that the random
walk starting at the same point which has length two less ever reaches the boundary.

(Notice a little subtlety here: since before the current round the total weight W
was less than 1/2, for each condition j with x ∈ ej we had: Ŵ < 1/2, implying that
f(ej) < bj − 1. Hence Balancer cannot violate condition j in his turn, and thus indeed

Ŵ xy ≤ Ŵ .) 2

We next present another proof of Theorem 1 (in its strong version), which contains
some limited calculations compared to our first proof, but has the advantage that when
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actually playing, Balancer can calculate the value of each weight very easily (as opposed
to the method of the first proof, where the weight of a condition is defined by a probability
that is harder to compute).
Second proof of Theorem 1.

The proof is inspired in part by the method of conditional expectations with pessimistic
estimators, see [8] or [1], Chapter 15.

Let α be a real parameter. Define a function

G(x) = cosh(αx) =
eαx + e−αx

2
.

Here are two basic properties of G(x). Both are straightforward to verify and can be
found, for example, in Chapter 15 or Appendix A of [1].

G(x + 1) + G(x − 1)

2
= G(x)G(1) ; (1)

1 ≤ G(1) ≤ e
α2

2 . (2)

Recall the definition of f from the first proof and for an edge ej ∈ E define

fj =
∑

v∈ej

f(v) ;

cj = |{v ∈ ej : f(v) ∈ {−1, +1}}| .

Let also

Gj(x) = cosh(αjx) =
eαjx + e−αjx

2
,

where αj =
bj

|ej |
. Define now the potential function φ by:

φj =
Gj(fj)

Gj(1)cj
, j = 1, . . . , m ;

φ =
m

∑

j=1

e
−

b2j

2|ej |φj.

The intuition behind this choice is given by the following observation: for every edge
ej, if φj is its current potential, and a label of a vertex v ∈ ej with f(v) = 0 is chosen
randomly with Pr[f(v) = 1] = Pr[f(v) = −1] = 0.5, then by Property (1) of Gj the
expected value of the new potential φ′

j is φj. Indeed,

E[φ′
j] =

Gj(fj + 1) + Gj(fj − 1)

2Gj(1)cj+1
=

Gj(fj)

Gj(1)cj
= φj . (3)

Hence, for any unchosen vertex v ∈ V (H), the decrease in the value of φ, when v is taken
by Balancer, is equal to the increase of the value of φ when v is taken by Unbalancer.
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Here is a strategy for Balancer: he picks a previously unchosen vertex u ∈ V (H) and
labels it f(u) = 1 so as to minimize the new value of the potential function. We claim
that if Balancer follows this strategy, then after each round the value of the potential
function does not increase.

It suffices to show that after an arbitrary move by Balancer, Unbalancer cannot in-
crease the value of the potential function by more than he could have before the move
of Balancer. Indeed, by (3) and the sentence following it, Balancer, choosing an optimal
vertex, can decrease the value of φ by at least the same amount Unbalancer increases with
his move.

Since the potential function φ is a linear combination of potentials φj, it is enough
to check this for each edge ej separately. It is easy to see that the only non-trivial case
is when both vertices (x of Balancer and y of Unbalancer) belong to ej. We are thus to
verify the inequality

Gj(fj)

Gj(1)cj+2
− Gj(fj + 1)

Gj(1)cj+1
≤ Gj(fj − 1)

Gj(1)cj+1
− Gj(fj)

Gj(1)cj
, (4)

or equivalently,

Gj(fj) − Gj(fj + 1)Gj(1) ≤ Gj(fj − 1)Gj(1) − Gj(fj)G
2
j(1) .

Since by (3) Gj(fj−1)Gj(1)+Gj(fj +1)Gj(1) = 2Gj(fj)G
2
j(1), the last inequality reduces

to Gj(fj) ≤ Gj(fj)G
2
j(1), which is valid as Gj(1) ≥ 1 by (2).

Observe that before the game starts φ =
∑m

j=1 e
−

bj

2|ej | ≤ 1/2. Hence if Balancer follows
the suggested strategy, he can achieve φ ≤ 1/2 in the end. This implies:

φj = e
−

b2j

2|ej |
Gj(fj)

Gj(1)|ej |
≤ 1/2

for each edge ej of H. Therefore by (2)

eαj |fj |

2
≤ 1

2
e

b2j

2|ej |Gj(1)|ej | ≤ 1

2
e

b2j

2|ej |
+

α2

j |ej |

2 ,

or

|fj| ≤
b2
j

2αj|ej|
+

αj|ej|
2

=
bj

2
+

bj

2
= bj .

Therefore, Balancer wins, as claimed. 2

3 Applications and remarks

1. The first proof of the theorem works under slightly more general circumstances, i.e.
when the conditions are not necessarily required to be symmetric or possibly only
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one of the positive and negative conditions are required. More formally, let (aj) and
(bj) be a sequence of negative and positive integers, respectively, not necessarily
defined for every j = 1, . . . , m. Then Balancer can achieve that at the end of the
game aj ≤ f(ej) ≤ bj for every j = 1, . . . , m, provided

m
∑

i=1

e
−

a2

i
2|ei | +

m
∑

i=1

e
−

b2i
2|ei| ≤ 1

2
.

Note that the second proof trivially implies a slightly stronger assertion: Balancer
can ensure that |f(ej)| ≤ min(|aj|, bj) for all j.

2. If Unbalancer moves first and/or the board is of odd size, than the obtained target
vector (bj) might be an additive constant 1 or 2 away from the one provided by the
formula of Theorem 1.

3. Theorem 1 is obviously tight up to a multiplicative factor when H =
(

[n]
n/2

)

. A
less trivial setting is the so-called “maximum degree game”. There V consists of
the edges of the complete graph on [n] and E is the (n − 1)-uniform set system
consisting of the n stars. Theorem 1 implies that Balancer can achieve having all
of his degrees between n

2
−

√

n ln(2n)/2 and n
2

+
√

n ln(2n)/2. This improves the
error term obtained in [6] for this problem by a constant factor. Beck [3] proved
that Unbalancer can get one of his degrees to be at least n/2+ c

√
n, i.e., Theorem 1

is tight up to a logarithmic factor in this case.

4. The statement of Theorem 1 supersedes the method of [6] in several aspects. Namely
it applies to the non-uniform case, it is more straightforward to apply, while giving
comparable and often better results. To demonstrate this we derive a variant of
one of the main results of [6] with an improved constant factor as a corollary of
Theorem 1 of our paper. As it was shown in [6] the multiplicative constant we
obtain in the following corollary in the bound for ε is at most 3

√
2 away from being

best possible.

Corollary 1 (compare to [6, Theorem 1]) Let ε ≥ (log n/3n)1/3. Playing against
Breaker on the edges of Kn, Maker can build a graph G with the following properties.

– P1: All degrees of G deviate from n/2 by at most
√

n log(4n)/2.

– P2: Any pair S, T of disjoint subsets of [n] with |S|, |T | ≥ εn is ε-unbiased,
i.e. they satisfy

∣

∣

∣

∣

eG(S, T )

|S||T | − 1

2

∣

∣

∣

∣

≤ ε,

where eG(S, T ) is the number of S − T edges in G.

Proof. Let H1 be the hypergraph whose members are the n stars of size n − 1 in
Kn. The members of the hypergraph H2 are the sets [S, T ] of edges for an arbitrary
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pair S, T of disjoint subsets of the vertex set with |S| = |T | = εn, where [S, T ]
represents the set of all edges connecting a vertex of S with a vertex of T . An easy
averaging argument shows that it is enough to guarantee property P2 for subsets
of size exactly εn. Now let Maker act as Balancer in a game of Discrepancy on
the hypergraph H1 ∪ H2 with a target vector bj =

√

2n log(4n) for ej ∈ H1 and
bj = 2ε|S||T | = 2ε3n2 for ej ∈ H2. A straightforward substitution into Theorem 1
gives the corollary. 2

5. In [9] Székely studies the function ∆2(F), which is the largest bias Red can achieve
on a member of F playing against Blue. More precisely, let (X,F) be a hypergraph.
Red and Blue select one element of the board X alternately. Then ∆2(F) is the
largest integer k such that Red has a strategy to occupy k elements more of some
member A of F than Blue at some point during the game.

In part (i) of his Corollary he shows that if F is an n-uniform hypergraph, then
∆2(F) ≤ cn1/2 log1/2 |F|. Theorem 1 provides a similar result, but gives not only a
one- but a two-sided discrepancy bound.

In part (ii) of his Corollary Székely shows that if n = maxA∈F |A|, then ∆2(F) ≤
cn2/3 log1/3 |F|. He later uses this result to derive an upper bound when the board
Xn is the n-by-n integer lattice and Fn is the family of all maximal sets of lattice
points contained in a line segment. Theorem 1 now easily implies an improvement
of the Corollary and thus of the Theorem of Székely on line segments. Namely,
∆2(F) ≤ cn1/2 log1/2 |F| in both cases. Actually an even stronger result is true, i.e.
Blue can achieve this bound not only for one-, but for two-sided discrepancy against
Red. Moreover the error term is not absolute, but depends on the size of the actual
line segment.

4 An open question

We do not know how to generalize our approach to the biased game on H. In the (p : q)-
game Balancer selects p and then Unbalancer q elements of the board. Balancer’s goal is
to have around p/(p + q) vertices in every edge. It would be very interesting to obtain a
criteria for Balancer’s win. Such a result would have many applications as it can be used
to create a pseudo-random graph of density p/(p+ q) which in turn guarantees Balancer’s
win in many other games (see [6]).

Acknowledgement. Thanks are due to Valentyn Vengerovskyi for spotting an inaccu-
rate point in the first version of the paper.
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