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Abstract

We study biased Maker/Breaker games on the edges of the complete graph, as introduced by

Chvátal and Erdős. We show that Maker, occupying one edge in each of his turns, can build a

spanning tree, even if Breaker occupies b ≤ (1 − o(1)) · n

lnn
edges in each turn. This improves

a result of Beck, and is asymptotically best possible as witnessed by the Breaker-strategy of

Chvátal and Erdős. We also give a strategy for Maker to occupy a graph with minimum degree

c (where c = c(n) is a slowly growing function of n) while playing against a Breaker who takes

b ≤ (1 − o(1)) · n

ln n
edges in each turn. This result improves earlier bounds by Krivelevich and

Szabó. Both of our results support the surprising random graph intuition: the threshold bias is

asymptotically the same for the game played by two “clever” players and the game played by two

“random” players.

1 Introduction

In this paper we consider games played by two opponents on edges of the complete graph Kn on n

vertices. The two players alternately take turns at claiming some number of unclaimed edges until

all edges are claimed. One of the players, called Maker, aims to create a graph which possesses some

fixed property P . The other player, called Breaker, tries to prevent Maker from achieving his goal:

Breaker wins if, after all
(

n
2

)

edges were claimed, Maker’s graph does not posses P .

A classical graph game of this sort is the Shannon switching game analized completely by

Lehman [8]. In the Shannon switching game both players take one edge per turn and Maker tries

to occupy the edges of a spanning tree. Lehman proved that Maker wins this game “easily”. Here

by “easily” we mean that Maker does not need the full edge-set of Kn, he wins even if the game is

played on the restricted board consisting of the edges of two edge-disjoint spanning trees.

Chvátal and Erdős [7] suggested to even out this advantage of Maker by allowing Breaker to

occupy b edges in each round instead of just one. The integer b = b(n) > 1 is called the bias of

Breaker. Chvátal and Erdős provided a strategy for Maker to occupy a spanning tree even if Breaker

plays with bias ( 1
4 − o(1)) n

ln n
. They also showed that Breaker, playing with a bias (1 + o(1)) n

ln n
can
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occupy all edges incident to some vertex, thus of course making it impossible for Maker to build a

spanning tree. Motivated partially by this problem, Beck [1] devised a general potential function

method to deal with biased positional games under much more general circumstances. He then used

his criterion to infer a strategy for Maker for occupying a spanning tree even if Breaker’s bias is as

large as (ln 2 − o(1)) n
ln n

≈ 0.69 n
ln n

.

In one of the main results of the present paper we improve Beck’s bound on Breaker’s bias and

establish the asymptotic optimality of the Breaker-strategy of Chvátal and Erdős.

Theorem 1.1 Maker has a strategy to build a spanning tree while playing against a Breaker with

bias b := (ln n − ln ln n − 6) n

ln2 n
, provided n is large enough.

The constant 6 in the error term could be improved somewhat, but we do not know whether the

second order term is best possible. Our proof is not based on the potential function technique of

Beck, rather on the analysis of a quite natural strategy of Maker, involving a delicate inductive

argument.

Random graph intuition For further discussion we introduce some notation. Let F ⊆ 2E(Kn)

be a monotone increasing family of subsets of edges of the complete graph. By bF we denote the

largest bias b of Breaker such that Maker, taking one edge in each turn, can occupy some member of

F while Breaker takes b edges in each turn. The integer bF is called the threshold bias of the game

F . Let T = T (n) be the family of edge-sets of connected graphs on n vertices. Theorem 1.1, coupled

with the Breaker-strategy of Chvátal and Erdős, establishes that bT = n
ln n

+ O
(

n ln ln n

ln2 n

)

.

Chvátal and Erdős [7] observed the following interesting paradigm, which we call the “random

graph intuition”. The threshold bias bT of Breaker, which by definition involves two “clever” play-

ers, is of the same order of magnitude as the appropriately defined threshold bias of Breaker in

a game where the players are mindless random edge generators! In this random game the player

RandomMaker claims one random unclaimed edge per move, player RandomBreaker claims b random

unclaimed edges per move. RandomMaker creates a random graph G(n,m) with m = d
(

n
2

)

/(b + 1)e

edges, so he wins the game T almost surely if and only if m >
(

1
2 + o(1)

)

n ln n, the sharp threshold

edgenumber for the family T . This implies that the threshold bias of RandomBreaker’s win in the

random game is almost surely (1+o(1)) n
ln n

: just like in the “clever” game, as shown by Theorem 1.1.

Another classical game supporting the random graph intuition (at least in the order) is the

hamiltonicity game, in which Maker’s goal is to occupy a Hamilton cycle. Naturally, this game is

harder for Maker to win, still the order of the threshold bias turned out to be the same as the

one for the connectivity game: Beck [2] used his potential function method coupled with a nice

ad-hoc argument to show that Maker can create a Hamilton cycle against a bias ( ln 2
27 − o(1)) n

ln n
of

Breaker. Recently this was improved to (ln 2−o(1)) n
ln n

by Krivelevich and Szabó [9], but the precise

asymptotics still eludes us.
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Further occurrences of the connection between random graphs and biased positional games were

investigated in a series of papers by Beck [3, 4, 5] and Bednarska and  Luczak [6].

It is well-known from the theory of random graphs that several natural graph properties, like

hamiltonicity, c-connectivity, or minimum degree at least c, for constant c, all have the same sharp

threshold edge number 1
2n ln n. Let H, Cc, Dc be the corresponding families of edgesets. In [9] it

was established that (ln 2 − o(1)) n
ln n

is a lower bound for bH, bCc and bDc , as well. Motivated by

the extremely tight correlation between the appearence of the properties T and D1 in the random

graph, it is conjectured that bT = bD1
for all n large enough [9]. While this conjecture is still open,

Theorem 1.1 does establish its asymptotic correctness.

In our second main theorem we improve the lower bound of [9] for the family Dc, provided c is

an arbitrary constant. We establish that bDc = (1 + o(1)) n
ln n

, which means that the random graph

intuition is valid asymptotically for the minimum-degree-c game as well.

Theorem 1.2 Let c = c(n) < ln ln n
3 . Maker has a strategy to build a graph with minimum degree at

least c while playing against Breaker with bias b := (ln n− ln ln n− (2c + 3)) n

ln2 n
, provided n is large

enough.

As a third example of the surprising validity of the random graph intuition, for any constant

ε > 0 there is a δ = δ(ε) > 0 such that Maker is able to build a graph with minimum-degree at least

δ ln(n) while playing against a Breaker’s bias (1 − ε) · n
ln(n) .

Theorem 1.3 Let ε > 0 be a constant. Then Maker has a strategy to build a graph with minimum

degree at least ε
3(1−ε) ln n while playing against a Breaker’s bias of (1 − ε) · n

ln n
.

The order ln n for the largest achievable minimum degree against a bias of (1 − ε) n
ln n

is obviously

best possible: Maker has at most
(n

2)
b+1 edges by the end, which allows a minimum degree at most lnn

1−ε
.

Finally, by merging the strategies of Maker for achieving a spanning tree and a graph of minimum

degree c, respectively it can be proven that Maker has a strategy to accomplish both of these goals

at the same time.

Theorem 1.4 Let c = c(n) < ln ln n
3 . Maker has a strategy to build a connected graph with minimum

degree c while playing against Breaker with bias b := (ln n− ln ln n− (2c+5)) n

ln2 n
, provided n is large

enough.

As in the min-degree case we can show that Theorem 1.4 remains true if we let ε > 0 be a constant

and replace c by δ ln(n) with δ > 0 being a constant depending on ε only.

Theorem 1.5 Let ε > 0 be a constant. Then Maker has a strategy to build a connected graph with

minimum degree ε
3(1−ε) ln n while playing against a Breaker’s bias of (1 − ε) · n

ln n
.
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Notation Ceiling and floor signs are routinely omitted whenever they are not crucial for clarity.

We denote by Hs the sth harmonic number
∑s

j=1
1
j

and often use the well-known fact that for every

positive integer s

ln s ≤ Hs ≤ ln s + 1. (1)

2 Building a spanning tree

Proof of Theorem 1.1: An important message of Beck’s potential function argument was that instead

of concentrating on “making” a spanning tree, one concentrates on “breaking” into every cut – the

succes of which would then imply connectivity. In our proof we abandon this dual approach and

plainly focus on the original goal: building a spanning tree.

We assume that Breaker starts the game. Otherwise Maker can start with an arbitrary first

move, then follow his strategy. If his strategy calls for something he occupied before he takes an

arbitrary edge; no extra move is disadvantegous for him.

In the following proof by a component we always mean a connected component of Maker’s graph.

For a vertex v, we denote by C(v) the component containing v. We call a component dangerous if

it contains at most 2b vertices. By the degree of a vertex v (or deg(v) in short) we always mean the

ordinary degree of v in Breaker’s graph.

We define a danger function on the vertex set. Let

dang(v) =

{

deg(v) if C(v) is dangerous

−1 otherwise

Maker’s Strategy At the beginning every vertex is active. For his ith move, Maker identifies a

vertex vi with the largest danger value among active vertices (ties are broken arbitrarily) and he

occupies one arbitrary free edge connecting C(vi) to another component. He deletes vi from the set

of active vertices and calls vi deactivated.

This strategy of Maker will be denoted by SM . Maker can always make a move according to SM

unless his graph is a tree (thus he won) or Breaker occupied a cut (and Breaker won). Hence during

our analysis Maker’s graph is always a forest.

The following observation follows easily from SM by induction on the number of rounds.

Observation 1 Every component contains exactly one active vertex.

Proof of Maker’s win Suppose, for a contradiction, that Breaker has a strategy SB to win the

(1 : b) connectivity game against Maker. Let Bi and Mi denote the i’th move of Breaker and Maker,

respectively, in the game where they play against each other using their respective strategies SB and

SM . Let g be the length of this game, i.e., g is the smallest integer, that Breaker finished occupying

all edges in a cut (K,V \ K) in move Bg. We call this the end of the game. Note that g ≤ n− 1, as

Maker’s strategy does not allow him to occupy a cycle.
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Let |K| ≤ |V \ K|. Observe that |K| ≤ 2b, since otherwise Breaker would have had to occupy at

least 2b(n− 2b) > gb edges in g < n rounds, a contradiction for large n. This implies that during the

game there is always at least one dangerous component. Since Maker’s strategy prefers to deactivate

active vertices in dangerous components we also have the following.

Observation 2 Vertex vi is in a dangerous component at and before its deactivation.

In his last move Breaker takes b edges to completely occupy all edges between K and V \ K. In

order to be able to do that, directly before Breaker’s last move all vertices of K must have degree

at least n − 2b − b. Let vg ∈ K be an arbitrary active vertex; by Observation 1 there is one in each

component inside K.

Recall that v1, . . . , vg−1 were defined during the game. For 0 ≤ i ≤ g − 1, let Ii = {vg−i, . . . vg}.

For a subset I ⊆ V , let dangBi
(I) =

P

v∈I dang(v)

|I| denote the average danger value of the vertices in I

directly before move Bi of Breaker. Analogously, dangMi
(I) denotes the average danger value before

Mi.

The following lemma is a consequence of Maker’s strategy. It considers the change of danger

during Maker’s move.

Lemma 2.1 For every i, 1 ≤ i ≤ g − 1, directly before Mg−i dangMg−i
(Ii) ≥ dangBg−i+1

(Ii−1)

Proof: All the vertices vg−i+1, . . . , vg constituting Ii−1 are in a dangerous components directly before

Bg−i+1, so their danger value does not change during Mg−i. Hence dangMg−i
(Ii−1) = dangBg−i+1

(Ii−1).

Maker deactivated vg−i in Mg−i, because its danger was maximum among active vertices. All vertices

of Ii−1 were still active before Mg−i, thus dang(vg−i) ≥ max{dang(vg−i+1), . . . , dang(vg)} implying

dangMg−i
(Ii) ≥ dangMg−i

(Ii−1) and the lemma follows. �

The next lemma bounds the change of the danger value during Breaker’s moves. The first estimate

is used during the main game. It will guarantee the existence of many vertices with large average

degree, which eventually leads to a contradiction. For the rounds closer to the end we need a stronger

inductive statement, which is provided by the second estimate of the lemma.

Lemma 2.2 Let i be an integer, 1 ≤ i ≤ g − 1.

(i) dangMg−i
(Ii) − dangBg−i

(Ii) ≤
2b

i+1

(ii) dangMg−i
(Ii)−dangBg−i

(Ii) ≤
b+i+a(i−1)−a(i)

i+1 , where a(i) denotes the number of edges spanned

by Ii which Breaker took in the first g − i − 1 rounds.

Proof All the components C(vg−i), . . . , C(vg) are dangerous before Mg−i. Since components do not

change during Breaker’s move the danger value of the vertices of Ii depend solely on their degrees.

In Bg−i Breaker claims b edges, so the increase of the sum of degrees of vg−i, . . . , vg during Bg−i is

at most 2b. Hence dang(Ii) increases by at most 2b
i+1 , which proves (i).

For (ii), we will be more careful. Let edouble denote the number of edges taken in Bg−i whose both

endpoints are in Ii. Then the increase of
∑i

j=0 deg(vg−j) during Bg−i is at most b + edouble. Hence
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dang(Ii) increases by at most edouble+b
i+1 . We now bound edouble. By definition, Breaker occupied a(i)

edges spanned by Ii in his first g − i − 1 moves. So, all in all, Breaker occupied a(i) + edouble edges

spanned by Ii in his first g − i moves. On the other hand, we know that among these edges exactly

a(i− 1) are spanned by Ii−1 = Ii \ {vg−i} and there are at most i edges in Ii incident to vg−i. Hence

a(i) + edouble ≤ a(i − 1) + i, giving us edouble ≤ i + a(i − 1) − a(i). �

Using Lemmas 2.1 and 2.2 we derive that before B1, dang(Ig−1) > 0. This is of course in

contradiction with the fact that at the beginning of the game every vertex has danger value 0.

Let k := b n
ln n

c. For the analysis, we split the game into two parts: The main game, and the end

game consisting of the last k rounds.

Recall that the danger value of vg directly before Bg is at least n − 3b.

Assume first that k > g.

dangB1
(Ig−1) = dangBg

(I0) +

g−1
∑

i=1

(

dangMg−i
(Ii) − dangBg−i+1

(Ii−1)
)

−

g−1
∑

i=1

(

dangMg−i
(Ii) − dangBg−i

(Ii)
)

≥ n − 3b +

g−1
∑

i=1

0 −

g−1
∑

i=1

b + i + a(i − 1) − a(i)

i + 1

≥ n − 3b − b(Hg − 1) − (g − 1) −
a(0)

2
+

g−2
∑

i=1

a(i)

(i + 2)(i + 1)
+

a(g − 1)

g

≥ n − b(Hg + 2) − g [since a(0) = 0 and a(i) ≥ 0]

≥ n − b(ln k + 3) − k [since g ≤ k]

≥ n −
n

ln n
(ln n − ln ln n + 3) −

n

ln n

≥
n ln ln n

ln n
− O

( n

ln n

)

> 0.
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Assume now that k ≤ g. We then have

dangB1
(Ig−1) = dangBg

(I0) +

g−1
∑

i=1

(

dangMg−i
(Ii) − dangBg−i+1

(Ii−1)
)

−

k−1
∑

i=1

(

dangMg−i
(Ii) − dangBg−i

(Ii)
)

−

g−1
∑

i=k

(

dangMg−i
(Ii) − dangBg−i

(Ii)
)

≥ n − 3b +

g−1
∑

i=1

0 −

k−1
∑

i=1

b + i + a(i − 1) − a(i)

i + 1
−

g−1
∑

i=k

2b

i + 1

≥ n − 3b − b(Hk − 1) − (k − 1) −
a(0)

2
+

k−2
∑

i=1

a(i)

(i + 2)(i + 1)
+

a(k − 1)

k
− 2b(Hg − Hk)

≥ n − b(2Hg − Hk + 2) − k

≥ n − b(2 ln n − ln k + 4) − k

≥ n −

(

n

ln n
−

n ln ln n

ln2 n
− 6

n

ln2 n

)

(ln n + ln ln n + 5) −
n

ln n

≥
n(ln ln n)2

ln2 n
> 0.

�

3 Achieving large minimum degree

Proof of Theorem 1.2: As in the previous proof we assume that Breaker starts the game. We say

that the game ends when either all vertices have degree at least c in Maker’s graph (and Maker won)

or one vertex has degree at least n − c in Breaker’s graph (and Breaker won). With degM (v) and

degB(v) we denote the degree of a vertex v in Maker’s graph and in Breaker’s graph, respectively. A

vertex v is called dangerous if degM (v) ≤ c − 1. To establish Maker’s strategy we define the danger

value of a vertex v as dang(v) := degB(v) − 2b · degM (v).

Maker’s Strategy SM Before his ith move Maker identifies a dangerous vertex vi with the largest

danger value, ties are broken arbitrarily. Then, as his ith move Maker claims an edge incident to v i.

We refer to this step as “easing vi”.

Observation 3 Maker can always make a move according to his strategy unless no vertex is

dangerous (thus he won) or Breaker occupied at least n − c edges incident to a vertex (and Breaker

won).

Observation 4 Vertex vi is dangerous any time before Maker’s ith move.

Suppose, for a contradiction, that Breaker, playing with a bias b, has a strategy SB to win

the min-degree-c game against Maker who plays with bias 1. Let Bi and Mi denote the ith move
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of Breaker and Maker, respectively, in the game where they play against each other using their

respective strategies SB and SM . Let g be the length of this game, i.e., the maximum degree of

Breaker’s graph becomes larger than n − 1 − c in move Bg. We call this the end of the game.

For a set I ⊆ V of vertices we let dang(I) denote the average danger value
P

v∈I dang(v)

|I| of the

vertices of I. When there is risk of confusion we add an index and write dangBi
(v) or dangMi

(v) to

emphasize that we mean the danger-value of v directly before Bi or Mi, respectively.

In his last move Breaker takes b edges to increase the maximum Breaker-degree of his graph to

at least n− c. In order to be able to do that, directly before Breaker’s last move Bg there must be a

dangerous vertex vg whose Breaker-degree is at least n−c−b. Thus dangBg
(vg) ≥ n−c−b−2b(c−1).

Recall that v1, . . . , vg−1 were defined during the game. For 0 ≤ i ≤ g − 1, let Ii = {vg−i, . . . vg}.

The following lemma estimates the change in the average danger during Maker’s move.

Lemma 3.1 Let i, 1 ≤ i ≤ g − 1,

(i) if Ii 6= Ii−1, then dangMg−i
(Ii) − dangBg−i+1

(Ii−1) ≥ 0.

(ii) if Ii = Ii−1, then dangMg−i
(Ii) − dangBg−i+1

(Ii−1) ≥ 2b
|Ii|

.

Proof: For part (i), we have that vg−i /∈ Ii−1. Since danger values do not increase during

Maker’s move we have dangMg−i
(Ii−1) ≥ dangBg−i+1

(Ii−1). Before Mg−i Maker selected to ease

vertex vg−i because its danger was highest among dangerous vertices. Since all vertices of Ii−1 are

dangerous before Mg−i we have that dang(vg−i) ≥ max(dang(vg−i+1), . . . , dang(vg)), which implies

dangMg−i
(Ii) ≥ dangMg−i

(Ii−1). Combining the two inequalities establishes part (i).

For part (ii), we have that vg−i ∈ Ii−1. In Mg−i degM (vg−i) increases by 1 and degM (v) does not

decrease for any other v ∈ Ii. Besides, the degrees in Breaker’s graph do not change during Maker’s

move. So dang(vg−i) decreases by 2b, whereas dang(v) do not increase for any other vertex v ∈ Ii.

Hence dang(Ii) decreases by at least 2b
|Ii|

, which implies (ii). �

The next lemma bounds the change of the danger value during Breaker’s moves.

Lemma 3.2 Let i be an integer, 1 ≤ i ≤ g − 1.

(i) dangMg−i
(Ii) − dangBg−i

(Ii) ≤
2b
|Ii|

(ii) dangMg−i
(Ii) − dangBg−i

(Ii) ≤ b+|Ii|−1+a(i−1)−a(i)
|Ii|

, where a(i) denotes the number of edges

spanned by Ii which Breaker took in the first g − i − 1 rounds.

Proof: Let edouble denote the number of those edges with both endpoints in Ii which are occupied

by Breaker in Bg−i. Then the increase of
∑

v∈Ii
degB(v) during Bg−i is at most b + edouble. Since

the degrees in Maker’s graph do not change during Breaker’s move the increase of dang(Ii) (during

Bg−i) is at most b+edouble

|Ii|
.

Part (i) is then immediate after noting that edouble ≤ b.

For (ii), we bound edouble more carefully. By definition, Breaker occupied a(i) edges spanned

by Ii in his first g − i − 1 moves. So, all in all, Breaker occupied a(i) + edouble edges spanned by

Ii in his first g − i moves. On the other hand, we know that among these edges exactly a(i − 1)

8



are spanned by Ii−1 = Ii \ {vg−i} and there are at most |Ii| − 1 edges in Ii incident to vg−i. Hence

a(i) + edouble ≤ a(i − 1) + |Ii| − 1, giving us edouble ≤ |Ii| − 1 + a(i − 1) − a(i). �

The following estimates for the change of average danger during one full round are immediate

corollaries of the previous two lemmas.

Corollary 3.3 Let i be an integer, 1 ≤ i ≤ g − 1.

(i) if Ii = Ii−1, then dangBg−i
(Ii) − dangBg−i+1

(Ii−1) ≥ 0.

(ii) if Ii 6= Ii−1, then dangBg−i
(Ii) − dangBg−i+1

(Ii−1) ≥ − 2b
|Ii|

(iii) if Ii 6= Ii−1, then dangBg−i
(Ii)−dangBg−i+1

(Ii−1) ≥ − b+|Ii|−1+a(i−1)−a(i)
|Ii|

, where a(i) denotes

the number of edges spanned by Ii which Breaker took in the first g − i − 1 rounds.

Using Corollary 3.3 we derive that before B1, dang(Ig−1) > 0, which contradicts the fact that at

the beginning of the game every vertex has danger value 0.

Let k := b n
ln n

c. For the analysis, we split the game into two parts: The main game, and the end

game which starts when |Ii| ≤ k.

Let |Ig| = r. Let i1 < . . . < ir−1 be those indices for which Iij 6= Iij−1. Note that |Iij | = j + 1.

Observe that by definition a(ij−1) ≥ a(ij − 1).

Recall that the danger value of vg directly before Bg is at least n − c − b(2c − 1).

Assume first that k > r.

dangB1
(Ig−1) = dangBg

(I0) +

g−1
∑

i=1

(

dangBg−i
(Ii) − dangBg−i+1

(Ii−1)
)

≥ dangBg
(I0) +

r−1
∑

j=1

(

dangBg−ij
(Iij ) − dangBg−ij+1

(Iij−1)
)

[by Corollary 3.3(i)]

≥ dangBg
(I0) −

r−1
∑

j=1

b + j + a(ij − 1) − a(ij)

j + 1
[by Corollary 3.3(iii)]

≥ dangBg
(I0) − bHr − r −

a(0)

2
+

r−1
∑

j=2

a(ij−1)

(j + 1)j
+

a(ir−1)

r
[since a(ij−1) ≥ a(ij − 1)]

≥ dangBg
(I0) − bHk − k [since a(0) = 0 and r ≤ k]

≥ n − c − b(2c + ln k) − k

≥ n −
n

ln n
(2c + ln n − ln ln n) −

n

ln n
− c

≥
n ln ln n

3 ln n
−

n

ln n
− c

> 0. [for large n] (2)
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Assume now that k ≤ r.

dangB1
(Ig−1) = dangBg

(I0) +

g−1
∑

i=1

(

dangBg−i
(Ii) − dangBg−i+1

(Ii−1)
)

≥ dangBg
(I0) +

r−1
∑

j=1

(

dangBg−ij
(Iij ) − dangBg−ij+1

(Iij−1)
)

[by Corollary 3.3(i)]

= dangBg
(I0) +

k−1
∑

j=1

(

dangBg−ij
(Iij ) − dangBg−ij+1

(Iij−1)
)

+

r−1
∑

j=k

(

dangBg−ij
(Iij ) − dangBg−ij+1

(Iij−1)
)

≥ dangBg
(I0) −

k−1
∑

j=1

b + j + a(ij − 1) − a(ij)

j + 1
−

r−1
∑

j=k

2b

j + 1
[by Corollary 3.3(iii) and (ii)]

≥ dangBg
(I0) − b(2Hr − Hk) − k −

a(0)

2
+

k−1
∑

j=2

a(ij−1)

(j + 1)j
+

a(ik−1)

k

≥ n − c − b(2c − 1 + 2Hn − Hk) − k [since n ≥ r and a(0) = 0]

≥ n − c −

(

n

ln n
−

n ln ln n

ln2 n
− (2c + 3)

n

ln2 n

)

(ln n + ln ln n + 2c + 2) −
n

ln n

≥
n(ln ln n)2

ln2 n
[for n large enough]

> 0. (3)

�

Proof of Theorem 1.3: The previous proof works line by line, we only have to adapt the last few

lines of the calculations of (2) and (3). For (2), we have

dangB1
(Ig−1) ≥ n − c − b(2c + ln k) − k

≥ n − c − (1 − ε) ·
n

ln n
·

(

2ε

3(1 − ε)
· ln n + ln n − ln ln n

)

−
n

ln n

≥
ε

3
n

> 0.

For (3), we obtain

dangB1
(Ig−1) ≥ n − c − b(2c + 2 ln n − ln k + 1) − k

≥ n − c − (1 − ε) ·
n

ln n
·

(

2ε

3(1 − ε)
· ln n + ln n + ln ln n + 2

)

−
n

ln n

≥
ε

3
n [for large n]

> 0.
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�

4 Building a Connected Graph with high Minimium Degree

Proof of Theorem 1.4: To establish a suitable strategy for Maker we basically merge his strategies

for occupying a spanning tree and achieving a graph of min-degree c. We will adopt most of the

terminology used in the two corresponding proofs, but sometimes with a slightly modified content.

We assume that Breaker starts the game and denote by degM (v) and degB(v) the degree of a vertex

v in Maker’s graph and in Breaker’s graph, respectively. We adopt the concept of active vertices as

well, at the beginning each vertex is active. After each of his moves Maker deletes one or two vertices

from the set of active vertices. The corresponding vertices are called deactivated.

By a component, we always refer to a connected component of Maker’s graph. A component is

called dangerous if it contains at most 2bc vertices. In contrast to Section 2 we assign active vertices

to dangerous components only. We call a vertex v dangerous if it is either active or has degree at

most c − 1 in Maker’s graph.

We define a danger function on the vertex set. Let

dang(v) =

{

degB(v) if v is active

degB(v) − 2b · degM (v) otherwise

Maker’s Strategy SM . If there are no dangerous vertices left then Maker occupies an arbitrary

free edge connecting two components. Otherwise, for his ith move Maker identifies a dangerous vertex

vi with the largest danger value (ties are broken arbitrarily) and eases vi by doing the following.

If vi is active then Maker claims an arbitrary edge connecting C(vi) to another component C ′ and

deactivates vi. In case C ′ also had an active vertex and |C(vi)| + |C ′| > 2bc, then Maker deactivates

the active vertex of C ′ as well. If vi is not active then Maker claims an arbitrary edge e incident to

vi. In case a new component C emerges upon the selection of e, Maker deactivates some of the (at

most two) active vertices of C arbitrarily such that C has one or zero active vertex depending on

whether C is dangerous or not, respectively.

Note that Maker can always make a move according to his strategy unless his graph is connected

and has minimum degree at least c (thus he won) or Breaker occupied either a cut or an (n− c)-star

(and Breaker won).

The following is immediate consequence of the strategy of SM .

Observation 4.1 Every dangerous component contains exactly one active vertex whereas other com-

ponents do not have active vertices.

Since vi is only defined for moves when there are still dangerous vertices, we have the following.

Observation 4.2 Vertex vi is dangerous any time before Maker’s ith move.

11



Proof of Maker’s win. Suppose, for a contradiction, that Breaker, playing with a bias b, has a

strategy SB to win the game in question against Maker who plays with bias 1. Let Bi and Mi denote

the ith move of Breaker and Maker, respectively, in the game where they play against each other

using their respective strategies SB and SM . Let g be the length of this game, i.e., g is the smallest

integer that in move Bg Breaker finished occupying either all edges in a cut (K,V \K) or all edges

of a (n − c)-star. We call this the end of the game.

Proposition 4.3 g < (c + 1) · n

Proof: Each move of Maker is used either to decrease the number of components or to ease a vertex

(occasionally both). Since the number of components can be decreased at most n−1 times and each

vertex can be eased at most c times (thereafter it stops being dangerous), Maker can make at most

n − 1 + cn moves. �

Analogously to Section 3, for a set I ⊆ V of vertices we let dang(I) denote the average danger

value
P

v∈I dang(v)

|I| of the vertices of I. When there is risk of confusion we again add an index and

write dangBi
(v) or dangMi

(v) to emphasize that we mean the danger-value of v directly before Bi or

Mi, respectively.

Observation 4.4 Before Breaker’s last move Bg there is a dangerous vertex vg with dang(vg) ≥

n − b · (2c + 1)

This can be seen by distinguishing two cases

Case 1. After Bg Breaker has completely occupied an (n − c)-star

In order to be able to do that, directly before Bg there must be a vertex vg with degM (vg) < c

and degB(vg) ≥ n − c − b. Thus dangBg
(vg) ≥ n − c − b − 2b(c − 1) > n − b · (2c + 1).

Case 2. After Bg Breaker has completely occupied a cut (K,V \K) with |K| ≤ |K\V |.

In order to be able to do that, directly before Bg all vertices of K must have degree at least

n − |K| − b in Maker’s graph. Observe that |K| ≤ 2bc since otherwise Breaker would had to

occupy at least 2bc(n − 2bc) > gb (by Proposition 4.3) edges in g rounds, a contradiction for

large n. Hence by Observation 4.1 K contains an active vertex vg, whose danger value is at

least degB(vg) ≥ n − |K| − b ≥ n − 2bc − b = n − b(2c + 1).

�

Since vg is dangerous before Breaker’s last move it is dangerous throughout the whole game.

So before each move of Maker there is at least one dangerous vertex, implying that in each move

Maker eases a vertex and v1, . . . , vg−1 are all defined during the game. For 0 ≤ i ≤ g − 1, let

Ii = {vg−i, . . . , vg}.

For an estimate of the change in the average danger during Maker’s move the statement of Lemma

3.1 is valid; we still copy it here since its proof has to be slightly adapted.
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Lemma 4.5 Let i, 1 ≤ i ≤ g − 1,

(i) if Ii 6= Ii−1, then dangMg−i
(Ii) − dangBg−i+1

(Ii−1) ≥ 0.

(ii) if Ii = Ii−1, then dangMg−i
(Ii) − dangBg−i+1

(Ii−1) ≥ 2b
|Ii|

.

Proof: Part (i) can be shown by following the proof of part (i) of Lemma 3.1 word by word. For part

(ii) we have that vg−i ∈ Ii−1 = Ii. We distinguish two cases

Case 1. vg−i was active before Mg−i.

Due to Maker’s strategy vg−i is deactivated after Mg−i, implying that during Mg−i dang(vg−i) de-

creases by 2b · degM (vg−i) (where degM (vg−i) refers to the moment directly after Mg−i). Since after

Mg−i vg−i is not isolated in Maker’s graph (otherwise it would still be active) it has positive degree

in Maker’s graph, implying that dang(vg−i) decreased by at least 2b. No vertices increased their

danger value during Maker’s move, hence dang(Ii) decreases by at least 2b
|Ii|

, which implies (ii).

Case 2. vg−i was already deactivated before Mg−i.

In this case we can proceed along similar lines as in the proof of part (ii) of Lemma 3.1. �

The rest of the proof agrees with the one of Theorem 1.2 mutatis mutandis, the only difference

being in the calculation that dang(vg) is lower bounded by n− b(2c + 1) instead of n− c− b(2c− 1).

�

The proof of Theorem 1.5 follows similarly to Theorem 1.3.
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