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Abstract

Answering a question of Alon, Ding, Oporowski and Vertigan [4], we show that there exists an

absolute constant C such that every graph G with maximum degree 5 has a vertex partition into

2 parts, such that the subgraph induced by each part has no component of size greater than C.

We obtain similar results for partitioning graphs of given maximum degree into k parts (k > 2)

as well.

A related theorem is also proved about transversals inducing only small components in graphs

of a given maximum degree.

1 Introduction

In this paper we are concerned with finding (large) induced subgraphs of graphs of given maximum

degree, which induce components of size independent of the size of the graph. We will consider two

somewhat different but related setups.

First, we aim at partitioning the vertex-set into finitely many parts and require all parts to induce

small components. In the extreme case, when the components are of size one, this formulation

corresponds to the usual proper coloring of graphs.

In the second approach, we are given a partition of the vertex-set into large enough classes and we

would like to select a transversal (i.e. one vertex from each class) which induces small components.

This setup is a generalization of a theorem from [10] concerned with independent transversals, a topic

that has connections to other areas of combinatorics such as graph colouring.

Let us formalize the above. For a graph G and a fixed k, what is the smallest C for which

the vertex set of G can be partitioned into k parts, such that the subgraph induced by each part

has no components of size larger than C? As mentioned above, this question can be viewed as a
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generalization of the classical problem of coloring a graph, since C = 1 would say precisely that

G has chromatic number at most k. The general goal is to find conditions on G that guarantee a

constant C independent of n, the number of vertices in G.

Earlier work on this subject [1, 2, 6, 11, 3, 8] mainly focused on more specific questions concerning

line graphs of 3-regular graphs. These investigations culminated in [13], in which Thomassen proved

that the edges of every 3-regular graph can be 2-colored such that each monochromatic component

is a path of length at most 5. Alon, Ding, Oporowski and Vertigan [4] proved a number of results

showing that C is independent of n under certain conditions involving bounds on the tree-width and

maximum degree of G. In particular, they proved that if G has maximum degree 4, and k is taken

to be 2, then C ≤ 57. On the other hand, they give a family of 6-regular graphs for which every

2-partition of the vertices results in arbitrarily large components in one of the induced subgraphs.

They therefore asked the following natural question [4, Question 2.4]: is there a constant C such

that every graph G with maximum degree 5 has a vertex partition into 2 parts, each part inducing a

subgraph with no components of size greater than C? In Section 2.1 we answer this question in the

affirmative. In Section 2.2 we discuss the 2-partitioning of graphs of maximum degree 4, and show

that here C could be chosen as small as 6. We also note that C must be at least 4; thus in this case

it could very well be feasible to determine the constant C exactly.

As in [4], 2-partitioning theorems lead to partitioning results for certain other values of k; these

appear in Section 3. In Theorem 3.2, we show that it is possible to partition a graph G of maximum

degree at most 8 into 3 parts, such that each part induces components of size at most an absolute

constant C. There is a family of 10-regular graphs that do not admit such a 3-partition [4], so only

the case of 9-regular graphs remains undecided. In general, we give lower bounds for the largest

maximum degree ∆k which still accommodates a k-partition into parts with bounded components.

An asymptotic upper bound of 4k for ∆k was given in [4]. In Theorem 3.5 we improve the asymptotic

lower bound to (3 + δ)k, where δ > 0 is a positive constant.

In Section 4 we consider a related problem concerning transversals that induce only components

of bounded size. In [10] it was shown that if the vertex set of a graph with maximum degree ∆ is

partitioned into classes of size at least 2∆, then it is possible to choose a set of vertices, one from

each class, that is an independent set in G. Such a choice of one vertex from each class is called a

transversal of the partition. In Theorem 4.1 we generalize this result by showing that if each class

has size at least ∆ + b∆/rc then there exists a transversal that induces in G a subgraph with all

components bounded in size by r.

Our discussions leave a number of unresolved problems. These loose threads are gathered together

in Section 5.
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2 Partitioning into two parts

2.1 Graphs of maximum degree 5

Throughout this paper, by graph we will mean simple multigraph, i.e., we allow parallel edges but

we do not allow loops. For a graph H and a subset V ′ of its vertex set, H[V ′] denotes the subgraph

of H induced by the vertices of V ′.

The main aim of this section is to prove the following theorem.

Theorem 2.1 There exists an absolute constant C such that the following holds. Let G be a graph

with maximum degree at most 5. Then there is a partition V1 ∪ V2 = V (G) of the vertex set of G,

such that for i = 1, 2, each component of G[Vi] has at most C vertices.

Before beginning the proof of Theorem 2.1, we first establish some properties about a special

family of vertex partitions that will be important in the proof. Let G be a graph with maximum

degree 5, and let (U1, U2) be a maximum cut of G (referred to as a max-cut), i.e., a partition of the

vertex set of G into classes U1, U2, such that the number of edges going between the two classes

is maximized. In general, for any partition we will refer to these edges as the edges going across,

or the crossing edges. Let G′ = G[U1] + G[U2], and let C1, . . . , Cs be the components of G′. Let

W = {v ∈ V (G) : dG′(v) = 2} be the subset of those vertices whose degree in G′ (their G′-degree) is

exactly two. We denote by H the bipartite subgraph of G consisting of the vertices in W and the

edges of G going across the partition (W ∩U1,W ∩U2). The vertex sets of the components of H will

be called ladders. The following proposition collects some simple but important facts.

ladders∈ W ∈ E(H)∈ E(G′)

Figure 1: Ladders and such...

Proposition 2.2 Using the above definitions, the following hold for any max-cut (U1, U2).

(i) ∆(G′) ≤ 2, so each component Ci is either a cycle or a path,

(ii) ∆(H) ≤ 3,

(iii) any two H-neighbors of a vertex w ∈ W are adjacent in G,
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(iv) for each ladder L, L ∩ Uj consists of consecutive elements of some (path or cycle) component

Ck of G′, for each j = 1, 2. Thus ladders, unless they consists of one vertex, have nontrivial

intersection with exactly one component of each side of the partition U1 ∪ U2,

(v) if dH(w) = 3, and w ∈ Uj ∩ L for some ladder L, then U3−j ∩ L consists only of the three

H-neighbors of w. Furthermore |L| ≤ 6.

Proof.

(i) If the degree of a vertex in G′ were at least 3, then putting the vertex into the other class would

increase the number of edges going across.

(ii) This follows immediately from the definition of the vertex set W of H and the fact that

∆(G) ≤ 5.

(iii) Suppose on the contrary that w′, w′′ ∈ W are two H-neighbors of w that are not adjacent in

G. Then switching the classes for w,w′, w′′ would increase the number of edges going across

the partition.

(iv) Follows directly from (i) and (iii).

(v) by (iii), the three H-neighbors of w need to form a triangle in G′, which is already a complete

component of G′. Thus Uj ∩L can only contain 2 more vertices besides w, since any vertex in

Uj ∩L is a neighbor of a neighbor of w, thus (again by (iii)) a neighbor of w in G′ as well. But

w has only two G′-neighbors in Uj . �

The above proposition shows that ladders can consist of just a single vertex, a single edge going

across the partition, or, typically, structures like the ones shown in Figure 1.

The next proposition shows that we can find a max-cut that has no long ladders. We remark

that the constant 13 can be improved to 10 by a more detailed analysis, but as we do not strive for

the optimal constant in Theorem 2.1 this formulation is sufficient.

Proposition 2.3 Let G be a graph with ∆(G) ≤ 5. Then there exists a max-cut U = (U1, U2) of the

vertex set of G in which each ladder has size at most 13.

Proof. We say that a max-cut U = (U1, U2) has property (M) if |W | is minimized. We fix a partition

U having property (M), which minimizes the number

l(U) =
∑

L

(|L| − 8),

where the summation extends over the ladders L of size greater than 8.

We assume U has a ladder of size 14 or more and construct another partition Ū contradicting

the choice of U . This contradiction will prove the proposition.
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Let L be a ladder of size at least 14. By Proposition 2.2 (ii) and (v), ∆(H[L]) ≤ 2. So we can

find vertices x1, . . . , x14 ∈ L such that xi is connected in H to xi+1 for i = 1, . . . , 13. We may assume

xi ∈ U1 for odd i and xi ∈ U2 for even i. By Proposition 2.2 (iii) we have that xi and xi+2 are

adjacent in G (and thus also in G′) for i = 1, . . . , 12.

We define the partition Ū = (Ū1, Ū2) by switching x7 and x8: Ū1 = (U1 \ {x7}) ∪ {x8} and

Ū2 = (U2 \ {x8}) ∪ {x7}.

First note that the number of crossing edges in Ū is at least the number of crossing edges in U .

Hence since U is a max-cut, so is Ū , and Proposition 2.2 applies to Ū as well. We denote by W̄ , Ḡ′

and H̄ the analogues (for Ū) of W , G′ and H, respectively.

Note that the vertices x5 and x10 have degree 1 in Ḡ′, and therefore are not in W̄ . Since U has

property (M), there must be at least two vertices in W̄ \ W . Besides the vertices in W , the only

vertices which have a chance to become members of W̄ are the neighbors of the displaced vertices x7

and x8. Each had four neighbors in W , so both must have a fifth one in W̄ \ W . Let a ∈ U1, b ∈ U2

be these neighbors of x8 and x7, respectively. Note then that Ū also has property (M). We then have

the following (see Figures 2 and 3).

(1) W̄ ∩ Ū1 = (W ∩ U1 \ {x5, x7}) ∪ {x8, a},

(2) W̄ ∩ Ū2 = (W ∩ U2 \ {x8, x10}) ∪ {x7, b}, and

(3) E(H̄) = (E(H)\{x4x5, x5x6, x6x7, x8x9, x9x10, x10x11})∪{x6x8, x7x9}∪E0, where E0 denotes

the edges of H̄ incident with a or b.

x1 x3 x5 x7 x9 x13x11

a

b

x4 x6 x8 x10 x12 x14x2

Figure 2: Before...

b

x7

x1 x3 x5 x9 x13x11

a

x8

x2 x4 x6 x10 x12 x14

Figure 3: ...and after

We call a ladder of size greater than 8 long.

Let L̄ be the ladder of Ū containing x7 (and thus x8). We claim that L̄ is not long. Indeed,

otherwise H̄[L̄] would be a path or a cycle by Proposition 2.2(ii) and (v) and it would extend by

at least three vertices beyond at least one end of the path x6x8x7x9. By symmetry we may assume

it extends by at least three vertices beyond x9. By (3) the next vertex must be b. By Proposition

2.2(iii) the vertex after that must be a Ḡ′ neighbor of x9, so (as x8 is already in the path) it must

be x11. Again by (3) the next vertex must be x12. Now by Proposition 2.2(iii) b and x12 must be
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connected in G, so also in G′. Since the only G′-neighbors of x12 (x10 and x14) are in W while b is

not, b cannot be a neighbor of x12. This contradiction proves the claim.

Now assume that the ladder L̄a of Ū containing a is long. Then x8 /∈ L̄a (otherwise we have

L̄a = L̄) and thus by Proposition 2.2(iii) a must be the last or next-to-last vertex of the path H̄[L̄a]

(as a has at most a single Ḡ′ neighbor in the same ladder). Similarly, if the ladder L̄b of Ū containing

b is long, then b must be the last or next-to-last vertex in the path H̄[L̄b].

We now try to establish l(Ū) < l(U) for a contradiction. Let us consider all the ladders of the

partition Ū . By (3), all of these ladders, except L̄, L̄a and L̄b, are either contained in L or are also

ladders in the partition U . Ladders which do not change have equal contribution to l(U) and l(Ū).

The contribution of L̄ to l(Ū) is zero (as it is not long). The contribution of L̄a (or L̄b) to l(Ū) is at

most 2 more than the contribution to l(U) of the U -ladders it contains. Finally, the total contribution

to l(Ū) of the Ū -ladders contained in L is at least 6 less than the contribution of L to l(U), as the

six vertices x5, x6, x7, x8, x9, x10 ∈ L are not in a long ladder any more, and the contribution of |L|

to l(U) is |L| − 8 ≥ 6. We thus have

l(Ū) ≤ l(U) + 2 · 2 − 6 < l(U),

a contradiction proving the Proposition. �

Besides Proposition 2.3, the other main ingredient in the proof of Theorem 2.1 will be the well-

known Lovász Local Lemma from [9] (see also [5]). The version of the Local Lemma we use is as

follows. The constant e below is the base of the natural logarithm.

Theorem 2.4 Let A1, . . . , An be events (usually called bad events) in an arbitrary probability space.

Suppose that for each i, event Ai is independent of a collection of all but at most d of the other events

Aj. If Pr(Ai) ≤ p for all 1 ≤ i ≤ n, and ep(d + 1) ≤ 1, then Pr(
∧n

i=1
Āi) > 0.

We are now ready to prove the main theorem of this section.

Proof of Theorem 2.1. Let a graph G with maximum degree 5 be given. By Proposition 2.3, we

may assume that V (G) has a max-cut U = (U1, U2) such that each ladder L has size at most 13 and

thus by Proposition 2.2(iv), |L ∩ Uj | ≤ 7 for j = 1, 2. Let W , G′, H, and C1, . . . , Cs be as defined

just before Proposition 2.2.

Our strategy is the following. We randomly select a set of ladders for which we switch the sides

of their vertices, in order to break up all the long components in G′. (Note that each component

of G′ could intersect many ladders, see Figure 1.) Each ladder is selected for a switch with a

suitably chosen probability p, the selections being independent of each other. These events are called

elementary events. The crucial observation is that by performing any number of ladder-switches at

once, the vertices of degree 2 in G′, that do not switch sides, do not receive any new neighbor. This

is true simply because, if a vertex v ∈ Ui has G′-degree 2 and its G-neighbor w ∈ U3−i is selected

for switching over, then v (being in the same ladder as w) is also selected for the switch. Thus, in
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choosing a switch that breaks up the large components of G′, we just need to take care that the

vertices of degree at most 1 in G′ do not join up a lot of components via the newly switched vertices.

This will be done by applying Theorem 2.4, with some suitably chosen “bad” events.

We begin by fixing a positive constant p < 1 satisfying 56ep2(90d− log(56p2)/pe + 1) ≤ 1, and

the constant `0 = d− log(56p2)/pe. Here and later in this paper, log refers to the natural logarithm.

The choice p = 0.000003 is suitable. Next, we partition each component Ci of G′ for which Ci ∩ W

intersects at least 2`0 ladders as follows. We partition these Ci into connected segments Ai
j , such

that no ladder intersects more than one Ai
j on either side U1 and U2, and Ai

j intersects ai
j consecutive

ladders, where `0 ≤ ai
j < 2`0.

Let us define the set of bad events we would like to avoid.

Bad event type (i). For each segment Ai
j, let Ei

j be the event that no ladder of Ai
j is picked for

switching. The probability of E i
j is (1 − p)ai

j ≤ (1 − p)`0 < e−p`0 . Hence by definition of `0 we see

that Pr(Ei
j) ≤ 56p2.

Bad event type (ii). For any path component Ci with endpoints u and v (if Ci has length 0 then

u = v), let ECi
be the event that at least two ladders, containing a neighbor of u or v on the side of

the partition opposite to Ci, are picked for switching. Suppose there are k ladders which contain a

neighbor of u or v. As ∆(G) ≤ 5, k ≤ 8. Then

Pr(Ei
j) ≤

(

k

2

)

p2 ≤ 28p2.

Bad event type (iii). Finally, fix a numbering of the consecutive ladders of each component Ci,

and define the event F i
j such that the jth and (j + 1)st ladder of Ci are both picked for switching.

The probability of F i
j is clearly p2.

In order to estimate the parameter d in Theorem 2.4, we fix for each event E a determining set

D(E) consisting of elementary events that together determine whether E happens. The independence

of the elementary events implies that any event E is mutually independent of the set of all events

whose determining sets are disjoint from D(E).

From the definitions we see that D(E i
j) can consist of the ai

j elementary events corresponding

to the ladders intersecting Ai
j . The determining set D(ECi

) can consist of the elementary events

corresponding to ladders containing some neighbor of an endpoint of Ci, so |D(ECi
)| ≤ 8. Finally

D(F i
j ) can consist of the two elementary events corresponding to the j th and (j + 1)st ladders of

component Ci. On the other hand, an elementary event EM , corresponding to a ladder M , is

contained in the determining set of at most 2 bad events of type (i), the ones corresponding to

segments containing its two sides. Also, EM is contained in the determining set of at most 4 bad

events of type (iii), at most two on each side. Finally, M has at most 13 vertices, each of them

is the neighbor of an endpoint of at most 3 different components of G′ on the opposite side of the

partition, so EM is contained in the determining set of at most 39 bad events of type (ii).

Thus for any bad event E, there are at most |D(E)|(2+39+4) bad events E ′ with D(E)∩D(E ′) 6=
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∅. This implies that each bad event is independent of the set of all but 45|D(E)| ≤ 90`0 bad events.

Set d = 90`0.

We may now apply Theorem 2.4 to the set of bad events. Since each bad event occurs with

probability at most 56p2, and 56ep2(d + 1) ≤ 1 by definition of p, we conclude that there exists a

selection of ladders that can be switched without causing any bad event. Let us perform such a

switch, and denote the classes of the resulting partition of G by V1 and V2.

Claim 2.5 Each component in G[V1] or G[V2] has at most 588`0 + 7 vertices.

Proof. Let us stop for a second in the middle of the switch, after the vertices of the chosen ladders

were removed from their respective sides, but were not yet placed on the other. Since there are no

bad events of type (i), each large component Ci is broken into pieces by the removal of a ladder from

each of its segments Ai
j intersecting at most 2`0 ladders. So at most 28`0 vertices could stay together

from an old component Ci, since each ladder contributes at most 7 vertices.

Now new vertices are coming over from the other side by the switch. Since there are no bad

events of type (iii), no two consecutive ladders arrive, thus the vertices coming from the other side

arrive in components of size at most 7.

We still have to make sure that not too many “old” and “newly arrived” components stick

together. As we noted earlier, if a vertex of G′ of degree 2 does not switch sides, then it does not

receive any new neighbors. So old and new components can stick together only through a vertex of

an old component whose degree in G′ was at most 1 (it was the endpoint of a path component of G′).

As there are no bad events of type (ii), at most 1 new ladder is connected to any old component. One

new ladder brings at most 7 vertices, each of which can be connected to at most 3 old components,

thus at most 7 + 21 · 28`0 vertices stick together to form a component within a class Vi. �

This finishes the proof of Theorem 2.1. �

Remark In the proof of Theorem 2.1 we do not attempt to obtain the smallest possible value of C.

By making more careful estimates, and using Theorem 4.1 with r = 1 instead of Theorem 2.4, one

can show that C ≤ 17617. However, as this value is almost certainly very far from being optimal,

we do not include the details here.

2.2 Graphs of maximum degree 4

In this subsection we improve on a result of [4]. We reduce, from 57 to 6, the maximum size of

the components one can guarantee when 2-partitioning graphs of maximum degree 4. Our argument

depends on the following useful lemma about partitioning a pair of graphs on the same set of vertices.

This same lemma will be applied also in Section 4 to obtain a result on transversals that induce only

small components.
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Lemma 2.6 Let G1 and G2 be multigraphs with maximum degree at most 2 on the same vertex set

X. Then there exists a partition of X into two parts, X1 and X2, such that for each i ∈ {1, 2} we

have ∆(Gi[Xi]) ≤ 1.

Proof. First we assign an arbitrary orientation to each path or cycle in G1 and G2, so from now

on we consider them as directed graphs. We denote by v+

i and v−i the out-neighbor and in-neighbor

of v in Gi respectively, if they exist. We construct the partition one vertex at a time, beginning by

placing an arbitrary vertex in X1. We never remove a vertex from its part of the partition once it

has been placed. In general, after having placed a vertex v in Xi we do the following.

(a) If v+

i exists and is not already placed, we place it in X3−i.

(b) Otherwise if v−i exists and is not placed yet, we place v−
i in X3−i.

(c) If neither (a) nor (b) applies, we select an arbitrary unplaced vertex and place it in X1.

We claim that this procedure produces a partition X1 ∪ X2 with the desired property. To see

this, first suppose on the contrary that three distinct consecutive vertices x, y, and z in Gi are all

placed in part Xi of the partition, where y = x+

i and z = y+

i . Then by the construction, the first

vertex of {x, y, z} to be placed in Xi must have been z, otherwise by (a) the very next step would

have been to place y or z in X3−i. For the same reason, the next to be placed in Xi was y. But

then at this point z = y+

i is already placed, so the next step is to place x in X3−i, contradicting our

assumption.

Now suppose that x and y are the two vertices of a two-vertex cycle in Gi. Then without loss of

generality, x is placed in Xi first. But then by (a), the next step is to place y = x+

i in X3−i. This

completes the proof of the lemma. �

We are now ready to turn to the main result of this subsection.

Theorem 2.7 Let G be a graph with maximum degree 4. Then the vertex set of G can be partitioned

into two parts V1 ∪ V2 = V (G) such that each part induces components of size at most 6.

Proof. Let us start with a max-cut U1 ∪ W2 = V (G), with the additional property that it has the

minimum number of vertices in U1.

Let G1 = G[U1] and G′
2 = G[W2]. Since the number of edges going across is maximum, every

vertex has degree at most 2 in each of G1 and G′
2. The minimality of |U1| implies that G1 has

maximum degree at most 1 as switching a degree 2 vertex of G1 over to W2 does not decrease the

number of edges going across.

Let S be a maximum size independent set of degree 2 vertices of G′
2, and let us define U2 = W2\S,

W1 = U1 ∪ S, G2 = G[U2] and G′
1 = G[W1]. Clearly, every element of S has degree 2 in G′

1 and

the partition (W1, U2) is also a max-cut. So G′
1 has maximum degree at most two. The set S is a

maximum size independent set of the degree 2 vertices of G′
1 because if S ′ is another independent
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set, then (W1 \ S′, U2 ∪ S′) is another max-cut of V (G), so |W1 \ S′| ≥ |U1|. By the choice of S, G2

has maximum degree at most one.

Thus G1 and G2 consist of disjoint edges and vertices, while G′
1 and G′

2 are the disjoint union of

cycles and paths (possibly of length 0).

Our strategy is to split S between the two sides using Lemma 2.6.

We define the auxiliary graphs Hi for i = 1, 2 on the vertex set S by letting two vertices of S be

adjacent in Hi if they are at distance 2 or 3 in G′
i. We have ∆(Hi) ≤ 2 as S is an independent set

of the graph G′
i and ∆(G′

i) ≤ 2.

We now apply Lemma 2.6 to H1 and H2 to obtain a partition X1∪X2 of S for which ∆(Hi[Xi]) ≤ 1

for i = 1, 2. We let the classes of the final partition be Vi = Ui ∪Xi for i = 1, 2. Notice that Vi ⊆ Wi,

and since Wi spans the graph G′
i of maximum degree at most 2, each component of the graph G[Vi]

is a path or a cycle. Suppose such a component D is of size 7 or more. As S is a maximum size

independent subset of the degree two vertices of G′
i, it must contain at least three vertices of D. To

be in D ⊆ Vi all of these vertices must be in Xi and they are in a component of Hi[Xi] contradicting

the choice of Xi. The contradiction proves that all components of G[Vi] are of size 6 or less, as

claimed. �

Remark Even the improved bound on the component size in Theorem 2.7 is not known to be

optimal. The complement of the seven-cycle shows that the same statement with component size

less than four is false. It is a 4-regular graph, and one can easily verify that any subset of the vertices

of size four or more span a connected subgraph.

3 Partitioning into several parts

In this section we discuss a problem analogous to the one considered in Theorem 2.1, but now we

partition the vertices into more than two parts. In several cases we utilize ideas from [4]. We also

need the following partitioning result of Lovász [12].

Theorem 3.1 Let G be a graph and let k1, . . . , km be non-negative integers such that k1 + . . .+km ≥

∆(G) − m + 1. Then V (G) has a partition V1 ∪ . . . ∪ Vm such that ∆(G[Vi]) ≤ ki for each i.

Our first result is the analogue of Theorem 2.1 for partitioning into 3 parts.

Theorem 3.2 There exists a constant C ′ such that the vertex set of any graph of maximum degree

at most 8 can be 3-partitioned such that each part spans subgraphs with components of size at most

C ′.

Proof. Let G be a graph of maximum degree at most 8. Using Theorem 3.1, we partition the vertex

set of G into two parts U1 ∪U2 = V (G) such that ∆(G[U1]) ≤ 5 and ∆(G[U2]) ≤ 2. By Theorem 2.1,

U1 can be partitioned into two parts U1 = V1∪W , each spanning components of size bounded by the
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constant C guaranteed by the theorem. As in [4], we apply the theorem on independent transversals

from [10] (which is the special case of our Theorem 4.1 with r = 1) to get rid of the long paths and

cycles in U2. We define an auxiliary graph H on the vertex set U2, by connecting two vertices with an

edge if they are adjacent in G or connected to the same component of G[W ]. Clearly, ∆(H) ≤ 64C.

We split each component of G[U2] into pairwise disjoint path-segments of length 128C, such that in

any component at most 128C vertices are not covered by these segments. By Theorem 4.1, there

exists a transversal T of the segments which is an independent set of H. We define the classes of the

3-partition of V (G) to be V1, V2 = W ∪T and V3 = U2 \T . Observe that all components of G[V2] are

of size at most 8C + 1, since T is independent in H. The components of G[V3] are of size less than

384C, since T is a transversal of the above defined segment-partition. As all components of G[V1]

are of size at most C, the theorem is proved with constant C ′ = 384C. �

In [4] it is proved that every graph with maximum degree ∆ can be partitioned into d(∆ + 2)/3e

classes, such that each class has components of size at most f(∆). In the following we slightly

improve this result in two ways. On one hand we show that d(∆ + 1)/3e classes suffice for any ∆,

and that only (1/3− ε)∆ classes are needed for suitably large values of ∆, where ε is a small positive

constant. On the other hand for these results we obtain partitions where the size of the components

is independent of ∆.

In general, our next theorem contains a slightly weaker statement than its follow-up, but besides

being instructional, it provides a stronger result for small values of ∆.

Theorem 3.3 There exists a constant C ′ such that the following holds. Let G be a graph of maximum

degree ∆. Then it is possible to d(∆ + 1)/3e-partition the vertex set such that each part spans

components of size at most C ′.

Proof. First suppose d(∆ + 1)/3e = 2k is even.

Let us partition the vertex set into k classes V1 ∪ . . .∪Vk = V (G), such that the number of edges

going within the classes is minimized. As ∆ ≤ 6k − 1 the maximum degree of the graph G[Vi] is at

most 5 for every i = 1, . . . , k. By Theorem 2.1 each Vi can be separated into two parts V ′
i ∪V ′′

i = Vi,

such that both parts induce graphs with largest component size bounded by C, where C is as in

Theorem 2.1.

Thus ∪k
i=1(V

′
i ∪ V ′′

i ) is an appropriate partition into 2k classes.

Next we consider the case when d(∆ + 1)/3e = 2k + 1 is odd. Let us partition the vertex set into

k classes V1 ∪ . . . ∪ Vk = V (G), such that ∆(G[Vi]) ≤ 5 for i = 1, . . . , k − 1 and ∆(G[Vk]) ≤ 8. Such

a partition exists by Theorem 3.1. Now we use Theorem 3.2 to 3-partition Vk and Theorem 2.1 to

2-partition each of the other classes. Then all components spanned by any of the resulting 2k + 1

parts are bounded in size by the constant from Theorems 2.1 or 3.2. �

In order to improve on the constant multiplier 1/3 of ∆, first we show that in fact, for large k,

any 6k-regular graph can be partitioned into 2k parts with bounded size components.
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Theorem 3.4 There exist constants K and C ′′ such that the following holds. Let G be a graph with

maximum degree at most 6k, k ≥ K. Then it is possible to 2k-partition the vertex set such that each

part contains components of size at most C ′′.

Proof. We choose C as in Theorem 2.1 and set K = 450C 3 and C ′′ = 6C + 1. Let us start again

with a partition into k classes V1 ∪ . . . ∪ Vk = V (G), such that the number of edges going within the

classes is minimized. Now we cannot say that the maximum degree of each graph G[Vi] is at most 5

for every i = 1, . . . , k; there could be some vertices whose degree within their class is six. Let M be

the set of these vertices. By choosing our partition such that |Vk| is maximal, we can assume that

all of M is contained in Vk. (A vertex v ∈ M has exactly six neighbors in each class, so it could be

moved to Vk without increasing the number of edges within the classes.) Therefore ∆(G[Vi]) ≤ 5 for

i = 1, . . . , k − 1.

Let W ⊆ M be a maximum independent set in G[M ]. Clearly, G[Vk \ W ] has maximum degree

at most 5. By Theorem 2.1 each Vi, i = 1, . . . , k − 1, and Vk \ W can be partitioned into two parts

V ′
i and V ′′

i , and respectively V ′
k and V ′′

k such that all G[V ′
i ] and G[V ′′

i ] have components bounded by

C.

Our goal is to distribute the vertices of W among these 2k classes, such that they don’t glue

too many existing components together. We put each vertex into a certain class with probability

p = 1/(2k), the choices for distinct vertices being mutually independent.

One vertex v ∈ W has at most 6 neighbors in a class, so it can glue together at most 6 components

in that class. Thus if we can make sure that no component receives more than 1 neighbor, after W

is distributed the largest component in each class will have size at most 6C + 1. It is important to

note here that the vertices arriving from W are independent, so arrive in components of size 1.

We plan to use the Lovász Local Lemma, Theorem 2.4. For each component F of G[V ′
i ] or G[V ′′

i ]

we define a bad event EF : that at least two neighbors of vertices of F from W are put in the class

of F . Suppose there are f neighbors of the vertices of F in W . Then Pr(EF ) ≤
(

f
2

)

p2.

An event EF is independent of the set of all events EF ′ where F and F ′ have no common neighbor

in W . A vertex u ∈ F with degree du within its class Vi, has at most 6−du neighbors in W . Otherwise

moving these neighbors into Vi would increase du above 6, implying that the number of edges within

the classes is not minimal (the moving of a subset of W does not change that; again independence

of W is critical). Thus F has at most 6C neighbors in W , each of those possibly having 6k− 1 other

adjacent components F ′. Therefore the parameter d in Theorem 2.4 can be taken to be d = 36kC−6.

By Theorem 2.4, if e(36kC − 5)
(

f
2

)

p2 < 1, then with positive probability none of the bad events

happen. In particular there is an assigment of the vertices of W to the classes, such that no component

larger than 6C + 1 is created. Since f ≤ 6C the above condition is satisfied. This completes the

proof. �

Theorem 3.5 There exist constants ε > 0, C ′′ and ∆0 such that the following holds. Every graph
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G of maximum degree ∆ ≥ ∆0 can be partitioned into ∆(1/3 − ε) classes, such that each class spans

a graph with components bounded by C ′′.

Proof. Let K and C ′′ be the constants claimed by the preceding theorem. Let t = d(∆+1)/(6K+1)e.

Partition V (G) into t parts U1, . . . , Ut such that the number of edges going within the classes is

minimal. Then each graph G[Ui] is of maximum degree at most 6K. By the previous theorem we

can partition it into 2K parts such that each part spans a graph with maximum component size at

most C ′′. This therefore gives an appropriate partitioning into

2Kt <
2K

6K + 1
∆ + 2K

parts. Thus ε = 1/(36K + 6) and ∆0 = 200K2 are appropriate choices. �

Remark Let us say that degree ∆ allows d-partitioning if the following is true: There is a constant

C such that the vertices of any graph of maximum degree at most ∆ can be d-partitioned with each

part spanning components of size at most C. The idea of the previous proofs easily generalizes to

the following. If degree ∆ allows d-partitioning, then degree k(∆ + 1) − 1 allows kd-partitioning for

any k ≥ 1 and degree k(∆ + 1) allows kd-partitioning for large enough k.

4 Transversals inducing bounded size components

For a vertex v, we denote by C(v,H) the component of v in the graph H. Whenever there is no

ambiguity about the base graph, we write C(v, V ′) instead of C(v,H[V ′ ∪ {v}]).

Let G be a graph and let P be a partition of V (G) into sets V1, . . . , Vm. A transversal of P is

a subset {v1, . . . , vm} of V (G) for which vi ∈ Vi for each i. In this section we are concerned with

the problem of finding transversals T with the property that G[T ] has only small components. The

following theorem was proved for component size r = 1 in [10]. Here we prove a generalization for

arbitrary r.

Theorem 4.1 Let r, d be arbitrary positive integers. Let G be a graph of maximum degree d, and

let P be a partition V1 ∪ . . . ∪ Vm = V (G) of V (G) such that |Vi| ≥ d + bd/rc for i = 1, . . . ,m. Then

there exists a transversal T of P such that the induced subgraph G[T ] has components of size at most

r.

Proof. Let T0 be a maximal size partial transversal of P such that all components of G[T0] have size

at most r. We assume for contradiction that T0 is not a complete transversal. Let T be the set of

partial transversals T of P which span only components of size at most r and satisfy |T∩Vi| = |T0∩Vi|

for i = 1, . . . ,m.

We call a pair (W,T ) with T ∈ T and W ⊆ V (G) \ T feasible if

(a) the sets C(v, T ) are pairwise disjoint for v ∈ W and each of them is of size at least r + 1, and
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(b) there is no v0 ∈ W and T ′ ∈ T with T ′ ∩ W = ∅ such that |C(v0, T
′)| < |C(v0, T )| and

C(v, T ′) = C(v, T ) for every v ∈ W \ {v0}.

Clearly, (∅, T0) is feasible. We choose a feasible pair (W,T ) with |W | being maximal. Our goal

is to construct another feasible pair contradicting the maximality of |W | and by this contradiction

proving the theorem.

We let H = ∪v∈W C(v, T ) and S = {j ∈ [m] : Vj ∩ T ⊆ H}. By (a) we have |H| ≥ (r + 1)|W |.

Each vertex in H \ W is in T , thus we have |S| > |H| − |W |. (The strict inequality follows from

our assumption that T is not a complete transversal of P, since S contains each index i ∈ [m] with

Vi ∩ T = ∅.)

We claim that there exists a vertex v ′ ∈ ∪i∈SVi \ H that is not connected to any vertex in

H. We prove this by simple counting of the number of possible choices for v ′ and the number of

vertices excluded by being neighbors of some vertices in H. The number of choices is | ∪i∈S Vi \H| ≥

|S|(d + bd/rc) − |H| > (|H| − |W |)(d + bd/rc) − |H|. Each vertex in H has at most d neighbors to

exclude. But G[H] consists of at most |W | components, so there are at least |H|−|W | edges between

vertices of H. These edges contribute to the degree of vertices in H, but they do not exclude any

vertices to be considered as v′. The number of excluded vertices is thus at most d|H|−2(|H|− |W |).

To conclude the proof of this claim we need (|H| − |W |)(d + bd/rc) − |H| ≥ d|H| − 2(|H| − |W |),

which follows from simple rearrangement of the inequality |H| ≥ (r + 1)|W |. Note that v ′ /∈ T by

definition of S.

We now choose the partial transversal T ′ that minimizes |C(v′, T ′)|, among all partial transversals

T ′ ∈ T satisfying T ′ ∩ (W ∪ {v′}) = ∅ and C(v, T ′) = C(v, T ) for all v ∈ W . (Notice that we are

choosing from a nonempty set, as T is a partial transversal satisfying these properties.) We claim

that (W ∪ {v′}, T ′) is a feasible pair, contradicting the choice of (W,T ).

For condition (a), consider the sets C(v, T ′) = C(v, T ) for v ∈ W ; these are pairwise disjoint and

of size at least r + 1. The last set C(v ′, T ′) is disjoint from any set C(v, T ′) (v ∈ W ), as otherwise a

neighbor of v′ would be in C(v, T ′) ⊆ H. Now assume for contradiction that |C(v ′, T ′)| ≤ r. Let Vi

be the class in partition P that contains v ′. If Vi ∩ T ′ = ∅ then T ′ ∪ {v′} is a partial transversal of P

spanning components of size at most r, contradicting the maximality of T0. Otherwise Vi ∩ T ′ 6= ∅,

and hence Vi∩T 6= ∅. Since i ∈ S, we must have Vi∩T = {u} with some vertex u ∈ C(w, T ) for some

w ∈ W (see Figure 4). Since C(w, T ′) = C(w, T ), and w /∈ T ′, we see that T ′∩C(w, T ) = T ∩C(w, T )

so we also have u ∈ T ′. Therefore T ′′ = (T ′\{u})∪{v′} is a partial transversal in T . Since v ′ does not

have neighbors in H we get that C(v, T ′′) = C(v, T ) for all v ∈ W \{w} and C(w, T ′′) ⊆ C(w, T )\{u}.

This contradicts property (b) of the feasibility of (W,T ) and thus proves property (a) of the feasibility

of (W ∪ {v′}, T ′).

Finally, for condition (b) in the definition of feasibility of (W ∪ {v ′}, T ′) notice that for v0 ∈ W

this condition simply follows from the corresponding condition of the feasibility of (W,T ). For v0 = v′

the condition follows from the choice of T ′.
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Figure 4: A feasible pair extremum?

The contradiction of the feasibility of (W ∪ {v ′}, T ′) with the maximality of (W,T ) implies the

theorem. �

We state the r = d + 1 special case of the above result separately:

Corollary 4.2 Let G be a graph of maximum degree d. Let V1 ∪ . . . ∪ Vk = V (G) be a partition of

the vertex set into subsets with |Vi| ≥ d for each i. Then it is possible to choose a transversal T such

that G[T ] has components of size at most d + 1.

The above corollary is optimal in terms of the class size. No upper bound can be given on the

component size of a transversal if the classes are size d − 1. This can be seen by considering the

complete (d − 1)-ary tree H with root w. Partition the vertex set of H \ {w} by letting the sets of

d − 1 sibling vertices be the classes. This way the largest component in any transversal will be the

depth of the tree, which can be arbitrarily large.

We remark however that the above corollary is probably not optimal in the component size.

Indeed, the following corollary tells us that in the special case d = 2 one can have components of

size at most 2. We do not know if a similar statement limiting the component size by 2 instead of

d + 1 holds for larger d.

Corollary 4.3 Let G be graph with maximum degree at most 2 with its vertex set partitioned into

2-element subsets. Then it is possible to select a transversal T of this partition such that ∆(G[T ]) ≤ 1.
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Proof. Apply Lemma 2.6 to the graphs G1 = G and G2 constructed on the same vertex set V (G) by

placing two parallel edges between each pair of vertices belonging to the same set Vi. The resulting

set X1 satisfies ∆(G[X1]) ≤ 1 and X1 contains at least one vertex from each set Vi. Taking one

vertex from each Vi ∩ X1 gives a transversal of the required type. �

5 Remarks and Open Problems

1. Theorem 4.1 leads us to the following question. For a fixed degree d and component size r, let

us define p(d, r) to be the smallest integer such that any d-regular graph partitioned into classes of

size at least p(d, r) has a transversal that spans only components of size at most r. In Section 4 we

showed d ≤ p(d, r) ≤ d + bd/rc. Tight results are known for r = 1 [7, 14], when p(d, 1) = 2d. We

also have p(2, 2) = 2 by Corollary 4.3. Right now it is even possible that p(d, 2) = d for all d. Any

asymptotic tightening of the gap between the upper and lower bounds would be very interesting.

The smallest unknown case is p(3, 2); that is, how big must the partition classes of a 3-regular graph

be, to guarantee the existence of a transversal that spans at most a matching? The answer is either

3 or 4.

2. With a more detailed analysis we can prove a maximum component size C = 17617 in Theorem 2.1,

but it is definitely far from the truth. The determination of the smallest possible such C would be of

interest but might be out of reach. Not so for Theorem 2.7; there the required maximum component

size is between 4 and 6.

3. There are lots of questions concerning the partitioning of graphs into more than two parts. The

most general one is to determine for every fixed k the largest maximum degree ∆k, such that every

graph with maximum degree ∆k can be partitioned into k parts, where each part spans components

of size bounded by a constant. In Section 2 we proved ∆2 = 5. As shown in [4], ∆k < 4k − 2 for

any k, while for large enough k Theorem 3.5 implies (3 + δ)k < ∆k with a positive constant δ > 0.

It would be of great interest to determine ∆k asymptotically.

The smallest unknown case is interesting in its own right: we don’t know whether ∆3 is 8 or 9.

In other words, is it possible to color the vertex set of a graph with maximum degree 9 by three

colors such that every monochromatic component is bounded by a constant?

4. In the following we define a density version of the results of Section 2. We intend to weaken

the maximum degree condition by bounding the density of the graph, which allows a few very large

degree vertices. We find this question interesting but can only show modest results.

Let µ(G) = max{|E(G[W ])|/|W | : W ⊆ V (G)}. We raise the problem of determining the

supremum value α, such that every graph G with µ(G) < α has a partition into two parts spanning

components of bounded size. Here we can only show that 1 ≤ α ≤ 2.

To see the upper bound, consider the following construction. Let n ≥ 1 and let An be the graph

with 2n + 1 vertices and 4n − 1 edges, such that two vertices of An have degree 2n. Notice that

whenever we 2-partition the vertex set of An such that each part spans components of size at most
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n, the two full-degree vertices must be placed in the same part. Now consider the graph Bn that is

the union of n isomorphic copies of An sharing a single common vertex x that has full degree in each

of the graphs. Notice that µ(Bn) < 2 for all n. If the vertex set of Bn is 2-partitioned then either

one part spans a component of size more than n of a copy of An, or the part containing x contains

the other n high-degree vertices and they form a component of size greater than n. Therefore α ≤ 2.

For the lower bound, we claim that if µ(G) ≤ 1, then G can be 2-partitioned, V1∪V2 = V (G), such

that for i = 1, 2, each component of G[Vi] has at most 2 vertices. Indeed, by the density condition

each component of G is a tree or has unique cycle. Therefore it is possible to remove a matching M

from G, such that G − M is bipartite. Then G − M could be two-partitioned into two independent

sets. Adding back the edges of the matching will create components of size at most two.

Similar problems could be raised for partitioning into k parts, k > 2, as well.

Note added in proof. Recently A. Kostochka improved the lower bound on α from Remark 4. He

showed that for every ε > 0 there exists a constant C = C(ε), such that any graph with µ(G) ≤ 3/2−ε

can be partitioned into two parts spanning components of at most C vertices.
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